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Abstract

The coronavirus disease (COVID-19) pandemic has changed our lives and still poses a

challenge to science. Numerous studies have contributed to a better understanding of the

pandemic. In particular, inhalation of aerosolised pathogens has been identified as essential

for transmission. This information is crucial to slow the spread, but the individual likelihood

of becoming infected in everyday situations remains uncertain. Mathematical models help

estimate such risks. In this study, we propose how to model airborne transmission of SARS-

CoV-2 at a local scale. In this regard, we combine microscopic crowd simulation with a new

model for disease transmission. Inspired by compartmental models, we describe virtual per-

sons as infectious or susceptible. Infectious persons exhale pathogens bound to persistent

aerosols, whereas susceptible ones absorb pathogens when moving through an aerosol

cloud left by the infectious person. The transmission depends on the pathogen load of the

aerosol cloud, which changes over time. We propose a ‘high risk’ benchmark scenario to

distinguish critical from non-critical situations. A parameter study of a queue shows that the

new model is suitable to evaluate the risk of exposure qualitatively and, thus, enables scien-

tists or decision-makers to better assess the spread of COVID-19 and similar diseases.

Introduction

The outbreak of the coronavirus disease (COVID-19) started at the end of 2019. Within

months, COVID-19 spread around the world and, ultimately, the World Health Organization

[1] characterised the situation as a pandemic on 11 March 2020. It has affected many aspects

of our daily lives. Therefore, scientists from various disciplines have attempted to answer

urgent questions about the coronavirus and how it spreads.

From virology, we know that COVID-19 is caused by the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). It is predominantly transmitted via respiratory fluids, making

aerosols a likely route of transmission [2, 3].

Modelling plays an important role in epidemiology. Computer simulations help better

understand the dynamics of a pandemic when ethical concerns prohibit experimental studies.

In the following, we discuss several approaches whose scope ranges from large to small

populations.
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In their compartmental Susceptible-Infected-Removed (SIR) model, Kermack and McKen-

drick [4] describe the course of an epidemic, more precisely, the number of susceptible (S),

infectious (I) and removed (R) individuals among a population, with ordinary differential

equations. This model was modified, e. g. by adding an exposed state (SEIR) to simulate the

latent period or by accounting for possible reinfection after temporal immunity (SIRS). The

deterministic approach approximates a stochastic process of contact networks and, thus, is

only valid for large populations. Kühn et al. [5] divide the population of Germany into its

counties and several age groups. For each of these groups, they apply an extended SIR model

and connect the groups by graphs to account for interactions. That is, this approach combines

SIR-like and network models.

Network models also allow to estimate the dynamics of a disease. Müller et al. [6] simulate

the spread in larger populations on the scale of regions or countries over several months. As

shown in [7], network models can also operate on a local level such as single facilities and

small populations for short periods up to two weeks. However, the network approach is rela-

tively abstract.

In contrast, agent-based models from the field of crowd simulation capture the spread of

diseases among smaller populations and allow to gain information about the transmission of

pathogens between individuals. Each agent represents a virtual person. It possesses individual

properties, such as a health condition. The transition from one state of health to another, e. g.

from susceptible to infected, depends on predefined rules. These rules are often based on

mutual distances. For example, virtual persons close to an infectious one become infected after

a certain time (see [8–12]). Ronchi and Lovreglio [13] expand the concept of proximity to fur-

ther contact types, e. g. physical contact, proximity within a certain radius and occupancy of

the same room or building. The overall time spent in contact determines the risk of exposure.

Duives et al. [14] carried out a preliminary study that, other than most agent-based

approaches, measures a virtual person’s cumulative exposure independent of the proximity to

an infectious person. Infectious persons shed viruses through aerosols, droplets and fomites,

whereas susceptible ones absorb virions depending on the contamination at their position.

The overall model takes several aspects of SARS-CoV-2 transmission into account, resulting in

a complex model with many parameters, some of which are difficult to quantify and cannot be

validated at this point. This reduces the predictive power of the model. A similar approach is

presented in [15]. This work introduces a new model for human locomotion and transmission

via aerosols, which dilute and spread over time. The overall probability of infection is defined

as the ratio between the virtual persons that inhale more than a certain threshold of aerosols

and the total number of persons that are present in the scenario at the same time as the infec-

tious case. A parameter study sheds light on the impact of two factors on the degree of expo-

sure: the occupancy level of the indoor environment and the ventilation rate. Repeated

simulations yield distributions for the model output, but an exhaustive study has not been per-

formed. Besides, this model does not capture the exposure when the infectious person leaves

the scenario. Apart from the contributions [14, 15], most virus spread models combined with

microscopic crowd simulation rely on the concepts of contact time and proximity. However,

infection is possible without obvious proximity. Aerosolised pathogens can remain at a posi-

tion where they were emitted after the infectious person has gone. Models that focus on prox-

imity barely capture airborne transmission.

Even if an infectious person does not move, airflow may spread the pathogens and cause

infections at distant places. Such transport mechanisms can be simulated with computational

fluid dynamics (CFD) models. For example, Vuorinen et al. [16] simulate how the aerosols of

a coughing person travel. Cortellessa et al. [17] assess the risk of exposure for short distances

between two stationary persons. We refer to the work of Liu et al. [18] for a broader overview
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of contributions from the fluid dynamics community related to airborne SARS-CoV-2 trans-

mission. They perform CFD simulations to investigate aerosol transport for a spreading event

that happened in a restaurant in Guangzhou, China, during the early phase of the COVID-19

pandemic. The CFD study takes into account complex effects, e. g. turbulence and thermal

effects. Despite the model’s high level of detail regarding fluid flow, several simplifications and

assumptions are inevitable. For instance, persons sitting around a table and other heat sources

are represented by hemispheres. Also, the ambient conditions are not exactly known. This lack

of knowledge necessitates repeated simulations with different parameter sets. Employing such

methods for a single, relatively simple problem is computationally expensive. This becomes

even more demanding if CFD and crowd simulations are coupled, prohibiting scenarios with

more than a few virtual persons. CFD simulations would require a large amount of informa-

tion to model each pedestrian’s respiratory system. This also introduces boundary conditions

that are constantly in motion. We are unaware of any CDF package that is able to deal with

this complexity. Apart from that, the degree of detail between these two models does not

match.

Another type of models assesses the infection risk for airborne transmission based on the

assumption that pathogen-carrying aerosols are well-mixed within the considered space.

Riley et al. [19] laid the foundation for this approach. Based on Wells [20] work, they formu-

lated the Wells-Riley equation, which describes the probability of infection for a steady-state

concentration of infectious particles. Infection risks can be studied at a local level, but prox-

imity is irrelevant. As a consequence, the effect of measures such as physical distancing can-

not be analysed in detail. This approach has been adopted extensively. Wells-Riley-like

models are applied, e. g. in [21, 22]. Salmenjoki et al. [15] simulate two scenarios with both

an agent-based model and the Wells-Riley formulation. They compare the results of both

approaches and find that the agent-based model yields higher infection risks than the Wells-

Riley model.

In summary, macroscopic compartmental models, agent-based models and CFD simula-

tions allow analysing the spread of diseases on different scales. Macroscopic models con-

sider the overall dynamics of an epidemic, whereas microscopic models focus on pathogen

transmission between individuals. Gaining knowledge about the transmission on a local

scale is of particular interest in the context of COVID-19. CFD simulations could be

employed for complex problems, but they are not always feasible due to a lack of resources,

for example, computational power. Small-scale proximity models neglect that pathogens

may persist in aerosols, even if their source is no longer close. We wish to help bridge this

gap and ask this question: How can we model airborne transmission of SARS-CoV-2

between individuals for everyday situations in which several individuals gather and possibly

move around?

This question involves various disciplines, which all have their own terminology. We

explain important terms in the Definitions section. To answer this research question, we intro-

duce the methodology and our microscopic crowd model in the Methods section. In section

Mathematical model, we formulate a mathematical model for pathogen transmission via aero-

sol clouds. We then computerise the model, couple it with crowd simulation and provide a

parameter set to match SARS-CoV-2 transmission in the Computerised model section. In sec-

tion Reference scenario, we propose a scenario to which an agent’s degree of exposure in any

other situation can be compared. Section Verification and validation shows that the model is

implemented correctly and that its results reflect empirical data. In the Application section, we

simulate a situation that is relevant for everyday life: transmission between pedestrians waiting

in a queue. Section Conclusion summarises and provides an outlook.
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Definitions

This work combines several fields of research, which may result in ambiguous terminology.

We use the following definitions to avoid misunderstandings:

• Aerosol: The term aerosol is of key importance to this study. Generally, it describes solid or

liquid particles of any size suspended in a gas [23]. In the context of this work, the particles

are aqueous respiratory droplets in air.

• Aerosol particles: Aerosol particles are often differentiated depending on their aerodynamic

diameter. Following this classification, particles above a given size are called droplets,

whereas particles with a smaller diameter are referred to as aerosol particles. Conventionally,

the threshold for this distinction is set to 5 μm. However, recent studies argue that 100 μm

would be a better choice since particles with a size of 100 μm can linger in the air for more

than 5 s and can be inhaled [24, 25]. In this contribution, we refer to aerosol particles as par-

ticles that remain airborne for several seconds to hours, and all larger particles that sediment

faster are called droplets.

• Airborne transmission: The distinction between aerosol particles and droplets is also used

in the context of transmission paths. It results in the definition of airborne transmission and

droplet transmission, respectively. Depending on how aerosol particles and droplets are dis-

tinguished, this terminology can be misleading and contradictory, as criticised e. g. in [16,

26, 27]. For the sake of rigidity, we use airborne transmission for transmission via pathogen-

laden aerosol particles that are carried by air.

• Pathogen: This study focuses on airborne transmission of SARS-CoV-2. We speak of (infec-

tious) pathogens in general since the underlying model could also be applied to other infec-

tious micro-organisms that are transmitted in a similar way as the coronavirus.

• Agent: In the pedestrian dynamics community, an agent is a virtual pedestrian, whereas

microbiologists refer to infectious agents in the sense of micro-organisms, such as a virus.

For clarification, we use (virtual) person and (infectious) particle or pathogen instead of the

ambiguous term agent.

• Physical distancing: During the COVID-19 pandemic, people were obliged to keep a pre-

scribed distance to others. This is called social or physical distancing. We prefer the term

physical distancing in the context of this work, since social distancing may also refer to other

aspects, e. g. reducing one’s social interactions.

Methods and materials

We adopt the classical modelling approach to build a new model for disease transmission.

That is, we translate real-world observations into a mathematical formulation. Then, we imple-

ment this model as an algorithm and generate a calibrated simulation programme. This creates

a virtual world in which we test various scenarios against empirical data. Verification and vali-

dation are essential steps to ensure that the software contains very few errors and that it yields

results consistent with empirical observations. We validate our model by re-enacting two

superspreading events.

The transmission model is integrated into Vadere [28], an established framework for

microscopic crowd simulation, which provides several locomotion models. In this contribu-

tion, we use the new sub-model for transmission in combination with the state-of-the-art

Optimal Steps Model [29, 30], but it is designed such that it is compatible with any locomotion

model. The Vadere source code for reproducing the numerical experiments is publicly
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available on GitLab (https://gitlab.lrz.de/vadere/vadere/, version b3be8e6a). The supporting

information S1 Dataset. contains the configuration and the simulation output of each numeri-

cal experiment. Scripts for the evaluation of the results are also included.

Mathematical model for transmission via inhalation

In this section, we model the transmission of SARS-CoV-2 among individuals via exhalation

and inhalation. We develop our model specifically for COVID-19, but it can be transferred to

other diseases that also spread through pathogens bound to aerosol particles, such as influenza

[31]. As a first step, we operationalise real-world observations and derive a mathematical

model.

The virtual persons’ state of health

Inspired by the compartmental SEI model, we define a virtual person’s health as susceptible

(S), exposed (E) and infectious (I). Susceptible persons represent healthy persons. They inhale

pathogens and accumulate them. The number of accumulated pathogens describes their

degree of exposure. Exposed persons retain the attributes of susceptible ones. Whether an

exposed person becomes infected or not can be estimated employing a dose-response relation-

ship. In contrast to the SEI model, the transition to the infectious state does not play a role in

our contribution since the time scale of our simulations ranges from minutes to a few hours,

which is significantly shorter than the latent period for SARS-CoV-2. Infectious persons emit

pathogens via aerosols. For simplicity, we do not distinguish between symptomatic and

asymptomatic cases.

Independent of the current infection status, each virtual person has a respiratory cycle of

equally long periods of inhalation and exhalation. Pauses in between are neglected. Hence, we

obtain the respiratory frequency f and the corresponding period T = f−1. During exhalation, an

infectious person emits pathogen bound to aerosol clouds. Susceptible persons inhale a frac-

tion of these pathogens if their current position is within the aerosol cloud.

Emission of pathogen

In the case of COVID-19, infectious persons emit pathogen mainly through aqueous droplets

expelled during breathing, but also, e. g. by speaking or coughing. These expiratory events vary

in intensity and, thus, in particle numbers and sizes [26], which in turn alters how the aerosol

particles spread through the air. Violent expiration causes also larger droplets, which follow a

ballistic trajectory, whereas normal breathing produces mainly smaller aerosol particles [26]

that remain in the air and form a cloud around the source. In either case, there is a suspension

of liquid particles in the air, which is often called aerosol. There is no clear line between small

and large particles [26]. In this contribution, we consider particles that stay airborne for at

least several seconds. At this point, we focus on normal breathing. However, the concepts we

present can be transferred to any kind of aerosol producing activity as long as the particles are

small enough to stay airborne.

We are aware that particle clouds can be very complex. Literature offers two directions to

address this problem: One assumes either a homogeneous distribution or an inhomogeneous

distribution of aerosol particles within the considered space. The homogeneous case is justified

for situations in which the air is well-mixed. These are typically indoors. Air mixing is often

driven by thermal effects, e. g. body heat causes raising air around a person, and convective

flow due to ventilation or movement. The Wells-Riley models are often based on this condi-

tion, whereas some extended versions of the Wells-Riley approach do not assume instan-

taneously well-mixed air. For instance, the model presented in [32] introduces a dilution ratio,
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which accounts for spatial and temporal differences of airborne contaminant concentrations

between the positions of infectious and susceptible individuals. A more detailed resolution of

the inhomogeneous case can in principle be obtained with CFD simulations. However, current

publications with CFD simulations, e. g. [16–18], rely on strong assumptions and simplifica-

tions since considering human locomotion is out of scope in these studies. There is at least

ground for doubt that the result of these simulations is more accurate than simpler approaches.

Also, we argue that modelling such detail would be unsuitable for the degree of abstraction of

the overall model. Besides, airflow is often turbulent, making its computation a major and still

unsolved problem. Hence, we decided to keep the model simple and propose a compromise

between the homogeneous and inhomogeneous assumption, similarly to Zhang and Lin’s

work [32]. We model the distribution of aerosol particles resulting from one exhalation as tem-

porally inhomogeneous and spatially homogeneous within a bounded area. The bounded area

can extend over time.

An infectious person creates an aerosol cloud containing pathogen particles with every

exhalation (Fig 1). Since pedestrian dynamics are typically modelled in two dimensions, we

represent each aerosol cloud by a circle in the horizontal layer. Kudryashova et al. [33] support

this hypothesis. They divide the spread of aerosols into two phases: primary scatter and forma-

tion of a spherical cloud around the source, followed by diffusive propagation of aerosol parti-

cles. The latter cannot be explained by mere molecular diffusion but also by micro airflow,

effectively resulting in greater diffusion coefficients. In our case, transport of aerosol particles

is actually dispersive, predominantly driven by convection and only little influenced by diffu-

sion. Molecular diffusion is negligible on our scale while information about convective airflow

Fig 1. Infectious aerosol cloud. An infectious person (red) emits aerosol clouds (orange). The dotted line represents the person’s trajectory from left to

right. It starts exhaling at p1 and stops at p2. The cloud with radius r coincides with the midpoint of line segment p1 to p2.

https://doi.org/10.1371/journal.pone.0273820.g001
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in our scenarios is unavailable. Therefore, we choose to focus on the simplest situation, with

stagnant air, as can be found to some degree in confined spaces without ventilation. Such

places are deemed particularly risky for SARS-CoV-2 transmission. Despite the lack of knowl-

edge, we aim to describe the propagation of aerosol clouds very generally. Kudryashova et al.

[33] conclude from experimental studies and mathematical modelling that aerosol particles

suspended in still air would cover the area within the distance of one to two metres after 5 to

20 min. Moreover, the concentration reached a uniform distribution in approximately 3 to 5

min. We simplify this and assume instantaneous, spherical, and homogeneous scattering of

aerosol particles. The sphere exhibits a volume of V ¼ 4

3
r3p. Of course, the two-dimensional

model visualises only a circle with radius r, which represents the horizontal layer at the height

of the virtual persons’ heads. The initial radius r is equal for all clouds. We let the cloud form

over the entire period of exhalation T, so the shape is centred between the position, where the

virtual person starts breathing out, p1, and the position, where it stops, p2. If the person walks

faster, more precisely with speed |v|> 2rT−1, the distance between p1 and p2 is greater than the

diameter of the circle. One could introduce more complex shapes to account for aerosol clouds

that are stretched. We abandon this option because the exact shape of a single cloud has little

influence on the simulation output as long as the pathogen concentration of this cloud does

not suffice to infect other virtual persons.

We try to account for local air movement caused by walking persons. Any virtual person i
who passes through a cloud with velocity vi disperses aerosol particles. To capture the disper-

sion, we enlarge the clouds’ radius by Δr(t) = Δt ∑i|vi(t)| at each time step t. Here, the factor Δt
ensures that the model is independent of the length of the simulation step Δt.

One can express the pathogen load of a cloud as homogeneous concentration Cp in particles

per cubic metre. The concentration accumulates where clouds overlap. The initial pathogen

load depends only on the infectiousness of the individual. It is therefore identical for all aerosol

clouds emitted by the same virtual person. The pathogens of an aerosol cloud are inactivated

after some time. In addition, aerosol particles evaporate, rise to higher air levels, or sediment.

We simplify these complex processes by assuming an exponential decay of the number of path-

ogens with a half-life Ta.

Absorption of pathogen

While in the vicinity of one or more aerosol clouds, susceptible and exposed virtual persons

breathe in pathogens. Each person absorbs the number of pathogen particles Np contained in

the tidal volume VT. The tidal volume is the volume inhaled and exhaled with each breath [34].

From this follows Np = CpVT (1 − Ep). Masks reduce Np by their effectiveness Ep. Cp is the sum

of the pathogen concentrations of all aerosol clouds at the virtual persons’ position. We neglect

that inhalation removes pathogens from the surroundings.

The number of pathogens accumulated by a virtual person describes its degree of exposure.

This degree of exposure can be translated into a probability of infection, typically through

dose-response curves. We refer the interested reader to Haas et al. [35] for more details on

quantitative microbial risk assessment. Brouwer et al. [36] identify important properties that

should be considered when developing biologically plausible dose-response models. A very

simple example is an exponential relationship. However, calibrating such models poses a chal-

lenge since, at present, important quantities such as the median infective dose of SARS-CoV-2

in humans is still uncertain. The infective dose probably depends on the individual, the variant

of the virus and the route of inoculation. Karimzadeh et al. [37] estimate that more than 102

viruses are required for infection. Popa et al. [38] analyse epidemiological clusters and infer

that, on average, more than 103 viral particles can successfully start an infection, but smaller
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quantities may suffice. Since there is no consensus on a dose-response model for SARS-CoV-2

and data for its calibration is scarce, we introduce the simplest model as a place holder: Persons

who inhale more pathogens than a certain threshold are considered ‘high risk’. It can be

exchanged when more consolidated knowledge becomes available.

Computerised model

Here, we combine the transmission model with the Optimal Steps Model [29, 30], a state-of-

the-art locomotion model for pedestrian dynamics implemented in the open-source frame-

work Vadere [28]. Vadere is well-established for crowd simulations, which is why we adhere to

its software architecture when we define important requirements for a new feature: The code

should be compatible with existing structures, modular so that the transmission model can

easily be enabled or disabled for different locomotion models and flexible to allow for adapta-

tions by other developers.

Embedding in Vadere

This section covers the embedding of the transmission model in Vadere. It gives insight into

the software structure and how developers can enhance the model or implement additional

features.

The transmission model is integrated into Vadere’s simulation loop, a while-loop that

updates all elements, mainly sources, targets and virtual persons’ positions, as long as the simu-

lation is running (Fig 2). The simulation loop calls the transmission model independently of

other models, keeping the programme modular and flexible. In particular, this allows combin-

ing transmission with any of Vadere’s locomotion model. Note that a user must select a loco-

motion model when running Vadere, whereas using the transmission model is optional.

Fig 3 visualises the structural embedding of the transmission model: The Transmis-
sionModel implements the interface Model, as the locomotion models in Vadere do. Sup-

plementary features or alternative models for disease transmission can be added on the same

level.

TransmissionModel’s attributes contain general model parameters. Developers can

adapt these attributes in the class AttributesTransmissionModel. We summarise the

most important parameters in section Model parameters.

The methods of the class TransmissionModel contain most of the model’s logic. In

essence, the method update(. . .) controls the emission of pathogen and updates aerosol

clouds and the virtual persons’ health status. Each time an infectious person stops exhaling, an

aerosol cloud is inserted into the topography, which can expand over time. Its pathogen load

decreases exponentially. Aerosol clouds at the end of their lifetime are removed. Furthermore,

the update method induces susceptible and exposed persons to absorb pathogens if they stand

within aerosol clouds. The routine also updates each person’s HealthStatus, which con-

tains absorbed pathogen load, respiratory cycle and infection status as its most important

attributes.

Aerosol clouds are embedded as ScenarioElement and, thus, fit into the existing struc-

ture. Typical scenario elements are sources, targets or obstacles. This approach allows individ-

ual access and manipulation throughout the simulation runtime and facilitates the graphical

representation of clouds.

Model parameters

In this section, we summarise all important model parameters. Users can adapt the values

directly in the input file. The parameters apply to all virtual persons and aerosol clouds within
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the same simulation. When a virtual person is spawned, the parameter values are assigned to

the person’s attributes.

The virtual person’s health and aerosol clouds are partly defined by attributes listed in

Table 1. The predefined values are explained in the next section. We are aware that, in reality,

some parameters related to the health status are time-dependent or differ from individual to

individual. However, we do not expect significant changes within the simulation time, which

is very short compared to the period of communicability. We capture the heterogeneity

among infectious persons, e. g. pathogen load or position, by running separate simulations for

adapted parameter sets.

Fig 2. Simulation loop. Models are updated as long as the simulation loop is running.

https://doi.org/10.1371/journal.pone.0273820.g002
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Calibration of a parameter set for SARS-CoV-2

The model presented here allows simulating any disease transmitted by aerosols. We select a

set of parameters to match the transmission of SARS-CoV-2 through aerosol clouds formed by

normal breathing. The parameters are physical in the sense that we can directly transfer them

from the real into the virtual world. Their values are summarised in Table 1 and explained in

the following.

An adult at rest breathes approximately 12 to 18 times per minute. We use an average of 15

breaths per minute, which implies a period of T = 4 s for each respiratory cycle. The exact val-

ues depend on factors such as the level of physical activity. However, slightly different breath-

ing rates affect the quantity of absorbed pathogens significantly less than other parameters.

The emission capacity in particular, which describes the number of emitted pathogens per

breath, may vary in orders of magnitude for SARS-CoV-2. Ma et al. [39] found that some peo-

ple exhale up to 4 � 105 viral particles per minute. Assuming 15 breaths per minute and that the

reported viral load refers to smaller respiratory particles, this means more than 104 aerosolised

viruses per exhalation. COVID-19 positive cases may emit significantly fewer pathogens, e. g.

Fig 3. Class TransmissionModel. The class TransmissionModel contains the model core. Similar to the locomotion model

OptimalStepsModel, it implements the interface Model.

https://doi.org/10.1371/journal.pone.0273820.g003

Table 1. Model parameters.

Parameter Symbol Value Unit

pedestrianRespiratoryCyclePeriod T 4 s

pedestrianPathogenEmissionCapacity N 4 10N particles

pedestrianPathogenAbsorptionRate R 5 � 10−4 m3

inhalation

aerosolCloudInitialArea A0 7.1 m2

aerosolCloudHalfLife Ta 600 s

Model parameters describing a virtual person’s health status and aerosol clouds. The values correspond to a highly infectious person that exhales SARS-CoV-2.

https://doi.org/10.1371/journal.pone.0273820.t001
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when viral replication is low for their variant [40] or because they are not at the peak of their

infectiousness. Since we are interested in observing infection spread, we simulate a highly

infectious person with 104 virions per exhalation. To our knowledge, this represents the upper

limit of a realistic range. Note that the related model parameter is logarithmised to base 10 in

Table 1.

We now turn our attention to the absorbing, susceptible persons. The absorption rate R can

be interpreted as the tidal volume VT in cubic metres. For an adult, it is approximately 0.5 litre,

that is 5 � 10-4 m3, per inhalation. If necessary, we can account for people wearing masks with

filter efficiency Em. Rate R would decrease accordingly: R = VT (1 − Em).

The aerosol clouds are characterised by the following parameters: the initial area and the

half-life. Inspired by [33], we assume an initial radius of r = 1.5 m for circular aerosol clouds

and, thus, an area of approximately A0 7.1 m2. Hence, we obtain a volume of V 9.4 m3 and an

initial pathogen concentration for each aerosol cloud of about 103 pathogen particles per cubic

metre.

We rely on reports from experience for the half-life of an aerosol cloud’s SARS-CoV-2 load.

The half-life of artificially generated aerosols was found to last from 30 min to several hours

[41, 42]. The exact value for the half-life Ta is not so important if the model output is inter-

preted qualitatively, as is the case in this contribution. However, it affects the dynamics of the

model. A shorter half-life closely links exposure to the current location of an infectious person.

On the other hand, a long half-life means that persons can become exposed even if the infec-

tious case has left the area long ago.

Reference scenario: Close contact

We gained parameter values on the transmission of SARS-CoV-2 from studies that have limi-

tations. Therefore, we propose to evaluate simulated scenarios in relation to a reference: our

benchmark scenario represents a so-called close contact, similarly to [14].

Governmental and institutional instructions regarding contact tracing during the COVID-

19 pandemic define close contacts as follows: A susceptible individual and a confirmed case of

COVID-19 occupy an enclosed space without adequate ventilation. They are in close proxim-

ity for a certain time so that the susceptible person inhales aerosolised SARS-CoV-2 particles.

The leading scientific institute in Germany in the context of the COVID-19 pandemic, Robert

Koch Institute [43], declares a distance of less than 1.5 m for more than 10 min as critical. The

Centers for Disease Control and Prevention, U.S. Department of Health and Human Services

[44], specifies 6 ft� 1.8 m for more than 15 min. We follow the former definition with the

parameter set from Table 1. Two virtual persons are placed less than 1.5 m apart (Fig 4). Both

remain stationary for 10 min.

The infectious person constantly emits aerosol clouds, thereby increasing the pathogen con-

centration (see Fig 5A). The susceptible one absorbs approximately 3.2 � 103 pathogen particles

within 10 min (see Fig 5B). In all further simulations, virtual persons who inhale a dose of

D� 3.2 � 103 pathogens are considered a close contact, which we interpret as high risk of

infection.

As soon as the infectious person leaves the scenario (t = 600 s), the pathogen concentration

decreases exponentially. If the susceptible person remains, they will keep inhaling pathogen

particles from the persistent aerosol clouds (see Fig 5).

Verification and validation

Generally, careful verification and validation are necessary parts of the modelling and software

development processes. We verify the transmission model by running unit tests. The test
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coverage of the core of our model reaches approximately 80%. Vadere’s continuous integration

pipeline contributes additionally to detecting errors in the code, as every commit is tested

automatically. The locomotion models have been verified with unit tests and validated with

standardised scenarios according to the Guideline for Microscopic Evacuation Analysis

(RiMEA) [28].

The validation of the transmission model, however, poses a challenge since empirical stud-

ies on local infection spread, in particular related to SARS-CoV-2, are scarce. Fortunately,

Fig 4. Close contact scenario. A highly infectious virtual person (red) emits pathogens bound to aerosols (orange) in an unventilated enclosed space. A

susceptible person (blue) absorbs pathogens.

https://doi.org/10.1371/journal.pone.0273820.g004
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some data on superspreading events are available and are sufficiently detailed to be compared

to simulations. Superspreading means that one or relatively few individuals infect numerous

people [45]. Since it also plays a significant role in the transmission dynamics of SARS-CoV-2

[46], it becomes the core of our validation.

Majra et al. [47] presented an overview of recorded events. Unfortunately, only a few situa-

tions can be simulated with our model, and even fewer are suitable for validation. Firstly, the

model is designed to capture the transmission via aerosol clouds mostly stagnant for at least

several minutes. Thus, strong flows should not dominate the air circulation at the event. Sec-

ondly, the event must not be too complex to be meaningfully represented in a simulation sce-

nario. For example, the unknown routes of hundreds of guests at a carnival party would have

to be guessed, making any comparison of data doubtful.

We find that the following events fit our purpose best: SARS-CoV-2 spread in a restaurant

with ten infected people [48] and during a choir rehearsal, where 52 of 61 attendees became

infected [2, 49]. Both events occurred and were investigated in the early phase of the pandemic

when science and society were still relatively unaware of SARS-CoV-2. Consequently, other

than the more recent events, measures such as physical distancing, air filtering or masks were

absent. These would introduce further complexity because they must be adequately modelled

and validated. We avoid this for the validation reported here. Effects of these measures can be

introduced into the model by adapting the values of parameters, e. g. pathogen particles

exhaled or half-life of the aerosol cloud. The reports provide information about the number of

secondary cases, that is infected persons but not about the individual number of absorbed viri-

ons. We solve this by assuming that all virtual persons who reach the same level of exposure as

the close contact in the reference scenario, that is 3.2 � 103 virus particles, are considered high

risk. We then compare the number of infected cases reported for the spreading event to the

number of high risk persons we observe in the simulation. In addition, we also compare to a

lower dose of 103 virions. The parameter settings for the simulation seeds and the locomotion

model for both validation cases are listed in the appendix (S1 and S2 Tables, respectively).

We start with the spreading event in a restaurant in January 2020: Ten persons, divided

into groups A, B and C, were sitting at adjacent tables. The infectious index patient belonged

Fig 5. Pathogen concentration and absorption in the close contact scenario. An infectious person emits aerosol clouds so that the pathogen

concentration builds up. The susceptible one absorbs approximately 3.2 � 103 pathogen particles within the critical period of 600 s (dotted lines). The

dashed lines represent an extension of the scenario: The infectious person leaves at t = 600 s, whereas the susceptible person remains and keeps

absorbing pathogen from the exponentially decaying aerosol clouds. A: Pathogen concentration of aerosol clouds adds up. B: Pathogen load absorbed

by the susceptible person.

https://doi.org/10.1371/journal.pone.0273820.g005
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to group A. Group A shared the restaurant with group B for 53 min and with group C for 73

min. All ten individuals were tested positive after the restaurant visit. It was determined that

the index case infected at least one member of groups B and C while in the restaurant. Further

transmission among each group in the following days is considered possible. The topography

is shown in Fig 6.

We consider our simulation as qualitatively valid if we observe infection spread below the

numbers in the study. We argue that the simulation ignores airflow between tables from the

restaurant’s ventilation as well as any transmission after the event. In the simulation, five per-

sons become exposed, and among them, three from group A, two from group B and none

from group C, that is, half the number of the true cases.

The choir rehearsal in March 2020 is significantly more complex: 1 of 61 attendees was

symptomatic. After the practice, 33 people, including the index patient, were tested positive.

Twenty further attendees are considered probable cases because they became ill but were not

tested. One person, initially classified as a probable case, tested negative after the onset of

symptoms. Thus, we use a minimum of 32 and a maximum of 52 secondary cases as reference

values to which we compare our simulation results.

Again, we expect fewer high risk persons in our simulation than in reality. In addition, we

do not have sufficient information about close interactions between the attendees during

arrival and departure to include them in the simulation. As a consequence, we ignore opportu-

nities for droplet transmission. Moreover, singing forcibly propels droplets, increasing patho-

gen spread.

The choir practice took place in a large room and, partly, in a smaller room. The attendees

changed their positions from time to time, which we model by allowing the virtual persons to

Fig 6. Restaurant scenario. Model of restaurant topography, including tables and seats, according to the seating chart in [48]. Susceptible (blue)

persons sit in groups A, B and C around the tables (grey). The infectious (red) person emits aerosol clouds (orange).

https://doi.org/10.1371/journal.pone.0273820.g006
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move from one intermediate target to another. The study did not provide a seating chart citing

privacy concerns. Thus, we imitate the seating arrangement from [2] qualitatively but must

make assumptions about the floor plan: Fig 7. The rooms cover an area of approximately 28

m × 12 m. Smaller intermediate targets (orange) mark possible seating positions during the

practice sessions.

Miller et al. [2] report the following schedule: During the first T1 = 45 min, all choir mem-

bers practised together in the large room L. Some seats between individuals were empty. A

45-min (T2) sectional rehearsal followed during which the attendees were divided into two

groups, one in room L, the other in room S. The index case remained in room L. After that,

there was a break of approximately T3 = 10 min. This allowed for mingling, and a few people,

including the index case, used the restroom. The positions during the break are not reported.

We assume that the choir members gathered in small groups distributed across room L. For

the last session of T4 = 50 min, everybody returned to their original positions in room L.

We simplify the schedule. Firstly, we choose practice sessions of equal length (T1 = T2 = T4

= 45 min), which makes the definition of intermediate target positions in the simulation easier.

Secondly, we ignore the fact that the attendees arranged chairs before and after the rehearsal,

arguing that the time for this appears short compared to the entire practice. While these two

aspects may be negligible, we acknowledge that the attendees’ exact positions in space and

time would be essential. They would reveal where high pathogen concentrations can occur

and where exposure is likely. Unfortunately, this information is not available and remains

uncertain.

We deal with this by applying Monte Carlo techniques: We evaluate the model M = 100

times, collect the simulation output and summarise it statistically. The simulations differ only

in the virtual persons’ paths. We achieve this by randomly mapping the intermediate targets to

the individuals for each simulation set-up. Fig 8 shows a histogram of the number of high risk

persons in the simulations.

We observe that the simulation results for both parameter choices are of the order of mag-

nitude that was reported for the real event, but with fewer high risk persons. This is what we

expected, and we argue that the simulation results support our model’s validity.

Fig 7. Topography of the choir practice scenario. A large (L) hall, a small (S) room and a restroom (R). Virtual persons are spawned by sources

(green), they approach an intermediate target, remain there for a given period and move to the next one (targets all orange). Small orange squares

represent chairs. Large, light orange squares define positions where virtual persons gather in small groups during the break.

https://doi.org/10.1371/journal.pone.0273820.g007
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Application to a queue scenario

In this section, we use the transmission model to evaluate exposure in a queue in front of a ser-

vice unit, e. g. a counter at a shopping centre, a cinema, an office or any other similar situation.

Numerical experiments

We simulate one highly infectious person among several susceptible pedestrians (see Fig 9). In

the green area, one source spawns nine susceptible persons, and a second source spawns a sin-

gle infectious person at the fifth position. Belt barriers guide the meandering queue to the

counter. After a fixed service time Ts = 120 s, each person immediately leaves the simulation.

The topography represents part of a building, covering an area of 5 m × 7 m. The parameter

settings for the simulation seeds and the locomotion model are listed in the supporting infor-

mation (S1 and S2 Tables), allowing third parties to repeat and check our computer

experiment.

Fig 9 shows the queue for several time steps. The colour, ranging from blue to violet, indi-

cates the number of pathogens accumulated in a virtual person. All aerosol clouds remain at

their initial positions because we assume no ventilation but only little air mixing caused by the

Fig 8. Virtual persons with degree of exposure D in the choir practice scenario. Number of persons for M = 100 simulations reaching a degree of

exposure of D� 3.2 � 103 (close contact) and D� 103 virions. The dotted line indicates the 32 confirmed secondary cases of the true spreading event.

https://doi.org/10.1371/journal.pone.0273820.g008
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pedestrians’ movement. As explained in detail in Mathematical model section, this assumption

simplifies real fluid mechanics. CFD simulations could better capture the physics for stationary

persons, unfortunately at high computational cost. In our simulation, high concentrations

occur where many clouds are superimposed.

This pathogen concentration visualisation aids us in identifying potentially risky situations.

The sixth, seventh and eighth positions in this queue, behind the infectious person, are critical,

as persons directly step into and remain in the recently contaminated area. The persons at

these positions absorb more than D = 3.2 � 103 pathogen particles, that is, they carry at least the

same infection risk as the close contact in the reference scenario. However, the seventh and

eighth positions are not a close contact position because the infectious person is not closer

than 1.5 m for more than 10 min. Can we reduce their degree of exposure by further increasing

the distancing in the queue?

The locomotion model allows to simulate different distancing behaviours. Modelling physi-

cal distancing with the optimal steps model was demonstrated for a bottleneck scenario in

[50]. However, we must adapt different parameters to obtain the right behaviour if we consider

a queue under distancing regulations: The parameter pedPotentialPersonalSpace-
Width, in the following denoted by p, allows to change the extent of an individual’s personal

space. We also have to modify the centre-to-centre distance of the corridors dc to let the virtual

persons keep mutual distances dp� 1 m. This represents, for instance, rummage tables that

were used in shopping malls during the COVID-19 pandemic to guide customers towards the

cash counter. Fig 10 shows the scenarios A–E with settings p = {0.5, 1.0, 1.5, 2.0, 2.5} and dc =

{1.0, 1.0, 1.5, 2.0, 2.5} metre. It should be noted that neither the potential parameter p nor the

corridor distance dc is equal to the actual distance between the persons dp. The actual distances

can be evaluated as follows. We define �dp for each time step as the mean of the centre-to-centre

distance between person i and i + 1, where i = 1, . . ., 9. The resulting time series and corre-

sponding time average (dotted lines) are shown in Fig 11 for scenarios A–E. This demonstrates

how one can account for physical distancing measures when simulating a queue.

An increase in the mean distance affects the individuals’ degree of exposure, as can be con-

cluded from Fig 12. Greater distancing between people �dp leads to less exposure. However,

even in scenario E, we observe an exposure of over 103 absorbed viruses, which could suffice

for infection, particularly if a more infectious variant of the virus emerges. The average

Fig 9. Queue scenario at different time steps. Susceptible persons (blue) are exposed to pathogens in aerosol clouds (orange circles) exhaled by an

infectious person (red). The opacity of aerosol clouds reflects their current pathogen concentrations. The individuals’ colour indicates their degree of

exposure.

https://doi.org/10.1371/journal.pone.0273820.g009
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Fig 10. Queue scenarios with varying distances between virtual persons at t = 100 s. The scenarios A–E exhibit different distancing behaviours. This

is achieved by increasing the potential parameter p and the centre-to-centre distance between the corridors dc. A: p = 0.5, dc = 1.0 m; B: p = 1.0, dc = 1.0

m; C: p = 1.5, dc = 1.5 m; D: p = 2.0, dc = 2.0 m; E: p = 2.5, dc = 2.0 m.

https://doi.org/10.1371/journal.pone.0273820.g010

Fig 11. Distances between persons in the queue scenarios A–E over time. The mean centre-to-centre distance between queueing persons �dp increases

with potential parameter p and corridor distance dc. We consider only the period t� 50 s, that is when all persons have queued up. The peaks indicate

time steps at which a person leaves the scenario and all others move up, leading temporarily to a greater mean distance. Dotted lines represent the time

average of each series.

https://doi.org/10.1371/journal.pone.0273820.g011
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exposure of all virtual persons for scenario E decreases to 25% of the average exposure for sce-

nario A.

Discussion

In an exhaustive parameter study, one could take into account the uncertainty of other param-

eters. For example, we expect that modelling face masks or considering a less infectious person

would reduce the shedding and intake of airborne pathogens, and thus the exposure, in the

order of magnitudes.

A complementary sensitivity analysis, e. g. with variance-based methods, could be used to

quantify the impact of input parameters and their interactions on the model output. We think

that the parameter space of the transmission model is small enough so that such methods can

be applied. However, the effort must not be underestimated since many parameters are likely

to be influential. We plan to conduct a comprehensive sensitivity analysis and forward propa-

gation, including the formal introduction of the mathematical theory, in a separate study

because it would exceed the scope of the present work.

Fig 12. Individual degree of exposure for the queue scenarios. The variation of the potential parameter p and corridor distance dc leads to a different

exposure of the susceptible persons (1–4, 6–10). For scenario A and B, the contact time between the person at the sixth position and the infectious

person, that is the period during which their mutual distance is less than 1.5 m, is greater than 10 min.

https://doi.org/10.1371/journal.pone.0273820.g012
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For now, our short parameter study of the queue scenario demonstrates the potential of

applying uncertainty quantification methods. It shows that, measures such as physical distanc-

ing can help to reduce transmission of SARS-CoV-2. In this case, the protective effect is rela-

tively low. It remains below one order of magnitude, even for scenario E in which the mutual

distances are about 2 m. The measure might be costly because physical distancing occupies

space, which is often limited in public areas. It is also difficult to adhere to because humans do

not always estimate distances correctly.

In the introduction, we argued that exposure models should include long-range or time-

dependent transmission because the airborne route is relevant for SARS-CoV-2. Our model

takes these effects into account. Another key strength of the present study is that we use an

established locomotion model that closely matches real pedestrian dynamics. The model can

easily be parametrised to capture behavioural patterns such as social distancing. The combina-

tion of locomotion and transmission models enables us to evaluate the exposure in a queue

with moving virtual persons. For such a scenario, other models that are based on proximity or

exposure time fail to capture long-range transmission. In contrast to Wells-Riley-like models,

we resolve the pathogen concentration spatially. Hence, we obtain an individual degree of

exposure for each virtual person in the queue. The spatial resolution allows to analyse the effect

of physical distancing on the individuals’ exposure. CFD simulations could reveal a more

detailed picture of how the aerosols spread around the queue. Therefore, we will keep track of

contributions from the CFD community that address not only the coupling of fluid dynamics

and epidemiological modelling but also pedestrian dynamics.

Our simulation supports the claim that queues, in stagnant air, pose a severe exposure risk.

However, how could this risk be reduced? We propose to evaluate measures by varying the

model parameters that reflect these measures. For example, a mask worn by the infectious per-

son would reduce the number of pathogens. In addition, physical distancing could be intro-

duced. Organisers could strive to avoid this type of queue, e. g. by handing out service

numbers, or they could install overhead ventilation.

Conclusion and outlook

We complemented microscopic crowd simulation with a new model for the transmission of

pathogens via small aerosol particles. The combined model was implemented in Vadere, an

open-source framework for simulating pedestrian dynamics. Infectious persons exhale patho-

gens bound to aerosol clouds, whereas susceptible individuals absorb pathogens. We calibrated

parameters to the transmission of SARS-CoV-2 and re-enacted two superspreading events for

which we obtained qualitatively plausible results.

We demonstrated how to evaluate the risk of exposure in a typical everyday situation using

our simulation model: We observed the number of pathogen particles absorbed by virtual per-

sons queueing up in an unventilated room. We compared the results to a reference value

obtained from a benchmark scenario, a close contact situation acknowledged as high risk in

the context of SARS-CoV-2 by official health authorities. As long as there is no consensus on a

dose-response model for SARS-CoV-2, we proposed interpreting virtual persons at high risk if

they inhale as many viruses as in the reference scenario. A parameter study showed that, in a

queue, several persons may reach a high-risk exposure although they are not close to the infec-

tious person.

As a next step, we plan to refine the temporal and spatial spread of aerosols in the model. In

addition, we propose to quantify uncertainties in the input parameters and in the quantities of

interest, using sensitivity analysis and forward propagation. Thus, we hope to foster trust in

the simulation results when we evaluate the effectiveness of measures or account for an
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evolving virus. Beyond that, we hope that our model will be adapted, when the need arises, by

other scientists to investigate future pandemics.

Supporting information

S1 Table. Simulation seeds. All (pseudo-)random numbers used in the simulations with

Vadere can be generated by using the listed seeds for the parameter fixedSeed.

(ZIP)

S2 Table. Parameters of the Optimal Steps Model. We adapted the parameters of Vadere for

the Optimal Steps Model to fit the virtual persons’ locomotion behaviour to the simulated situ-

ation.

(ZIP)

S1 Dataset. Simulation data. The data sets contain the parameters and configurations for the

simulation defined in the scenario file as well as the simulation outputs for all numerical exper-

iments presented in this contribution. In addition, the scripts for the evaluation of the results

are provided.

(ZIP)
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Validation: Simon Rahn.

Visualization: Simon Rahn.

Writing – original draft: Simon Rahn.

Writing – review & editing: Marion Gödel, Gerta Köster, Gesine Hofinger.
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