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Abstract: Manifold applications in transportation system engineering rely on accurate modeling
of human mobility demand. This demand is often represented by so-called mobility plans. Distin-
guished by their levels of aggregation, activity-based and trip-based models are the most prominent
types of demand models in the literature. Macroscopic trip-based models are widely available but
do not model mobility at the person level. In contrast, activity-based approaches simulate mobility
microscopically but are complex and thus rarely available. The goal of this article is to present, apply,
and validate an approach to generate activity-based mobility plans which microscopically reproduce
real-world mobility demand but circumvent the complexity of activity-based approaches. To achieve
this, existing trip-based models and mobility surveys are employed. Application results for car mo-
bility in the city of Munich show that the obtained mobility plans are realistic on both a microscopic
and a macroscopic level with regard to time, space, and activities. The presented approach can thus
be considered appropriate for generating activity-based mobility plans whenever the development
of a full-scale activity-based demand model is infeasible.

Keywords: mobility modeling; activity-based; trip-based; demand; mobility plans

1. Introduction

Many applications in the area of transportation system design rely on accurate model-
ing of human mobility demand. So-called mobility plans constitute a prominent represen-
tation of such demand, which is needed to design new mobility systems for growing and
modern cities using, for example, state-of-the-art traffic simulators such as Multi-Agent
Transport Simulation (MATSim) [1] or Simulation of Urban Mobility (SUMO) [2]. A set of
mobility plans includes information on the coordinates of origins and destinations, as well
as departure and arrival times for every individual trip occurring within a population,
timeframe, and spatial environment. An exemplary excerpt of one individual’s mobility
plan is illustrated in Figure 1.

Synthesizing realistic mobility plans by means of abstracting human travel behavior
within demand models has been the subject of many prior studies [3–5]. Distinguished
by their levels of aggregation, activity-based and trip-based models are the two prominent
types of demand models known today. Activity-based models produce mobility plans
in which all movements are coherent within the frame of a microscopic entity, such as
an individual person or car. In activity-based models, travel demand originates from the
desire of individuals to participate in activities and is the result of trips taken to reach these
activities [4]. Elaborate models of this type generate mobility plans that contain plausible
mobility patterns and activity sequences on a microscopic level in addition to realistic,
macroscopic traffic demand with regard to, for example, mileage, times, and locations.
Activity-based models are based on simulating human behavior to explain and forecast
traffic reactions to transportation policy or system changes, but this simultaneously makes
them highly complex and expensive to implement, thus preventing established use [6]. As
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a result, activity-based demand models are scarcely available. In contrast, trip-based ap-
proaches are significantly more common and simpler to implement but fail to be realistic on
a microscopic level. They realistically model traffic demand macroscopically by simulating
aggregated traffic flows on network links [7].
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Figure 1. Exemplary mobility plan of all trips of an individual on one day. The last activity of the
preceding day provides the work trip’s origin.

The purpose of this work is to develop and validate a data-driven method for gener-
ating activity-based mobility plans that are realistic and coherent on an individual level
without the complexity introduced by the behavioral nature of activity-based models. This
places it between trip-based and activity-based demand models, as illustrated in Figure 2.

Trip-based demand model
Re-model observed
traffic flows
Macroscopic

Simplicity, availability Complexity, capabilities

Presented Methodology
Re-model observed 
individual mobility
Microscopic

Activity-based demand model
Simulate human 
mobility behavior
Microscopic

Figure 2. The presented methodology is located between trip-based and activity-based demand models.

To this end, the output of an existing trip-based model is combined with data from
a general mobility survey to arrive at a model that is capable of producing activity-based
mobility plans that are microscopically coherent without losing macroscopic accuracy. This
is achieved by merging the macroscopic characteristics of the general mobility survey
with the microscopic and location-specific traits of the trip-based model to remodel the
statistical properties of the input data without the explicit consideration of dynamic system
behaviors that initially led to the observations within the input data sets. Our model is
thus empirical and does not provide any basis for extrapolation but is systematically easier
to implement than activity-based demand models. The presented model is designed and
tested using existing data and models for the city of Munich. Nevertheless, this approach is
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applicable to any situation in which both a trip-based model and a general mobility survey
for the study area are at hand, and building a full activity-based demand model is infeasible
or inefficient. To reduce application complexity, the model is confined to a single mode of
transportation, a structurally homogeneous spatial environment, and weekdays. The main
contributions of the approach presented in this article are as follows:

• An assessment of state-of-the-art mobility modeling;
• The identification of a research gap spanning between easy-to-implement, macroscopic

trip-based models and complex, behavioral activity-based models;
• An approach to efficiently generate activity-based mobility plans from existing trip-

based models and mobility surveys;
• Its application to the city of Munich;
• An overview and validation of the obtained results.

The remainder of this article is structured as follows. The related literature, including
insights into mobility plan generation, mobility modeling, and existing mobility data, is
presented in Section 2. Based on the literature assessment, the research gap is subsequently
identified in Section 2.2, before Section 3 introduces an approach to generate activity-based
mobility plans from trip-based models and general mobility surveys. The presented ap-
proach is applied to the city of Munich, and the obtained results are presented and validated
in Section 4 before a discussion and conclusion of the presented ideas finish the article at
hand in Sections 5 and 6, respectively.

2. The Related Literature and Problem Statement

Planners of transportation systems need to know how many goods or people have
to be transported at what times across which locations to design suitable transportation
solutions. This section provides an overview of the related literature on mobility models
which have been developed for transportation system planning. Building on this literature
review, a research gap is identified and converted into a problem statement, motivating the
introduction of a novel data-based approach to mobility plan generation.

2.1. The Related Literature

Due to the importance of mobility insights, a large body of the literature and practical
mobility studies is available today. In contrast to the technical transportation perspective,
which focuses and builds on origin-destination matrices as a proxy variable for mobility
demand, mobility studies, which are rooted in the social sciences, require information on
the reasons for transport demand. Hence, the assessment of human needs that induce
activity patterns, location choices, and decision making adds to the bigger picture of human
mobility. The mobility data sets available as a foundation for mobility studies can be divided
into two groups based on the type of data sources: trace data, providing the locations
of individual entities, and survey data, providing the mobility schedules of individual
entities [8–10]. Trace data, when mined from existing data like call detail records [11,12] or
social media data [13,14], have large samples sizes (n ≥ 105), but oftentimes, no information
regarding activities or persons emitting the traces are available [8,9]. In cases in which trace
data can be attributed to identifiable persons, privacy preservation is a major challenge [15].
Aside from mining, trace data can be purposefully created using global positioning system
(GPS) trackers. This enables capturing sociodemographic data and activity purposes, yet
the sample sizes are small due to the high incurred cost (commonly n ≤ 103) [9]. In contrast
to trace data, the survey data results are from censuses or travel surveys. A fundamental
element of survey data is sociodemographic information. Censuses provide static data
about residential and employment locations as well as high-level mobility metrics, such
as the average commuting distance [8,9]. Travel surveys contain detailed information
about the respondents’ mobility, especially with regard to trip purpose, mode of transport,
time, and distance [16–18]. Compared with trace data, survey data have the advantage
of providing sociodemographic information as well as information about the conducted
activities. Their disadvantages are the high incurred effort, a coarse geospatial resolution to
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maintain anonymity, and dependence on the reporting accuracy on human memory [8,9].
The high effort additionally leads to them being infrequent and reflecting transportation
changes with a delay [11].

Aside from mobility data collection through, for example, tracing and surveying,
the identification of movement and behavioral patterns in raw data and the subsequent
abstraction of such patterns allow for mobility forecasting and extrapolation. Partial models
of mobility patterns include, among others, driving willingness models [19–23], location
selection models [5,12,14,24–26], detour behavior models [27–33], and models for activity
scheduling [18,34–40]. Integrated models, aimed at modeling the overall movements of
larger populations, are clustered into trip-based and activity-based mobility models. These
are reviewed in the following sections.

2.1.1. Trip-Based Mobility Models

The traditional trip-based model predicts aggregated traffic flows. It consists of four
steps, namely trip generation, trip distribution, mode choice, and assignment. The modeled
area is discretized into traffic analysis zones (TAZs), and the time of day is discretized
into time bins. The trip generation step determines the number of trips originating from
or terminating in each TAZ based on its sociodemographic and spatial attributes. Dur-
ing trip distribution, origins and destinations are linked to create trips. This step results
in an origin-destination matrix, quantifying the traffic flow between any two TAZs. Dur-
ing mode choice, the trips are distributed onto the available modes of transport based
on distance or travel time. The assignment step assigns the modal traffic flow between
the TAZs to the transport network, resulting in a prediction of the aggregated traffic flow
on each network link. Any interested readers can refer to Rasouli and Timmermans [41],
who provide further information on the four-step model. Disaggregated versions of the
traditional model differentiate between different groups of persons or even individuals
to allow for a more realistic assignment of activities and modes, rather than assuming
everyone in a TAZ behaves the same way. These modifications are made to overcome some
of the traditional model’s disadvantages, such as the aggregation bias, yet do not provide
spatially or temporally consistent mobility plans on a microscopic, individual level [42].
Tour-based models additionally prevent the traditional model’s knowledge loss and re-
duce inconsistencies. Rather than considering trips independently, they are combined into
tours starting and ending at home. Thus, all trips can be traced back to households with
their associated sociodemographic properties. Constraints ensuring the consistency of the
sequence, location, time, and mode of trips may be introduced [7,43].

2.1.2. Activity-Based Mobility Models

Activity-based models aim to realistically represent the interdependencies of activities,
times, locations, modes, and routes on a microscopic level. Most activity-based models
share their two-step structure. They first generate a synthetic population to then generate
schedules for each member or household within the population. A prototypical example for
an activity-based model was presented by Bowman and Ben-Akiva [43]. Activity-based
models are predominantly disaggregated.

Utility-based models were the first activity-based models to predict full-scale mobility
plans. They simulate the human decision-making process as a two-step process of first
generating a choice set and forming the solution space, followed by selecting the best
alternative [42]. The decisions are modeled to imitate the human desire to maximize
utility [41]. While the participation in activities yields a positive utility, the financial
and temporal cost associated with traveling result in negative utility [3]. The research
community further differentiates utility-based models into econometric models [4,43,44]
and utility-based microsimulations [4].

Computational process models, occasionally termed rule-based, equal utility-based
microsimulations in their focus on a complex search heuristic and the application of
sequential decision-making processes, resulting in a specific solution. The two models
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differ in their decision-making processes: utility-maximizing approaches assume optimal
decision making by humans, which has been deemed unrealistic by the authors of compu-
tational process models [41]. Hence, computational process models strive to select the first
sufficient option rather than the globally optimal one [44].

Driven by the advances in the field of artificial intelligence, numerous models that
leverage vast sets of trace data to train artificial mobility plan generators have recently
emerged as new means to model human mobility. Some of these generative models generate
artificial mobility plans that are indistinguishable from real ones. In contrast, others learn be-
havior from traces and allow the model developer to alter behavioral parameters. Applied
techniques include generative adversarial networks [45], variational autoencoders [46],
decision and regression trees [47], Markov models [48], hidden Markov models [49], and re-
current neural networks [50]. The downside of these approaches, however, is their reliance
on large data sets for the target region to be modeled. Mining existing data sets to this end
entails privacy challenges.

2.1.3. Hybrid Mobility Models

Moeckel et al. [5] identified a research gap between activity-based and trip-based
mobility models. They presented a hybrid form in between these types that overcame
some of the limitations inherent to trip-based models. Their framework, called Microsimu-
lation Transport Orchestrator (MITO), models the trip demand of individual persons using
activity-based methods, yet the model is easier to implement than activity-based models.
They thoroughly covered the entire mobility of the population (i.e., all modes of transport)
in a large, heterogeneous area, including both dense urban and rural areas. However, this
led to compromises with regard to trip assignment to reduce model complexity. Hence,
while the trip generation is highly realistic on a disaggregated level regarding sociodemo-
graphic factors, and macroscopic traffic indicators are validated to represent the observed
mobility behavior, the assignment is not necessarily spatially or temporally consistent on a
personal level.

2.2. Problem Statement

While activity-based models achieve remarkably realistic levels in modeling human
behavior in theory, the inherent complexity and implementation efforts simultaneously
restrict them from widespread use in practice. As a result, there is a gap between the
state-of-the-art research and general application [5,51]. In conclusion, the implementation
efforts of activity-based models still outweigh the limitations of trip-based models in the
eyes of many potential users, such as transportation researchers, city planners, and gov-
ernmental authorities. Hybrid models such as the one presented by Moeckel et al. [5]
opt to reduce the gap between trip-based and activity-based models while simultaneously
retaining the induced implementation efforts at a manageable level. Nevertheless, existing
hybrid models do not reproduce microscopically accurate results. As a result, mobility
plans generated by these approaches may include virtual agents who are located in two
places at once or conduct activities in unreasonable frequencies or orders.

In addition to hybrid approaches, the gap between the trip-based macrosimulations
and activity-based microsimulations of human behavior also houses the potential for a
second intermediary research domain that microscopically reconstructs mobility on a
personal, vehicular, or household level for a singular scenario with regard to time and
space. This domain differs from activity-based models by not modeling the behavior
required to, for example, simulate the traffic response to policy changes such as congestion
charges but still reproduce the existing mobility of individual entities in a consistent and
realistic way while simultaneously retaining realistic macroscopic transport indicators.
Compared with activity-based models, this significantly reduces the effort of applying the
model while, at the same time, providing the same value to applications that need a realistic
microscopic model of today’s traffic but do not require to model’s behavioral responses at
all. This work presents an approach to filling the outlined gap by building a model on two
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different input data sets: an existing trip-based model reflecting accurate mobility behavior
for the target region with regard to the macroscopic indicators and spatial resolution and a
general mobility survey comprising information on the typical activity patterns of people
representative of the population of the same target region. Utilizing these data sets as
well as existing partial mobility models on, for example, driving and detour willingness,
the presented approach fills the outlined research gap.

One possible application, forming the motivation for the contribution presented in this
article, is the simulation of urban electromobility using a simulation framework presented
by Adenaw and Lienkamp [52]. In this application, microscopically realistic mobility plans
of individual battery electric vehicles are required to consistently simulate their state of
charge and induced charging behavior. The respective approach is based on the hypothesis
that future electric vehicle users behave exactly as today’s drivers of internal combustion
engine vehicles do with respect to mobility behavior. To this end, the overall amount,
length, and spatial distribution of car trips needs to be remodeled based on the status quo
for the target region in order to evaluate the spatiotemporal infrastructure utilization in
the future. Although real transport demand is known to be elastic and hence sensitive
to, for example, price changes [53–55] which inevitably come with the switch to another
propulsion technology, a ceteris paribus analysis of charging behavior helps to reveal the
general influences of technological changes and serves to reduce the system complexity
to a manageable level. In these kinds of circumstances, activity-based models are out
of scope and trip-based, and existing hybrid models are also not applicable because the
traceability of individual cars is not provided. Similar usages may be found in other areas
of transportation engineering in which no explicit modeling of behavioral responses but
a reconstruction of the status quo mobility demand is needed on both a microscopic and
a macroscopic level. This is due to the practical motivation of charging infrastructure
simulation that the approach presented in this study is evaluated through a case study
in Munich and focuses exclusively on the reconstruction of car mobility. In consequence,
all generated mobility plans ought to be diaggregated onto cars, in contrast to the more
prominent disaggregation onto people. To the best of the authors’ knowledge, no similar
approach of reconstructing micro- and macroscopic mobility behavior realistically on a
personal, vehicular, or household level, other than the more complex and resource-intensive
agent-based models, has been presented before.

3. Materials and Methods

This section introduces an approach to generating synthetic yet realistic mobility
plans before Section 4 presents the results obtained from its case study application to the
city of Munich. Section 3.1 clarifies the requirements, metrics, and scope of application
considered in this article. Based on these considerations, suitable input data for the case
study application are derived in Section 3.2. These input data consist of the outputs of
an existing trip-based model for the city of Munich as well as a general mobility survey
for the whole of Germany. The developed approach employing these input data sets
to reconstruct mobility behavior within Munich, effectively closing the aforementioned
research gap, is presented in Section 3.3.

3.1. Requirements, Metrics, and Scope of Application

Prior to developing an approach to generate activity-based mobility plans from mobil-
ity survey data and a trip-based model, the requirements, validation metrics, and a scope of
application are to be defined. Figure 3 visualizes the aforementioned fundamental structure
of the presented approach together with the applied requirements and metric categories.
Starting with separate information on the population’s general mobility behavior, as given
by a mobility survey, and the location-specific behavior, represented by a trip-based model,
activity-based mobility plans are generated. These plans have to respect both the macro-
scopic mobility behavior, including a realistic frequency, order, and time of activities as well
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as the microscopically accurate choice of activity locations, and the spatial and temporal
consistency of the plans.

Generator for activity-based mobility plans Simulate mobility 

microscopically

Achieve realistic 

behavior

macroscopically

Model mobility 

behavior

Use existing data

General mobility behavior

General mobility survey

General mobility behavior:

Frequency, order and time of activities

Trip-based model

Location specific behavior

Location specific behavior:

Locations of activities

= =

Figure 3. Overview of input and output requirements on methodology.

We distinguish between two types of requirements for the solution approach: output
requirements and data requirements. These are further specified in the following and
provide a framework for the later validation of the obtained results.

3.1.1. Output Requirements

Three output requirements (Req1) are imposed on the methodology to ensure that
the generated mobility plans are qualitatively similar to those generated by full-scale
activity-based models.

Output Requirements Req1
The generated methodology is implemented to accomplish the following:

• Req1a: generate microscopically consistent and feasible activity-based mobility plans;
• Req1b: achieve realistic macroscopic mobility behavior with regard to the order, fre-

quency, location, time, and duration of activities as well as the induced travel distances;
• Req1c: differentiate by sociodemographic groups.

In Req1a, consistency refers “to the space–time constraints of the individual” and fea-
sibility to the “temporal, spatial and institutional constraints set by the environment” [41].
The main challenge of Req1b is to simultaneously exhibit the same realistic general mo-
bility (frequency, order, and time) and location-specific behavior that the input data sets
individually exhibit while not infringing on Req1a [48]. Therefore, the selection of activ-
ity locations must simultaneously show a realistic geographical distribution of locations
(location-specific behavior) and a realistic distribution of driven distances (general mo-
bility behavior). Since different sociodemographic groups are known to show different
mobility behavior [56], sociodemographic characteristics are to be considered during this
process Req1c.

3.1.2. Data Requirements

The aim to reduce complexity compared with activity-based models induces input
requirement Req2a, stating that the methodology is to employ existing data. Req2b is
induced by Req1c. To be precise, the input data consist of two existing data sets, as visualized
in Figure 3. On the one hand, this requires a general mobility survey for modeling general
mobility behavior (e.g., sequence and duration of activities, as well as drive times and
distances of trips between activities). On the other hand, this requires a trip-based model
to provide a synthetic population and model location preferences specific to the region for
which activity-based mobility plans are to be generated. Lastly, due to the fact that our
approach is set to remodel the observed mobility behavior without any analytical modeling
of behavioral aspects and system dynamics, all characteristics relevant to the respective
application within which our model is to be applied need to be reflected by the chosen



Appl. Sci. 2022, 12, 8456 8 of 29

input data sets (i.e., the input data need to be representative of the already relaxed mobility
behavior of the study area, timeframe, mode, and user group at both the microscopic and a
microscopic level). The elasticities, push and pull, or substitution effects, as well as any
other form of user or system interaction, are not explicitly introduced into the model but
instead assumed to be indirectly reflected by the input data sets.

Data Requirements Req2
The methodology is to employ input data that fulfills the following:

• Req2a: already exists (i.e., not specifically created);
• Req2b: contains sociodemographic characteristics;
• Req2c: contains all microscopic and microscopic traits of the mobility behavior to

be reflected.

3.1.3. Scope of Application

Due to the scope and initial motivation of this work, the presented methodology
exclusively models a car’s mobility behavior. Additionally, it is limited to modeling
one distinct and structurally homogeneous spatiotemporal environment (Lim2) (i.e., the
presented approach models trips by car in an area of homogeneous density of development
and a specific point in time). It is hence not designed to extrapolate or be applied to
scenarios in which, for example, regions with heterogeneous mobility behaviors such
as rural or urban regions are within the study area for which mobility plans are to be
generated. The spatiotemporal environment of the case study is an urban area on working
days, namely the city of Munich.

Limitations per Design
The methodology is to be limited to the following:

• Lim1: trips by car;
• Lim2: one homogeneous spatiotemporal environment.

3.2. Input Data

Mobility behavior consists of two fundamental elements: general mobility behav-
ior, which covers all characteristics such as the trip length independent of the context,
and context-specific mobility behavior, which contains characteristics related to the ob-
served situations (e.g., specific location preferences) [8]. Based on the requirements to
employ existing data and to apply the methodology to the city of Munich, Mobilität in
Deutschland (MID), a general mobility survey, and MITO, a trip-based model for the greater
Munich area, were used as input data.

The mobility survey MID represents everyday mobility in Germany. The data consist
of 960,619 trips conducted by 316,361 surveyed persons belonging to 156,420 households.
Each household was tasked with reporting all trips of all household members on a randomly
assigned date. The reported trip data comprise, among others, purpose, distance, origin
and destination, time of departure and arrival, and mode of transport [16]. A weighting
factor is provided for each trip to balance out the selection probability of sampling and
achieve that relevant criteria such as age and sex are distributed equally in the sample and
in the residential population of Germany.

MITO employs a microsimulation to individually model the mobility of households
and persons that in turn constitute a realistic travel demand when aggregated. The model
has been applied to the greater Munich area and provides location-specific preferences and
a synthetic population for our application. Location preferences quantitatively compare
the attractiveness of TAZs for a given activity type. The synthetic population contains
households and persons for which travel demand is simulated. Aside from household
composition and home location, it defines the destinations of mandatory trips for work and
education purposes.

Based on the requirement to model car mobility on a weekday in the city of Munich,
the input data had to be filtered and transformed from a person to a car perspective. To this
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end, the MID survey was filtered for trips in metropolitan environments on a regular
weekday by a uniquely identifiable car. Out of 960,619 trips in MID, 2.9%, or 27,658 trips
by 9053 cars, remained for further analysis. The strongest reductions were, applied in this
order, the limitation to a metropolitan area of residency (−82.4%) and trips where the
reporting person was driving a car (−72.0%). Each car was assigned a unique car identifier
for further processing. Aside from the adjustments to the MID results, the MITO data
were also preprocessed to meet this work’s requirements. First, the location preferences
of MITO were filtered to only contain TAZs within the city limits of Munich. Second,
the synthetic population was filtered to those living, working, and studying in Munich
(1,223,532 people). Because of the car perspective employed in this approach, the synthetic
population was also reduced to persons in possession of a driver’s license, ultimately
resulting in 900,032 persons living in 624,571 households. Based on this, the synthetic
car-population was created. Considering the number of cars per household and the limita-
tion that a household could not simultaneously use more cars than members with driver’s
licenses, the synthetic car population comprised 482,991 cars for which artificial mobility
plans could be generated.

3.3. Approach

This section presents the developed approach for generating activity-based mobility
plans from the data sets introduced before. Based on our focus on car mobility behavior,
we defined the mobility plans as one car’s sequence of activity types with the location and
time for each activity. This definition is depicted in Figure 4.

Synthetic 

population

Activity 

chains

Simulate mobility 

microscopically

Achieve realistic 

behavior

macroscopically

Model mobility 

behavior

Use existing dataTrip-based methodGeneral mobility survey

W S H

One start 

time p. day

Duration of 

each act.

Driving 

willingness

Location 

preferences

Globally realistic mobility behavior w.r.t. frequency, order, time, and location

Methodology outcome c.f. requirements

One car’s sequence of activity types with location and time for each activity

Figure 4. Definition of an activity-based mobility plan and outcomes of the methodology’s steps. Red
and green elements belong to general and geospatial-specific mobility, respectively.

The figure also illustrates the operations and outcomes of the methodology, matching
the requirements listed as known in Figure 3. Our approach consists of four generation
steps. A synthetic (car) population for the target region is generated in the first step. Sec-
ondly, activity chains derived from the general mobility survey are attributed to the pop-
ulation. In a third step, locations are associated based on the information available from
the trip-based input data before, in the fourth and final step, the time and duration of
each of these activities are determined. The following sections elaborate on these steps.
The resulting methodology is applied to the Munich case study in Section 4.

3.3.1. Initialize the Population

The car population contained static information about all simulated cars and thereby
provided the foundation for generating mobility plans. The static information comprised
everything that was assumed to not change throughout the simulation period for which
mobility plans were generated [57]:
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• A car’s home location;
• The driver’s static activities, such as work and education. When performed, they were

always assumed to be at the same place and at the same time of day;
• The driver’s work status.

The simulated car population was created by randomly sampling the desired number
of cars from the synthetic car population known from Section 3.2 and assigning information
on the static activities of the cars’ households’ inhabitants.

The data structure for the activity-based mobility plans was initiated by creating a table
for each simulated car, comprising columns for activity type, time, duration, and location.
Each car of the population started with a dummy activity to initialize the mobility plan.
This fictitious “0th” activity set the start time and location of the mobility plan. The location
of the 0th activity was set to the home location of the car. A second table was initiated to
store the static information associated with the car.

Whether a car was used to get to work was based on whether the person drawn
from the household had work information provided. This decision was thereby carried
over from the trip-based model MITO, which is based on a realistic synthetic population.
Hyperparameters pno_worker and pworker were used to calibrate the share of the working
population in case mobility plans were generated for samples small enough to skew the
initially calibrated proportion of workers in the input population. If adjustments were not
needed, then both were set to p = 0. pno_worker is the probability of replacing a working
person with a non-working person, and vice-versa for pworker.

3.3.2. Derive the Activity Chains

An activity chain is a sequence of activity types throughout one day without any
associated locations or timestamps. Due to the significant effort of creating realistic activity
sequences [58] and the objective of this methodology being to facilitate application, activity
chains were obtained from MID rather than being artificially generated. The main and
secondary activities are distinguished within the activity chains. The main activities are the
main purpose of leaving home as indicated in the mobility survey. Each roundtrip starting
and ending at home therefore has exactly one main activity. All remaining activities
are considered secondary activities. This information is used later on when locating
activities in Section 3.3.3 and when assigning the times and durations of activities in
Section 3.3.4. During location choice, the difference between the main and secondary
activities induces different amounts of driving and detour willingness. In addition to the
consideration of main and secondary activities, the relative weightings of the reporting
persons from MID has to be respected in the derivation of activity chains. MID, like
other general mobility surveys, uses weightings to correct for biases introduced by the
participant selection frame, as opposed to the composition of the general population [16].
These weightings were carried over to the transformed car-based mobility survey and
subsequently propagated to weightings of the aggregated activity chains.

Depending on the weighting factor of the obtained activity chains, sampling probabili-
ties can be derived and exceptionally uncommon activity chains can explicitly be removed
if desired for the respective application.

Using the presented approach, 1737 unique activity chains were identified within MID.
MID includes a dedicated trip type for the “return from a previous activity”. Since the
following activity type could not be deduced from this label, and due to its low share among
all trip types (2.5%), all activity chains containing this type were removed. Furthermore,
activity chains with less than five weighted occurrences were considered to be exceptionally
rare and thus removed from the set of activity chains. A qualitative assessment of these
rare activity chains showed that they were especially prone to implausibilities. These are,
for example, the excessive repetition of activity types at home or work. fter all filtering
steps, 173 unique activity chains with their respective probabilities remained.

Once the activity chains were generated and filtered as described before, each car
was iteratively assigned an activity chain for each day of the desired simulation period.
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The result of this step was that each car then possessed a sequence of activity types for the
simulated period of time. In multi-day simulation scenarios, some cars—mostly owned by
the non-working share of the population—are expected to not be driven daily. To reflect
this sociodemographic influence on activity selection, the activity chains were split into four
groups based on whether or not they contained work activities and whether or not they
started at home in the morning. While other studies distinguish more than two clusters in
order to represent all relevant mobility groups within a population [59], the division into
working and non-working populations was chosen to simplify the approach. This equals
the methodology of Bhat [44] in that respect.

In order to model the difference between the working and non-working parts of the
population, two additional hyperparameters were introduced into the model: pdrive_every_day
and pcar_driven. First, it was decided whether a car was driven every day based on the
probability pdrive_every_day. If this was not the case, then the second step was to decide daily
whether the car was used or not with a probability pcar_driven and hence whether an activity
chain was to be drawn for this day of the simulation.

3.3.3. Assign Activity Locations

This section explains the assignment of TAZs to activities. As mentioned before, we
distinguished between the main and secondary activities based on the survey results
provided by MID. It was assumed that the distance to (and therefore the location of) the
main activity does not depend on any other activities, which is why all main activities are
located independently. Thereafter, all secondary activities would be located depending on
the main activities’ locations. This resembles the approach of Hertkorn and Wagner [60]
and Bowman and Ben-Akiva [43], who first assigned locations to activities on the highest
hierarchical level—main activities in this context—and then, based thereon, the locations of
activities on the lower or secondary hierarchical levels.

The locations of the static main activities were inserted from the car information table.
The locations of all unassigned main activities were chosen based on a combined concept
of TAZ attractivity and driving willingness. While, per definition, the locations of static
activity types such as home and work always remained the same, the locations of non-static
activity types such as shopping and recreation were chosen for each activity individually,
(i.e., two main activities of the same activity type might not be located in the same location).

Driving willingness distributions model the willingness of persons to drive for a cer-
tain distance to conduct an activity. Driving willingness has been modeled by employ-
ing a variety of different distributions fitted with real-life trace data. Using this method,
scholars considered gamma [19,21], Weibull [20], lognorm [20,21], exponential [22,23],
and chi-squared [20] distributions. A clear consensus could not be identified. Hence, all
aforementioned distribution types were fitted to the reported driving distances from MID
using the following approach, as illustrated in Figure 5. For each activity type p occurring
as a main activity, one probability density function (PDF) f D

p (d, parametersp) of driving
willingness d over a continuous random distance variable D is created. The driving will-
ingness of activity type p is the distribution of distances dip (non-directed) of all trips pi
and ip between home i and main activity p. In case of trips ipi, the considered distance is
dp = 1

2 (dip + dpi).
Each distribution was determined by fitting a set of distribution types to the analyzed

feature and qualitatively selecting the best fit based on three criteria:

1. Qualitative evaluation of the visual fit of the fitted distribution and a histogram of the
analyzed feature, especially around the extreme values;

2. Quantitative (Kolmogorov–Smirnov test and Anderson–Darling test) and qualitative
(QQ-plot) evaluation of statistical tests;

3. Qualitative plausibility check of whether the fitted distribution could be explained by
real-life behavior, especially regarding overfitting.
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Figure 5. Schematic illustration of the process of generating driving willingness distributions.

The exemplary results are depicted in Figure 6.
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Figure 6. Observed driving willingness (original weighted data) and fitted distributions with the
best fit.

To finally draw the locations of the main activities based on the driving willingness
distribution and TAZ attraction, the probability Πj|i,p of choosing TAZ j for conducting
main activity p when currently being in TAZ i is given by Equation (1):

Πj|i,p =
wj|i,p

∑m
l=1 wl|i,p

(1)

with

wj|i,p = con f j|i,p attj,p, (2)

con f j|i,p =
∫ ∞

d=dij

f D
p (d, parametersp) d d (3)

= 1− FD
p (dij, parametersp), (4)

dij = adist dij. (5)

where m is the number of possible TAZs. This formula structurally resembles a multi-
nominal logit choice model comparing all possible activity locations. Hence, locations
were selected from all feasible alternatives. In line with econometric models, there was
no pre-selection of alternatives [4]. Equation (1) is a modified version of the formula intro-
duced by Moeckel et al. [5], who also determined activity locations based on a multinomial
logit model that employs driving willingness and TAZ attraction. In contrast to their
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version, the mobility behavior conformance term con f j|i,p expresses how likely it is that
one would drive at least the distance dij to conduct activity type p. The conformance term
is based on f D

p and FD
p , which are the PDF and cumulative distribution function (CDF),

respectively, of the driving willingness distribution. D is the random continuous distance
variable of these functions. The distribution type and parameters are specific to each
activity type p and result from the distribution fitting process, and att is the TAZ-specific
attraction, which corresponds to the number of places in a TAZ, where activity p can be
performed, which was taken from MITO in our application. Meanwhile, dij is the road
distance between the centroids of TAZ i and j, approximated by the direct line distance
dij and adist, a constant factor to approximate the road distance based on the direct line
distance that is used to avoid routing and hence reduce the model complexity.

In reality, the selection of activity locations is a trade-off between the benefit of visiting
a location and the effort of getting there [5]. Equation (1) models this behavior by rewarding
an attractive TAZ (att) and penalizing long distances (con f decreases with an increasing dis-
tance). Moeckel et al. [5] penalized the displeasure of transport by an exponential distance
function. Hence, short distances are strictly favored over long distances. Our method-
ology, however, applies the probability of driving at least the considered distance. This
models the trip’s conformance with observed mobility behavior, which decreases with the
distance. The probability is calculated by integrating the driving willingness PDF over
the interval from the considered distance to infinity. This slightly different approach was
chosen to enforce that the simulated driven distances followed the same distribution as
the underlying general mobility survey and allow different activity types to have different
distribution types. This came at the cost of not modeling a human desire: the location
choice was not constrained by the displeasure of driving but was statistically remodeled
based on the observed distributions. This is more similar to trip-based methods than
activity-based methods.

Following the assignment of the main activities’ locations, the secondary activities’
locations were assigned. The process for secondary activities differs from the one for main
activities. This employs a concept of detour willingness instead of driving willingness while
simultaneously respecting that there may be multiple secondary activities instead of a single
main activity. As with driving willingness distributions, detour willingness distributions
are used to quantify the willingness of persons to take a detour of a certain distance off of
the direct route between home and a main activity to conduct a secondary activity. In our
approach, detour willingness distributions were determined using the same distribution
fitting approach as that for the driving willingness distributions. For each activity type p
occurring as a secondary activity, one PDF f D

detour,p(d, parametersp) of a detour distance d
over a continuous random distance variable D is created. This willingness was assumed
to depend solely on the activity type of the considered secondary activity. The detour
willingness of activity type p is derived from triangular trips ipji originating from and
ending at home i. In the case of the absolute detour distance, it is a distribution over detours
ddetour,p|i,j and is calculated as follows:

ddetour,p|ij = dip + dpj − dij, (6)

where j is the main activity and p is the secondary activity [33]. The distances were assumed
to be undirected (i.e., Equation (6) is equally applicable for triangular trips ijpi). This
assumption induced small inaccuracies, as in reality, the distances on typical street networks
do depend on the direction.

To connect multiple secondary activities, an iterative approach was chosen, as illus-
trated in Figure 7.
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Figure 7. Exemplary illustration of determining secondary activity locations for an activity chain with
three secondary activities (from left to right). The activity assigned in the current step is underlined.
The virtual destination v always lies on the direct line between the previously assigned activity
location i and the destination d and is applied for calculating the detour. Bold arrows represent the
distances applicable in the respective current step.

The algorithm connects the secondary activities of all activity chain snippets, with
these being defined as activity sequences starting with a main or home activity with a
coordinate i, followed by at least one secondary activity (without a location yet) and ending
in a home or a main activity with a coordinate d. The variable i will be reassigned in each
step to represent the current coordinate of the agent. The detour associated with visiting
a TAZ is not calculated based on the direct route between the current coordinate i and
destination d but between i and the newly introduced virtual destination coordinate v:

v = i +
1
r
(d− i) (7)

where r is the number of remaining secondary activities in the activity chain snippet which
have not yet been assigned a location. With this concept of virtual destination, the agent
gradually gets closer to the actual destination. On the one hand, this ensures that moving
further away from the actual destination—which would be an undesired behavior [27]—is
unlikely. On the other hand, the gradual movement ensures that, in the case of long activity
chain snippets, the agent does not end up in the proximity of the actual destination early to
then rotate around it.

The probability Πj|i,v,p of choosing TAZ j to conduct a secondary activity p, causing
a detour from the direct route between the current location i and destination location v, is

Πj|i,v,p =
wj|i,v,p

∑m
l=1 wl|i,v,p

(8)

with

wj|i,v,p = con f j|i,v,p attj,p, (9)

con f j|i,v,p =
∫ ∞

d=ddetour,j|iv
f D
detour,p(d, parametersp) d d (10)

= 1− FD
detour,p(ddetour,j|iv, parametersp), (11)

ddetour,j|iv = dij + djv − div, (12)

dxy = adist dxy. (13)

The difference between this and Equation (1) is the use of ddetour,j|iv and f D
detour,p/FD

detour,p

instead of dij and f D
p /FD

p . Exact coordinates need to be determined once all activities have
been assigned to a TAZ. While the coordinates of the home and work locations are already
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known from the synthetic population, the coordinates of the secondary activities are drawn
to occur randomly within their target TAZ to simplify the approach.

3.3.4. Determine the Times and Durations of the Activities

The time and duration of each activity can be determined once all activity locations
have been determined, as the former depends on the drive time between activities, which
in turn depends on the latter. The process of assigning a time and duration for each activity
consists of four steps, as illustrated in Figure 8. To simplify the approach, it was assumed
that the activities, activity start times, and activity durations were independent.

Day i+1 with activity chain A-W-S-HDay i with activity chain R-S-H

start time end time drive activity (placeholder/with duration) /

Draw activity durationsDraw activity durations

WARH

W

R S SA

WA SR S

WA S HRH S H

H A

H HH H

1
Draw activity start time Insert activity start time

2

3

4

t12:00 am12:00 pm 12:00 pm12:00 am

S S

R

Figure 8. Exemplary illustration of the four process steps of assigning an end time and duration
to each activity. The red arrow in step one marks the drawn or inserted start time. Vertical red
lines represent activity end times. Bent arrows illustrate that that element at the head of the arrow
can uniquely be located on the timeline given the element the arrow originates from. Blue and red
represent driving and activity, respectively. Drive times are exaggerated for illustrative purposes.
Please note that the underlying mobility plan is not consistent with the assumption that a person
either has work activities on all days (working) or on none (non-working), but it was chosen to
illustrate both cases.

Step 1: Determining One Anchor Time per Day

The anchor time (one end time per day) locates a sequence of activities on the timeline.
The first step depends on whether the start time information is available for any of the
activities, which is the case if it is a static activity known from the synthetic population,
such as working. If so, the start time of the first activity with available information is
used as the anchor. If not, the start time of the day’s first activity is drawn from a start
time distribution for the respective activity type. Using this start time, the end time of the
previous activity is calculated and used as the next anchor time.

The start time distributions model the start times of activities. The distribution fitting
process was the same as for the driving and detour willingness. For each activity type p
(including the activity of being at home), one PDF f T

p (t, parametersp) of start time t over
a continuous random time variable T is created. It is not further differentiated between main
and secondary activities in order to prevent the creation of many small groups. The same
applies to activity duration distributions. Since the start time behavior distribution is
provided as a continuous PDF, probabilities can only be calculated for intervals and not
for individual values, and those intervals are of lenbin,start. We used bin lengths of 30 min
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(lenbin,start = 30 min) for the start time distributions. This comparably large bin size
was motivated by the distribution not being skewed toward the value 0 (midnight) and
by the distribution covering a comparably large span of 24 h. This bin size represents
a good balance of realistically representing the distributions’ major characteristics while
not overfitting to the data.

The end time or anchor time of the preceding activity is calculated and inserted into
the mobility plan based on the start time and the drive time to this activity. In the case of
a drawn start time, a bin is drawn with a probability Πbini :

Πbini =
∫

t′∈bini

f T
p (t
′, parametersp)dt′. (14)

where f T
p is the PDF of the start time distribution and T is the random continuous time

variable. The distribution type is once more specific to the activity type p and the fitting
parameters parametersp, which results from the distribution fitting process. The center of
the drawn bin is then taken as the start time. The drive times ∆tdrive,xy between arbitrary
locations x and y are calculated using the direct line distance dxy, a constant factor adist for
estimating the road distance based on the direct line distance, and the average velocity
vavg,city of the analyzed urban area:

∆tdrive,xy = v−1
avg,city adist dxy. (15)

The average speed of cars in Munich, vavg,Munich = 32 km
h , is applied for calculating

the drive times [61]. The applied constant factor to approximate the road distance based
on the direct line distance is adist = 1.5 in the city of Munich [62]. In case both the activity
start time and duration are available, the duration and the end time of that activity are
already inserted into the mobility plan. In the case of work activities, the provided duration
is the total daily duration of all work activities. Therefore, the provided work duration is
distributed randomly to all of the day’s work and work-related activities.

Step 2: Drawing the Activity Durations

The activity duration distributions model the durations of activities. For each activity
type p, including the activity of being at home, one PDF f T

p (∆t, parametersp) of activity
durations ∆t over a continuous random time variable T is created. The distribution fitting
process is the same as for driving willingness. While the durations of the main and sec-
ondary activities might not exactly follow the same distributions, there is no differentiation
between the main and secondary activities, as this differentiation would have to be made
for the activity chains as well. This in turn would increase the number of unique activity
chains and, at the same time, reduce the number of samples per unique activity chain.
The probability Πbini of bini is

Πbini =
∫

∆t′∈bini

f T
p (∆t′, parametersp)d∆t′. (16)

where f T
p is the PDF of the duration distribution and T is the random continuous time

variable. The distribution type is specific to the activity type p which, along with the fitting
parameters parametersp, resulted from the distribution fitting process. The activity duration
distributions have lenbin,dur = 5 min, which is the implicit resolution of the survey data.
Out of the 15,815 trips for which duration information was provided, 90.2% or 14,260 trips
had a reported duration of a multiple of 5 min, making it the most common multiple aside
from the trivial multiple of 1 min. Due to most distributions being strongly skewed toward
short durations, the bin size was chosen to be equal to the lower bound (i.e., the implicit
resolution). Using the bin probability, a bin was drawn, and the lower edge of the drawn
bin was used as the duration. The choice of the lower edge over the bin’s center was made
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to not underrepresent the bin containing the value 0. If the bin’s center were used, half of
the bin containing 0 would be in the negative space and have a probability of 0. This choice
would, however lead to a systematic underestimation of values, further motivating a small
bin size to reduce the error.

The durations were drawn for all but the day’s last activities to not over-determine the
schedule. Since there is one anchor time per day, n− 1 out of n activities between two anchor
times can have an independent duration. Furthermore, given that most mobility surveys
cover 24 h starting at midnight, the duration of the last activity ending the following day
is not known, (i.e., no duration distribution can be derived). The activity of being home
was considered an activity like any other when it was encompassed by two non-home
activities during the day. For this purpose, the duration distribution for this activity type
was generated as well.

Steps 3 & 4: Calculating the Activity End Times for All Activities and Calculating the
Day’s Last Activity’s Duration

The durations are iteratively inserted into the mobility plan, originating from the
anchor time and calculating the drive times to or from the activities in each iteration. By
calculating the drive times in each iteration, the algorithm is prepared for calculating
time-of-day-dependent drive times, as the departure or arrival times are known when
calculating the drive time.

As stated above, the duration of the day’s last activity cannot be drawn, but it is
calculated in the fourth step from the penultimate activity’s end time, drive time to get
there, and its own end time, which is on the following day.

Once the start times and durations were determined for all activities of all cars, cars
with implausibly long total daily activity durations were removed. The total daily activity
duration is the duration of all drives and activities in a day, except for the last activity.
A total daily activity duration was considered implausibly long if it exceeded the available
duration between the drawn adjacent end times. This case can easily be identified in the
mobility plans because the duration of the problematic days’ last activity is negative in
these cases. To reduce the approach’s complexity, this approach was chosen to solve the
challenge of daily durations that exceeded the available duration between two end times.

4. Results and Validation

The presented approach was applied to the city of Munich. Table 1 lists the simulation
parameters used to generate artificial workday mobility plans based on the presented
methodology. In order to obtain a significant amount of mobility plans for evaluation,
plans for 50,000 cars were generated for a 7-day period, of which 2 days were considered
padding. This padding was used to eliminate the impact of edge effects on the beginning
and end of the plans by removing the first and last day. Since a first test revealed a slight
overestimation of the work activities, small nudges were applied using the pno_worker pa-
rameter. Consequently, a car with work information provided was drawn to not belong to
a working person with a probability of pno_worker = 0.05. The inverse probability remained
pworker = 0 to not counteract the intended reduction of the working population. Interme-
diary test runs showed that the daily driving behavior of cars best matched the general
mobility behavior judged by the MID study results when the remaining hyperparameters
were set to pdrive_every_day = 0.59 and pcar_driven = 0.4. This means that the simulation
assumed that approximately 59% of all cars within Munich were driven daily, whereas cars
that were not driven daily were used on 40% of the days, or once every 2.5 d.

In the following, the obtained simulation results are shown in two separate sec-
tions. First, Section 4.1 provides an overview of the general mobility behavior reflected in
the generated mobility plans, and the metrics employed in this section evaluate whether the
order, frequency, and travel distances of the generated mobility plans were macroscopically
realistic, as imposed by Req1b in Section 3.1.1.

Indicators of the general mobility behavior were validated by comparison with data
from the employed general mobility survey MID. Subsequently, Section 4.2 assesses the spa-
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tiotemporal quality of the generated mobility plans based on a comparison with the results
from MITO and MID. The herein conducted comparison of locations, times, and durations
of activities concludes the evaluation of Req1b.

Table 1. Simulation parameters.

Parameter Value Parameter Value Parameter Value

ncars 50,000 ∆t 7 d ∆tpadding 2 d

pdrive_every_day 0.59 pcar_driven 0.4 pno_worker 0.05

pworker 0 adist 1.5 vavg,Munich 32 km
h

4.1. General Mobility Behavior

The urge to take part in activities steers human mobility behavior and induces travel
demand. Hence, mobility models ought to accurately represent the types and prominence
of different activities. Guided by the trip types used in MID and MITO, our model distin-
guishes nine different activities, namely “home”, “work”, “shopping”, “private business”,
“recreational”, “accompanying others”, “work related”, “education”, and “other”. Figure 9
depicts the relative share for each activity type for the simulated mobility plans and the
reference given by the general mobility survey MID. In MID, the survey participants were
asked to report all trips occurring within one day starting and ending at midnight. How-
ever, MID does not report activities; rather, it reports trip types. From these trip types,
a subsequent activity type can be implied (e.g., a trip labeled “shopping” is interpreted to
end in a shopping activity). Looking at the results, it is evident that both the ranking of
activity types regarding their prominence as well as the absolute share of each activity type
were accurately reflected within the simulation results. A slight over-accentuation of work
and work-related activities was present in the simulation results but amounted to less than
2% in terms of the relative activity share.
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Figure 9. Share of activity types. Comparison of simulation and MID.

Aside from the occurrence frequencies of individual activity types, the order of ac-
tivities within the generated mobility plans is another important characteristic. Figure 10
shows the share of the most prominent daily activity chains within the generated mo-
bility plans in comparison to their MID counterparts. Special attention is to be paid to
the circumstance that the initial activity of each day was unknown from the MID survey.
The only exception is if the reporting person was at home in the morning, since this was
separately asked. To allow for a fair comparison with MID, all activity chains resulting
from the simulation were clipped to exclude the initial activity. Hence, the activity chains
presented in the figure are to be thought of as partial activity chains. Most of these partial
activity chains can be expected to start with a home activity in both MID and our generated
mobility plans, as validated further below. A comparison on the basis of these partial chains
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reveals that the generated activity chain frequencies closely matched the MID reference,
with deviations in the single-digit percentiles.
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Figure 10. Share of partial activity chains. Comparison of simulation and MID. Activity
types are abbreviated by their first letters (home = H, work = W, shopping = S, recreational = R,
work-related = WR, private business—P, accompanying others = A, education = E, and other = O).

Since the information of whether an activity chain started from home was excluded,
Table 2 consequently validates the share of people returning to and starting their days from
home in contrast to chains starting or ending elsewhere.

On a more aggregated level, the amount of activities per car and day as well as the
daily driven distance per car and day served as measures for the macroscopic modeling
capabilities of our approach regarding general mobility behavior. Figure 11 marks the
findings regarding these central mobility indicators when comparing the simulation results
with MID. Similar to the aforementioned mobility factors, the distribution of the number of
daily activities closely resembled the MID findings. Regarding the daily driven distances,
however, a slight underrepresentation of large mileages can be observed, resulting in a
smaller mean of daily driven distances per car. This phenomenon is based on the fact
that our model is restricted to the boundaries of the city of Munich, effectively reducing
the maximum possible trip distances to approximately 40 km. Nevertheless, the existing
deviations remained, on average, below 5 km per car and day. Hence, in addition to realistic
activities, the model also delivered reliable traffic benchmarks. Because of their apparent
impact on the daily distances and the successful validation of these, our parameter choices
for vavg,Munich and adist were implicitly validated.

Table 2. Share of cars returning to and starting from home at the end of a day when comparing MID
and the simulation.

MID Simulation

Start
End Home Elsewhere Start

End Home Elsewhere

Home 0.801 0.079 Home 0.811 0.089
Elsewhere 0.089 0.031 Elsewhere 0.072 0.028
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Figure 11. Comparison of the simulation output with MID survey data in terms of daily distances and
number of activities. (a) Number of activities per car and day. (b) Distance driven per car and day.

Figure 12 serves to elaborate on another aspect of the traffic indicators. It depicts
the share of traveled distances per activity type. It is striking that the share of the travel
distances associated with work activities within our mobility model was smaller than
expected, although the share of working activities was found to be slightly larger than
that in the reference survey. This may be due to the fact that the study area was restricted
to the city of Munich, resulting in the implicit omission of any commuting for work or
work-related activities. As a consequence, the share of the trip distances for all other activity
types was marginally overestimated by our model.
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Figure 12. Distance share among activity types. Comparison of simulation and MID.

4.2. Spatiotemporal Mobility Behavior

This section presents the results regarding the spatiotemporal realism of the gener-
ated mobility plans. Figure 13 compares the start time distribution for work, shopping,
and recreational activities in MID with their counterparts from our simulation. As expected,
the generated start times accurately followed the fitted start time distributions and hence
the original MID data. A slight exception was given by the work activities. The work activity
distribution of our results exhibited a larger proportion of later work times. This deviation
from MID is rooted in the fact that work activities are often main activities, serving as
anchor times for their mobility plans based on the work time from the synthetic MITO
population. It remains an open question whether MITO models the local Munich working
behavior more accurately than the more aggregated MID survey.
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Figure 13. Start times of the first activity per activity type. Comparison of simulation and MID.

The total activity duration per car and day is presented in Figure 14. A qualitative
comparison of the activity durations reveals that the generated durations were mostly
similar to those of the reference. It is to be noted, however, that the share of the short
activity duration sums was larger than expected, resulting in overly short dwelling times
at activity locations.
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Figure 14. Total activity duration per car and day. Comparison of simulation and MID.

Aside from temporal considerations, the spatial modeling capabilities of the presented
approach play an important role in its usability for transportation engineering tasks. In con-
trast to all previously mentioned statistics, MITO stepped up as the reference data set in
this regard, since it focuses on the spatiotemporal modeling of mobility demand in Munich.
Figure 15 can be used to assess whether the generated activities were distributed realisti-
cally among the different TAZs. The figure consists of four parts which are subsequently
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explained. The first row shows the distribution of visits per activity type according to
the MITO reference. Work, shopping, and recreational activities are used to differentiate
between the most important non-home activity types. Home locations are not shown since
these were taken directly from MITO and thus matched the reference by design. In contrast,
the distributions of non-home activities were a direct result of the presented location choice
methodology and hence needed validation. For each TAZ, the absolute number of visits nv
was divided by the total number of activities of the respective type Nv to obtain the share
associated with the TAZ. It can be seen that no single TAZ exceeded a share of 0.7% of any
activity type. Considering the study area’s 1904 unique TAZs, a uniform distribution would
result in 0.053% per zone. A logarithmic colorbar was used to better reveal the existing
heterogeneity regarding activity distribution. Qualitatively, the city center and the outskirts
can be recognized as the main working areas. Shopping is mostly focused around the city
center, and recreational activities are distributed almost uniformly. The second row of the
figure displays the same statistic for the simulated data set, qualitatively yielding the same
results. To better access the differences between the reference and our results, a measure
of error is needed. Hence, the symmetric mean absolute percentage error (SMAPE) was
used as a measure for the deviations between MITO and our simulation. In this context, it
is defined by Equation (17):

SMAPE =
|ñv, MITO − ñv, Simulation|
ñv, MITO + ñv, Simulation

(17)

Herein, ñv, MITO and ñv, Simulation denote the share of visits ñv = nv/Nv per TAZ for
a certain activity type. The third row of Figure 15 depicts the error distribution, conforming
a first visual comparison of row one and two. The TAZs for which neither of the data sets
counted any visits were left blank in this statistic. The vast majority of the remaining zones
exhibited SMAPE values in the single-digit percentages, effectively validating a realistic
distribution of activities by our approach. A more aggregated view on the same matter is
shown in the fourth row of the figure. Here, the distribution of nv is summarized for both
MITO and the simulation. Additionally, the distribution of the absolute errors |ñv, MITO −
ñv, Simulation| is depicted. The maximum number of visits per single zone m as well as the
maximum absolute difference are also indicated. Please note that for comparability, all
absolute numbers in the fourth row concerning MITO were scaled to match the simulation
(i.e., they were multiplied by Nv, Simulation/Nv, MITO). These figures support the conclusion
that activities were successfully located by our approach, and because of small absolute
differences, qualitatively similar visit distributions were found in comparison with the
reference data set as well as similar maximum numbers of visits per individual zone.
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5. Discussion

This section discusses the presented approach, the obtained results, and their implica-
tions from two different perspectives. First, Section 5.1 discusses the extend to which the
presented approach fulfills the requirements set in Section 3.1, and Section 5.2 elaborates
on the limitations of this work.

5.1. Requirement Fulfillment

Motivated by the research gap identified in Section 2.1, two output and two data re-
quirements were imposed on the approach to be developed in Section 3.1. Following these
requirements, the aim of the presented methodology is to generate microscopically consis-
tent and feasible activity-based mobility plans (Req1a) while simultaneously achieving a
realistic macroscopic mobility behavior with regard to the order, frequency, location, time,
and duration of each activity as well as the induced travel distances (Req1b). Furthermore,
the influence of sociodemographic factors on typical mobility patterns is to be respected
(Req1c). In order to reduce the complexity of the approach, it is required to operate on
existing data only (Req2a). These input data need to contain all necessary information,
including the sociodemographic characteristics (Req2b) considered in the fulfillment of
Req1c. Within our validation case study for the city of Munich, we successfully fulfilled
the input requirements Req2a and Req2b by employing the existing data sets MID and
MITO. As a consequence, implementation of the approach did not involve any further data
acquisition. It is worth noting that the presented methodology itself is not location-specific,
in contrast to the data sets employed within our case study. The methodology can there-
fore be transferred to any study area for which equivalent input data sets are at hand.
These data sets have to comprise a (synthetic) population, an associated set of trips within
the study region, as well as a general mobility survey to deduce a realistic macroscopic
mobility behavior. Fortunately, such data sets are widely available since they are used in
many transportation engineering tasks. MID, for example, covers the whole of Germany
and may be representative for other areas within central Europe. Despite these principle
advantages regarding generalizability, the approach is always reliant on a location-specific
trip data set and artificial population. Due to its input requirements, it is not a model
that can be applied without location-specific engineering efforts. Looking at the output
requirements, it can be said that the generated mobility plans are microscopically consistent
and feasible with real-life mobility behavior (Req1a) while being macroscopically realistic
(Req1b) at the same time. This statement is backed up by the successful validation of activity
shares, activity chains, the number of activities per car and day, the realistic start times
and durations, as well as the faithful spatial distribution of the different activity types,
as presented in Section 4. From a methodological perspective, microscopic consistency
was achieved by sequentially planning the drive and activity pairs, and hence no two
activities of the same car could take place simultaneously in different locations. Each
drive started where the previous one terminated. By design, no two consecutive activities
were in the same place, ensuring that there was an actual drive between activities. Cars
exceeding the available time (i.e., having activities longer than the time between two start
times) were excluded from the simulation. Spatial feasibility was ensured by applying
distance and drive time proxies, which resulted in trip distances and drive times that were
between Google Maps’ estimates for low- and high-traffic scenarios. Hence, the travel
speed was realistic as well. Temporal feasibility of individual activities was ensured by
drawing from a distribution fitted to real activities, but the total daily activity duration was
not ensured by design. Unrealistically long days may have occurred as a result, but they
were filtered out. Institutional feasibility was not ensured by design either (e.g., shopping
activities did not always take place during regular opening hours), though usually, this
was because they were drawn from a respective distribution of shopping start times that
statistically respected opening hours. The traveled distances per car and day and the work
distance share among all activities were found to be underrepresented due to a small share
of longer trips. This can be explained by the strict distance limit on the simulated cars
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imposed by not leaving the city limits. The underestimation of work’s distance share af-
firms the observation that the underrepresentation of long distances predominantly affects
work trips, which is plausible considering the significant share of people commuting to
places outside of Munich in reality. With these slight restrictions, the resulting mobility
plans can be considered generally realistic, and the induced modeling complexity remains
manageable. Specifically, it is smaller than the efforts entailed by building a full-scale
activity-based model. This is due to the fact that only four hyperparameters are used
within our model, and no explicit behavioral modeling is needed aside from the fitting of
statistical distributions to ensure realistic mobility behaviors. In addition, the needed input
data sets are pervasively available in urban regions. Nevertheless, some limitations remain.
These will be discussed in the following section.

5.2. Limitations

The most apparent limitation of this work is given by its exclusive focus on car mobility.
No other mode is considered by the employed methodology. This focus was set by de-
sign (Lim1) because of the initial motivation that led to the development of the presented
framework and the overall scope of this work. The question of whether and to what extent
the presented methodology is generalizable to multi-modal mobility behavior remains
unanswered. It is to be suspected, however, that the inclusion of multiple alternative modes
of transport will incur additional modeling efforts, mainly due to the manifold interdepen-
dencies between mode choice, location choice, travel times, and activity durations. Another
fundamental limitation of the work at hand is its applicability, which is restricted to homo-
geneous spatiotemporal environments (Lim2). Based on the design of our approach and all
means by which we validated it, no definite statement regarding its applicability to more
heterogeneous areas that, for example, contain both urban and rural areas can be made.
Regarding temporal mobility behavior, it has to be said that the existing approach is only
fit to model weekdays. To enhance the capabilities of the methodology, the model could be
extended to also include weekends. In addition to the existing mobility distributions for
the working week, this would require replicating all distributions with the weekend data.
Concatenating working weeks and weekends would allow one to significantly increase the
simulation horizon to span a whole or even multiple weeks. However, the assumption of
cars staying within an area of homogeneous mobility behavior does not hold as strong for
weekends and longer time frames, interfering with the existing limitation to a restricted
spatial domain. This leads to another potential enhancement of the capabilities: boundary
conditions on the flow out of and into the area of homogeneous mobility behavior could
enable modeling the strong geographical interdependencies of transportation systems
without facing the complexity of them. These conditions can allow entities to temporarily
leave the simulated areas and allow entities from outside to temporarily enter them without
expanding the area of the simulation. The boundary condition would only determine at
what time and, for example, with which state of charge cars return or enter. If the bound-
ary conditions turn out to be realistically implementable, then the simulation of large
areas of heterogeneous mobility behavior could be simplified by simulating many small
areas of homogeneous mobility behavior and connecting them using boundary conditions.
Another limitation of this work lies in the resolution with which sociodemographic influ-
ences were captured. Currently, the population is clustered into working and non-working
people. A further differentiation promises to increase the quality and resolution of the
results [63]. Additionally, to reduce the complexity of the approach, habitual behavior with
regard to location selection was not modeled. This simplification is not assumed to impact
the model’s validity, since it is of no relevance to the car whether the driver knows the
destination as long as the distances are realistic.

A final but noteworthy limitation arises from the basic solution principal employed:
the presented methodology is a data-driven and mostly statistical approach aimed at
reproducing mobility behavior. It does so by incorporating both the general mobility
behavior and the location-specific mobility behavior from two separate data sets without
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explicitly modeling human behavior. Hence, all mobility plans constructed by our approach
merely represent the traits available in the input data, effectively merging two separate data
sources Req2c. This procedure drastically reduces the modeling and application efforts in
contrast to activity-based models while delivering similar outputs, but it prevents the usage
of this model for any extrapolation or explanation of human mobility behavior. The desired
scope of application of our model comprises ceteris paribus analyses of technological,
organizational, and regulatory changes that are not expected to induce substantial changes
to the population’s travel behavior. While this scope of application does offer various
potential use cases, a more detailed and analytical modeling of elasticities, user behavior,
and overall system dynamics is required for others. Therefore, our approach does not aim
to replace or improve any kind of existing models but seeks to add to the toolbox of existing
methods of mobility modeling, facilitating the options transportation engineers, researchers,
and city planners can make use of when developing or evaluating new mobility solutions.

6. Conclusions

This article presents an approach to reconstructing activity-based mobility plans from
trip-based data and a general mobility survey. The presented approach was developed,
implemented, and validated with the goal of generating artificial mobility plans that are
realistic yet efficient to obtain. It is applicable to any geographically limited area with
homogeneous mobility behavior, and it was tested and validated using a case study in the
city of Munich.

Based on a literature review on existing mobility models and the need for activity-based
mobility plans in transportation engineering, this article identified a need for easy-to-implement
mobility models capable of reproducing microscopically and macroscopically coherent
mobility behaviors similar to activity-based models. While the capabilities of activity-based
models with regard to the forecasting and explanation of mobility behavior are not needed
for many applications, such as charging infrastructure simulations [52], their inherent
complexities make them hard to implement and prevent them from being used pervasively.
In contrast, the less complex trip-based or hybrid mobility models fail to model mobility
behavior with the required microscopic accuracy. Hence, this article proposed a novel
approach aimed at the reconstruction of status-quo mobility behavior from the output
of trip-based models and general mobility surveys, with the general idea being that all
information required to model mobility macroscopically and microscopically is conveyed
by these two data sources and may be combined in a data-driven approach that is, for
the most part, not reliant on any explicit behavioral modeling. While the resulting model
does not offer the same forecasting and explanation potential as activity-based models
and does not allow for any extrapolation of mobility behavior onto future scenarios, it is
conceptually easier to implement and can be used in all cases in which the development
of full-scale activity-based models is out of scope, but microscopic mobility modeling is
needed. Within a case study conducted in the city of Munich, this approach proved to
be both efficient and effective in creating activity-based mobility plans that were highly
disaggregated yet did not fail to represent population-wide traffic indicators. The results
obtained within the case study were based on data from MID and MITO, and they validated
the suggested approach for the city of Munich, thus exemplifying that it is possible to
generate realistic activity-based demands from trip-based models and general mobility
survey data without adding the complexity of behavioral activity-based models.
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