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Abstract: Model order reduction techniques can be used during the operation phase of a product
to generate virtual sensor outputs and enable diagnosis and monitoring systems. This contribution
shows an approach with the example of an active magnetic bearing. The reduced model is used to cal-
culate a non-measurable physical quantity (here force) and uses a measurable quantity (temperature)
to check for plausibility. As a test case, the dynamic force response under the influence of varying
eddy currents due to temperature changes is investigated. Using a special test rig with a 6-dof force
measurement platform, the effects are shown and the simulation results are validated.

Keywords: active magnetic bearing; multiphysical simulation; model order reduction; hyper-reduction;
nonlinear magnetodynamics

1. Introduction

Flywheel energy storage systems (FESSs) could potentially be one building block
for the answer to the question of what could be a stable and sustainable energy supply
in the future in the context of strongly fluctuating renewable energy sources. As shown
in Figure 1, generic FESSs consist of a rotor supported by two magnetic bearings which
carries an inertia mass and a motor-/generator-unit. The idea is simple: a spinning rotor
stores energy in the form of kinetic energy [1]. By increasing the rotational speed, a surplus
of electrical energy can be stored mechanically. At other times, the rotor can be slowed
down and the energy is drawn out. The principle holds some major drawbacks: to achieve
high efficiency, all types of friction need to be avoided as much as possible. Therefore,
the rotor is supported by active magnetic bearings (AMBs). Active magnetic bearings are
typical mechatronic machine elements to support rotor systems by levitating the shaft in
a magnetic field. A second drawback arises from the high energy density in the system,
which demands that safe operation has to be guaranteed at all times [2]. A monitoring
system is therefore a necessary feature. One possible approach which makes use of a
detailed simulation (also known as digital twin) is discussed in this paper. To enable stand-
alone monitoring systems that are not dependent on the cloud or network infrastructure,
the so-called edge computing approach should be favored. The application runs on rather
low-end computing devices close to the source of the data [3,4].

This contribution focuses on the methodical investigation of the simulation, experi-
mental calibration and generation of a reduced-order model of one active magnetic bearing.
In this paper, an eight-pole, radial active magnetic bearing is investigated. This consists
of four individually controllable electromagnets and operates in differential mode (more
information in [2]). The bearing itself can be seen in Figure 9, where it is mounted on a
calibration test rig. Additionally, a 2D-model of the bearing is presented in Figure 6.
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Figure 1. Schematic flywheel energy storage system (FESS) wherein red—stator; green—rotor with
inertia; and blue—active magnetic bearing.

2. Monitoring Approach

The idea of the proposed monitoring approach is depicted in Figure 2 and is remi-
niscent of the concept of model predictive controllers. In a first step, the currents in the
coils are recorded during steady state operation for a few seconds. Together with the initial
conditions, the simulation is now performed, using the recorded currents as load input.
The results predict the future state of the magnetic bearing. In the meantime, the real
quantities including that of temperature also evolve in the bearing. Now, a comparison of
the actual temperature with the predicted temperature is performed. If the difference is
within a given tolerance, we can trust the simulation and readout virtual sensor values,
such as forces. This force can then be fed to another monitoring system or simulation which
finally gives the overall health status of the plant system. If the actual temperature is not
near the simulated temperature, the simulation cannot be trusted. Various reasons could
be at the origin of the deviation. A fault detection system will then apply different fault
modes to the simulation until they match again.
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Figure 2. Monitoring scheme for the AMB. The simulation is fed with the measured currents and
simulates the magnetic bearing. A comparison of the measured temperature with the simulated
temperature gives a hint whether the simulation matches reality and therefore can be trusted.

3. Multiphysical Simulation 53

First, a full order model must be set up, to capture all relevant physical effects. In the 54

following, the partial differential equations for the magnetodynamics and the thermody- 55

namics are presented and a coupled finite element model is derived. Similar approaches 56

are discussed in [6], [7]. 57

3.1. Governing equations 58

Starting from Maxwell’s equations for the electrodynamics, a few assumptions are made 59

which simplify the equations for the application of electromagnetism in the low frequency 60

range. More information on a detailed derivation is given in [5]. The first equation to 61

consider is Ampere’s law eq. (1) where the current densities j in the coils lead to a magnetic 62

field H eq. (1) which is related to the magnetic flux density B, with the non-linear material 63

parameter µ, eq. (3). A change in the magnetic flux density (B) results according to Faraday’s 64

law eq. (2) to an electrical field E. 65

∇× H = j (1)

∇× E = −∂B
∂t

(2)

B = µ(B)H (3)

Figure 2. Monitoring scheme for the AMB. The simulation is fed with the measured currents and
simulates the magnetic bearing. A comparison of the measured temperature with the simulated
temperature gives a hint whether the simulation matches reality and can therefore be trusted.
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We conclude that, in order to build a reliable monitoring system, a precise model of
the system is needed that is also capable of running with as low computational effort as
possible. This is the point at which the idea of model order reduction is highly suitable.
A detailed description of the magnetodynamic simulation and hyper-reduction is found
in [5].

3. Multiphysical Simulation

First, a full-order model must be set up to capture all relevant physical effects. In the
following, the partial differential equations for the magnetodynamics and the thermody-
namics are presented and a coupled finite element model is derived. Similar approaches
are discussed in [6,7].

3.1. Governing Equations

Starting from Maxwell’s equations for the electrodynamics, a few assumptions are made
which simplify the equations for the application of electromagnetism in the low frequency
range. More information on a detailed derivation is given in [5]. The first equation to
consider is Ampere’s law (1) where the current densities j in the coils lead to a magnetic field
H, see Equation (1), which is related to the magnetic flux density B, with the nonlinear
material parameter µ, as shown in Equation (3). According to Faraday’s law, a change in the
magnetic flux density (B ) results in an electrical field E, as shown in Equation (2).

∇× H = j (1)

∇× E = −∂B
∂t

(2)

B = µ(B)H (3)

For higher flux densities (‖B‖ > 1 T), the magnetic permeability µ of the ferromag-
netic rotor and stator decreases significantly. To model this nonlinear material behavior,
two generic, isotropic material laws are introduced and (later) tuned to fit the experimen-
tal setup:

µRotor(B) =
(

400
1 + 0.4(B/T)8 + 1

)
µ0 (4)

µStator(B) =
(

2000
0.4 + (B/T)8 + 1

)
µ0 (5)

The corresponding BH-curves are shown in Figure 3 together with the data (gray dashes)
from the datasheets of the assumed material for the stator (thyssenkrupp, M270-35A according
to DIN EN 10 106). For the rotor, a piece of material was measured at a partner.
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Figure 3. Generic material laws for the rotor and stator in comparison to data from the datasheets.
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For varying currents, the magnetic field changes in time and induces the rotation
of the electrical field E, Equation (2). The induced electrical field causes so-called eddy
currents which are described by Ohm’s law where we consider that the conductivity σ is a
function of temperature T (more information on the physics of conductivity in metals [8]):

jeddy = σ(T)E (6)

The eddy current itself has an effect on the magnetic field B via Equation (1). For higher
frequencies, the electromagnetic field is concentrated in the boundary regions because the
local eddy-currents prohibited the field to further propagate in the material. This is known
as the skin-effect [9]. The dissipating eddy currents lead to a temperature rise in the bearing,
which has a negative effect on the electrical conductivity σ as shown in Figure 4.
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Figure 4. Nonlinear material law for the electrical conductivity of iron with σ0 = 10 MS/m and
α = 0.0058 1/K in comparison to [10].

The specific power loss can be computed by:

qheat =
‖jeddy‖2

σ(T)
(7)

To model the temperature evolution in the magnetic bearing, qheat is used as the source
term in the non-stationary heat equation:

ρc
∂T
∂t
−∇ · λ∇T = qheat (8)

Here, ρ denotes the material density, c denotes the specific heat capacity, and λ denotes
the thermal conductivity. All thermal properties are assumed to remain constant in the
scope of this work.

3.2. Fem-Discretization

To solve the partial differential equations, a vector potential A is introduced with the
definition Equation (9).

B = ∇× A (9)

The electrical conductivity is assumed to be temperature-dependent but homogeneous
across the stator and rotor. As [11] pointed out, in this case, both the magnetic and the
electric field can be derived from the modified vector potential A as shown in Equation (10)
where j0 is the imposed current density.

∇×
(

1
µ(A)

∇× A
)
= j0 − σ(T)

∂A
∂t︸ ︷︷ ︸

Eddy current

(10)
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The discretization by finite elements results in a nonlinear model with primary variable
uE denoting the discretized vector potential solution. The model exhibits a nonlinear
internal current vector (here called internal forces by analogy to mechanical problems),
which stems from the material nonlinearity in Figure 3. The mass matrix (called as such
in reference to mechanical problems and originating from the last term in Equation (10))
includes the electrical conductivity and hence depends on the discretized temperature
solution uT . After discretization, the equations for the thermo-magneto-electric system are
of the form:

ME(uT)u̇E + g(uE) = f (j0) (11)

For the thermal problem, a linear finite element model is used, where the r.h.s. depends
on the eddy currents and the temperature solution uT itself.

MT u̇T + KuT = f (jeddy, uT) (12)

Since the magnetodynamic model in Equation (11) and the thermal model in Equation (12)
are fully coupled, a staggered solution scheme is proposed.

3.3. Time Integration

In this application, the temperature changes much more slowly than the electrody-
namics (minutes/hours vs. milliseconds). Therefore, it is reasonable to perform a fully
coupled simulation only for a small time frame, e.g., one magnetodynamic period. During
this phase, the specific power loss in Equation (7) is averaged and then fed into the thermal
model as a constant heat source. The temperature development can then be computed for
a much longer time frame T. Subsequently, the electrodynamics have to be recalculated
since the electrical conductivity has changed with the temperature. Using this alternating
iteration strategy (Figure 5), the long-term force and temperature development can be
computed with comparably low computational effort.
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Figure 5. Timeintegration strategy with ti being the magnetodynamic period and Tj denoting the
large timestep used for the time integration of the thermodynamic model.

The time integration itself is performed using the backward Euler algorithm with k
indicating the timestep. For the magnetodynamic domain Equation (11), the solution uE,k+1
for the next timestep tk+1 is then found with a Newton–Raphson scheme. For the thermal
domain in Equation (12), only a linear solution is needed to find uT,k+1. Note the difference
in the two timesteps ∆t = tk+1 − tk and ∆T = Tk+1 − Tk, as seen in Figure 5.

ME(uT,k)uE,k+1 + ∆tg(uE,k+1) = ME(uT,k)uE,k + ∆t f k+1(j0) (13)

(MT + ∆TK)uT,k+1 = MTuT,k + ∆T f k+1(jeddy, uT) (14)
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3.4. Geometry and Mesh

Figure 6 shows the 2D finite element model of the magnetic bearing. This consists of
the rotor and stator (conductive domain) and the coils. Both are surrounded by air, which
is a further simplification compared to the real system depicted in Figure 9 in Section 5. To
model the heat loss across the stator boundaries into the housing, a heat transfer coefficient
α is introduced and calibrated on the test rig (cf. Section 5). The material behavior of the
rotor and stator is modeled by the nonlinear magnetization curves presented in Figure 3
and the temperature-dependent electrical conductivity of iron depicted in Figure 4. The
magnetization behavior of the coils is equivalent to air (µcopper = µ0).Version June 13, 2022 submitted to Actuators 7 of 17

coil (µ0)

air (µ0)

iron (µ(B), σ(T))

domains

interface (α)

6 cm420

Figure 6. 2D-model of an active magnetic bearing with finite element mesh

3.5. Force computation 143

The resultant of all magnetic forces on the rotor is computed by applying the principle 144

of virtual work which is realized as a finite difference. Therefore, the rotor domain and 145

its nodes are displaced by a small displacement ∆x and the change in co-energy W ′ is 146

observed by integration over the finite element domain Ω. The force is then obtained from: 147

F =
∆W ′

∆x
(16)

The co-energy is used to measure the amount of energy in the system, that can be 148

transformed into mechanical work. It can be computed by subtracting the magnetic energy 149

W from the energy Π. The relation between energy W and co-energy W ′ is visualized in 150

fig. 7. The sum of both is denoted as Π. 151

H1

B1

W

W ′

H

B

Figure 7. Magnetic Energy and Co-Energy for a non-linear material

W ′ = Π − W (17)

=
∫

Ω
H1 · B1 dΩ −

∫

Ω

∫ B1

0
H(B̃)dB̃ dΩ (18)

In eq. (18) H1 and B1 denote the terminal values, which are obtained from the magne- 152

todynamic solution via eq. (9). 153

Figure 6. Two-dimensional model of an active magnetic bearing with finite element mesh.

In order to accurately model the full electrodynamics in the conductive domain, the
mesh must fulfill certain requirements. Due to the skin effect, the element size (here defined
as the maximal edge length) in the boundary region should be smaller than half of the
skin-depth δ [12]:

h <
1
2

δ with δ =
1√

π f µσ
(15)

For a frequency f of 100 Hz, µr = 5000 and σ = 2× 106 S m−1 the element size on the
iron boundary has to be smaller than 0.25 mm. Furthermore, it is suggested to increase the
element size exponentially towards the inner of the iron parts. The fine spatial discretization
leads to a very high dimensional model with a large number of dof. The mesh used for
this work (Figure 6) provides an element size of approximately 0.25 mm to 25 mm from the
iron–air boundary to the outside air volume. Thus, as a rough estimation, the simulation
quality will not be appropriate for simulation frequencies above 100 Hz. On the other hand,
a more refined mesh makes it impossible to solve fully on simple desktop machines.

3.5. Force Computation

The resulting total magnetic force on the rotor is computed by applying the principle
of virtual work which is realized as a finite difference. Therefore, the rotor domain and
its nodes are displaced by a small displacement ∆x and the change in co-energy W ′ is
observed by integration over the finite element domain Ω. The force is then obtained from:

F =
∆W ′

∆x
(16)

The co-energy is used to measure the amount of energy in the system that can be
transformed into mechanical work. It can be computed by subtracting the magnetic energy
W from the energy Π. The relation between energy W and co-energy W ′ is visualized in
Figure 7. The sum of both is denoted as Π.
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Figure 7. Magnetic energy and co-energy for a nonlinear material.

W ′ = Π−W (17)

=
∫

Ω
H1 · B1 dΩ−

∫

Ω

∫ B1

0
H(B̃)dB̃ dΩ (18)

In Equation (18), H1 and B1 denote the terminal values which are obtained from the
magnetodynamic solution via Equation (9).

4. Model Order Reduction

Model order reduction can generally either be used to accelerate the development
process by generating faster simulations that can perform better in optimization algorithms
or during the operation phase of a product, where slim models are needed to perform
predictions on the health status of the machine. Such models enable the generation of virtual
sensor outputs as well as diagnosis and monitoring systems. In this work, a reduced-order
model should be derived for the latter.

Since the models for the magnetodynamics and the thermodynamics are uncoupled within
the time integration strategy proposed in Section 3.3, both models can be reduced independently.

4.1. Thermal Model

For the linear thermal model (scalar temperature field vector uT), a simple projection
to a subset of thermal modes is sufficient. The reduction basis is denoted by V T , whereas
the generalized temperature coordinates are written as qT .

uT = V TqT (19)

The thermic profile of the bearing can be mostly covered by the two thermal rigid body
modes with temperature equally distributed between the rotor and the stator, respectively.
As a positive side effect, a homogeneous temperature solution is enforced in the rotor and
stator, which was also an assumption in the derivation of the governing electrodynamic
equations (cf. Section 3.1). The Galerkin projection of Equation (12) onto V T yields a 2× 2
system for the thermodynamics:

Mr,T q̇T + Kr,TqT = V T
T f (jeddy, qT) (20)

4.2. Magnetodynamic Model

In comparison, the magnetodynamic model exhibits nonlinearity and hence a data-
based approach is used to construct a proper basis. It is computed by performing a proper
orthogonal decomposition (POD) on a set of full solution vectors (see [5] for details). Tests
showed that the magnetodynamics can be captured by only a few dominant pod-modes.
Truncating the basis leads to the reduction basis V E.

uE = V EqE (21)
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The projection of the full magnetodynamic model (Equation (11)) onto the reduction
basis V E yields:

Mr,Eq̇E + V T
E g(V EqE) = V T

E f (j0) (22)

Unexpectedly, the reduced model in Equation (20) does not lead to significant com-
putational acceleration, since the full nonlinear current vector has to be assembled by
evaluating the contribution of every single element of the FE mesh. Furthermore, the
current vector is subsequently projected onto the reduction basis, which may even lead to
higher computational costs than solving the full model [13].

4.3. ECSW-Method

Computational acceleration can be achieved by reducing the assembly process of the
nonlinear current vector such that the nonlinearity only has to be evaluated on a subset ε̃
of elements. These elements form the so-called reduced mesh. The idea is to preserve the
virtual work of the reduced currents by introducing weighting factors ζe for each element
of the reduced mesh [13]. The method is therefore called energy-conserving sampling and
weighting (ECSW). A detailed insight into the application of ECSW on magnetodynamic
systems can be found in [5]. Here, only a very short summary of the theory is given.

The elements and corresponding weights are found within a training process which
requires a couple of solutions of the full model. The nonlinear internal current vector g
is then approximated by only evaluating the nonlinearity of the elements of the reduced
mesh Equation (23). Therefore, the element selection occurs with the localization matrix
Le. The element results are then directly projected into the subspace spanned by V . The
same procedure is also applied to approximate the tangential stiffness matrix Equation (24),
which is used within the Newton–Iteration scheme to solve the nonlinear equations.

gr,ECSW = ∑
e∈ε̃

ζeV T LT
e ge(LeVq) (23)

Kr,ECSW = ∑
e∈ε̃

ζeV T LT
e Ke(LeVq)LeV (24)

In Figure 8, the result of one exemplary ECSW training process is shown. The colored
elements are the chosen elements with their weight encoded by color.
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4.4. Setup of the Reduced Model

As the ECSW method in combination with the POD projection is a data-driven method,
the first task is to find an appropriate training set. It would be beyond the scope of this
paper to describe all the prestudies and considerations of generating the reduced model. To
generate the snapshots for the PODs and for the internal forces used to train the ECSW (i.e.,
finding an appropriate reduced set of elements and the corresponding weights), a sinusoidal
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time history (called also trajectory here) for the imposed currents (load) is imposed and time
solutions are computed for the lower and upper extreme load amplitudes and frequencies
(shown in Table 1) expected during monitoring. To train the ECSW, 10 snapshots per period
are used. As the system is at rest in the beginning, the transient behavior is also captured
by the snapshots.

Table 1. Four simulation setups to find the basis and to train the ECSW element selection at a constant
temperature of T = 20 °C.

j/A/mm2 f /HZ ∆t/ms nSteps

1 10 10 10
1 100 1 10
4 10 10 10
4 100 1 10

The computations are performed on a mid-class desktop computer with general
characteristics and installed environments as listed in Table 2.

Table 2. Computer configuration with installed environments.

Processor Intel(R) Core(TM) i7-8850H @ 2.60 GHz

RAM 16 GB

OS macOS 12.4

Python 3.8.10

NGSolve 6.2201

From that training set, reduced models with three different levels of accuracy for
the approximation of the reduced internal currents (with ECSW) were tested. The three
models result in an increase in elements in the subset ε̃. The first result in terms of
computational effort is shown at this point in Table 3. The first section shows the duration
of the element selection process for the three different hyper-reduction levels (error in the
energy approximation expressed by τ).

The second section of the table shows the computational time for key steps of the time
integration simulation. The computational costs for one timestep is compared between
the full model and the reduced-order models (ECSW). Since the computational times vary
depending on the actual load step and system state, all times are averaged over the whole
trajectory of the training simulation. The step Residual lists the costs required to evaluate
the nonlinearity and to assemble the (reduced) internal current vector. A similar cost
reduction can be noticed in the computation of the tangential stiffness matrix (cf. Tangent
Matrix). Additionally, the computational time to solve the linear system (cf. Linear Solve)
within the Newton-iteration scheme is significantly reduced.

Table 3. Computational times of different simulation steps for the three reduced-order models
compared with the full training simulation.

Full ECSW

τ = 1 × 10−2 τ = 1 × 10−3 τ = 1 × 10−4

No. of Elements 27,466 60 139 273
Element Selection Time - 11 s 39 s 111 s

Residual 45 ms 6 ms 7 ms 7 ms
Tangent Matrix 95 ms 2 ms 3 ms 3 ms

Linear Solve 62 ms 0.1 ms 0.1 ms 0.1 ms

Total Simulation Time 150 s 38 s 39 s 40 s
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It should be noted that some overhead during the solution process cannot be avoided.
Thus, the real simulation of the reduced model does not completely scale with the number
of elements. In summary, the required computational resources can be strongly decreased
by the ECSW method while the allowed error on the internal energy during training
is small.

4.5. Validation of the Model

To prove the ability of the reduced models, different load cases are now applied to the
reduced models and the resulting force curve is compared against a full simulation with
the same parameters. The quantitative measure for the comparison is a relative error (RE)
for the force computed over all timesteps ti along the test load case as follows:

RE =

√
∑i(Fre f (ti)− F(ti))T(Fre f (ti)− F(ti))

√
∑i Fre f (ti)T Fre f (ti)

× 100 % (25)

Throughout this paper, the time signal of the load is chosen as a sine. On the one hand,
this is practicable for the test rig as well as for the simulation. On the other hand, it is very
close to the load case expected for active magnetic bearings in applications.

The resulting reduced models achieved by the ECSW method offer some very inter-
esting benefits in comparison to purely data-driven black box models. One point is that
the same reduced system can also be used for different positions of the rotor in the bearing
as the model still contains the geometric information. Furthermore, different timestep
sizes do not influence the model. In addition, since the model is still physics-based (the
data are only used to train the hyper-reduction of the forces, but the forces in the chosen
element are still obtained from a model), one can expect that the reduced model will be
able to extrapolate the behavior of the system better than purely data-driven models (e.g., a
neural network).

In Table 4, exemplary results for the relative error of the mechanical force on the rotor
are given for different parameters of a simple sine load case. The tested load cases are all
different from the training cases. A first conclusion is drawn from the pure POD projection:
the relative error is increasing with the frequency. The reason for it could in fact be that the
mesh resolution is actually excessively coarse for higher frequencies. Second, the hyper-
reduction does not introduce much new error to the model. In some cases, the error is even
reduced which is explained by the fact that, by coincidence in our example, the errors due
to the projection on a reduced space and the ones arising from the hyper-reduction are
partly compensated for.

Table 4. Relative errors, always referred to in the full simulation reference, of the force for different
parameters and excitations for each of the three hyper-reduction models.

Full POD ECSW

τ = 1 × 10−2 τ = 1 × 10−3 τ = 1 × 10−4

# dof 13,566 10 10 10 10
# els 27,466 27,466 60 139 273

10 100 400

1.0

2.5

5.0

2.31%

3.25%

2.72%

8.3%

7.59%

7.84%

21.22%

12.95%

22.38%

f /Hz

I c
/

A

10 100 400

2.33%

4.97%

3.46%

7.73%

8.77%

12.02%

19.41%

11.41%

24.03%

f /Hz
10 100 400

2.39%

3.24%

2.72%

8.04%

8.49%

7.92%

20.6%

13.48%

23.76%

f /Hz
10 100 400

2.35%

3.36%

2.71%

8.14%

8.6%

7.91%

21.05%

12.75%

24.72%

f /Hz
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4.6. Intermediate Conclusions

The ECSW method has great potential since there are only a few elements which
are necessary to accurately approximate the reduced forces. Further investigation needs
to be conducted to find good training snapshots which span a wide field of parameters.
Furthermore, the limitation of the mesh size needs to be improved. The optimization of the
code would reveal higher time savings which scale better with the number of elements.

5. Experimental Validation

In the previous sections, a reduced-order model for the magnetic bearing was derived.
In order to correctly predict the force exerted on the rotor, the parameters of the simulation
model must be calibrated. For this purpose, a specialized test rig for the active magnetic
bearing (AMB) is built.

5.1. Test Rig Overview

The test rig (Figure 9) carries the AMB mounted onto a 6-dof force measurement
platform and a rotor that is not rotating and fixed in the center of the AMB. In the scope
of this work, only the center position of the rotor is considered since it is the idle position
in operation mode. Additionally to the force sensor, two current sensing clamps and
temperature sensors are applied to measure the relevant quantities.
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Figure 9. Active magnetic bearing and the experimental setup with a 6-dof force measurement
platform and temperature sensors to calibrate the simulation in relation to measured forces and
temperatures.

5.2. Model Calibration Strategy

Since multiple simplifications are used in the simulation model (2D simulation, no
housing, isotropic materials), several parameters need to be calibrated using the real system.
One approach could be to use any optimization algorithm to find a set of parameters
optimal to an objective function. Unfortunately, this often leads to parameter sets that are
not meaningful in a physical sense.

For this work, the identification of parameters is done stepwise, ordered such that each
parameter is as isolated as possible. The investigated parameter is then fixed and the next
is considered. With this procedure, the process of the dependent parameter determination
is resolved to some extent, whereby only a suboptimal solution, but an interpretable one,
can be found.

5.3. Static Model Parameters
5.3.1. Heat Coefficients

In the case of natural convection, values for a general heat transfer coefficient for an
iron–air interface from 5 W m−2 K−1 to 25 W m−2 K−1 can be found in [14]. To perform an
experimental calibration of the heat transfer coefficient of both the rotor and the stator,
the magnetic bearing is heated up (using a sine trajectory with high current load) and the
temperature decay is measured on the test rig. Multiple thermal simulations with varying
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rotor and stator coefficients are performed to fit the simulation to the measurement. The
chosen pair is given in Figure 10 where the solid line indicates the simulation and the
diamond marks the measurements.
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Figure 10. Calibration of heat transfer coefficients using the measured temperature decays.

5.3.2. Permeability

The core of the magnetic bearing consists of laminated non-oriented electrical steel
sheets (M270-35A, 1.0801, t = 0.35 mm). The nonlinear permeability µ(B) of the used mate-
rial is assumed from datasheets (thyssenkrupp, M270-35A, DIN EN 10 106) approximated
by continuous functions (as shown in Figure 3) and is fixed without further investigations
for this work. The rotor is turned from low-carbon steel (S235JR, 1.0038).

5.3.3. Effective Thickness

To calculate meaningful force values from the 2D model, a thickness (=axial length)
parameter is needed. The real geometric thickness is therefore modified using a factor
(teff = κ · treal) that is determined using a static force simulation and corresponding mea-
surements. The effective thickness also incorporates all effects of fringing and the fact that
only approximately 95 % of the volume is filled with steel due to the stacking factor of the
sheet lamination. κ is chosen such that static force simulations (no eddy currents occur) fit
with the corresponding measurements. The measured force characteristic in Figure 11 was
chosen to be κ = 0.85, resulting in a maximum force deviation of 7 N.

−5 −2.5 0 2.5 5

−300

−150
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150

300

Current Ic/A
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rc

e
F/

N
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Sim κ = 0.85

Figure 11. Resulting static magneto-static force obtained by simulation with an effective thickness of
the bearing to compensate for leakage and fringing effects (comparison to measured forces).
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5.4. Dynamic Model Parameters

Fixing the thus far parameterized static simulation, the electrical conductivity for the
rotor and stator is calibrated in the dynamic regime. To do so, a long time integration
simulation is set up with the shown time integration strategy. The scheme was conducted
with two different large timesteps (∆Tj = 100 s and ∆Tj = 300 s) resulting in the same
graphs of the temperatures.

5.4.1. Heat Capacitance

In the used test rig, the rotor is much longer than the axial length of the bearing core.
Therefore, a virtual heat capacitance for the 2D simulation was assumed to be 10 times
higher than the datasheet parameter.

5.4.2. Electrical Conductivity

The most difficult parameter to calibrate is the electrical conductivity in the stator of the
AMB. The awaited eddy currents are in the out-of-plane direction of the 2D simulation. As
eddy current losses should naturally be avoided, iron cores in alternating field conditions
are laminated from sheets (here thickness 0.35 mm) and bonded with non-conductive glue.
The conductivity of a single sheet is approximately 2 MS m−1 to 5 MS m−1. For the stack
of sheets, a substitute model has to fulfill the requirement that the power loss as well as
the magnetic field outside the core equals the correct model. Due to the skin effect (cf.
Section 3.1), the relation between the sheet thickness and eddy current influence length
will vary with frequency. This inevitably leads to a frequency-dependent parameter [15].
The penetration depth of Equation (15) indicates the length after which the electromagnetic
field has decayed by a factor of 1

e ≈ 37 %. A short overview of the penetration depth for an
exemplary set of parameters is given in Table 5.

Table 5. Eddy current penetration depth for µ = 5000, σ = 5 MS m−1.

f δ( f )

10 Hz 1 mm
100 Hz 0.3 mm
1 kHz 0.1 mm

Low frequencies lead to higher depths but in principle have less power in eddy
currents. At high frequencies, the eddy currents are at the boundaries which in the extreme
case would lead to full conductivity as the skin depth is smaller or equal to the sheet
thickness. Introducing the lamination of cores into a nonlinear 2D simulation is still under
research, and a solution is shown in [16].

For this work, a bulk lamination model is used which treats the material as a contin-
uum and replaces the laminated core by a reduced constant conductivity in the direction
normal to the sheets [15]. Our simulation and model order reduction framework have
not supported frequency-dependent parameters to date. The extension to implement
frequency-dependent conductivity would go beyond the scope of this work which focuses
on the full round trip from the model to monitoring.

This parameterization needs very strong assumptions that are explainable in principle
but can only be quantified using a calibration test rig. The focus was set upon choosing
meaningful values by hand, so no optimization algorithm was involved. According to the
formula given in [15], the conductivity is roughly reduced by a factor of 100 in contrast to
the full material for the given geometry. Figure 12 shows the temperature development in
the stator and rotor of the AMB for an excitation of 400 Hz and Ic = 5 A.
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Figure 12. Temperature development in the magnetic bearing for an excitation of 400 Hz and Ic = 5 A.

5.5. Final Parameter Check

With that last parameter set, a final comparison of the measurement and simulation
is performed by the investigation of an accidentally discovered effect. Whilst plotting
one period (excitation f = 400 Hz) of the force on the rotor from time to time during a
long-term experiment, an interesting effect of temperature-dependent force was observed
(Figure 13) which could seem unintuitive at first glance. The force increases with the
increasing temperatures of the stator and the rotor.

Using the above-parameterized simulation, the effect shall be proven to not be a
test rig artifact. The peak-to-peak force is therefore plotted against the experiment time
Figure 14. Note that the temperature for the rotor and stator evolve differently during long
experiments (as seen in Figure 12). Due to the decreasing conductivity, less power loss is
generated by the induced eddy currents. This leads to a higher force on the rotor.
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Figure 13. Measured force values at f = 400 Hz plotted over one period at different time points
and temperatures.

The simulation yields the same qualitative behavior but the effect is significantly less
pronounced. This may be for several reasons. The most obvious one is the attempt to
represent a complex 3D environment using 2D simulation and appropriate factors. A
second factor for this experiment is the mesh grid that is actually excessively coarse to be
able to reliably represent frequencies up to 400 Hz and so the eddy currents in the skin will
be underestimated. Furthermore, to draw useful information from the test, the temperatures
were set to individually predefined values that spanned the typically maximum operation
temperatures of active magnetic bearings that seem harmless. The results are also given in
Figure 14.
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Figure 14. Increase of measured and simulated peak force values over different combinations of
temperatures in rotor and stator. The simulation can show the qualitative effect compared to the
measured values but less pronounced.

6. Summary and Conclusions
6.1. Summary

The presented work includes a full round trip of modeling, parameterization, model
order reduction, and a proposed use of the model for monitoring an active magnetic bearing.
Key to enabling long-duration coupled simulations was the use of two timestep sizes. The
magnetodynamic simulation was conducted only every nth thermodynamic step. Addi-
tionally, the hyper-reduction brought massive savings for the magnetodynamic simulation.
During the calibration with the experimental setup, the most severe limitation seemed to be
the restriction to a 2D model. However, globally, all effects of the measured forces could be
explained and rebuilt with the simulation. Although a well-trained black-box model could
eventually have led to a similar result, the shown white box approach shown herein brings
very detailed engineering insights and the modeling approach can be used to accurately
model different geometries without needing a full new calibration.

6.2. Conclusions

The shown hyper-reduction method has the potential to drastically reduce magne-
todynamic systems. To use such detailed models in future monitoring systems, good
parameterization is essential. It was found that this was the most challenging point in this
work. The experimental study showed basic agreement with the simulation. However,
there is always the question of the trust level of the different parameters. This leads to
the basic question of how detailed a full-order model has to be to represent all necessary
physical effects for the desired purpose. In our opinion, more research is needed to find
good and robust theoretical models to describe the relevant physical behavior of magne-
todynamic systems in terms of smart monitoring systems. The successive step of model
order reduction served well and is therefore useful after determining and parameterizing a
full-order model.
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