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Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods

have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific

community lacks appropriate benchmarks to assess the MRI reconstruction quality of

high-resolution brain images, and evaluate how these proposed algorithms will behave in

the presence of small, but expected data distribution shifts. The multi-coil MRI (MC-MRI)

reconstruction challenge provides a benchmark that aims at addressing these issues,

using a large dataset of high-resolution, three-dimensional, T1-weighted MRI scans. The

challenge has two primary goals: (1) to compare different MRI reconstruction models on

this dataset and (2) to assess the generalizability of these models to data acquired with a

different number of receiver coils. In this paper, we describe the challenge experimental

design and summarize the results of a set of baseline and state-of-the-art brain MRI

reconstruction models. We provide relevant comparative information on the current MRI

reconstruction state-of-the-art and highlight the challenges of obtaining generalizable

models that are required prior to broader clinical adoption. The MC-MRI benchmark data,

evaluation code, and current challenge leaderboard are publicly available. They provide
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an objective performance assessment for future developments in the field of brain

MRI reconstruction.

Keywords: machine learning, magnetic resonance imaging (MRI), benchmark, image reconstruction, inverse

problems, brain imaging

1. INTRODUCTION

Brain magnetic resonance imaging (MRI) is a commonly used
diagnostic imaging modality. It is a non-invasive technique
that provides images with excellent soft-tissue contrast. Brain
MRI produces a wealth of information, which often leads to
a definitive diagnosis of a number of neurological conditions,
such as cancer and stroke. Furthermore, it is broadly adopted
in neuroscience and other research domains. MRI data
acquisition occurs in the Fourier or spatial-frequency domain,
more commonly referred to as k-space. Image reconstruction
consists of transforming the acquired k-space raw data into
interpretable images. Traditionally, data is collected following
the Nyquist sampling theorem (Lustig et al., 2008), and for
a single-coil acquisition, a simple inverse Fourier Transform
operation is often sufficient to reconstruct an image. However,
the fundamental physics, practical engineering aspects, and
biological tissue response factors underlying the MRI data
acquisition process make fully sampled acquisitions inherently
slow. These limitations represent a crucial drawback when MRI
is compared to other medical imaging modalities, impact both
patient tolerance of the procedure and throughput, and more
broadly neuroimaging research.

Parallel imaging (PI) (Pruessmann et al., 1999; Griswold
et al., 2002; Deshmane et al., 2012) and compressed sensing
(CS) (Lustig et al., 2007; Liang et al., 2009) are two proven
approaches that are able to reconstruct high-fidelity images from
sub-Nyquist sampled acquisitions. PI techniques leverage the
spatial information available across multiple, spatially distinct,
receiver coils to allow the reconstruction of undersampled k-
space data. Techniques, such as generalized autocalibrating
partially parallel acquisition (GRAPPA) (Griswold et al., 2002),
which operates in the k-space domain, and sensitivity encoding
for fast MRI (SENSE) (Pruessmann et al., 1999), which works
in the image domain, are currently used clinically. CS methods
leverage image sparsity properties to improve reconstruction
quality from undersampled k-space data. Some CS techniques,
such as compressed SENSE (Liang et al., 2009), have also
seen clinical adoption. Those PI and CS methods that have
been approved for routine clinical use are generally restricted
to relatively conservative acceleration factors (e.g., R =

2× to 3× acceleration). Currently employed comprehensive
brain MRI scanning protocols, even those that use PI and
CS, typically require between 30 and 45 min per patient
procedure. Longer procedural times increase patient discomfort,
thus lessening the likelihood of patient acceptance. It also
increases susceptibility to both voluntary and involuntary
motion artifacts.

In 2016, the first deep-learning-based MRI reconstruction
models were presented (Sun et al., 2016; Wang et al., 2016).
The excellent initial results obtained by these models caught

the attention of the MR imaging community, and subsequently,
dozens of deep-learning-based MRI reconstruction models were
proposed (cf., Sun et al., 2016; Wang et al., 2016; Kwon et al.,
2017; Schlemper et al., 2017, 2018, 2019; Dedmari et al., 2018; Eo
et al., 2018a,b; Gözcü et al., 2018; Hammernik et al., 2018; Quan
et al., 2018; Seitzer et al., 2018; Yang et al., 2018; Zhang et al., 2018;
Zhu et al., 2018; Akçakaya et al., 2019; Mardani et al., 2019; Pawar
et al., 2019; Qin et al., 2019; Souza and Frayne, 2019; Zeng et al.,
2019; Hosseini et al., 2020; Sriram et al., 2020b; Zhou and Zhou,
2020). Many of these studies demonstrated superior quantitative
results from deep-learning-based methods compared to non-
deep-learning-based MRI reconstruction algorithms (Schlemper
et al., 2017; Hammernik et al., 2018; Knoll et al., 2020). These
new methods are also capable of accelerating MRI examinations
beyond traditional PI and CS methods. There is good evidence
that deep-learning-based MRI reconstruction methods can
accelerate MRI examinations by factors greater than 5 (Zbontar
et al., 2018; Souza et al., 2020a).

A significant drawback, that hinders the progress of the brain
MRI reconstruction field, is the lack of benchmark datasets.
Importantly, the lack of benchmarks makes the comparison
of different methods challenging. The fastMRI effort (Zbontar
et al., 2018) is an important initiative that provides large
volumes of raw MRI k-space data. The initial release of the
fastMRI dataset provided two-dimensional (2D)MR acquisitions
of the knee. A subsequent release added 2D brain MRI
data with 5 mm slice thickness, which was used for the
2020 fastMRI challenge (Muckley et al., 2021). The Calgary-
Campinas (Souza et al., 2018) initiative contains numerous sets
of brain imaging data. For the purposes of this benchmark, we
expanded the Calgary-Campinas initiative to include MRI raw
data from three-dimensional (3D), high-resolution acquisitions.
High-resolution images are crucial for many neuroimaging
applications. Also importantly, 3D acquisitions allow for
undersampling along two phase encoding dimensions, instead
of one for 2D imaging. This potentially allows for further MRI
acceleration. These k-space datasets correspond to either 12- or
32-channel data.

The goals of the multi-coil MRI (MC-MRI - https://www.
ccdataset.com/mr-reconstruction-challenge) reconstruction
challenge are to provide benchmarks that help improve the
quality of brain MRI reconstruction, facilitate comparison of
different reconstructionmodels, better understand the difficulties
related to clinical adoption of these models, and investigate the
upper limits of MR acceleration. The specific objectives of the
challenge are as follows:

1. Compare the performance of different brain MRI
reconstruction models on a large dataset, and

2. Assess the generalizability of these models to datasets acquired
with different coils.
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The results presented in this report correspond to benchmark
submissions received up to 20 November, 2021. Four baseline
solutions and three new benchmark solutions were presented
and discussed during an online session at the Medical Imaging
Deep Learning Conference held on 9 July, 2020.1 Two additional
benchmark solutions were submitted after the online session.
Collectively, these results provide a relevant performance
summary of some state of the artMRI reconstruction approaches,
including different model architectures, processing strategies,
and emerging metrics for training and assessing reconstruction
models. The MC-MRI reconstruction challenge is ongoing and
open to new benchmark submissions.2 A public code repository
with instructions on how to load the data, extract the benchmark
metrics, and baseline reconstruction models are available at
https://github.com/rmsouza01/MC-MRI-Rec.

2. MATERIALS AND METHODS

2.1. Calgary-Campinas Raw MRI Dataset
The data used in this challenge were acquired as part of the
Calgary Normative Study (McCreary et al., 2020), which is a
multi-year, longitudinal project that investigates normal human
brain aging by acquiring quantitative MRI data using a protocol
approved by our local research ethics board. Raw data from T1-
weighted volumetric imaging was acquired, anonymized, and
incorporated into the Calgary-Campinas (CC) dataset (Souza
et al., 2018). The publicly accessible dataset currently provides
k-space data from 167 3D, T1-weighted, gradient-recalled echo,
1 mm3 isotropic sagittal acquisitions collected on a clinical 3-
T MRI scanner (Discovery MR750; General Electric Healthcare,
Waukesha, WI). The brain scans are from presumed healthy
subjects (mean± standard-deviation age: 44.5±15.5 years; range:
20 years to 80 years; 71/167 (42.5%) male).

The datasets were acquired using either a 12-channel (117
scans, 70.0%) or 32-channel receiver coil (50 scans, 30.0%).
Acquisition parameters were TR/TE/TI = 6.3 ms / 2.6 ms / 650
ms (93 scans, 55.7%) or TR/TE/TI = 7.4 ms / 3.1 ms / 400 ms (74
scans, 44.3%), with 170 to 180 contiguous 1.0 mm slices and a
field of view of 256 mm × 218 mm. The acquisition matrix size
[Nx,Ny,Nz] for each channel was [256, 218, 170−180], where x, y,
and z denote readout, phase-encode, and slice-encode directions,
respectively. In the slice-encode (kz) direction, only 85% of the
k-space data were collected; the remainder (15% of 170–180) was
zero-filled. This partial acquisition technique is common practice
in MRI. The average scan duration is 341 s. Because k-space
undersampling only occurs in the phase-encode and slice-encode
directions, the 1D inverse Fourier Transform (iFT) along kx was
automatically performed by the scanner, and hybrid (x, ky, kz)
datasets were provided. This pre-processing effectively allows the
MRI reconstruction problem to be treated as a 2D problem (in
ky and kz). The partial Fourier reference data was reconstructed
by taking the 2D iFT along the ky − kz plane for each individual

1See video of session at https://www.ccdataset.com/mr-reconstruction-challenge/

mc-mrrec-2020-midl-recording.
2See current leaders for the individual challenge tracks at https://www.ccdataset.

com/.

channel and combining these using the conventional square-root
sum-of-squares algorithm (Larsson et al., 2003).

2.2. MC-MRI Reconstruction Challenge
Description
The MC-MRI Reconstruction Challenge was designed to be
an ongoing investigation that will be disseminated through
a combination of in-person sessions at meetings and virtual
sessions, supplemented by periodic online submissions and
updates. The benchmark is readily extensible and more data,
metrics, and research questions are expected to be added in
further updates. Individual research groups are permitted to
make multiple submissions. The processing of submissions is
semi-automated, and it takes on average 48 h to generate an
update of the benchmark leaderboard.

Currently, the MC-MRI reconstruction challenge is split into
two separate tracks. Teams can decide whether to submit a
solution to just one track or to both tracks. Each track has a
separate leaderboard. The tracks are:

• Track 01: Teams had access to 12-channel data to train and
validate their models. Models submitted are evaluated by only
using the 12-channel test data.

• Track 02: Teams had access to 12-channel data to train and
validate their models. Models submitted are evaluated for both
the 12-channel and 32-channel test data.

In both tracks, the goal is to assess the brain MR image
reconstruction quality and in particular note any loss of high-
frequency details, especially at the higher acceleration rates. By
having two separate tracks, we hoped to determine whether a
generic reconstruction model trained on data from one coil
would have decreased performance when applied to data from
another coil.

Two MRI acceleration factors were tested: R = 5 and
R = 10. These factors were chosen intentionally to exceed
the acceleration factors typically used clinically with PI and CS
methods. A Poisson disc distribution sampling scheme, where the
center of k-space was fully sampled within a circle of radius of
16 pixels to preserve the low-frequency phase information, was
used to achieve these acceleration factors. For brevity, we have
only reported the results for R = 5, but the online challenge
leaderboard contains the results for both acceleration factors.

The training, validation, and test split of the challenge data are
summarized in Table 1. The initial 50 and last 50 slices in each
participant’s image volume were removed because they have little
anatomy present. The fully sampled k-space data of the training
and validation sets were made public for teams to develop
their models. Pre-undersampled k-space data corresponding to
the test sets were provided for the teams for accelerations of
R = 5 and R = 10.

2.3. Quantitative Metrics
In order to measure the quality of the image reconstructions,
three commonly used, quantitative performance metrics were
selected: peak signal-to-noise ratio (pSNR), structural similarity
(SSIM) index (Zhou et al., 2004), and visual information fidelity
(VIF) (Sheikh and Bovik, 2006). The choice of performance
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TABLE 1 | Summary of the raw MRI k-space datasets used in the first edition of

the challenge.

Coil Category # of datasets # of slices

12-channel Train 47 12,032

Validation 20 5,120

Test 50 7, 800

32-channel Test 50 7, 800

Reported are the number of slices in the test sets after removal of the initial 50 and last

50 slices (see text).

metrics is challenging, and it is recognized that objective
measures, such as pSNR, SSIM, and VIF may not correlate well
with subjective human image quality assessments. Nonetheless,
these metrics provide a broad basis to assess model performance
in this challenge.

The pSNR is a metric commonly used for MRI reconstruction
assessment and consists of the log ratio between the maximum
value of the reference reconstruction and the root mean squared
error (RMSE):

pSNR(y, ŷ) = 20 log10

(

max(y)

RMSE

)

= 20 log10





max(y)
√

1
M

∑M
i=1[y(i)− ŷ(i)]2



 , (1)

where y is the reference image, ŷ is the reconstructed image,
and M is the number of pixels in the image. Higher pSNR
values represent higher-fidelity image reconstructions. However,
pSNR does not take into consideration the factors involved in
human vision. For this reason, increased pSNR can suggest that
reconstructions are of higher quality, when in fact they may not
be as well-perceived by the human visual system.

Unlike pSNR, SSIM andVIF aremetrics that attempt tomodel
aspects of the human visual system. SSIM considers biological
factors, such as luminance, contrast, and structural information.
SSIM is computed using:

SSIM(x, x̂) =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ 2
x + σ 2

x̂ + c2)
(2)

where x and x̂ represent corresponding image windows from
the reference image and the reconstructed image, respectively;
µx and σx represent the mean and standard-deviation inside
the image window, x; and µx̂ and σx̂ represent the mean and
standard-deviation inside the reconstructed image window, x̂.
The constants c1 and c2 are used to avoid numerical instability.
SSIM values for non-negative images are within [0, 1], where 1
represents two identical images.

The visual information fidelity metric is based on natural
scene statistics (Simoncelli and Olshausen, 2001; Geisler, 2008).
VIF models the natural scene statistics based on a Gaussian
scale mixture model in the wavelet domain, and additive white
Gaussian noise is used to model the human visual system. The
natural scene of the reference image is modeled into wavelet
components (C) and the human visual system is modeled by

adding zero-mean white Gaussian noise in the wavelet domain
(N), which results in the perceived reference image (E = C + N).
In the same way, the reconstructed image, which is called the
distorted image, is also modeled by a natural scene model (D)
and the human visual systemmodel (N’), leading to the perceived
distorted image (F = D + N’). The VIF is given by the ratio of the
mutual information of I(C, F) and I(C, E):

VIF =
I(C, F)

I(C,E)
, (3)

where I represents the mutual information.
Mason et al. (2019) investigated the VIF metric for assessing

MRI reconstruction quality. Their results indicated that it has
a stronger correlation with subjective radiologist opinion about
MRI quality than other metrics such as pSNR and SSIM. The VIF
Gaussian noise variance was set to 0.4 as recommended inMason
et al. (2019). All metrics were computed slice-by-slice in the test
set. The reference and reconstructed images were normalized by
dividing them by the maximum value of the reference image.

2.4. Visual Assessment
An expert observer (NN) with over 5 years of experience
analyzing brain MR images and manually segmenting complex
structures, such as the hippocampus and hypothalamus, visually
inspected 25 randomly selected volumes for the 12-channel test
set and other 25 volumes for the 32-channel test set for the best
two submissions as determined from the quantitative metrics.
The best two submissions were obtained by sorting the weighted
average ranking. The weighted average ranking was generated
by applying pre-determined weights to the ranking of the three
individual quantitative metrics (0.4 for VIF, 0.4 for SSIM, and 0.2
for pSNR). We chose to give higher weights to VIF and SSIM
because they have a better correlation with the human perception
of image quality.

The visual assessment of the images was done by comparing
the machine-learning-based reconstructions to the fully sampled
reference images. This allowed the observer to distinguish
between data acquisition related quality issues (e.g., motion)
and problems associated with image reconstruction. The image
quality assessment focused mostly on overall image quality and
how well-defined was the contrast between white-matter, gray-
matter, and other relevant brain structures. The goal of the visual
assessment was to compare the quality of the reconstructed MR
images against the fully sampled reference images and not to
compare the quality of the different submissions, because the
benchmark is ongoing and we wanted to account for potential
observer memory bias effects (Kalm and Norris, 2018) in the
qualitative metrics due to the difference between submission
dates of the different solutions to the benchmark (i.e., future
submissions will be visually assessed at different dates compared
to current submissions).

2.5. Models
Track 01 of the challenge included four baseline models,
selected from the literature. These models are the zero-filled
reconstruction, the U-Net model (Jin et al., 2017), the WW-
net model (Souza et al., 2020b), and the hybrid-cascade
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model (Souza et al., 2019). To date, Track 01 has received six
independent submissions from ResoNNance (Yiasemis et al.,
2022a) (two different models), The Enchanted (two different
models), TUMRI, and M-L UNICAMP teams.

The ResoNNance 1.0 model submission was a recurrent
inference machine (Lønning et al., 2019), ResoNNance 2.0 was
a recurrent variational network (Yiasemis et al., 2022b). The
Enchanted 1.0 model was inspired by Lee et al. (2018), where
they used magnitude and phase networks, followed by a VS-
net architecture (Duan et al., 2019). The Enchanted 2.0 (Jethi
et al., 2022) used an end-to-end variational network (Sriram
et al., 2020a), and it was the only submission that used self-
supervised learning (Chen et al., 2019) to initialize their model.
The pretext task to initialize their models was the prediction
of image rotations (Gidaris et al., 2018). TUMRI used a similar
model to the WW-net, but they implemented complex-valued
operations (Trabelsi et al., 2018). They used a linear combination
of VIF andMS-SSIM (Wang et al., 2003) as their loss function.M-
LUNICAMPused a hybridmodel with parallel network branches
operating in k-space and image domains. Links to the source
code for the different models are available in the benchmark
repository. Some of the Track 01 models were designed to work
with a specific number of coil channels, thus they were not
submitted to Track 02 of the challenge.

Track 02 of the challenge included two baseline models (zero-
filled reconstruction and the U-Net model). ResoNNance and
The Enchanted teams submitted two models each to Track
02. The models submitted by ResoNNance and The Enchanted
teams were the same models that were used for Track 01 of the
challenge. Table 2 summarizes the processing domains (image,
k-space, or dual/hybrid), the presence of elements, such as coil
sensitivity estimation, data consistency, and the loss function
used during training of the models. For more details about the
models, we refer the reader to the source publications or the code
repositories for the unpublished work.

3. RESULTS

3.1. Track 01
The quantitative results for Track 01 are summarized in Table 3.
There were in total 10 models (four baseline and six submitted)
in Track 01. The zero-filled and U-Net reconstructions had the
worst results. The M-L UNICAMP, Hybrid Cascade, WW-net,
and TUMRI models were next with similar results in terms of
SSIM and pSNR. Notably, the TUMRI submission achieved the
second-highest VIF metric. ResoNNance and The Enchanted
teams’ submissions achieved the highest overall scores on the
quantitative metrics. The ResoNNance 2.0 submission had the
best SSIM and pSNR metrics and the fourth-best VIF metric.
The Enchanted 1.0 submission obtained the best VIF metric.
The Enchanted 2.0 submission achieved the second-best SSIM
metric, and the third-best VIF and pSNR metrics. Representative
reconstructions resulting from the different models for R = 5 are
shown in Figure 1.

Twenty five images in the test set were visually assessed by
our expert observer for the two best submission (ResoNNance

TABLE 2 | Summary of the submissions including processing domain, presence

of coil sensitivity estimation (SE), presence of data consistency (DC), and basis of

the training loss functions.

Model Domain SE DC Loss

function

ResoNNance 2.0 Hybrid Yes Yes MAE and

SSIM

The Enchanted 2.0 Hybrid Yes Yes Cross entropy

(pretext) and

SSIM (main

task)

ResoNNance 1.0 Image Yes Yes MAE and

SSIM

The-Enchanted 1.0 Image Yes Yes MSE (first

step) and

SSIM (second

step)

TUMRI Hybrid No Yes MS-SSIM and

VIF

WW-Net* Hybrid No Yes MSE

Hybrid-cascade* Hybrid No Yes MSE

M-L UNICAMP Hybrid No Yes MSE

U-Net* Image No No MSE

Zero-filled* N/A No N/A N/A

* indicates a baseline model. Loss functions: Mean Absolute Error (MAE), Structural

Similarity (SSIM), Mean Squared Error (MSE), Multi-Scale SSIM (MS-SSIM), and Visual

Information Fidelity (VIF).

2.0 and The Enchanted 2.0). Out of the 50 images assessed by
the expert observer, only two (4.0%) were deemed to have minor
deviations, such as shape, intensity, and contrast between the
reconstructed images and the reference (cf., Figure 2A). Twenty
seven images (54.0%) were deemed to have a similar quality to
the fully sampled reference, and 21 (42.0%) were rated as having
similar quality when compared to the reference, but exhibited
filtering of the noise in the image (cf., Figure 2B).

3.2. Track 02
Two teams, ResoNNance and The Enchanted, submitted a total
of four models to Track 02 of the benchmark. Their results were
compared to two baseline techniques. The models submitted to
Track 02, except for the U-Net baseline, which has a higher input
dimension (i.e., the input dimensions depends on the number of
receiver coils), was the same as the models submitted for Track
01, so for the 12-channel test dataset, the results are the same as
in Track 01 (see Table 3).

The results for Track 02 using the 32-channel test set are
summarized in Table 4. For the 32-channel test dataset, The
Enchanted 2.0 submission obtained the best VIF and pSNR
metrics, and the second-best SSIM score. The ResoNNance 2.0
submission obtained the best SSIM metric, second-best pSNR,
and third-best VIF metrics. The ResoNNance 1.0 submission
obtained the third-best SSIM and pSNRmetrics, and second-best
VIF. The Enchanted 1.0 submission obtained the fourth-best
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FIGURE 1 | Representative reconstructions of the different models submitted to Track 01 (i.e., 12-channel) of the challenge for R = 5. Note that the reconstructions

from the top four methods, ResoNNance 1.0 and 2.0, and The Enchanted 1.0 and 2.0, try to match the noise pattern seen in the background of the reference image,

while ML-UNICAMP, Hybrid-cascade, WW-net, and TUMRI seem to have partially filtered this background noise.

SSIM and VIF, and fifth-best pSNR. The zero-filled and U-
Net reconstructions obtained the worse results. Representative
reconstructions resulting from the different models are depicted
in Figure 3.

Twenty five images in the test set were visually assessed by our

expert observer for the two best submissions (ResoNNance 2.0
and The Enchanted 2.0). Out of the 50 images assessed by the

expert observer, 14 (28.0%) were deemed to have deviations from

common anatomical borders. A total of 34 images (68.0%) were
deemed to have a similar quality to the fully sampled reference,

and only two images (4.0%) were rated as having similar quality

when compared to the reference, but exhibited filtering of the
noise in the image.

4. DISCUSSION

The first track of the challenge compared ten different
reconstruction models (Table 3). As expected, the zero-filled
reconstruction, which does not involve any training from the
data, universally had the poorest results. The second worst
technique was the U-Net model, which used as input the
channel-wise zero-filled reconstruction and tried to recover the
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FIGURE 2 | Quality assessment comparing the fully sampled reference and the reconstruction obtained by team ResoNNance 2.0. (A) The top row shows the border

of the left putamen, where the reconstructed image has a discrepancy in shape compared to the reference image (highlighted with red circles). The bottom row shows

that changes in the shape of the structure are also visible in the next slice of the same subject (highlighted with red arrows). It is important to emphasize that these

(Continued)
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FIGURE 2 | discrepancies are not restricted to the putamen, but a systematic evaluation of where these changes occur is out of scope for this work. (B) Illustration of

a case where the expert observed rated that the deep-learning-based reconstruction improved image quality. In this figure, we can see smoothening of cortical white

matter without loss of information as no changes appeared in the pattern of gyrification within cortical gray matter.

TABLE 3 | Summary of the Track 01 results for R = 5.

Model SSIM pSNR (dB) VIF

ResoNNance 2.0 0.941 ± 0.029 35.7 ± 1.8 0.957± 0.034

The Enchanted 2.0 0.937± 0.033 34.9± 2.4 0.973± 0.036

ResoNNance 1.0 0.936± 0.031 35.3± 1.8 0.960± 0.035

The-Enchanted 1.0 0.912± 0.034 30.3± 2.8 0.993 ± 0.176

TUMRI 0.868± 0.044 32.5± 1.7 0.989± 0.045

WW-net* 0.870± 0.043 32.5± 1.7 0.929± 0.049

Hybrid-cascade* 0.860± 0.044 32.7± 1.6 0.954± 0.042

M-L UNICAMP 0.868± 0.044 32.4± 1.7 0.918± 0.053

U-Net* 0.779± 0.039 26.8± 1.7 0.642± 0.068

Zero-filled* 0.726± 0.045 25.2± 1.5 0.518± 0.066

The best value for each metric and acceleration is emboldened. Mean ± standard

deviation are reported. * indicates a baseline model.

TABLE 4 | Summary of the Track 02 results for R = 5 using the 32-channel test

set.

Model SSIM pSNR (dB) VIF

ResoNNance 2.0 0.961 ± 0.027 38.3± 2.2 0.955± 0.036

The Enchanted 2.0 0.960± 0.037 38.34 ± 3.2 1.024 ± 0.034

ResoNNance 1.0 0.947± 0.033 37.7± 2.9 0.992± 0.030

The Enchanted 1.0 0.907± 0.046 30.1± 2.7 0.834± 0.236

U-Net* 0.832± 0.058 31.5± 2.6 0.804± 0.045

Zero-filled* 0.780± 0.041 26.4± 1.5 0.472± 0.064

The best value for each metric and acceleration is emboldened. Mean ± standard

deviation are reported. * indicates a baseline model.

high-fidelity image. The employed U-Net (Jin et al., 2017) model
did not include any data consistency steps. The remaining eight
models all include a data consistency step, which seems to be an
essential step for high-fidelity image reconstruction, as has been
previously highlighted in Schlemper et al. (2017) and Eo et al.
(2018a).

The M-L UNICAMP model explored parallel architectures
that operated both in the k-space and image domains. M-L
UNICAMP had the eighth-lowest pSNR and VIF metrics, and
the seventh-lowest SSIM score. In contrast, the top ranked
methods were either cascaded networks (Hybrid-cascade, WW-
net, TUMRI, The Enchanted 1.0 and 2.0) or recurrent methods
(ResoNNance 1.0 and 2.0).

The top four models in the benchmark were the ResoNNance
1.0 and 2.0 and The Enchanted 1.0 and 2.0 submissions.
These four models estimated coil sensitivities and combined the
coil channels, which made these models flexible and capable
of working with datasets acquired with an arbitrary number
of receiver coils. The top two models ResoNNance 2.0 and
Enchanted 2.0 are hybrid models. They are followed in rank

by ResoNNance 1.0 and Enchanted 1.0, which are image-
domain methods. The other better performing models (M-L
UNICAMP, Hybrid Cascade, WW-net, and TUMRI) used an
approach that receives all coil channels as input, making these
models tailored to a specific coil configuration (i.e., number
of channels). Though the methods that combined the channels
before reconstruction using coil sensitivity estimations similarly
to Sriram et al. (2020a), such as from ResoNNance and The
Enchanted teams, demonstrated the best results so far, it is still
unclear if this approach is superior tomodels that do not combine
the channels before reconstruction. A recent work (Sriram et al.,
2020b) indicated that the separate channel approach may be
advantageous compared to models that combine the k-space
channels before reconstruction.

All of the models submitted to the MC-MRI Reconstruction
Challenge had a relatively narrow input convolutional layer
(e.g., 64 filters), which may have resulted in the loss of relevant
information. In Sriram et al. (2020b), they used 15-channel
data and the first layer had 384 filters. Another advantage of
models that receive all channels as input is that they seem
more robust to artifacts that can occur in the reconstructed
images due to problems in coil sensitivity estimation. This
finding was observed in our visual assessment mostly in methods
that involved coil sensitivity estimation (ResoNNance and
The Enchanted—Figure 4). Similar artifacts were not observed
in images produced on models that do not require coil
sensitivity estimation.

In our study, we also noted variability in the ranking across
metrics (Table 3). For example, The Enchanted 1.0 submission
had the best VIF score, but only the fourth-best SSIM and
seventh-highest pSNR metrics. This variability reinforces the
importance of including many benchmarks that can summarize
the result of multiple submissions by using a consistent set
of multiple metrics. Studies that use a single image quality
metric, for example, are potentially problematic if the chosen
measure masks specific classes of performance issues. While
imperfect, the use of a composite score based on metric rankings
attempts to reduce this inherent variability by examiningmultiple
performance measures.

Visual inspection of the reconstructed MR images (cf.,
Figures 1, 3) indicates that with some models and for some
samples in the test set, the reconstructed background noise is
different from the background noise in the reference images.
This observation, particularly with the ResoNNance and The
Enchanted teams’ submissions, leads to questions on whether
the evaluated quantitative metrics are best suited to determine
the reconstruction quality. Given a noisy reference image, a
noise-free reconstruction will potentially achieve lower pSNR,
SSIM, and VIF than the same reconstruction with added
noise. This finding is contrary to human visual perception,
where noise impacts the image quality negatively and is, in
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FIGURE 3 | Representative reconstructions of the different models submitted to Track 02 of the challenge for R = 5 using the 32-channel coil.

Frontiers in Neuroscience | www.frontiersin.org 9 July 2022 | Volume 16 | Article 919186

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Beauferris et al. MRI Reconstruction Challenge

FIGURE 4 | Sample reconstruction illustrating artifacts (highlighted in red boxes) that seem to be present on images reconstructed by models that used coil sensitivity

estimation as part of their method.

general, undesired. During the expert visual assessment, 23 of 50
(46.0%) reconstructions were rated higher than the fully sampled
reference due to the fact that the brain anatomical borders in
these images were preserved, but the image noise was filtered out.

All trainable baseline models and the model submitted by
M-L UNICAMP used mean squared error (MSE) as their cost
function. The model submitted by TUMRI was trained using a
combination of multi-scale SSIM (MS-SSIM) (Wang et al., 2003)
and VIF as their cost function. The model The Enchanted 1.0
has two components in their cost function: (1) their model was
trained using MSE as the cost function with the target being
the coil-combined complex-valued fully sampled reference and
then (2) their Down-Up network (Yu et al., 2019) received as

input the absolute value of the reconstruction obtained in the
previous stage, and the reference was the square-root sum-of-
squares fully sampled reconstruction. The Down-Up network
was trained using SSIM as the loss function. The model The
Enchanted 2.0 is the only model that was pre-trained using a
self-supervised learning pretext task of predicting rotations. The
pretext task was trained using cross-entropy as the loss function.
The main task (i.e., reconstruction task) was trained using SSIM
as the loss function.

The ResoNNance 1.0 and 2.0 models used a combination
of SSIM and mean absolute error (MAE) as the training loss
function, which is a combination that has been shown to be
effective for image restoration (Zhao et al., 2016). Because
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FIGURE 5 | Three sample reconstructions, one per row, for the top two models. The Enchanted 2.0 and ResoNNance 2.0 and the reference are illustrated. The

arrows in the figure indicate regions of interest that indicate deviations between the deep-learning-based reconstructions and the fully sampled reference.
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the background in the images is quite substantial and SSIM
is a bounded metric that is computed across image patches,
this observation causes models trained using SSIM as part of
their loss function to try to match the background noise in
their reconstructions. This observation may offer a potential
explanation for why the models submitted by The Enchanted and
ResoNNance teams were able to preserve the noise pattern in
their reconstructions. Metrics that are based on visual perception
are important and evaluating the possibility of using these types
of metrics as part of the loss functions is an interesting research
avenue for the field of MRI reconstruction.

For R = 5, the top three models: ResoNNance 2.0,
The Enchanted 2.0, and ResoNNance 1.0 produced the most
visually pleasing reconstructions and also had the top performing
metrics. It is important to emphasize that R = 5 in the challenge
is relative to the 85% of k-space that was sampled in the slice-
encode (kz) direction. If we consider the equivalent full k-space,
the acceleration factor would be R = 5.9. Based on the Track 01
results, we would say that an acceleration between 5 and 6 might
be feasible to be incorporated into a clinical setting for a single-
sequence MR image reconstruction model. Further analysis of
the image reconstructions by a panel of radiologists is needed to
better assess clinical value before achieving a definite conclusion.

The second track of the challenge compared six different
reconstruction models (Tables 3, 4). The models, The Enchanted
2.0 and ResoNNance 2.0, achieved the best overall results. For
the 12-channel test set (Figure 1), the results were the same as
the results they obtained in Track 01 of the challenge since the
models were the same. More interesting are the results for the
32-channel test set. Though the metrics for the 32-channel test
set are higher than the 12-channel test set, by visually inspecting
the quality of the reconstructed images, it is clear that 32-
channel image reconstructions are of poorer quality compared
to 12-channel reconstructions (Figure 3). In total, 28% of the
32-channel images assessed by the expert observer were deemed
to have poorer quality when compared the reference against 4%
of the 12-channel images rated. This fact raises concerns about
the generalizability of the reconstruction models across different
coils. Potential approaches to mitigate this issue is to include
representative data collected with different coils in the training
and validation sets or employ domain adaptation techniques
(Kouw and Loog, 2019), such as data augmentation strategies,
that simulate data acquired under different coil configurations,
to make the models more generalizable.

Though the generalization of learned MR image
reconstruction models and their potential for transfer learning
has been previously assessed (Knoll et al., 2019), the results from
Track 02 of our challenge indicate that there is still room for
improvements. Interestingly, the model The Enchanted 2.0 is the
only model that employed self-supervised learning, which seems
to have had a positive impact on the model generalizability for
the 32-channel test data.

One important finding that we noticed during the visual
assessment of the images is that some of the reconstructed
images enhanced hypointensity regions within the brain white
matter, while in others images, these hypointensities were blurred
out of the image (cf., Figure 5). In many cases, it was unclear

from the fully sampled reference whether this hypointensity
region corresponded to noise in the image or if it indicated the
presence of relevant structures, such as lesions that appear as dark
spots in T1-weighted images. This finding is critical especially
when targeting diseases that often present small lesions. Further
investigation is necessary to determine its potential impact before
the clinical adoption of these reconstruction models.

5. SUMMARY

The MC-MRI reconstruction challenge provided an objective
benchmark for assessing brain MRI reconstruction and the
generalizability of models across datasets collected with different
coils using a high-resolution, 3D dataset of T1-weighted MR
images. Track 01 compared ten reconstruction models and Track
02 compared six reconstruction models. The results indicated
that although the quantitative metrics are higher for the test data
not seen during training (i.e., 32-channel data), visual inspection
indicated that these reconstructed images had poorer quality.
This conclusion that current models do not generalize well across
datasets collected using different coils indicates a promising
research field in the coming years that is very relevant for the
potential clinical adoption of deep-learning-based MR image
reconstruction models. The results also indicated the difficulty of
reconstructing finer details in the images, such as lacunes. The
MC-MRI reconstruction challenge continues and the organizers
of the benchmark will periodically incorporate more data, which
will potentially allow to train deeper models. As a long-term
benefit of this challenge, we expect that the adoption of these
deep-learning-based MRI reconstruction models in the clinical
and research environments will be streamlined.
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