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Abstract: The residual stress approximation methods formulated by McDowell and Moyar, Jiang
and Sehitoglu, and McDowell for rolling and sliding contact problems are reconsidered in the
context of single anisothermal loading cycles and isotropic hardening. A consistent extention to
incorporate thermal softening is developed and the generalized thermoelastoplastic algorithms
are cast into a proper predictor–corrector formulation. Detailed explicit and implicit numerical
integration strategies are presented and validated using specifically designed finite element models
that conform to the underlying mechanical assumptions. Then, the applicability of the approximate
algorithms to anisothermal problems with isotropic hardening and thermal softening is analyzed by
assuming a rate-independent Johnson–Cook-type yield stress model and by comparing the obtained
transient and residual stresses to results from full-scale finite element half-space models under varying
loading and strain-hardening intensities. An in-depth, comparative discussion on the adequacy of
the algorithms in conjunction with the justification of their respective mechanical simplifications
follows. Sufficiently strong strain hardening is found to be a prerequisite for accurate predictions,
and Jiang and Sehitoglu’s approach is deemed to be preferable for the considered type of problem.
The conclusions drawn from the investigations are discussed in the context of common applications
with particular emphasis on manufacturing process modeling and the corresponding guidelines are
proposed for such use cases.

Keywords: plasticity; semi-analytic methods; residual stresses; real-time capable approximation;
thermal softening

1. Introduction

Residual stresses often are an important factor for the fatigue life of components when
dynamic thermomechanical loads have to be endured during service. Fatigue failure fre-
quently originates at the component surface due to its roughness and exposition to extremal
loads (promoted e.g., by notches or bending and torsion) as well as to other possibly ad-
verse environmental conditions. Hence, it is important to be aware in particular of surface
and near-surface residual stresses that often arise during manufacturing. Machining, as
an important example, is widely applied for the surface finishing of metal components,
and thus, machining-induced residual stresses have been studied intensively via analytical,
numerical and experimental means [1–3]. Due to the advancement of computational capa-
bilities, the finite element (FE) method has been established as the standard tool for such
investigations nowadays. Nevertheless, more efficient approximate approaches are still of
interest in special applications. As an extreme example, FE approaches are prohibitively
expensive if real-time capability is desired e.g., for model-based manufacturing process
control [4]. Given such circumstances, one might resort to simpler, semi-analytical mod-
eling strategies. In many cases, these revolve around modeling the actual processing by
considering elastoplastic half-spaces subjected to transient surface loads, which must be
appropriately abstracted from the underlying physical processes.
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Pioneering work on semi-analytical residual stress prediction schemes based on such
modeling has been done in the context of wheel–rail systems. Among the earliest is the
influential paper of Merwin and Johnson [5], who propose to incrementally and approxi-
mately solve the elastoplastic problem for a fixed set of material points along the depth
while the surface loads pass by. Their key simplification is the assumption that the transient
strains during this procedure may be equated to the corresponding elastic solution, which
enables an uncoupled and thus efficient treatment of each considered discrete depth. To
satisfy the conditions on the stresses and strains in the stationary state implied by the
boundary conditions and homogeneity, they apply a subsequent elastoplastic relaxation
procedure. Later, McDowell and Moyar [6] and Jiang and Sehitoglu [7] build upon the core
ideas of Merwin and Johnson [5] to formulate similar algorithms with altered assumptions
on the transient stresses and strains during the loading pass. McDowell [8] found their
approaches to work reasonably well in different parameter ranges within isothermal rolling
and sliding contact problems under kinematic hardening, and thus, he proposed to combine
them via blending the respective differential equations in a heuristic way.

One of the first applications of the above approximate algorithms in the context
of manufacturing is the work of Jacobus et al. [1], who employ the method of Merwin
and Johnson [5] and generalize it to account for thermal strains. Using experimentally
determined displacement fields to define the transient strains and a finite-difference scheme
for the heat conduction problem, they predicted residual stresses induced by orthogonal
and oblique cutting operations. Ulutan et al. [9] and Liang and Su [10] later published
similar applications using the algorithms of Jiang and Sehitoglu [7] and McDowell [8],
respectively, while applying analytic cutting force models to estimate the surface loads’
magnitudes. Since then, a multitude of methodologically rather similar studies have been
carried out for various manufacturing processes such as turning [11,12], milling [13–15], or
additive manufacturing [16,17], which differ w.r.t. the surface load modeling but all rely on
the same mechanical baseline assumptions and the algorithms of Jiang and Sehitoglu [7] or
McDowell [8] to attempt estimating residual stresses depth profiles.

In the scope of such applications, these approximate algorithms have been applied
to problems and constitutive models well away from their original purposes in the mod-
elling of elastoplastic rolling and sliding contact. Specifically, only a single pass of the
surface loads, isotropic hardening, thermal stresses and possibly temperature-dependent
constitutive parameters are usually considered as opposed to the focus on multiple loading
cycles, kinematic hardening, and isothermal problems prevalent in rolling contact research.
However, systematic and thorough analysis of the adequacy of the mentioned approximate
algorithms on more theoretical grounds seems to be mostly limited to these latter circum-
stances of rolling contact; see e.g., the works of Bhargava et al. [18,19] and Xu and Jiang [20]
as well as [7,8].

The present paper aims to close this knowledge gap by analyzing the applicability
of the approximate algorithms [6–8] under conditions more relevant to manufacturing
applications. Specifically, we consider single-pass thermomechanical surface loads and
isotropic hardening (according to a Johnson–Cook-type yield stress model)—while in-
vestigating the quality of the predicted residual stresses using reference solutions from
appropriate FE models. This enables an in-depth discussion of the approximate algorithms’
accuracy in conjunction with their underlying additional simplifications regarding certain
transient stress and strain components. Furthermore, we generalize and reformulate the
algorithms to account for thermal softening in a consistent way, which is necessary in case
of temperature-dependent yield strength but has not been done previously. In doing so, we
cast the algorithms’ treatment of elastoplastic increments into a proper predictor–corrector
form and provide detailed implementation-ready numerical schemes for both explicit and
implicit solutions of the corrector step. The implicit scheme is deemed particularly useful
when the evaluation of the elastic input solution on very fine grids comes at a computa-
tional cost that is non-negligible to the application, e.g., when real-time predictions are
needed [4]. In such cases, larger step sizes might be preferable over the additional effort
introduced by an implicit integration method.



Appl. Sci. 2022, 12, 2549 3 of 26

The structure of the paper is as follows: In Section 2, the thermomechanical half-space
problem under consideration is stated, the residual stress approximation algorithms [6–8]
are reformulated, and their numerical solution is detailed. Next, we describe the FE models,
which we later on use to validate and benchmark our implementations of said algorithms,
in Section 4, where we also discuss their properties and assumptions in the context of
our numerical studies. A boarder discussion follows in Section 5, where we shift the
focus toward applications and the corresponding literature. Finally, conclusions on the
applicability of the considered approximate methods are drawn in Section 6.

2. Thermoelastoplastic Approximate Algorithms

The purpose of this section is two-fold. First, we reformulate the methods of Mc-
Dowell and Moyar [6] and of Jiang and Sehitoglu [7]—abbreviated by “MM” and “JS”,
respectively—for anisothermal problems in which isotropic strain hardening is accompa-
nied by thermal softening. Then, algorithms and guidelines for the numerical solution of
the arising differential equation systems will be provided.

The thermomechanical problem under consideration is visualized in Figure 1. It
consists of a thermoelastoplastic half-space under plane-strain conditions which is loaded
by a moving heat flux distribution as well as by distributed normal and tangential surface
tractions. The ξ-η-system (we may drop the out-of-plane coordinates ζ and z indicated
in Figure 1 in most of our discussion, since the assumption of plane-strain precludes any
gradients in these coordinate directions), within which the distributions are stationary,
moves at constant velocity v in the ξ-direction w.r.t. the x-y-system that is fixed to the
material points of the half-space. In this setting, the material derivative of any tensor field
F on the half-space reduces to its convective part within the ξ-η-system, i.e.,

Ḟ =
DF
Dt

= −∂F
∂ξ

v , (1)

where D(•)/Dt denotes the material derivative, so that temporal changes of state in
the material x-y-system correspond to spatial changes in the ξ-η-system, and our whole
discussion can be continued in the latter coordinate system.

...

...

ξ

η

t∗ξη(ξ)

t∗ηη(ξ)
q∗(ξ)

...

x

y
vt

ζz

Figure 1. Half-space loaded by a distributed surface heat flux q∗(ξ) and normal and tangential surface
tractions t∗ηη(ξ), t∗ξη(ξ). Assuming a quasi-stationary problem, the distributions are constant in time
in the ξ-η-ζ-system that moves at constant velocity v in the ξ-direction w.r.t. the material coordinate
system x-y-z. The coordinate axes pointing into the plane are denoted by ζ and z, respectively. The
assumption of plane-strain implies zero total normal strain along these axes, i.e., εζζ = εzz = 0.

Assume now that the quasi-stationary solution of the thermoelastic half-space problem
is known at least on (a discretization of) a sufficiently large domain Ω∗ in the ξ-η-plane
which contains the support of the load distributions. By sufficiently large, we imply that the
stresses and temperature on the complement set of Ω∗ will not suffice to cause or sustain
plastic flow of a passing material point, which may be estimated using the chosen yield
condition (e.g., Equation (2)) under the assumption of no prior strain hardening and of
decaying stresses and temperature beyond the vicinity of the loads. Then, the underlying
idea of the MM and JS algorithms is to approximate the thermoelastoplastic response of a
material point passing through Ω∗ in a fixed depth η by subjecting it to specific in-plane
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components of the stress tensor σ∗ij as well as the temperature T∗ from the thermoelastic
solution while solving for the remaining stress components by means of classical von Mises
plasticity and—in case of the MM algorithm—using an additional kinematic constraint. We
will expand on this in detail and provide the full algorithms in Section 2.2, but before, we
shall state the equations of von Mises plasticity in the specific form we require.

2.1. Rate-Independent Plasticity for Isotropic Strain Hardening and Thermal Softening

In this section, we derive the governing equations of classic rate-independent von
Mises plasticity with isotropic strain hardening and thermal softening on which the gener-
alized MM and JS algorithms will be based. We assume purely isotropic strain hardening,
so that the von Mises yield function may be defined as

f (σij, εeq, T) ..=
3
2

σ′ijσ
′
ij − (σY(ε

eq, T))2 (2)

where index notation is adopted and superscript primes (•)′ indicate the deviatoric part of
second-order tensors throughout this work, i.e.,

σ′ij
..= σij −

1
3

σkkδij (3)

with δij denoting the Kronecker symbol. Furthermore, the associative flow rule is assumed
to govern the plastic strain,

ε̇
p
ij

!
= γ

∂ f
∂σij

= 3γ σ′ij, (4)

with a positive consistency parameter γ ∈ R>0 which can be related to the equivalent
plastic strain rate ε̇eq,

ε̇eq ..=

√
2
3

ε̇
p′
ij ε̇

p′
ij

(4)
= 2σY(ε

eq, T) γ , (5)

by using the yield condition f = 0 in the last step. Solving Equation (5) for γ and inserting
back into Equation (4), we obtain the Prandtl–Reuß form of the flow rule,

ε̇
p
ij =

〈
3ε̇eq

2σY(εeq, T)

〉
σ′ij (6)

where we introduced the Macaulay bracket 〈•〉 = max{0, •} to guarantee that the plastic
strain rate is either zero or is oriented in the direction of the stress deviator. To formulate
the problem entirely in stress space, the equivalent plastic strain rate may be eliminated
using the consistency condition

0 !
= ḟ

(2)
= 3σ̇′ijσ

′
ij − 2σY(ε

eq, T)
(

∂σY

∂εeq ε̇eq +
∂σY

∂T
Ṫ
)

. (7)

Solving Equation (7) for ε̇eq and inserting into Equation (6) eventually yields

ε̇
p
ij =

1
hε

〈
σ̇′klnkl − hTṪ

〉
nij (8)

where—for brevity of notation—we defined

hε
..=

2
3

∂σY

∂εeq , hT
..=

√
2
3

∂σY

∂T
and nij

..=

√
3
2

σ′ij
σY(εeq, T)

. (9)

hε and hT relate to strain hardening and thermal softening, respectively, while (for f = 0)
nij represents the outward unit normal to the von Mises yield surface and hence satisfies
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nijnij = 1. Note the second summand in Equation (8), which additionally arises due to
thermal softening in comparison to the flow rule considered by McDowell [8]. Finally, by
inserting Equation (8) into the definition of the equivalent plastic strain, Equation (5), we
obtain

ε̇eq =

√
2
3

1
|hε|

〈
σ̇′klnkl − hTṪ

〉
. (10)

2.2. Approximate Plane-Strain Rolling and Sliding Contact Algorithms

As noted above, the core idea of the MM and JS approaches is to enforce some of the
transient in-plane stresses from the thermoelastic solution onto a material point passing
under the surface loads and then to solve for the other stress components using the equa-
tions of von Mises plasticity in conjunction with specific kinematic constraints. Figure 2a
illustrates this procedure for a material point moving—at a fixed depth η below the surface
loads—with velocity v in the negative ξ-direction through the domain Ω∗. During this
process, plane-strain dictates εζζ ≡ 0. Additionally, the specific assumptions underlying
both algorithms are the following [7,8]:

MM algorithm: σηη
!
= σ∗ηη , σξη

!
= σ∗ξη , εξξ

!
= 0 , T !

= T∗ (11)

JS algorithm: σξξ
!
= σ∗ξξ , σηη

!
= σ∗ηη , σξη

!
= σ∗ξη , T !

= T∗ , (12)

where we adopt the convention to indicate quantities known from the thermoelastic solution
by a superscript asterisk (•)∗ henceforth. We postpone the discussion of these assump-
tions, which reportedly enable good approximations in a variety of applications [6–10], to
Section 4 and note that the MM method requires the determination of σξξ and σζζ using
εξξ = εζζ = 0 whereas only σζζ must be computed using εζζ = 0 for the JS case.

...

...

𝜉

𝜂

𝜁

...

Ω∗

𝑣

(a) continuous

...

...

𝜉

𝜂

𝜁 𝜉 ∗+𝜉 ∗−

...𝜉− 𝜉+
Ω∗

(b) discrete

Figure 2. Illustration of the transient step of the residual stress approximation scheme as a continuous
process (a) and as a corresponding discrete increment (b). The green dots in (b) represent the spatial
discretization Ω∗d of the domain Ω∗ on which temperature and thermoelastic stresses are assumed to
be given as input to the thermoelastoplastic approximation scheme.

To compute the unknown stress components, let us consider a material point moving
below the surface loads as shown in Figure 2a and assume an elastoplastic response, i.e.,
f = 0 and σ̇′ijnij − hTṪ ≥ 0 with f , nij and hT defined as in Section 2.1. Then, the total strain
rate is given as the sum of elastic, plastic, and thermal strains,

ε̇ij =
1
E

(
σ̇ij − ν

(
σ̇kkδij − σ̇ij

))
︸ ︷︷ ︸

=ε̇e
ij

+
1
hε

(
σ̇′klnkl − hTṪ

)
nij︸ ︷︷ ︸

=ε̇
p
ij

+ αṪδij︸ ︷︷ ︸
=ε̇th

ij

, (13)

where the isotropic Hooke’s law, the flow rule Equation (8) and linear isotropic thermal ex-
pansion have been employed for the elastic, plastic and thermal strain rates, respectively. E,
ν, and α denote Young’s modulus, Poisson’s ratio and the coefficient of thermal expansion.

To treat both methods and their respective conditions, Equations (11) and (12), in a
unified formalism, we now adopt the notation proposed by McDowell [8], so that the MM
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and JS schemes may be recovered by setting Ψ = 0 or Ψ = 1, respectively, in the derivations
to follow. Then, the conditions ε̇ξξ = 0 (MM, Ψ = 0) and σ̇ξξ = σ̇∗ξξ (JS, Ψ = 1) can be
summarized to the single equation

ε̇ξξ =
1
E

(
σ̇ξξ − ν

(
σ̇ζζ + σ̇∗ηη

))
+

1
hε

(
σ̇ξξnξξ + σ̇ζζnζζ + σ̇∗ηηnηη + σ̇∗ξηnξη − hTṪ∗

)
nξξ + αṪ∗

!
= Ψ

(
1
E

(
σ̇∗ξξ − ν

(
σ̇ζζ + σ̇∗ηη

))
+

1
hε

(
σ̇∗ξξnξξ + σ̇ζζnζζ + σ̇∗ηηnηη + σ̇∗ξηnξη − hTṪ∗

)
nξξ + αṪ∗

)
. (14)

Note that σ̇ξξ is replaced by σ̇∗ξξ in the otherwise identical sum in the second line. The
plane-strain kinematic constraint yields

0 !
= ε̇ζζ =

1
E

(
σ̇ζζ − ν

(
σ̇ξξ + σ̇∗ηη

))
+

1
hε

(
σ̇ξξnξξ + σ̇ζζnζζ + σ̇∗ηηnηη + σ̇∗ξηnξη − hTṪ∗

)
nζζ + αṪ∗ . (15)

For an elastic response, i.e., if either f < 0 or f = 0 and σ̇′ijnij − hTṪ < 0, we can obtain
the corresponding equations by simply dropping all terms related to the plastic strain rate
ε̇

p
ij from Equations (13)–(15).

Ideally, the differential equation system (14) and (15)—or its particularization for
elastic behavior—should at each arbitrary but fixed depth η be integrated w.r.t. ξ from a
stress-free initial state to a stress free stationary state of the elastic solution, i.e., within
bounds ξ = ξ∗+∞ and ξ = ξ∗−∞ ≤ ξ∗+∞ sufficiently far away from the surface loads so
that the stress σ∗ij of the elastic solution has decayed to zero. Thus, the residual stress
approximation σr

ij obtained by such an integration will by virtue of Equations (11) and (12)
satisfy the conditions on the stresses that are required for homogeneity in the ξ-direction in
a plane strain half-space problem [5],

σr
ηη

!
= 0 and σr

ξη
!
= 0 . (16)

Additionally, as noted by Merwin and Johnson [5], the residual strains have to satisfy
the conditions

εr
ξξ

!
= 0 and εr

ζζ
!
= 0 . (17)

The condition on the residual strain εr
ξξ will only be guaranteed for the MM approach

but not for the method of JS; compare Equations (11) and (12). Furthermore, since the JS
approach enforces σξξ = σ∗ξξ , the corresponding residual stress component will generally
not be approximated well but vanish after a complete pass below the loaded region. Finally,
if we chose to integrate only to ξ∗− > ξ∗−∞ where the stress σ∗ij is not yet fully decayed to
zero, but already sufficiently so as to not sustain any further plastic response, there will in
any case be some violation of Equation (16). For these reasons, the following additional
“relaxation” procedure has been proposed (in similar form) as a subsequent step to the
integration of above differential equations [7,9]:

With σij, εij, T, and εeq denoting the state after the above integration for each depth η
considered, the in-plane stresses and strains required to vanish by the conditions (16) and
(17) are assumed to be relaxed to zero at constant rates

σ̇ηη
!
= σ̇R

ηη
..= −σηη

τR , σ̇ξη
!
= σ̇R

ξη
..= −σξη

τR , ε̇ξξ
!
= ε̇R

ξξ
..= − εξξ

τR and Ṫ !
= ṪR ..= − T

τR , (18)

over an interval [0, τR] of pseudo-time τR > 0 while the stresses σξξ and σζζ are obtained
by integration of the differential equation system
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ε̇R
ξξ

!
= ε̇ξξ =

1
E

(
σ̇ξξ − ν

(
σ̇ζζ + σ̇R

ηη

))
+

1
hε

(
σ̇ξξnξξ + σ̇ζζnζζ + σ̇R

ηηnηη + σ̇R
ξηnξη − hTṪR

)
nξξ + αṪR (19)

0 !
= ε̇ζζ =

1
E

(
σ̇ζζ − ν

(
σ̇ξξ + σ̇R

ηη

))
+

1
hε

(
σ̇ξξnξξ + σ̇ζζnζζ + σ̇R

ηηnηη + σ̇R
ξηnξη − hTṪR

)
nζζ + αṪR (20)

in the elastoplastic case, i.e., if f = 0 and σ̇′ijnij − hTṪ ≥ 0. Again, the differential equations
for the elastic case are obtained by dropping the summands originating from the plastic
strain rate in Equations (19) and (20). We will discuss the integration of the differential
equation systems given above in the following section.

2.3. Numerical Integration Scheme

Consider a material point moving at a fixed depth η from a grid point ξ+ of the
discretization Ω∗d of Ω∗, where the thermoelastic solution is given, to the neighboring point
ξ−; see Figure 2b. For this point, the material derivative defined by Equation (1) may be
approximated by first order finite differences as

Ḟ =
DF
Dt

= −v
∂F
∂ξ
≈ −v

F− − F+

ξ− − ξ+
= − v

∆ξ
∆F (21)

for any tensor field F, where we introduced the shorthands (•)− and (•)+ to denote
evaluation at ξ− and ξ+, respectively, i.e., F− = F(ξ−) and F+ = F(ξ+). Note that each
summand in Equations (14) and (15) contains one rate as a linear factor, so that −v∆ξ−1

may be canceled out after discretizing each rate according to Equation (21). Therefore, the
rate operators in Equations (14) and (15) reduce to difference operators ∆(•) = (•)− − (•)+
in the discretized counterparts. The same reasoning applies for the relaxation step, where
we approximate all rates as

Ḟ ≈ ∆F
∆τ

, (22)

assuming that the relaxation happens in M pseudo-timesteps of size ∆τ = τRM−1 and
denoting the increment of F during ∆τ as ∆F. Again, the simple structure of Equations (19)
and (20) as well as the rate-independency of our constitutive assumptions allow to cancel
the increment size, i.e., ∆τ.

This discretization amounts to applying either explicit or implicit Euler integration
if the remaining quantities are all evaluated at the increment’s start or at its end, re-
spectively. For both cases, the solution of an elastoplastic increment is summarized in
Algorithms 1 and 2, respectively. We shall discuss them in the context of the complete
residual stress approximation scheme, but first, an elastic predictor is required in each
increment to determine if the material response actually is elastoplastic or not: Setting
∆ε

p
ij = 0 in the discretized counterparts of Equations (14) and (15), we obtain

∆εξξ =
1
E

(
∆σξξ − ν

(
∆σζζ + ∆σ∗ηη

))
+ α∆T∗ !

= Ψ
(

1
E

(
∆σ∗ξξ − ν

(
∆σζζ + ∆σ∗ηη

))
+ α∆T∗

)
(23)

∆εζζ =
1
E

(
∆σζζ − ν

(
∆σξξ + ∆σ∗ηη

))
+ α∆T∗ !

= 0 . (24)
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Algorithm 1: Explicit integration of stresses and equivalent plastic strain.
1. Determine ∆σξξ and ∆σζζ by solving the linear equation system:

(
1 +

E
h+ε

n+
ξξ n+

ξξ

)
∆σξξ +(1−Ψ)

(
−ν +

E
h+ε

n+
ξξ n+

ζζ

)
∆σζζ = Ψ

(
1 +

E
h+ε

n+
ξξ n+

ξξ

)
∆σ∗ξξ

+(Ψ− 1)

((
−ν +

E
h+ε

n+
ξξ n+

ηη

)
∆σ∗ηη +

2E
h+ε

n+
ξξ n+

ξη∆σ∗ξη −
(

Eh+T
h+ε

n+
ξξ − αE

)
∆T∗

)
(25)

(
−ν +

E
h+ε

n+
ξξ n+

ζζ

)
∆σξξ +

(
1 +

E
h+ε

n+
ζζ n+

ζζ

)
∆σζζ =

(
ν− E

h+ε
n+

ηηn+
ζζ

)
∆σ∗ηη

− 2E
h+ε

n+
ζζ n+

ξη∆σ∗ξη +

(
Eh+T
h+ε

n+
ζζ − αE

)
∆T∗ (26)

2. Update the stresses σ−ij = σ+
ij + ∆σij using the solution from the previous step and ∆σηη = ∆σ∗ηη as well as

∆σξη = ∆σ∗ξη .
3. Compute approximations of n−ij , h−ε , and h−T by Equation (9) with εeq = εeq+, T = T∗−.

4. Update the equivalent plastic strain, using n−ij , h−ε and h−T from the previous step:

εeq− (10)
= εeq+ +

√
2
3

1
|h−ε |

(
∆σ′ijn

−
ij − h−T ∆T∗

)
(27)

Algorithm 2: Implicit integration of stresses and equivalent plastic strain.

Compute the root (σ−ξξ , σ−ζζ , εeq−) of the following nonlinear equation system via Newton–Raphson iteration:

rξξ
..=

(
1 +

E
h−ε

n−ξξ n−ξξ

)
∆σξξ + (1−Ψ)

(
−ν +

E
h−ε

n−ξξ n−ζζ

)
∆σζζ −Ψ

(
1 +

E
h−ε

n−ξξ n−ξξ

)
∆σ∗ξξ

−(Ψ− 1)

((
−ν +

E
h−ε

n−ξξ n−ηη

)
∆σ∗ηη +

2E
h−ε

n−ξξ n−ξη∆σ∗ξη −
(

Eh−T
h−ε

n−ξξ − αE

)
∆T∗

)
, (28)

rζζ
..=

(
−ν +

E
h−ε

n−ξξ n−ζζ

)
∆σξξ +

(
1 +

E
h−ε

n−ζζ n−ζζ

)
∆σζζ −

(
ν− E

h−ε
n−ηηn−ζζ

)
∆σ∗ηη

+
2E
h−ε

n−ζζ n−ξη∆σ∗ξη −
(

Eh−T
h−ε

n−ζζ − αE

)
∆T∗, (29)

r f
..= n−ij n−ij − 1 , (30)

where ∆σξξ = σ−ξξ − σ+
ξξ , ∆σζζ = σ−ζζ − σ+

ζζ and n−ij , h−ε and h−T are evaluated using the current Newton
iteration’s approximation of the root.

Then, the predictor stress increment ∆σ
pr
ij is obtained by solving this linear equation

system, which we will more generically denote by using the operator P defined as

P(∆σ∗ij, ∆T, Ψ) = ∆σ
pr
ij (31)

wherein the stress components are related by

∆σ
pr
ξξ = −

(Ψ− 1)ν(ν + 1)∆σ∗ηη −Ψ∆σ∗ξξ − (Ψ− 1)(1 + ν)αE∆T∗

(Ψ− 1)ν2 + 1
, ∆σ

pr
ηη = ∆σ∗ηη , (32)

∆σ
pr
ζζ = −

ν((Ψ− 1)ν− 1)∆σ∗ηη −Ψν∆σ∗ξξ + (1− ν(Ψ− 1))αE∆T∗

(Ψ− 1)ν2 + 1
, ∆σ

pr
ξη = ∆σ∗ξη . (33)
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Note that we may reuse this operator P to generically denote the solution of Equations (23)
and (24) for arbitrary given increments—or even absolute values—of the stress and the
temperature.

For the relaxation step, a predictor may analogously be derived by setting ∆ε
p
ij = 0

in the discretized versions of Equations (19) and (20), in which the rates prescribed by
Equation (18) reduce to the increments

∆σR
ηη = −σηη M−1 , ∆σR

ξη = −σξη M−1 , ∆εR
ξξ = −εξξ M−1 and ∆TR = −TM−1 . (34)

Again, the predictor stress increment ∆σ
prR
ij is obtained by solving the resulting linear

equation system,

∆σ
prR
ξξ =

1
1− ν

(
ν∆σR

ηη +
E∆εR

ξξ

ν + 1
− αE∆TR

)
, ∆σ

prR
ηη = ∆σR

ηη , (35)

∆σ
prR
ζζ = ∆σ

prR
ξξ −

E
1 + ν

∆εR
ξξ , ∆σ

prR
ξη = ∆σR

ξη . (36)

Note that this predictor is constant throughout the relaxation.
The complete residual stress approximation scheme can now be assembled based on

the previous definitions and derivations of this chapter; see Figure 3 for the corresponding
flow chart, which shall be discussed in the following:

• First, we note that this computational routine needs to be repeated for each individual
depth η under consideration. However, since there is no direct coupling between the
depths, but only indirect coupling through the elastic solution, this may be done in
parallel. Generally, since stress and temperature in the elastic solution decay with
distance from the loaded strip, a load imbalance should be expected when parallelizing
the evaluation of different depths.

• Initial conditions for the stress and equivalent plastic strain are set at the upmost ξ∗+
seen in Figure 2b. For efficiency, ξ∗+ shall be set as close as possible to the surface
loads while asserting that no plasticity occurs for ξ > ξ∗+. Thus, εeq+ = 0 and given
that there is no path dependency in the elastic regime, the stress can be initialized by
applying the P operator Equation (31), as seen in Figure 3, which effectively yields an
equivalent initial state as we would eventually obtain when starting the integration
much further away just to ensure σ+

ij ≈ 0 initially.

• With the loop construct in the left of Figure 3, we then proceed through the loaded
region in (not necessarily constant) increments of ∆ξ, see Figure 2b, thus reconstruct-
ing the transient loading history a material point would be subjected to in the elastic
moving surface load problem. In doing so, the elastoplastic material response is
approximated within the assumptions Equations (11) or (12) by a predictor–corrector
approach. Elastoplastic increments are solved using either explicit or implicit integra-
tion, as detailed in Algorithms 1 and 2, respectively.

• While the strains generally do not have to be computed explicitly during this first part
of the scheme, which is entirely formulated in terms of stresses, all strain components
can easily be updated at the end of each increment based on the discretized version
of Equation (13). However, doing so is only strictly necessary for εξξ , since the only
strain component required in the overall scheme is εξξ , for which Equation (17) has to
be checked prior to potentially invoking the relaxation step.

• Similarly as discussed for the initial condition, it is desirable for efficiency reasons to
choose the value of ξ∗−, where the integration is stopped, not too far away from the
surface loads. Since the elastic solution does satisfy the Merwin–Johnson conditions
Equations (16) and (17) for ξ → −∞, which the relaxation eventually enforces, path
independency in the elastic regime allows not only a coarsening of the integration
step length beyond the plastic zone but also using the relaxation procedure earlier,
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i.e., starting at larger ξ∗−, to attain the conforming steady state instead of continuing
integration toward some ξ∗− excessively far away from the loads. However, this
reasoning is only admissible if elastic behavior is guaranteed beyond ξ < ξ∗− and
likewise during relaxation from ξ∗− onward.

• As indicated above, the Merwin–Johnson conditions are checked for σηη , σξη and εξξ

that result at ξ∗− from the first step of the scheme. If the check fails, the conditions
are enforced by reducing the involved stress and strain components to zero in M
increments. Since plasticity may occur during relaxation, M should be sufficiently
large to track the associated loading path dependency.

• A very similar predictor–corrector scheme as before is employed during relaxation.
However, due to the different set of prescribed stress and strain components, the
equations for an elastoplastic relaxation increment differ slightly from the correspond-
ing equations in the previous step of the scheme. Therefore, we collected them in
Algorithm 3. Note that we limit the discussion to the case of explicit integration here,
since M may conveniently be increased for accuracy, while decreasing ∆ξ during the
first step would come at the possibly large additional cost of further evaluations of the
elastic input solution.

initialization

ξ+ = ξ∗+, εeq+ = 0

σ+
ij = P (σ∗+ij , T

∗+ − Tr,Ψ)

ξ− = ξ+ +∆ξξ+ = ξ−

predictor

∆σpr
ij = P (∆σ∗ij , ∆T

∗,Ψ)

σpr
ij = σ+

ij +∆σpr
ij

f(σpr
ij , ε

eq+, T−) = 0 and

∆σpr′
ij n

pr
ij − hT∆T

∗ ≥ 0 ?

σ−ij = σpr
ij and εeq− = εeq+

compute
σ−ij and εeq−

via Algorithm 
1 or 2

ξ− = ξ∗− ?

σij = σ−ij , ε
eq = εeq−, T = T ∗−

no

yes

yes

no

εξξ = 0 and
σηη = σξη = 0 ?

relaxation

σij = σij , ε
eq = εeq

T = T , m = 1

predictor

σprR
ij = σij +∆σprR

ij

T = T +∆TR

f(σprR
ij , εeq, T ) = 0 and

∆σprR′
ij nprRij − hT∆T

R ≥ 0 ?

σij = σprR
ij

m = M ?

m = m+ 1
update σij , εeq 

via Algorithm 3

σr
ξξ = σξξ, σ

r
ζζ = σζζ

σr
ξξ = σξξ, σ

r
ζζ = σζζ

no

no

no

yes

yes

yes

Figure 3. Flow chart for the residual stress approximation.

We conclude the presentation with the remark that the temperature, which is known
beforehand, may always be inserted with its value at the increment’s end—even in the ex-
plicit integration procedures of Algorithms 1 and 3—which we did in the studies presented
in the remainder of the work.
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Algorithm 3: Integration of stresses and equivalent plastic strain during relaxation.
1. Determine ∆σξξ and ∆σζζ by solving the linear equation system(

1 +
E
hε

nξξ nξξ

)
∆σξξ +

(
−ν +

E
hε

nξξ nζζ

)
∆σζζ =

(
ν− E

hε
nξξ nηη

)
∆σR

ηη

−2E
hε

nξξ nξη∆σR
ξη +

(
EhT
hε

nξξ − αE
)

∆TR + E∆εR
ξξ , (37)

(
−ν +

E
hε

nξξ nζζ

)
∆σξξ +

(
1 +

E
hε

nζζ nζζ

)
∆σζζ =

(
ν− E

hε
nηηnζζ

)
∆σR

ηη

−2E
hε

nζζ nξη∆σR
ξη +

(
EhT
hε

nζζ − αE
)

∆TR , (38)

where the stress and equivalent plastic strain assume their values at the relaxation increment’s beginning.
2. Update the stresses σij = σij + ∆σij using the solution from the previous step and ∆σηη = ∆σR

ηη as well as
∆σξη = ∆σR

ξη .
3. Update nij, hε and hT by Equation (9) using the updated stress.
4. Update the equivalent plastic strain using ∆σij, nij, hε and hT from the previous two steps,

εeq (10)
= εeq +

√
2
3

1
|hε|

(
∆σ′ijnij − hT∆TR

)
. (39)

3. Finite Element Modeling

This section is devoted to the presentation of the FE models that we established in
order to assess the correctness of our implementation of the numerical scheme derived in
Section 2 as well as the accuracy of the obtained approximations for half-space problems,
as shown in Figure 1. The FE analyses were carried out using Abaqus/Standard (v6.20).

Figure 4 shows a sketch of the “global” FE model used both to obtain the elastic input
σ∗ij in a thermoelastic analysis as well as to compute reference solutions for transient and
residual stresses in a thermoelastoplastic analysis for comparison with the approximations
obtained by the MM and JS methods. We enforced homogeneous displacement bound-
ary conditions w.r.t. the normal direction on the left, right and bottom boundaries. In
order to attain half-space conditions for our domain of interest despite these boundary
conditions, we assured that the boundaries are sufficiently far away to match the results
of simulations in which a boundary layer of CINPE4 infinite plane-strain elements was
used. This was not done per default, since the use of infinite elements prevents parallel
execution in Abaqus/Standard, leading to significantly higher runtimes while providing
no additional accuracy once sufficient distance of the boundaries is established. To apply
the moving surface loads and heat flux, the given distributions t∗ηη(ξ), t∗ξη(ξ), and q∗(ξ)
seen in Figure 1 were related to the material x–y-system by a Galilean transformation
to obtain mechanically equivalent (pseudo)-time-dependent nodal forces F∗ηη(t), F∗ξη(t),
and a surface heat flux Q∗(t), which are then prescribed onto the surface of the thermoe-
lastoplastic domain in Figure 4. We implemented this using the Abaqus/Standard user
subroutines UTRACLOAD and DFLUX. As indicated, we used this FE model for the following
three purposes, adapting the particular dimensions and mesh refinement controls to the
requirements of each analysis:

1. The elastic solution σ∗ij, T∗, is computed using a transient thermomechanical analysis
where thermoelastic material behavior is assumed throughout. The loads are moved
over a sufficiently large distance of the model’s surface so that we approximately
obtain quasi-stationary fields around the loaded region in a co-moving coordinate
system. Then, the analysis is stopped without relieving the mechanical loads or
allowing temperature equalization such that we can directly extract the transient
loading a material point would be subjected to when passing the loaded region under
the preclusion of plasticity.



Appl. Sci. 2022, 12, 2549 12 of 26

2. To obtain the transient elastoplastic reference solution for material points passing
under the surface loads, the above analysis is repeated with thermoelastoplastic
material behavior.

3. To compute the residual stresses, another thermoelastoplastic analysis is conducted,
where the loads are relieved and the temperature is equalized in an additional tran-
sient simulation step.

𝑥
𝑦

⊗𝑧
𝐹∗𝜉𝜂(𝑡)

𝐹∗𝜂𝜂(𝑡)

𝑄∗(𝑡)

Figure 4. Sketch of the FE model for the half-space problem of Figure 1. The domain of interest,
where thermoelastoplastic material behavior is applied, is shown in green and is discretized with
a structured mesh of plane-strain elements. The surrounding gray area serves as thermoelastic
embedding and is discretized by an unstructured mesh of plane-strain elements (omitted in the
sketch) that progressively coarsens toward the outer boundaries that confine the half-space.

These FE simulations provide us with reference solutions to assess the quality of
results obtained by the methods of Section 2. However, they are not suitable to validate
our implementation of the approximate algorithms, since deviations arising from the
“depth-uncoupled” nature of the MM and JS methods as well as from the assumptions
Equations (11) and (12) cannot be distinguished from other potential discrepancies.

For this purpose, the two simple FE models shown in Figure 5 were established. They
each consist of a single plane-strain finite element with boundary conditions, nodal forces,
surface tractions and temperature prescribed specifically so as to impose the kinematic
constraints and the elastic stress components defined by Equations (11) and (12). By
appropriate definition of the temporal evolution of these loads, we can simulate the ther-
moelastoplastic behavior of a single material point for arbitrary loading histories under
the exact mechanical assumptions of MM and JS using the constitutive models included in
Abaqus. This is easily implemented using the UEXTERNALDB and UAMP subroutines to load
and apply the desired time series. In particular, by prescribing the solution from the elastic
analysis of the “global” model seen in Figure 4, validation data for the MM and JS methods
can be computed for general half-space problems, as sketched in Figure 1. An analogous
model can be build for the relaxation step of the approximate algorithms, where the strain
in the ξ-direction is enforced by an appropriate displacement boundary condition.
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𝜉
𝜂

⊗
𝜁

𝜎∗𝜉𝜂(𝜏 )

𝜎∗𝜂𝜂(𝜏 )

𝑇 ∗(𝜏 )

(a) FE model for the MM method

𝜉
𝜂

⊗
𝜁

𝜎∗𝜉𝜂(𝜏 )

𝜎∗𝜂𝜂(𝜏 )

𝜎∗𝜉 𝜉 (𝜏 )

𝑇 ∗(𝜏 )

(b) FE model for the JS method

Figure 5. FE models used to validate our implementation of the approximation schemes’ transient
step. τ denotes the (pseudo-)time during the transient analysis. The bar connecting the bearings at the
top two nodes in subfigure (a) represents a multi-point constraint that enforces equal displacement
in the ξ-direction. σ∗ηη(τ) and σ∗ξη(τ) are prescribed by surface traction definitions in Abaqus while
three nodal forces are defined to enforce σ∗ξξ(τ) for the JS case.

4. Numerical Study and Validation of the Algorithms’ Implementations

This section covers our numerical studies using the approximate algorithms and
discusses them in comparison to reference results computed by the FEM. Specifically, we
start by validating the implementations using the models shown in Figure 5 and then
move on to elaborate on the accuracy of the approximate methods based on the reference
solutions from the FE model seen in Figure 4.

To specify the strain-hardening and thermal-softening behavior for our investiga-
tions, we assume the following rate-independent Johnson–Cook type law for the yield
strength σY:

σY(ε
eq, T) =

(
σ0

Y + h (εeq)n
)(

1− (Θ(T))m) . (40)

Herein, σ0
Y is the initial yield strength below or at the transition temperature Tt, at

which thermal softening is assumed to begin, and prior to strain hardening. The constants
h and n determine the slope and nonlinearity of the strain-hardening curve for a given
temperature. Thermal softening is accounted for by the second factor in Equation (40) and
parameterized by the constant exponent m as well as a function Θ(T) defined by

Θ(T) =


0 for T < Tt

T−Tt
Tm−Tt

for Tt ≤ T ≤ Tm

1 else ,

(41)

where Tm denotes the melting temperature at which the yield strength vanishes. The
complete set of constitutive parameters is collected in Table 1. Note that in addition to the
parameters introduced before, we included the parameters needed to solve the linear heat
conduction problem during the thermoelastic analysis for the input solution σ∗ij, T∗, at the
bottom of the table.

4.1. Validation of the Approximate Algorithms’ Implementation

For the scope of this section, we consider synthetically defined time evolutions for the
prescribed loads on the FE models seen in Figure 5. This simplifies the discussion and the
increment size selection for the integration in the approximate algorithms, but more impor-
tantly, it allows us to easily assert that the thermoelastic input solution indeed complies
with the additional kinematic constraint εξξ = 0 underlying the MM method. Therefore,
it is guaranteed that the validation is done under circumstances where the MM and JS
approaches constitute no approximation but exact methods from a mechanical viewpoint;
i.e., any deviations from the FE results must be of numerical or implementational origin.
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Table 1. Baseline constitutive parameters for our numerical investigations if not specified otherwise.

Symbol Value Unit Description

E 113.8 GPa Young’s modulus
ν 0.342 Poisson’s ratio
α 9.0 × 10−6 K−1 coefficient of thermal expansion
σ0

Y 920 MPa initial yield stress
h 185 MPa hardening slope
n 0.3 strain-hardening exponent
Tt 20 °C transition temperature
Tm 1650 °C melting temperature
m 1 thermal-softening exponent

ρ 4420 kg m−3 density
λ 6.7 W m−1 K−1 thermal conductivity
cp 526.3 J kg−1 K−1 specific heat capacity
T∞ 20 °C ambient temperature

To expand on this point, note that the plane-strain constraint εζζ = 0 by virtue of the
thermoelastic extension of Hooke’s law dictates

σ∗ζζ = ν
(

σ∗ξξ + σ∗ηη

)
− αET∗ (42)

and additionally enforcing εξξ = 0 then leaves us with only one of the two in-plane normal
stresses as independent component, i.e., the relation

σ∗ξξ =
ν(1− ν)σ∗ηη − αE(ν + 1)T∗

1− ν2 (43)

must be taken into account when defining an elastic input solution for the MM algorithm.
The FE analysis of the model in Figure 5a will of course result in a compliant ξξ-component
of the stress tensor by itself, but for the approximate algorithm, we must completely define
σ∗ij(τ) ourselves beforehand.

Since the constitutive behavior is rate-independent, we consider a step of unit pseudo-
time τ ∈ [0, 1] over which we ramp up the temperature T∗(τ) linearly from 0 to 700 °C. This
leads to a maximum reduction of the yield stress of around 40% due to thermal softening
as per the second factor in Equation (40). Then, we consider a complete loading–unloading
cycle for each individual load sketched in Figure 5 in a separate analysis by prescribing
a hat function for the load’s temporal evolution: For both the JS and the MM algorithm,
this comprises two analyses in each of which either σ∗ηη(τ) or σ∗ξη(τ) is prescribed by a hat
function. An additional analysis in which σ∗ξξ(τ) assumes a hat-shaped loading–unloading
cycle is carried out for the JS method.

Figures 6 and 7 show the stresses obtained by these analyses, where we used explicit
integration (Algorithm 1) with a timestep of ∆τ = 1× 10−3. We omit displaying the
stresses we correspondingly obtained by implicit integration (Algorithm 2), as they are
virtually identical to the results of Algorithm 1 shown here. Note the hat-shaped cycles
of the prescribed stress components and that we adjusted the corresponding peak values
so that the magnitudes of equivalent plastic strain after the loading cycle were similar.
Furthermore, by comparing Figure 6a,b, the expected equal behavior w.r.t. the ξ- and
η-directions under the assumptions of JS is confirmed. Finally, by comparing the dashed
and dotted lines in Figures 6 and 7, we verify that the stress components computed by the
approximate algorithms (i.e., σζζ , and for the MM algorithm additionally σξξ) agree with
the results from the FE calculations throughout.
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(b) σ∗ηη cycle prescribed
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(c) σ∗ξη cycle prescribed

Figure 6. Transient stresses computed by FE analysis vs. the JS method and the prescribed elastic
input (labeled “el.” and drawn using dotted lines). The highlighted subinterval of τ represents the
domain where plasticity occurred.
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(a) σ∗ηη cycle prescribed
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(b) σ∗ξη cycle prescribed

Figure 7. Transient stresses computed by the FE analysis vs. the MM method and the prescribed
elastic input (“el.”, dotted lines). Plasticity occurred within the highlighted subinterval of τ.

The total and equivalent plastic strain for the σξξ loading cycle of Figure 6a are shown
in Figure 8 for the explicit and implicit implementations of the JS algorithm. The observa-
tions discussed for this case hold similarly for the other load cycles studied. Comparing
to the FE results, it is apparent that a somewhat better agreement in terms of strains is
obtained by the implicit integration although it was computed using a four times coarser
time discretization ∆τ = 4× 10−3. As indicated in Section 2.2, this does not influence the
stresses, since the Algorithms 1 and 2 are formulated exclusively in terms of the stresses.
The obvious reason for the slightly worse strain approximation of the explicit Algorithm 1
is that the equivalent plastic strain is computed only after the elastoplastic stress correction
which involves quantities related to the yield surface at the beginning of the increment. For
the same reason, slight violations of the admissibility of the stresses may appear within
the explicit scheme. On the other hand, the implicit Algorithm 2 enforces admissibility by
updating εeq during the iteration, resulting in better strain approximations at the general
expense of higher computational effort and stronger requirements on the smoothness of
the yield surface for convergence.
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(a) explicit integration (Algorithm 1)
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Figure 8. Total and equivalent plastic strain obtained by the FE analysis vs. the results from either the
explicit or implicit JS implementation for the loading cycle seen in Figure 6a.
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Finally, Figure 9 shows the FE and approximate results for the stresses and strains
during the loading-unloading cycle seen in Figure 6a and additionally the subsequent
relaxation procedure, in which the Merwin-Johnson conditions and temperature equilibra-
tion are enforced incrementally in M = 2500 steps. The JS case with prescribed σ∗ξξ(τ) for
τ ∈ [0, 1] was chosen for display here, since it naturally features a large normal strain in
ξ-direction prior to relaxation and thus constitutes a case where plasticity is predestined to
occur in the relaxation step. Indeed, as can be seen from Figure 9, significant plastic flow
occurs during relaxation while good agreement of the stresses with the FE results is verified.
Since explicit integration is employed for the relaxation (Algorithm 3), the considerations of
the previous paragraph on the accuracy of strains apply equally to the moderate deviations
observed here.
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Figure 9. Stress, strain, and equivalent plastic strain evolution according to the FE analysis and the
JS algorithm during both the loading cycles seen in Figure 6a and the subsequent relaxation step.
Algorithms 2 and 3 were used.

In conclusion, we have provided FE-based validation for each implementational
branch of the solution scheme seen in Figure 3 at this point and shall turn our attention to
actual half-space problems in the next section.

4.2. Analysis of the Approximation Quality for Half-Space Problems

To study the approximate algorithms in the context of the half-space problem shown
in Figure 1, we choose the particular distributions

t∗ηη(ξ) =

{
2p∗0
πb2

√
b2 − ξ2 for − b ≤ ξ ≤ b

0 else
and t∗ξη(ξ) = −µ t∗ξξ(ξ) (44)

for the surface loads and for the heat flux distribution, we set

q∗(ξ) =

{
q∗0 for − b ≤ ξ ≤ b
0 else.

(45)

Herein, b denotes the half-width of the loaded area w.r.t. the ξ-η-system and p∗0 , q∗0
and µ are positive constants. The elliptical pressure distribution in Equation (44) stems
from Hertzian contact theory and is very commonly postulated in rolling and sliding
contact research. Assuming proportional tangential tractions is known to be somewhat
simplistic for sliding contact problems due to the occurrence of both stick and slip regions,
but this assumption is widespread nonetheless [7,8]. The authors are aware of existing
analytic expressions for the elastic stress solution corresponding to these particular surface
tractions [21] as well as the integral given by Carslaw and Jaeger [22] for the temperature
field associated with Equation (45). However, it seems that no integral-free, closed-form
solution exists for the thermoelastic problem. Therefore, the elastic input solution σ∗ij will be
computed by the FEM as described in Section 3, although faster approximate methods [4]
or even heuristic approaches [1] are favorable in applications.
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The load parameters are chosen as b = 1 mm, q∗0 = 1250 kW m−2 and µ = 0.2.
Furthermore, two levels of intensity are considered for the mechanical loading, p∗0 = 1.6 kN
and p∗0 = 3.2 kN, so that we may study the algorithms over a wide range of very small to
moderately large plastic strains. To extend the range of hardening behavior considered in
the investigation, we assume h ∈ {2.5, 5, 10}GPa with σ0

Y = 920 MPa and n = 0.5. Figure 10
displays the flow curves within the relevant domains of temperature and equivalent plastic
strain. Note that the slope of the yield stress w.r.t. the equivalent plastic strain is initially
vertical according to Equation (40) if n < 1 and therefore, hε = ∞ for εeq = 0, which is
regularized to a large finite value when the explicit Algorithm 1 is employed. Otherwise,
h+ε = ∞ in the first elastoplastic increment implies ∆ε

p
ij = 0 and εeq− = εeq+ = 0, so that by

induction, it is easily seen that plastic flow would be suppressed within the explicit scheme
for this particular choice of hardening behavior. By contrast, the implicit Algorithm 2
requires no special treatment for unbounded hε.
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Figure 10. Yield stress as a function of equivalent plastic strain for h ∈ {2.5, 5, 10} GPa and three
different temperatures.

In the following, a top–down approach will be taken to guide the presentation and
discussion of the numerical results, i.e., we consider the residual stresses right away. These
are usually the quantities of interest in applications and accordingly the only ones presented
in most of the corresponding literature.

4.2.1. MM Method

The residual stresses predicted by the MM method are shown in Figure 11. Comparing
the predictions with the corresponding reference solutions computed by the “global” FE
model (shown in Figure 4), it is immediately obvious that the approximations are at best
of qualitative nature for the cases studied here. In particular, the MM implementation
fails to accurately predict the location of the compressive residual stress peak as well as
the change to tensile stresses in the immediate subsurface. Looking only at the predicted
compressive zone below η = 0.1 mm, it is apparent that the compressive peak magni-
tudes are approximated best in case of h = 10 GPa for both studied load amplitudes p∗0 .
Furthermore, with h = 2.5 GPa, the peak approximation is much worse for the milder
loading p∗0 = 1.6 kN than for p∗0 = 3.2 kN. This indicates a dependency of the prediction’s
accuracy on a combination of loading intensity and hardening behavior. Within the stud-
ied parameter space, it seems that larger mechanical loading and strain hardening are
advantageous, which—regarding the influence of the loading intensity—agrees with the
assessment of McDowell [8] that the MM scheme is unrealistic in case of predominately
elastic loading cycles.
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Figure 11. Residual stresses computed by the MM method vs. the results computed by the FEM for
various values of the plastic-hardening parameter h and the two considered load levels p∗0 .

We investigated the sharp reversal of the residual stress approximations near the sur-
face by using once more the “local” FE model of Figure 5a to confirm our implementation’s
prediction with a mechanically equivalent FE analysis on a subset of the depths and param-
eter combinations seen in Figure 11 and found no disagreement. Thus, it seems to us that
the poor performance of the MM method in the cases we studied is linked to its inherent
mechanical assumptions, as shown in Equation (11). Indeed, enforcing εξξ = εζζ = 0 in
conjunction with the isotropic constitutive behavior implies equal mechanical response
in the ξ- and ζ-directions. Accordingly, the predicted residual stress components σr

ξξ and
σr

ζζ are equal, which by itself disagrees in particular in the subsurface tensile region with
the FE results; see Figure 11. This deficiency of the MM method was already noted by
Jiang and Sehitoglu [7], who study isothermal problems and linear kinematic hardening,
and—in accordance with our results—also observed too shallow plastic zones predicted by
the MM approach.

A straightforward way to elaborate on the justification of the algorithm’s underlying
assumptions is to consider the “true” transient stress and strain components of a material
point that passes the loaded region as computed by an elastoplastic FE analysis of the
half-space (Figure 4) and to compare them to the respective values prescribed in the models
of MM and JS. In particular, we may thus directly examine and compare the validity
of the assumptions εξξ = 0 (MM) and σξξ = σ∗ξξ (JS). Figure 12 displays how the in-
plane components of σij obtained by a transient elastoplastic FE analysis deviate from the
respective components of the elastic input solution σ∗ij for two of the studied combinations
of p∗0 and h, which correspond to a “worst-case” scenario (magenta curves in Figure 11a,b, as
well as a “best-case” scenario (black curves in Figure 11c,d). Additionally, the elastoplastic
FE solution for εξξ is shown. The pseudo-time τ is used once more to parametrize the
temporal course of a point passing the loads. Note that the τ-axis is inverted so that the
plotted fields correspond to the problem arrangement defined in Figure 1; i.e., a material
point moves from the right to the left in Figure 12. To relate the deviations to the magnitudes
of the respective stress components, we normalized them to the peak value of the elastic
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input solution’s corresponding component that occurs along the considered depth η; e.g.,
the absolute difference σ∗ξη − σξη at some fixed point (ξ, η) ∈ Ω∗ is normalized by

eη(σ
∗
ξη , σξη)

..=
σ∗ξη − σξη

max
{
|σ∗ξη(ξ̃, η)|

∣∣∣ ξ̃ ∈ [ξ∗−, ξ∗+]
} . (46)

Figure 12. Deviations of the actual stress and strain components involved in the assumptions in
Equations (11) and (12) as computed by a transient elastoplastic FE analysis of the half-space model
(Figure 4) from their respective target values assumed in the approximate algorithms (top row of
plots: h = 2.5 GPa and p∗0 = 1.6 kN, bottom row: h = 10 GPa and p∗0 = 3.2 kN). The dashed black
and the solid cyan and magenta lines are drawn as rough indicators of the areas where plastic flow
occurred as per the FE analysis and the (implicitly integrated) MM and JS algorithms, respectively.

Note that a relative error in the conventional sense cannot be used here, since the
stresses may vanish. If the assumptions of MM were to hold rigorously, we should see
eη(σ∗ηη , σηη) = eη(σ∗ξη , σξη) = εξξ ≡ 0%. However, the largest violation of the constraint
on εξξ is naturally found near the surface where the loads act and the stresses σ∗ij are
concentrated. Indeed, we can directly infer from Figure 12 that up to 3% of compressive
total strain in the ξ-direction are effectively constricted in the near-surface zone by applying
the MM scheme, which is accommodated by considerably increased extents of plastic flow
compared to the reference FE solution. This coincides with the incorrect prediction of
compressive residual stresses building up toward the surface seen in Figure 11. Indeed, we
found the severity of the spurious near-surface predictions of the MM method to decrease
with smaller violation of the constraint on εξξ throughout all studied cases. Moreover, the
depths η for which the residual stress predictions are more accurate, i.e., η ≈ −0.4 mm and
η ≈ −0.5 mm for the two considered scenarios, respectively, correspond to relatively small
violations of this kinematic constraint according to Figure 12.

Obviously, εξξ = 0 is bound to be a worse assumption for anisothermal problems due
to the additional occurrence of hydrostatic thermal strains. Hence, it seems reasonable to
expect that their smaller contribution to the overall loading for p∗0 = 3.2 kN promotes the
somewhat better predictions in that case, even though it is not trivial to confirm this just by
comparing the violation of εξξ = 0, since increasing the mechanical load simultaneously
implies operating with different strain magnitudes and thus, deviations from εξξ = 0 are
harder to interpret when comparing different loading levels.

An important insight provided by Figure 12 is that the deviations from the elastic
solution observed for σηη and σξη are substantially smaller than for σξξ , which corroborates
the choice made in both schemes to enforce the elastic solution for the former two stress
components. Moreover, the realization that the assumptions on σξξ (JS) and εξξ (MM)
appear to be considerably more critical as per Figure 12 and the above discussion indicates
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that both approaches might be justifiable in more specialized loading regimes then the one
we study.

Finally, it should be noted that the MM algorithm becomes unstable for weak strain
hardening; e.g., for p∗0 = 1.6 kN and h < 2.5 GPa, we observed increasingly oscillatory
distributions of the residual stresses along η using explicit integration and accordingly a
lack of convergence using implicit integration even though the FE analyses based on the
half-space model still yield smooth residual stresses and reasonable maximum equivalent
plastic strains. However, since relinquishing kinematic compatibility w.r.t. the η-direction
prevents stress redistribution along the depth, such an unstable plastic response is not
entirely unexpected with regard to severe strain localization.

4.2.2. JS Method

The residual stress predictions of the JS method are shown in Figure 13. Much better
qualitative agreement with the reference FE solutions is observed compared to the previ-
ously discussed MM approach. Both the sign and the peak locations of the residual stress
components are mostly well approximated with exception of the lateral component near
the surface in Figure 13d for h < 10 GPa. Moreover, the predicted depth of the zone of
non-zero residual stresses agrees reasonably well with the FE results. On the other hand,
the peak magnitudes are overestimated in most of the studied cases. As with the MM
method, the best agreement is observed for h = 10 GPa for both load intensities, which
confirms the remark of McDowell [8] that the JS method is expected to perform best for
stronger strain hardening, i.e., for larger h. In fact, our results indicate better predictions for
larger hp∗0

−1 and demonstrate that excellent residual stress predictions are possible using
the JS scheme, as seen for h = 10 GPa and p∗0 = 1.6 kN in Figure 13a,b.
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Figure 13. Residual stresses computed by the JS method vs. the results computed by FE analysis for
various values of the plastic-hardening parameter h and both considered load levels p∗0 .

We checked the JS assumption σξξ = σ∗ξξ for all combinations of h and p∗0 in the same
fashion as we did for the two cases shown in Figure 12, i.e., by comparing the transient
stresses occurring during elastoplastic vs. elastic FE analyses of the load passage. The
violation of this assumption was found to considerably decrease for fixed p∗0 when h is
increased, which is unsurprising, since larger h values imply smaller plastic stress relaxation
and accordingly stress responses closer to elastic behavior. Furthermore, the quality of
the residual stress predictions appears to be linked to the degree of fulfillment of the JS
stress constraint, analogously as pointed out above for the MM approach. For example,
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in case of p∗0 = 3.2 kN, deviations eη(σ∗ξξ , σξξ) of more than +75% and +45% were found
for h = 2.5 GPa and h = 5 GPa during plastic flow, respectively, in the depth range where
the large overestimation of the compressive residual stresses is seen in Figure 13c,d. At
the same time, the constraint violation eη(σ∗ξξ , σξξ) is smaller—and mostly a lot so—than
24% for h = 10 GPa within the plastic part of the load passing, as seen in the bottom row of
Figure 12. Similarly, the overestimations of the tensile stresses near the surface apparently
coincide with significantly larger violations of the shear component assumption σξη = σ∗ξη

during plastic flow for weaker strain hardening, h < 10 GPa. Finally, by comparing the
diagrams in Figure 12 by row, it is apparent that the assumptions of JS are somewhat better
fulfilled for h = 2.5 GPa and p∗0 = 1.6 kN than for the other considered parameter set, even
though the residual stress approximation is better for the latter. This indicates that higher
violations of the JS assumptions may be tolerable with stronger hardening.

To further detail the discussion, we shall examine how the inaccuracies that arise
during the load passing step as a consequence of the discussed constraint violations
eventually propagate to the residual stress prediction in the course of the relaxation step.
To this end, the residual stresses for the cases h ∈ {5, 10}GPa and p∗0 = 3.2 kN are once
more shown in Figure 14 alongside the corresponding components of the stress σij at the
end of the loading pass, prior to the relaxation procedure of the JS algorithm. We chose
these combinations of h and p∗0 since plastic flow during relaxation still occurs for the
h = 5 GPa case, while the relaxation is entirely elastic for h = 10 GPa (which it is also
for all the other studied combinations except p∗0 = 3.2 kN with h = 2.5 GPa). Comparing
the dashed lines in Figure 14a,b,d,e, the impact of the JS assumptions’ violations that we
pointed out above indeed manifests in the intermediate results σij, i.e., σξξ and σζζ deviate
from the corresponding FE reference solutions particularly for values of η where large
violations of the underlying JS assumption on σξξ were observed during the loading pass.
Furthermore, considering all studied cases, the inaccuracy of σij w.r.t. to the FE results
was found to become smaller for larger h, as expected according to better fulfillment of
Equation (12). However, these inaccuracies seem somewhat less sensitive w.r.t. h as the
strong dependency of the residual stress prediction’s accuracy on h suggests for the two
parameter combinations considered in Figure 14. On the other hand, looking at Figure 14c,f,
the discrepancy of the accuracy of the predicted residual stresses for h = 5 GPa and
h = 10 GPa may be related to the larger straining during relaxation for h = 5 GPa due to
the much bigger εξξ which is forced to zero and correspondingly drives the transient loading
during relaxation; see Equations (34) and (37). This assessment seems to be supported by
the remark McDowell [8] gave in passing that large magnitudes of relaxation may be the
cause of the JS algorithm’s instability for weak hardening. However, since the strains are
computed from the stress updates in Algorithms 1 and 2, deviations of εξξ from the FE
reference strain ultimately relate back to inaccurate stresses obtained during the loading
pass and thus to the appropriateness of the assumptions Equation (12).

Finally, we made similar observations on the stability of the JS algorithm for very
small h as above for the MM method, e.g., the stresses after the loading pass become
increasingly oscillatory for p∗0 = 1.6 kN and h < 0.25 GPa, and no solution could be
found within reasonable tolerances in the implicit Algorithm 2, respectively. This agrees
with McDowell’s investigations of repeated isothermal sliding contact under kinematic
hardening behavior [8].
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Figure 14. Left and middle column: Depth profiles of the residual stresses σr
ξξ , σr

ζζ (solid lines) and
the corresponding stress components σξξ , σζζ at the end of the loading pass (dashed lines). Right
column: Normal strain εξξ at the end of the loading pass. The two cases h = 5 GPa and h = 10 GPa
for p∗0 = 3.2 kN are considered, and the orange and green colors correspond to results from the
(implicitly integrated) JS algorithm and the FE analyses, respectively.

5. Discussion

The properties of the MM and JS approximate algorithms have already been addressed
in detail in the previous section alongside the associated numerical studies and results. In
this section, we discuss our findings in a broader sense and with respect to applications
that have been proposed, in particular for manufacturing processes.

Our investigations indicate that the MM algorithm does not perform well for isotropic
hardening and anisothermal problems of the kind we studied. Hence, the JS algorithm
appears to be preferable. Indeed, this assessment seems consistent with the choice of a
number of authors [9,11,13,23] to employ the JS method for manufacturing applications
in which elevated temperatures occur, while we had difficulties finding literature that
relies on the method of MM for similar problems. However, other authors [10,14–17] have
used the hybrid scheme proposed by McDowell [8], with some even employing a similar
Johnson–Cook-type hardening law [10]. This hybrid scheme essentially blends between
the MM and JS methods using a scalar blending factor 0 ≤ Ψ ≤ 1 to formally “unify”
both based on purely heuristic considerations. Since we adopted this idea of McDowell to
consolidate our notation, the solution schemes we proposed cover the hybrid algorithm
as well. While McDowell [8] provided convincing evidence for the suitability of this
purely heuristic approach within the application he studied and carefully adjusted the
functional dependency of the blending factor on the hardening slope based on auxiliary
FE calculations, it is not obvious that his conclusions and the proposed blending function
carry over from the isothermal loading, the linear kinematic hardening, and the parameter
space he considered for anisothermal problems with nonlinear isotropic hardening. In
fact, judging from the poor predictions we obtained with the MM assumptions for all
considered hardening slopes, there seems to be little incentive to choose the hybrid scheme
over the plain JS method if sufficiently strong strain hardening behavior may be assumed.
On the other hand, the blending function Ψ(hε) proposed by McDowell [8] specifically
shifts from the JS assumptions for hε → ∞ to the MM assumptions for hε → 0 in a gradual
way. Thus, one might assume that the large overestimation of the residual stresses that we
saw for the JS method in case of weak strain hardening could be shadowed by blending
over to the MM assumptions for smaller hε, at least for sufficient loading (where MM
performed better) and not too small hε (for which the MM algorithm is unstable). To
check this, we reevaluated the half-space problem using the hybrid algorithm with the
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blending function proposed by McDowell [8] for all loading and hardening parameter
combinations we considered in this work. While the JS algorithm’s overestimation of the
tensile residual stress peaks can indeed be somewhat alleviated in the two cases of weaker
strain hardening we considered, this comes at the cost of underestimating the tensile peaks
for stronger strain hardening, where the JS method works very well, which might be
more critical in applications. Furthermore, the residual stresses in the compressive zone
generally were largely underestimated, and the large near-surface errors we discussed for
the MM method appeared in the hybrid scheme, too. In conclusion, we found no systematic
improvement of the predictions using the hybrid algorithm over the JS algorithm but—
on the contrary—much worse approximations in the parameter range in which the JS
scheme was demonstrated to work well. It should be noted though that the blending
might be modified to bias the JS method and thus improve this situation. However, this
is only practical if correct reference residual stress solutions computed under equivalent
mechanical assumptions are at hand.

We demonstrated that a certain minimum amount of strain hardening, depending
also on the loading, is necessary to obtain good approximations. This seems to restrict
the usefulness of the discussed algorithms for materials with weak hardening. As an
example, the strain-hardening behavior of Ti-6Al-4V Grade 5 is adequately modeled by the
Johnson–Cook-type law considered in this work for h ≈ 185 GPa and n ≈ 0.3. This is well
below the level of strain hardening for which we found the residual stress approximations
to be accurate in loading regimes within which the FE analyses yield reasonable residual
stress distributions. However, there are few reports [13–15] of successful applications of
the hybrid and JS algorithms for cutting operations with this workpiece material. It is
difficult to draw a conclusion on this circumstance for two reasons: Firstly, the cited reports
lack sufficient specifications of the assumed hardening law (and the blending function in
case the hybrid scheme is used), which apparently is not uncommon in applied literature,
unfortunately. Secondly, the loading they prescribe to the half-space’s surface cannot be
reconstructed easily, since it results from extensive cutting force models that usually require
in-process measurement data as input. However, parameters for the Johnson–Cook law
are provided in the recent study of Mirkoohi et al. [17], corresponding to h ≈ 650 GPa and
n = 0.45 within our notation, and indeed, highly oscillatory residual stress approximations
are reported even though the thermomechanical properties, the temperature, and the elastic
input stresses evidently change smoothly along the depth. It should be noted that Mirkoohi
et al. [17] use a slightly modified version of McDowell’s hybrid algorithm; however, their
formulation lacks a consistent treatment of thermal softening as proposed in this paper
(which is also the case in other earlier studies, e.g., [10,11]). Thus, they effectively set hT = 0
within our notation, in opposition to the Johnson–Cook model they consider, which at least
for our parameter set noticeably impacts the agreement of the stress response with control
results obtained by the mechanically equivalent FE analyses described in Section 4.1.

As mentioned above, the approximate algorithms were extended to incorporate ther-
mal softening in this work. We demonstrated that many of the observations of Jiang and
Sehitoglu [7] and McDowell [8] regarding the accuracy of the algorithms w.r.t. the harden-
ing carry over to anisothermal problems and isotropic hardening. However, it should be
noted that thermal softening poses an additional challenge for the approximate algorithms,
since it weakens the stabilization of plastic flow through strain hardening in case of simul-
taneous local heating. Thus, it might be that larger strain hardening is required to obtain
accurate results as when assuming a temperature-independent yield stress, especially since
the general approach of treating individual depths in an uncoupled, non-compatible way
also prevents stress redistribution.

Finally, we considered both an implicit and an explicit scheme for the integration in the
loading pass step. In our investigation of the half-space problem, we asserted sufficiently
small step sizes to obtain comparable stresses with both integration schemes. However, as
discussed in Section 4.1, much larger step sizes may be used with the implicit algorithm
without compromising on accuracy, as is expected from an implicit integration method
in a path-dependent problem. This proves useful in performance critical scenarios, as
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considered e.g., by Wölfle et al. [4], in which the additional effort of a Newton iteration
might thereby be balanced against the need to compute the thermoelastic input solution on
a much finer discretization, which certainly comes at a cost, especially if double convolu-
tion integrals are evaluated numerically over the whole domain for each grid point as is
commonly done [9,11,13–17,23].

6. Conclusions

In this work, the approximate elastoplastic rolling/sliding contact algorithms of Jiang
and Sehitoglu [7] (JS), McDowell and Moyar [6] (MM), and McDowell [8] (hybrid) have been
reformulated and extended to allow for nonlinear isotropic strain hardening with thermal
softening. We investigated the accuracy of their predictions in thermoelastoplastic plane-
strain half-space problems using appropriate FE analyses to obtain reference solutions. The
following main conclusions can be drawn:

• The algorithms are rather sensitive to the hardening slope and require some minimum
amount of strain hardening (how much is dependent on the intensity of the prescribed
loading) to robustly produce reasonable predictions.

• Due to the strong dependency on the hardening slope, a careful and exact characteri-
zation of the strain-hardening behavior is indispensable in order to avoid the possible
pitfall of “adjusting” the algorithms to experimental residual stress results by crude
constitutive assumptions.

• The MM algorithm does not suit anisothermal problems as studied in this paper
due to its inadequate assumption of zero total strain in the moving direction of the
surface loads. Specifically, this kinematic constraint inappropriately predetermines
the predicted residual stress components to be equal and furthermore introduces
increased plastic flow to accommodate the thermal expansion, thus leading to poor
approximations especially in the hot surface-near zone.

• In accordance with these limitations of the MM method, we found no obvious incentive
to prefer the hybrid algorithm (which effectively reduces to the MM approach for
small hardening slopes) over the JS algorithm for the considered type of problem
within our investigation. While the hybrid algorithm can be somewhat readjusted
to a particular loading and hardening behavior by carefully “tuning” the blending
function, doing so requires the knowledge of the correct residual stress distributions
beforehand and thus may be impractical when considering a large parameter space as
e.g., in prediction or optimization applications.

• The JS method was demonstrated to provide excellent residual stress approximations
in anisothermal problems with thermal softening if sufficiently strong strain hardening
is present.

• The general approach of uncoupling the problem w.r.t. the depth coordinate η, thereby
relinquishing kinematic compatibility, and instead relying on the prescribed stress
components from the elastic solution to ensure continuity along the depth, appears
to be a weak point in all algorithms. Indeed, for larger loads and for smaller hard-
ening slopes, the transient elastoplastic stresses within the loading pass increasingly
deviate from the elastic solution, leading to the breakdown of the algorithms with this
underlying simplification.

As indicated by the last bullet point, the load regime and the hardening characteristics
limit the algorithms’ applicability. Given the sensitivity of the approximation quality on
these two factors, it seems imperative to verify the residual stress predictions as a matter
of principle with more accurate and mechanically equivalent computational methods
(e.g., FE analyses) at least on a subset of the parameter space of interest. We consider
this an important additional verification beyond comparing predicted and experimentally
obtained residual stresses, since it provides insight into the modeling error introduced by
the approximate method itself in separation from e.g., measurement errors in experimental
residual stress analyses or uncertainties in the specification of the surface loads.
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Beyond the parameter range where the approximate algorithms work, refined strate-
gies and algorithms are required. An obvious choice is to properly solve the initial boundary
value problem using a transient elastoplastic FE analysis as we did in our study. Indeed, this
seems preferable to us in most applications in the light of current computational capabilities.
However, recent interest in real-time residual stress predictions, e.g., for process control,
constitute a clear target application where computational efficiency demands approximate
methods as the ones we studied. Therefore, further research on improved approximate
methods is still worthwhile.
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