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Abstract: Multispectral optoacoustic tomography (MSOT) is a high-resolution functional imaging 

modality that can non-invasively access a broad range of pathophysiological phenomena. Real-time 

imaging would enable translation of MSOT into clinical imaging, visualize dynamic pathophysiological 

changes associated with disease progression, and enable in situ diagnoses. Model-based reconstruction 

affords state-of-the-art optoacoustic images but cannot be used for real-time imaging. On the other hand, 

deep learning enables fast reconstruction of optoacoustic images, but the lack of experimental ground 

truth training leads to reduced image quality for in vivo data. In this work, we achieve accurate 

optoacoustic image reconstruction for arbitrary (experimental) input data in 31 ms per image by 

expressing model-based reconstruction with a deep neural network. The proposed deep learning 

framework, termed DeepMB, generalizes to experimental test data through training on optoacoustic 

signals synthesized from real-world images and ground truth optoacoustic images generated by model-

based reconstruction. Based on qualitative and quantitative evaluation on a diverse dataset of in vivo 

images, we show that DeepMB reconstructs images approximately 1000 times faster than the iterative 

model-based reference method while affording near-identical image qualities. Accurate and real-time 

image reconstructions with DeepMB can enable full access to the high-resolution and multispectral 

contrast of handheld optoacoustic tomography, thus adoption into clinical routines. 

1. Introduction 

Multispectral optoacoustic tomography (MSOT) is an emerging functional imaging modality that 

uniquely enables non-invasive detection of optical contrast at high spatial resolution and centimeter-

scale penetration depth in living tissue1-7. Accessing the multispectral contrast of endogenous 

chromophores, MSOT can quantify a broad range of pathophysiological surrogate biomarkers such as 

tissue fibrosis, inflammation, vascularization, and oxygenation, and provide unmatched clinical 

information for multifarious diseases such as breast cancer2, 6, Duchenne muscular dystrophy8, or 

inflammatory bowel disease3. 

In order to fully translate and integrate MSOT into clinical imaging, real-time application is imperative9-

11. Handheld MSOT imaging requires — similar to ultrasound imaging — live image feedback at 

sufficiently high frame-rates (at least 24 fps for full-video rendering) to avoid hindering visio-tactile 

coordination, identify and localize relevant tissue structures using anatomical landmarks in their 

surroundings, and find the optimal transducer pose for the target region. Furthermore, real-time 

optoacoustic imaging is necessary to visualize dynamic pathophysiological changes associated with 

disease progression and enable in situ guidance and diagnosis during intra-operative and endoscopy 

imaging12, 13. In practice, real-time reconstruction of optoacoustic images (i.e., recovery of the initial 

pressure distribution in the imaged tissue) is generally conducted via the backprojection algorithm14. 

However, the backprojection formula is based on over-simplified modelling assumptions of the imaging 

process and cannot compensate for the ill-posedness of the underlying inverse problem arising from 

limited-angle acquisition, measurement noise, and finite transducer bandwidth. Consequently, 

backprojection images systematically suffer from low spatial resolution and contrast, as well as negative 



  
 

pixel values that invalidate a physical interpretation of the image as initial pressure distribution. In 

contrast, iterative model-based reconstruction15, 16 can provide accurate optoacoustic images with state-

of-the-art quality by incorporating a physical model of the imaging device into the reconstruction 

process, constraining the reconstructed image to be non-negative, and introducing regularization to 

mitigate the ill-posedness of the inversion problem. However, model-based reconstruction is 

computationally demanding because of the iterative and thus sequential nature of the algorithm, which 

is prohibitive for real-time imaging. Real-time model-based reconstruction has been demonstrated for a 

pre-clinical MSOT system by computing the reconstruction on a graphics processing unit (GPU)17. 

However, a similar acceleration is infeasible for state-of-the-art model-based reconstruction of data from 

modern clinical systems because these reconstructions are substantially more computationally 

demanding (larger images, more complex regularization functionals, inclusion of the total impulse 

response of the system in the model, necessity of a higher number of iterations until convergence15, 16). 

Therefore, the full imaging potential of MSOT is only available offline after considerable computational 

time and currently remains inaccessible for clinical applications that require live image feedback. 

Recently, deep neural networks have been successfully applied to various inverse problems in imaging, 

utilizing their ability to capture suitable inverse transforms in a data-driven way and efficiently apply 

these transforms to new data18-24. Real-time image reconstruction with deep learning has been achieved 

using deep loop unfolding and direct inference. Deep loop unfolding involves interpreting the iterations 

of a variational reconstruction algorithm as the layers of a convolutional neural network, and training 

the resulting network end-to-end in a supervised fashion25-29. This methodology has been shown to 

facilitate accurate and efficient image reconstruction for various medical imaging modalities such as 

magnetic resonance imaging, computed tomography, or intensity diffraction tomography. However, 

deep loop unfolding is unsuited for real-time optoacoustic image reconstruction because it requires 

repeated evaluations of the involved optoacoustic forward model (at least one forward and one adjoint 

model evaluation per data consistency block, see e.g. equation 11 in MoDL framework25), which is too 

computationally expensive to enable real-time processing (e.g., with the imaging setup from this paper, 

a single evaluation of the forward or adjoint model already takes more than 50 ms on a NVIDIA GeForce 

RTX3090 GPU). Conversely, deep-learning-based image reconstruction via direct inference can support 

real-time optoacoustic imaging because the approach does not require to evaluate the optoacoustic 

forward model during image reconstruction. Over the past few years, several direct inference methods 

have been introduced to either directly infer high-quality images from recorded signals30-36 or accelerate 

the minimization operation from iterative model-based reconstruction37. 

A key challenge in applying deep learning for optoacoustic image reconstruction is the generation of 

appropriate training data, i.e., input sinograms and corresponding optoacoustic initial pressure reference 

images. In general, network training must rely on synthetized data because ground truth information 

about the initial pressure distribution in biological tissue is not available experimentally. Data synthesis 

involves hand-crafting reference distributions of the initial pressure and simulating the corresponding 

input sinograms using a physical forward model of the imaging process. However, such synthesized 

sinograms and reference images only partially represent the true properties of experimental data, hence 

their use as input-target pairs for network training can lead to reductions in reconstruction accuracy for 

in vivo data. 

In this work, we show that learning a well-posed reconstruction operator facilitates accurate 

generalization from synthesized training data to experimental test data. We achieve real-time 

optoacoustic image reconstruction for arbitrary (experimental) input data by expressing model-based 

reconstruction with a deep neural network. The proposed deep learning framework, DeepMB, learns an 

accurate and universally applicable model-based optoacoustic reconstruction operator through training 

on optoacoustic signals synthesized from real-world images, while using as ground truth the 

optoacoustic images generated by model-based reconstruction of the corresponding signals. DeepMB 

affords image quality nearly-indistinguishable from state-of-the-art iterative model-based 

reconstructions at speeds enabling live imaging (32 fps, or 31 ms/image, versus 30-60 s/image for 

iterative model-based reconstruction). Furthermore, DeepMB is directly compatible with state-of-the-

art clinical MSOT scanners because it supports high throughput data acquisition (sampling rate: 

40 MHz; number of transducers: 256) and large image sizes (416×416 pixels). DeepMB also supports 

dynamic adjustments of the SoS parameter during imaging, which enables the reconstruction of in-focus 

images for arbitrary tissue types. We demonstrate the performance of DeepMB both quantitatively and 



  
 

qualitatively on a diverse dataset of in vivo images (4814 images, 6 participants, 25-29 scanned locations 

per participant).  

2. Results 

To validate the capability of DeepMB to reconstruct images in real-time and with adjustable SoS, the 

framework was applied to a modern handheld optoacoustic scanner (MSOT Acuity Echo, iThera 

Medical GmbH, Munich, Germany) with SoS values ranging from 1475 m/s to 1525 m/s in steps of 

5 m/s.  

DeepMB pipeline 

Fig. 1 illustrates the overall training and evaluation pipeline. DeepMB was trained, similarly to the 

AUTOMAP framework19, using input sinograms synthesized from general-feature images to facilitate 

the learning of an unbiased and universally applicable reconstruction operator. These sinograms were 

generated by employing a diverse collection of publicly available real-world images38 as initial pressure 

distributions and simulating thereof the signals recorded by the acoustic transducers with an accurate 

physical model of the considered scanner15 (Fig. 1a and section “Methods / Synthesis of sinograms for 

training and validation”). The SoS values for the forward simulations were drawn uniformly at random 

from the considered range for each image. Ground-truth images for the synthesized sinograms were 

computed via model-based reconstruction (Fig. 1c). Fig. 1d shows the deep neural network architecture 

of DeepMB, which inputs a sinogram (either synthetized or in vivo) and a SoS value and outputs the 

final reconstructed image. The underlying design is based on the U-Net architecture39 augmented with 

two extensions that promote the network to learn and express the effects of the different input SoS values 

onto the reconstructed images: (1) all signals were mapped from the input sinogram to the image domain 

with a linear delay operator based on the given input SoS value (no trainable weights), and (2) the input 

SoS value (one-hot encoded and concatenated as additional channels) was passed to the trainable 

convolutional layers of the network. A detailed description of the network training is given in the section 

“Methods / Network training”. After training, the applicability of DeepMB to clinical data was tested 

with a diverse dataset of in vivo sinograms acquired by scanning six participants at up to eight 

anatomical locations each (Fig. 1b). The corresponding ground-truth images of the acquired in vivo test 

sinograms were obtained analogously to the training data via model-based reconstruction. The inference 

time of DeepMB was 31 ms per sample on a modern GPU (NVIDIA GeForce RTX 3090). 

Qualitative evaluation 

DeepMB successfully reconstructed high-quality optoacoustic images. To qualitatively evaluate 

DeepMB, all DeepMB images from the in vivo dataset (Fig. 1b) were thoroughly compared to their 

corresponding model-based reference images (Fig. 1c). Fig. 2 shows four reconstructed images, 

corresponding to scans of the carotid artery, biceps, breast, and abdomen. DeepMB reconstructions (Fig. 

2a–d) are systematically nearly-indistinguishable from model-based references (Fig. 2e–h), with no 

noticeable failures, outliers, or artifacts for any of the participants, anatomies, probe orientations, SoS 

values, or laser wavelengths. The similarity between the DeepMB and model-based images is also 

confirmed by their negligible pixel-wise absolute differences (Fig. 2i–l). The zoomed region D in Fig. 

2j depicts one of the largest observed discrepancies between the DeepMB and model-based 

reconstructions, which manifests as minor blurring, showing that the DeepMB image is only marginally 

affected by these errors. In comparison, backprojection images (Fig. 2m–p) exhibit notable differences 

from reference model-based images and suffer from reduced spatial resolution and physically-

nonsensical negative initial pressure values. Finally, to facilitate relating the reconstructed optoacoustic 

images to the scanned anatomies, Fig. 2q–t depict sketches of the rough anatomical context for all scans, 

while Fig. 2u–x depict the interleaved-acquired ultrasound images overlayed with the temporally-

corresponding DeepMB reconstructions. Extended Data Figs. 1-2 complement the qualitative 

comparison from Figure 2: Extended Data Fig. 1 shows that the image quality of DeepMB is also 

superior to the backprojetion algorithm with negative values set to zero after the reconstruction, as well 

as to the delay-multiply-and-sum with coherence factor algorithm40, 41; and Extended Data Fig. 2 shows 

that DeepMB images are nearly-indistinguishable from model-based references in the case of both very 

high and very low data residual norms. 



  
 

Extended Data Videos 1-2 further illustrate the real-time optoacoustic imaging capabilities of DeepMB. 

Extended Data Video 1 shows a carotid artery continuously imaged in the transversal view at 800 nm, 

which demonstrates that DeepMB can be used to visualize motion at 25 Hz with state-of-the-art image 

quality. Extended Data Video 2 shows the optoacoustic image of a biceps in the transversal view at 

800 nm while the SoS is gradually adjusted via a series of DeepMB reconstructions, which illustrates 

the importance of on-the-fly SoS tuning for optimal image quality. 

Quantitative evaluation 

The ability of DeepMB to reconstruct images with equivalent fidelity to those afforded by model-based 

reconstruction was then confirmed by quantitative comparison. To quantify the image fidelity of 

DeepMB reconstructions, data residual norms were calculated for all in vivo test images (see section 

“Methods / Data residual norm” for the precise definition). The data residual norm measures the fidelity 

of a reconstructed image by computing the mismatch between the image and the corresponding recorded 

acoustic signals with regard to the accurate physical forward model of the used scanner, and is 

mathematically-proven minimal for model-based reconstruction42. Data residual norms were also 

calculated for all other reconstruction methods for comparison purposes. 

First, data residual norms were calculated with in-focus images (that is, reconstructed with optimal SoS 

values) to evaluate the fidelity of DeepMB images with the best possible quality (Fig. 3a). Data residual 

norms of DeepMB images (green, mean±std = 0.156±0.088) are almost as low as the data residual norms 

of model-based images (blue, mean±std = 0.139±0.095). The close agreement between data residual 

norms of DeepMB and model-based images confirms that both reconstruction approaches afford 

equivalent image qualities. In contrast, the data residual norms of backprojection images are markedly 

higher (gray, mean±std = 0.369±0.098), which reaffirms the shortcomings of backprojection to 

accurately model the imaging process, and explains the lower image quality observed in Fig. 2d,h,l,p. 

Table 1 summarizes the data residual norms of all reconstruction approaches evaluated in this paper. 

Extended Data Table 1 complements the quantitative comparison from Table 1 and confirms that the 

data residual norms of DeepMB images are almost as low as data residual norms of model-based images 

even when aggregated separately based on anatomical regions, participants, Fitzpatrick scale, body type, 

wavelength, and SoS values. 

Second, data residual norms were calculated for out-of-focus images (that is, reconstructed with sub-

optimal SoS values) to evaluate the fidelity of DeepMB images during imaging applications with a priori 

unknown SoS (Fig. 3b, also see Table 1). Data residual norms of DeepMB images remain close to those 

of model-based images for all considered levels of mismatch between the optimal and the employed 

SoS, thus confirming that DeepMB and model-based images are similarly trustworthy independent of 

the selected SoS. Note that the two rightmost distributions of data residual norms in Fig. 3b get narrower 

and include less extreme data residual norm values because they contain fewer data points. 

In addition to the quantitative evaluation with data residual norms, the deviation of DeepMB and 

backprojection images from reference model-based reconstructions were also quantified by computing 

the mean absolute error (MAE), the relative mean absolute error (MAErel), the mean squared error 

(MSE), the relative mean squared error (MSErel), and the structural similarity index (SSIM). The 

obtained metrics for the in vivo test scans are reported in Table 1 and confirm that DeepMB images are 

very similar to model-based images, whereas backprojection images notably differ from the model-

based references. 

Multispectral evaluation 

The previously described experiments validate, with in vivo scans from the range 700–980 nm, that the 

single-wavelength image quality of DeepMB is nearly-identical to model-based reconstruction and 

clearly superior to backprojection reconstruction. Additional experiments were then conducted to show 

that the multispectral image contrast of DeepMB is comparable to model-based reconstruction and 

superior to backprojection reconstruction. 

To evaluate the multispectral image quality of DeepMB, model-based, and backprojection 

reconstruction, all in-vivo scans from the test dataset were grouped into multispectral stacks of 29 

images (respectively one scan from the range 700–980 nm in steps of 10 nm) and linearly unmixed into 

oxyhemoglobin, deoxyhemoglobin, fat, and water components43. Fig. 4 visualizes the unmixed 



  
 

components from DeepMB, model-based, and backproejction images for a representative breast scan, 

showing in Fig. 4a-c the unmixed components for fat and water, in Fig. 4d-f the unmixed components 

for oxyhemoglobin and deoxyhemoglobin, in Fig. 4g the reference absorption spectra of the four 

chromophores used during unmixing, and in Fig. 4h a schematic sketch of the anatomical context for 

the depicted scan. The unmixed DeepMB images (Fig.4a,d) are systematically nearly-indistinguishable 

from the model-based references (Fig.4a,d). Conversely, the unmixed backprojection images (Fig. 4c,f) 

exhibit considerably lower multispectral contrast (see for example the magnifications A-C in Fig. 4c) 

and miss important image structures (see for example the fine vascularity in magnification B of Fig. 4f). 

Extended Data Figs. 3-5 visualize the unmixing results of three further in vivo scans and also display 

unmixed images from the delay-multiply-and-sum with coherence factor algorithm. Finally, the ability 

of DeepMB to obtain clearly superior multispectral images as backprojection and delay-multiply-and-

sum with coherence factor was confirmed quantitatively by computing the structural similarity index, 

mean squared error, and mean absolute error for all unmixed images against the reference unmixed 

model-based images (see Table 2).  

Comparison with alternative training strategies for DeepMB 

The evaluation experiments described so far thoroughly validate the ability of DeepMB to reconstruct 

high-quality images with adjustable SoS values from the range 1475–1525 m/s. Additionally, alternative 

training strategies were assessed to better understand the effects of different specific aspects of the 

DeepMB methodology on the obtained image quality. Quantitative results from all conducted 

experiments are also reported in Tables 1 and 2. 

Advantages of one-hot-encoded SoS values. Passing the one-hot-encoded input SoS value to the 

trainable layers of the network (as shown in Fig. 1d) slightly improves the image fidelity (i.e., the data 

residual norms) of DeepMB reconstructions. To evaluate the benefits of this strategy, two other models 

with alternative SoS encoding schemes were trained and assessed: the first without providing the SoS 

to the U-Net (referred to as DeepMBno-sos), and the second with the SoS encoded as a scalar value into 

one additional input channel for the U-Net (referred to as DeepMBscalar-sos). The SoS was in both models 

used to apply the delay operator before the trainable U-Net layers, analogously to the standard DeepMB 

model (see Fig. 1d). Not providing the SoS as input to the U-Net was found to be a marginally inferior 

alternative to the standard one-hot-based SoS encoding with respect to image fidelity: DeepMBno-sos 

inferred high-quality and artifact-free images with visually the same quality as the standard DeepMB 

model, however with in average slightly higher data residual norms (0.164 vs. 0.156). Further 

quantitative comparison of DeepMB and DeepMBno-sos reconstructions with image-based metrics did 

not identify a clearly superior approach, which corroborates that their overall visual appearance is very 

similar. Providing the SoS as scalar value to the U-Net was found to be a disadvantageous encoding 

scheme that impedes the ability of the neural network to learn an accurate reconstruction operator, 

because the overall brightness of images reconstructed with DeepMBscalar-sos was found to be associated 

with the input SoS values. More specifically, inferring DeepMBscalar-sos onto the same sinogram with 

different input SoS values obtained images of lower average intensities for higher input SoS values. 

These intensity differences were visually imperceptible with default colormaps but resulted in notably 

higher average data residual norms for the obtained images in comparison to DeepMBno-sos or the 

standard DeepMB model (0.169 vs. 0.164 or 0.156). 

Advantages of model-based reference images. Using model-based reference images as ground-truth 

references during training is essential to learn a generalizable model-based reconstruction operator. To 

compare the training strategy of DeepMB to the training methodology reported in previous deep-

learning-based reconstruction methods for which the learning reference was true initial pressure 

images30-35, another alternative model, referred to as DeepMBinitial-images, was trained using as ground-

truth references the true synthetic initial pressure images (left side of Fig. 1a) instead of model-based 

reconstructions (right side of Fig. 1c). The reconstruction operator learnt by DeepMBinitial-images was 

inferior in comparison to the standard DeepMB model: In vivo images reconstructed with DeepMBinitial-

images suffer from low resolution and contrast (see Extended Data Fig. 6) and have notably worse data 

residual norms (mean±std = 0.267±0.094) than the standard DeepMB model. 

Advantages of synthesized training data. Synthesized training data enables DeepMB to learn an 

accurate and general reconstruction operator. To contextualize the image quality of DeepMB with 



  
 

synthesized training data, alternative DeepMB models were trained on in vivo data instead of real-world 

images. These models, referred to as DeepMBin-vivo, inferred images with, in average, slightly better data 

residual norms than the standard DeepMB model (0.155 vs. 0.156). However, approximately 20% of all 

DeepMBin-vivo images contained visible artifacts, either at the left or right image borders, or in regions 

showing strong absorption at the skin surface. Extended Data Fig. 7 shows representative examples of 

such artifacts. No artifacts were observed with the standard DeepMB model (trained using synthesized 

data), even when reducing the size of the synthetic training set from 8000 to 3500 to match the reduced 

amount of available in vivo training data. 

3. Discussion 

We introduce a deep-learning-based reconstruction framework, termed DeepMB, to learn the iterative 

model-based reconstruction operator and infer images with nearly-identical quality as model-based 

reconstruction in 31 ms per image. We trained DeepMB on synthesized sinograms from real-world 

images instead of in vivo images because these synthesized sinograms afford a large training dataset 

with a versatile set of image features, allowing DeepMB to accurately reconstruct images with diverse 

features. Such general-feature training datasets reduce the risk of encountering out-of-distribution 

samples (test data with features that are not contained in the training dataset) when applying the trained 

model to in vivo scans. In contrast, training a model on in vivo scans systematically introduces the risk 

of overfitting to specific characteristics of the training samples and could potentially lead to decreased 

image quality for never-seen-before scans that may involve different anatomical views or disease states. 

We indeed observed that alternative DeepMBin-vivo models trained on in vivo data failed to adequately 

generalize to some in vivo test scans and introduced artifacts within the reconstructed images (see 

Extended Data Fig. 7). Furthermore, using synthesized data instead of in vivo data alleviates the training 

of new DeepMB models because it obviates the need for recruiting and scanning a cohort of participants. 

Instead, training data can be automatically generated and used to straightforwardly obtain specifically-

trained DeepMB models for new scanners or different reconstruction parameters. On the other hand, our 

quantitative evaluation with data residual norms and image-based metrics showed that the use of more 

domain-specific training data (in our case in vivo scans) facilitated in aggregate slightly better images 

than the standard DeepMB model (e.g., average data residual norms of 0.155 for DeepMBin-vivo vs. 0.156 

for DeepMB). Domain-specific training data can improve the reconstruction performance because it 

facilitates learning of a domain-specific data transform that exploits inherent characteristics and local 

spatial correlation of the considered data manifold19. Overall, the trade-off between domain-specific 

training data to improve accuracy and general training data to reduce the risk of out-of-distribution 

samples remains a fundamental challenge for real-world application of deep learning44, 45. Therefore, 

subsequent research may focus on strategies for balancing generality, accuracy, and practicality during 

model training, e.g. by employing hybrid training sets combining synthesized data from real-world 

images with in vivo optoacoustic images and synthesized data from other biomedical scenes, or by 

applying domain-adaptation techniques37, 46, 47. 

Accurate generalization from synthesized training to in vivo test data is possible with DeepMB because 

the underlying inverse problem to solve (that is, regularized model-based reconstruction42) is well-

posed; for each input sinogram there is a unique and stable solution (i.e., the reconstructed image). 

Therefore, the network can learn a data transform that is agnostic to specific characteristics of the 

ground-truth images during training and generalizes to images with any content (be it synthesized or 

in vivo)19. In contrast, the alternative model DeepMBinitial-images trained on true synthetic initial pressure 

images (left side in Fig. 1a) falls short to accurately generalize to experimental test data and ultimately 

results in decreased reconstruction image quality for in vivo data  because the underlying inverse 

problem is ill-posed. More specifically, true synthetic initial pressure images contain information not 

available in the input sinograms due to limited angle acquisition, measurement noise, and finite 

transducer bandwidth. To restore the missing information, DeepMBinitial-images must incorporate 

information from the training data manifold, which hinders the correct processing of test data not 

contained in the training data manifold.  

DeepMB supports dynamic adjustments of the SoS parameter during imaging to reconstruct high-

resolution and in-focus images for arbitrary tissue types. Information about the SoS in the imaged region 

is required during optoacoustic image reconstruction to compute the travel time of acoustic signals 



  
 

between the source chromophores and the transducers of the imaging system, and to account for the 

spatial impulse response of the imaging system.15, 16 In practice, the optimal SoS for a reconstruction is 

a priori unknown and needs to be manually tuned during imaging. Following previous efforts to 

automatically correct for SoS-related aberrations, especially in heterogeneous media48, future research 

may also aim at automatically inferring the optimal SoS from the optoacoustic input sinogram — either 

in a distinct antecedent step or directly within the deep-learning-based reconstruction. 

The presented methodology to accelerate iterative model-based reconstruction is also applicable to other 

optoacoustic reconstruction approaches. For instance, frequency-band model-based reconstruction49 or 

Bayesian optoacoustic reconstruction50, 51 can disentangle structures of different physical scales and 

quantifying reconstruction uncertainty, respectively, but their long reconstruction times currently hinder 

their use in real-time applications. The underlying methodology of DeepMB could also be exploited to 

accelerate parametrized (iterative) inversion approaches for other imaging modalities, such as 

ultrasound52, X-ray computed tomography18, 53, magnetic resonance imaging27-29, 54, computed 

tomography26, or, more generally, for any parametric partial differential equation25. We are currently 

working on embedding DeepMB into the hardware of a next-generation MSOT scanner, to use DeepMB 

for real-time imaging in clinical applications. 

4. Methods 

Handheld MSOT imaging system 

We evaluated DeepMB with a modern MSOT scanner (MSOT Acuity Echo, iThera Medical GmbH, 

Munich, Germany). The system is equipped with a multi-wavelength laser that illuminates tissues with 

short laser pulses (<10 ns) at a repetition rate of 25 Hz. The scanner features a custom-made ultrasound 

detector (IMASONIC SAS, Voray-sur-l'Ognon, France) with the following characteristics: Number of 

piezoelectric elements: 256; Concavity radius: 4 cm; Angular coverage: 125°; Central frequency: 

4 MHz. Parasitic noise generated by light-transducer interference is reduced via optical shielding of the 

matching layer, yielding an extended 153% frequency bandwidth. The raw channel data for each 

optoacoustic scan is recorded with a sampling frequency of 40 MHz during 50.75 µs, yielding a 

sinogram of size 2030×256 samples. Co-registered B-mode ultrasound images are also acquired and 

interleaved at approximately 6 Hz for live guidance and navigation. During imaging, optoacoustic 

backprojection images as well as B-mode ultrasound images are displayed in real time on the scanner 

monitor for guidance. 

Acquisition of in vivo test sinograms 

To collect in vivo data for DeepMB evaluation, we scanned six healthy volunteers. The involved 

participants were three females and three males, aged from 20 to 36 years (mean age: 28.3±5.7). Self-

assessed skin color according to the Fitzpatrick scale was type II (2 participants), type III (3 p.), and 

type IV (1 p.). Self-assessed body type was ectomorph (2 p.), mesomorph (3 p.), and endomorph (1 p.). 

We have complied with all relevant ethical regulations following the guidelines provided by Helmholtz 

Center Munich. All participants gave written informed consent upon recruitment. 

For each participant, we scanned between 25 and 29 different combinations of anatomical locations and 

probe orientations: biceps, thyroid, carotid, calf (each left/right and transversal/longitudinal), elbow, 

neck, colon (each left/right), and breast (each left/right and top/bottom, female participants only). For 

each combination of anatomical location and probe orientation, we conducted between one and four 

acquisitions. During each acquisition, we recorded sinograms for approximately 10 s at wavelengths 

cyclically iterating from 700 to 980 nm in steps of 10 nm. We then selected, per acquisition, the 29 

consecutively acquired sinograms for which we observed minimal motion in the interleaved ultrasound 

images, amounting to a total of 4814 in vivo test sinograms. 

Finally, we band-pass filtered all selected in vivo sinograms between 100 kHz and 12 MHz to remove 

frequency components beyond the transducer bandwidth and cropped the first 110 time samples to 

remove device-specific noise present at the beginning of the sinograms. 

Determination of the SoS values 



  
 

To evaluate DeepMB reconstructions under both in-focus and out-of-focus conditions, we manually 

tuned the SoS value of all in vivo test scans. We used a SoS step size of 5 m/s to enable SoS adjustments 

slightly below the system spatial resolution (approximatively 200 µm). We found that the range of 

optimal SoS values was 1475–1525 m/s for the in vivo dataset, and we therefore used the same range to 

define the supported input SoS values of the DeepMB network. 

For each scan, we manually selected the SoS value that resulted in the most well-focused reconstructed 

image. To speed up tuning, we selected the optimal SoS values based on approximate and high-

frequency-dominated reconstructions that we computed by applying the transpose model of the system 

to the recorded sinograms. Furthermore, we tuned the SoS only for scans at 800 nm and adopted the 

values for all scans at other wavelengths acquired at the time exploiting their spatial co-registration due 

to the absence of motion (see previous sections for details). 

Synthesis of sinograms for training and validation 

For network training and validation, optoacoustic sinograms were synthesized with an accurate physical 

forward model of imaging process that incorporates the total impulse response of the system15, 

parametrized by a SoS value drawn uniformly at random from the range 1475–1525 m/s with step size 

5 m/s. Real-world images serving as initial pressure distributions for the forward simulations were 

randomly selected from the publicly available PASCAL Visual Object Classes Challenge 2012 

(VOC2012) dataset38, converted to mono-channel grayscale, and resized to 416×416 pixels. After the 

application of the forward model, each synthesized sinogram was scaled by a factor drawn uniformly at 

random from the range 0–450 to better match the variance observed in in vivo sinograms. 

Image reconstruction 

To generate ground-truth optoacoustic images, we reconstructed all sinograms (synthetic as well as 

in vivo) via iterative-model-based. We used Shearlet L1 to tackle the ill-posedness of the inverse 

problem. Shearlet L1 regularization is a convex relaxation of Shearlet sparsity, which can reduce limited-

view artifacts in reconstructed images, because Shearlets provide a maximally-sparse approximation of 

a larger class of images (known as cartoon-like functions) with a mathematically-proven optimal 

encoding rate55. The optimal pressure field to find is characterized as 

𝑝0 ≔ arg min
p≥0

 ‖𝑀𝑆𝑜𝑆 𝑝 − 𝑠‖2
2 + 𝜆‖𝑆𝐻(𝑝)‖1,  

where 𝑝0 is the reconstructed image, 𝑀𝑆𝑜𝑆 is the forward model of the imaging process for the selected 

reconstruction SoS, s is the input sinogram, 𝜆 is the regularization parameter tuned via an L-curve, SH 

is the Shearlet transform, and ǁ∙ǁn is the n-norm. The minimization problem was solved via bound-

constrained sparse reconstruction by separable approximation56-58. All images were reconstructed with 

a size of 416×416 pixels and a field of view of 4.16×4.16 cm2. For comparison purposes, we also 

reconstructed all images using the backprojection formula59, 60 and the delay-multiply-and-sum with 

coherence factor algorithm40, 41. 

Network training 

The DeepMB network was implemented in Python and PyTorch. It was trained — either on synthetic 

or in vivo data — for 300 epochs using stochastic gradient descent with batch size=4, learning rate=0.01, 

momentum=0.99, and per epoch learning rate decay factor=0.99. The network loss was calculated as 

the mean square error between the output image and the reference image. The final model was selected 

based on the minimal loss on the validation dataset, and finally compiled into an ONNX model for 

speed-up.  

To facilitate training, all input sinograms were scaled by K=450-1 to ensure that their values never exceed 

the range [-1, 1]. The same scaling factor was also applied to all target images. Furthermore, the square 

root was applied to all target reference images used during training and validation to reduce the network 

output values and limit the influence of high intensity pixels during loss calculation. When applying the 

trained network on in vivo test data, inferred images were first squared then scaled by K-1, to revert the 

preprocessing operation. 

When training on synthetic data to build the standard DeepMB model, we used 8000 sinograms as train 

split and 2000 sinograms as validation split. The alternative scenario involving training on in vivo data 



  
 

to build the DeepMBin-vivo models was carried out as described hereafter: six different permutations were 

conducted, with a 4/1/1 participants division between the train, validation, and test splits, respectively, 

each participant being part of the validation and test splits once. 

The DeepMB network is based upon the U-Net architecture39 with a depth of 5 layers and a width of 64 

features. To gradually reduce the total number of data channels from 267 (that is, 256 transducer 

elements, and one-hot encoding of 11 possible SoS values) down to 64, three 2D convolutional layers 

with 208, 160, and 112 features, respectively, were added prior to the U-Net. All kernel and padding 

size were (3, 3) and (1, 1), respectively. Biases were accounted for, and the final activation was the 

absolute value function. 

Data residual norm 

To quantify the image fidelity of reconstructions from DeepMB, model-based, or backprojection, we 

evaluated the data residual norm R, defined as 

𝑅 ≔
‖𝑀𝑆𝑜𝑆  𝑝0−𝑠‖2

2

‖𝑠‖2
2 , 

where 𝑝0 is the reconstructed image, 𝑀𝑆𝑜𝑆 is the forward model from model-based reconstruction, s is 

the input sinogram, and ǁ∙ǁ2 is the 2-norm. Time sample values from the input sinogram that are outside 

the reach of the applied forward model are set to zero prior to computing the data residual norm to avoid 

distortions by signals originating from outside the field of view. We employed data residual norms as 

the primary evaluation metric for our experiments because it respects the underlying physics of the 

imaging process and is provably minimal for model-based reconstruction. To constrain the solutions 

space for all reconstruction methods in a similar way and enable a meaningful comparison between 

backprojection on one hand, versus non-negative model-based and DeepMB on the other hand, negative 

pixel values were set to zero prior to residual calculation for backprojection images. All images were 

individually scaled using the linear degree of freedom in reconstructed optoacoustic image so that their 

data residual norms are minimal. 

For the evaluation of in-focus images, data residual norms were calculated for the reconstructions with 

the optimal SoS values of all 4814 samples from the in vivo test set. For the evaluation of out-of-focus 

images, data residuals were calculated for the reconstructions with all 11 SoS values of a subset of 638 

randomly selected in vivo samples. 

 

Unmixing 

To evaluate the multispectral image quality of DeepMB, model-based, and backprojection, all 

reconstructed in-vivo scans from the test dataset were grouped into multispectral stacks of 29 images 

(respectively one scan from the range 700–980 nm in steps of 10 nm) and unmixed into oxyhemoglobin, 

deoxyhemoglobin, fat, and water components: 

𝑊̂ ≔ arg min
𝑊≥0

‖S − 𝑊H‖F
2, 

where S (size 173056×29) denotes all pixels of a multispectral stack, H (size 4×29) denotes the reference 

absorption spectra of water, fat, oxyhemoglobin, and deoxyhemoglobin in the wavelength range 700–

980 nm, and 𝑊̂ (size 173056×4) denotes the unmixed components for the four considered 

chromophores. ‖M‖𝐹 ≔ (∑ 𝑚𝑖,𝑗
2

𝑖,𝑗 )
0.5

denotes the Frobenius norm and M ≥ 0 refers to entry wise 

inequality. All negative pixel values in the backprojection images were set to zero prior to unmixing.  

 

Image-based evaluation metrics 

Additionally, we quantified the deviation of standard DeepMB, all alternative DeepMB, and 

backprojection images from reference model-based reconstructions by computing the mean absolute 

error (MAE), the relative mean absolute error (MAErel), the mean squared error (MSE), the relative 

mean squared error (MSErel), and the structural similarity index (SSIM), defined as  

𝑀𝐴𝐸 ≔ ‖𝑖𝑟𝑒𝑐 − 𝑖𝑚𝑏‖1, 



  
 

𝑀𝐴𝐸𝑟𝑒𝑙 ≔
‖𝑖𝑟𝑒𝑐−𝑖𝑚𝑏‖1

‖𝑖𝑚𝑏‖1
, 

𝑀𝑆𝐸 ≔ ‖𝑖𝑟𝑒𝑐 − 𝑖𝑚𝑏‖2
2, 

𝑀𝑆𝐸𝑟𝑒𝑙 ≔
‖𝑖𝑟𝑒𝑐−𝑖𝑚𝑏‖2

2

‖𝑖𝑚𝑏‖2
2 , 

𝑆𝑆𝐼𝑀 ≔
(2𝜇𝑟𝑒𝑐𝜇𝑚𝑏+𝑐1)(2𝜎𝑟𝑒𝑐,𝑚𝑏+𝑐2)

(𝜇𝑟𝑒𝑐
2 +𝜇𝑚𝑏

2 +𝑐1)(𝜎𝑟𝑒𝑐
2 +𝜎𝑚𝑏

2 +𝑐2)
, 

where 𝑖𝑟𝑒𝑐 (size 173056×1) is the vectorization of a reconstructed image from either standard DeepMB, 

any alternative DeepMB, or backprojection, and 𝑖𝑚𝑏 (size 173056×1) is the vectorization of the 

corresponding reference image from model-based reconstruction. SSIM is calculated as the average over 

sliding windows of size 21×21 pixels, where 𝜇𝑟𝑒𝑐 and 𝜇𝑚𝑏 are the averages of 𝑖𝑟𝑒𝑐 and 𝑖𝑚𝑏, 𝜎𝑟𝑒𝑐
2  and 

𝜎𝑚𝑏
2  are the variances of 𝑖𝑟𝑒𝑐 and 𝑖𝑚𝑏, 𝜎𝑟𝑒𝑐,𝑚𝑏 is the covariance of 𝑖𝑟𝑒𝑐 and 𝑖𝑚𝑏, and 𝑐1 =

(0.01 max(𝑖𝑚𝑏))2 and 𝑐2 = (0.03 max(𝑖𝑚𝑏))2 are two empirical variables to stabilize the division with 

weak denominators. All backprojection images were additionally preprocessed to enable a meaningful 

comparison with the model-based reference images: Negative pixels were set to zero and all images 

were individually scaled using the linear degree of freedom in reconstructed optoacoustic images so that 

the respectively calculated metric is minimal. 

Image-based metrics were computed analogously to the data residual norms using all 4814 in vivo test 

samples (each reconstructed with the optimal SoS value) for the in-focus case and a subset of 638 in 

vivo test samples (each reconstructed with all 11 available SoS values) for the out-of-focus case. 

Data Availability. In vivo data from two of the six scanned volunteers, the trained DeepMB model used 

in this work, and a download link for Pascal VOC 2012 dataset38 used to synthesize training data for 

DeepMB are provided along with the source code on Github (https://github.com/juestellab/deepmb)61. 

In vivo data from the other four scanned volunteers cannot be shared due to privacy and consent 

restrictions.  

Code Availability. The source code for DeepMB is publicly available on GitHub 

(https://github.com/juestellab/deepmb)61. 
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5. Tables 

 

Our method 
Reference 

method 
Traditional methods Alternative DeepMB training strategies 

DeepMB MB BP DMAS-CF DeepMBno-sos 
DeepMBscalar-

sos* 

DeepMBinitial-

images** 

DeepMBin-

vivo*** 

In
-

fo
cu

s 

im
ag

es
 

R (↓) 
0.156 

[0.092, 0.189] 

0.139 

[0.068, 0.180] 

0.369 

[0.294, 

0.428] 

0.982 

[0.972, 

0.996] 

0.164 

[0.106, 0.193] 

0.169 

[0.113, 0.197] 

0.267 

[0.196, 0.324] 

0.155 

[0.088, 0.193] 



  
 

MAE 

(↓) 

0.74 

[0.43, 0.75] 
n/a 

3.98 

[2.60, 4.50] 

4.58 

[2.80, 5.14] 

0.72 

[0.41, 0.74] 

0.80 

[0.47, 0.81] 

18.23 

[13.49, 21.07] 

0.59 

[0.30, 0.57] 

MAErel 

(%) (↓) 

15.21 

[12.90, 17.21] 
n/a 

86.42 

[82.43, 

90.50] 

96.60 

[95.58, 

98.31] 

14.81 

[12.35, 16.88] 

16.54 

[14.11, 18.53] 

429.55 

[357.69, 

494.13] 

11.42 

[9.57, 12.78] 

MSE 

(↓) 

9.45 

[0.56, 2.41] 
n/a 

84.98 

[24.97, 

85.20] 

254.85 

[60.57, 

236.06] 

8.51 

[0.56, 3.15] 

10.16 

[0.58, 3.41] 

703.59 

[325.74, 

837.51] 

5.35 

[0.43, 1.70] 

MSErel 

(%) (↓) 

1.34 

[0.65, 1.49] 
n/a 

37.01 

[29.18, 

43.85] 

94.85 

[93.48, 

97.46] 

1.47 

[0.65, 1.84] 

1.71 

[0.82, 2.00] 

455.05 

[265.24, 

574.32] 

0.93 

[0.50, 1.03] 

SSIM 

(↑) 

0.98 

[0.98, 0.99] 
n/a 

0.73 

[0.68, 0.79] 

0.65 

[0.61, 0.69] 

0.98 

[0.98, 0.99] 

0.98 

[0.97, 0.99] 

0.37 

[0.31, 0.42] 

0.99 

[0.99, 0.99] 

O
u

t-
o

f-
fo

cu
s 

im
ag

es
 

R (↓) 
0.166 

[0.087, 0.222] 

0.149 

[0.059, 0.212] 

0.365 

[0.281, 

0.439] 

0.982 

[0.971, 

0.997] 

0.176 

[0.105, 0.228] 

0.181 

[0.111, 0.230] 

0.275 

[0.196, 0.342] 

0.164 

[0.081, 0.226] 

MAE 

(↓) 

0.78 

[0.42, 0.76] 
n/a 

4.10 

[2.58, 4.49] 

4.72 

[2.74, 5.14] 

0.77 

[0.40, 0.76] 

0.83 

[0.46, 0.82] 

18.43 

[13.56, 20.87] 

0.61 

[0.30, 0.59] 

MAErel 

(%) (↓) 

15.12 

[12.37, 17.21] 
n/a 

86.34 

[81.90, 

90.79] 

96.53 

[95.45, 

98.01] 

14.85 

[12.29, 17.29] 

16.49 

[14.08, 18.55] 

425.41 

[356.87, 

486.35] 

11.42 

[9.67, 12.81] 

MSE 

(↓) 

13.85 

[0.51, 2.56] 
n/a 

92.27 

[24.21 

85.79] 

295.52 

[52.93 

240.66] 

11.87 

[0.52, 3.64] 

13.79 

[0.63, 3.64] 

711.53 

[320.39, 

783.03] 

6.99 

[0.39, 1.82] 

MSErel 

(%) (↓) 

1.41 

[0.65, 1.54] 
n/a 

36.78 

[28.22, 

45.58] 

94.54 

[93.25, 

97.13] 

1.55 

[0.64, 2.04] 

1.80 

[0.84, 2.10] 

445.76 

[259.31, 

570.82] 

0.89 

[0.52, 1.01] 

SSIM 

(↑) 

0.98 

[0.97, 0.98] 
n/a 

0.71 

[0.65, 0.79] 
0.62 

[0.58, 0.67] 

0.98 

[0.98, 0.99] 

0.98 

[0.97, 0.98] 

0.36 

[0.31, 0.41] 

0.99 

[0.99, 0.99] 

*All DeepMBscalar-sos images systematically have their overall brightness associated with the input SoS. 

**All DeepMBinitial-images images suffer from strong reconstruction artifacts that manifest as intensity 

saturation (see Extended Data Fig. 6). ***Some DeepMBin-vivo images suffer from visible reconstruction 

artifacts that manifest as coffee-stain-like structures (see Extended Data Fig. 7). 

 
Table 1. Quantitative evaluation of the image quality for all reconstruction methods assessed in this 

paper using the data residual norm (R), the mean absolute error (MAE and MAErel), the mean squared 

error (MSE and MSErel), and the structural similarity index (SSIM), in comparison to the reference 

model-based reconstruction. The table shows the mean values and in square brackets the 25th and 75th 

percentiles for in-focus images (4814 in vivo sinograms from the test dataset reconstructed with each 

one optimal SoS values) and out-of-focus images (638 in vivo sinograms from the test dataset 

reconstructed each with all 11 available SoS values). The arrow symbols (↑) and (↓) indicate for each 

metric whether a higher or lower value is better. SoS: speed of sound. DeepMB: deep model-based. MB: 

model-based. BP: backprojection. DMAS-CF: delay-multiply-and-sum with coherence factor. 

DeepMBno-sos: training conducted without providing the SoS as additional input to the U-Net. 

DeepMBscalar-sos: training conducted with encoding the SoS value into one additional input channel for 

the U-Net. DeepMBinitial-images: training conducted on the true synthetic initial pressure images instead of 

the corresponding MB reconstructions. DeepMBin-vivo: training conducted on in vivo data instead of 

synthetic data. 

 

 Our method Traditional methods Alternative DeepMB training strategies 

 DeepMB BP DMAS-CF DeepMBno-sos DeepMBscalar-sos 
DeepMBinitial-

images 
DeepMBin-vivo 

MAE (↓) 
1.26 

[0.80, 1.50] 

5.34 

[3.91, 6.04] 

7.78 

[5.82, 8.78] 

1.26 

[0.77, 1.54] 

1.39 

[0.90, 1.61] 

29.22 

[24.58, 32.07] 

1.06 

[0.62, 1.20] 

MAErel 

(%) (↓) 

15.34 

[13.20, 16.83] 

67.46 

[65.47, 69.80] 

98.90 

[98.39, 99.71] 

15.26 

[13.10, 16.70] 

17.01 

[15.07, 18.47] 

390.97 

[342.72, 431.73] 

12.51 

[10.50, 13.57] 

MSE (↓) 
52.18 

[3.52, 38.8] 

337.88 

[96.38, 

423.92] 

1527.62 

[476.96, 

1666.41] 

51.38 

[4.05, 46.39] 

62.23 

[4.67, 49.09] 

3344.46 

[1704.83, 

4146.30] 

31.07 

[3.10, 19.14] 



  
 

MSErel 

(%) (↓) 

1.55 

[0.72, 1.91] 

21.11 

[18.21, 23.85] 

97.40 

[95.93, 98.39] 

1.78 

[0.86, 2.21] 

2.16 

[1.02, 2.82] 

295.44 

[199.81, 363.65] 

1.06 

[0.60, 1.06] 

SSIM (↑) 
0.99 

[0.99, 1.00] 

0.90 

[0.87, 0.93] 

0.83 

[0.80, 0.87] 

0.99 

[0.99, 1.00] 

0.99 

[0.99, 1.00] 

0.59 

[0.50, 0.70] 

1.00 

[1.00, 1.00] 

 

Table 2. Quantitative comparison of the unmixing components from DeepMB, BP, and all alternative 

DeepMB models with the unmixing components from reference model-based reconstruction using the 

mean absolute error (MAE and MAErel), the mean squared error (MSE and MSErel), and the structural 

similarity index (SSIM). The table shows the mean values and in square brackets the 25th and 75th 

percentiles for the 166 multispectral stacks from the in vivo test dataset. The arrow symbols (↑) and (↓) 

indicate for each metric whether a higher or lower value is better. DeepMB: deep model-based. BP: 

backprojection. DMAS-CF: delay-multiply-and-sum with coherence factor. DeepMBno-sos: training 

conducted without providing the SoS as additional input to the U-Net. DeepMBscalar-sos: training 

conducted with encoding the SoS value into one additional input channel for the U-Net. DeepMBinitial-

images: training conducted on the true synthetic initial pressure images instead of the corresponding MB 

reconstructions. DeepMBin-vivo: training conducted on in vivo data instead of synthetic data. 

6. Figures  

 

Figure 1: DeepMB pipeline. (a) Real-world images, obtained from a publicly available dataset, are 

used to generate synthetic sinograms by applying an accurate physical forward model of the scanner. 

SoS, speed of sound. (b) In vivo sinograms are acquired from diverse anatomical locations in six 

participants. (c) Optoacoustic images are reconstructed via iterative model-based reconstruction for the 

purpose of generating reference images for either the synthetic dataset (A) or the in vivo dataset (B). (d) 

Network training is conducted by using the synthetic data as sets for training (n=8000) and validation 

(n=2000) (C), while the in vivo data constitutes the test set (n=4814) (D). A domain transformation is 

first applied to the input sinograms via a delay operation to map the time sample values into the image 

space. The SoS is then one-hot encoded and concatenated as additional channels (represented by the 

symbol “⧺”). A U-Net convolutional neural network is subsequently applied to the channel stack to 

regress the final image. The loss is calculated between the network output and the corresponding 

reference image (see section “Methods / Network training” for further details about the network 

training). 



  
 

 

Figure 2: Examples from the in vivo test dataset for different anatomical locations (carotid artery: 

a,e,i,m,q,u; biceps: b,f,j,n,r,v; breast: c,g,k,o,s,w; abdomen: d,h,l,p,t,x). The first four rows show deep 

model-based (DeepMB) reconstructions, model-based (MB) reconstructions, the pixel-wise absolute 

difference between DeepMB and MB reconstructions, and backprojection (BP) reconstructions, 

respectively. The data residual norm (R) is indicated between round brackets above each image. The 

last two rows display sketches of the rough anatomical context of the scans and the interleaved-acquired 

ultrasound (US) images overlayed with DeepMB reconstructions, respectively. All optoacoustic images 

and difference maps show the reconstructed initial pressure in arbitrary units and were slightly cropped 

to a field of view of 4.16×2.80 cm2 to disregard the area occupied by the probe couplant above the skin 

line. Each enlarged region is 0.41×0.41 cm2 and displays various anatomical details. All displayed scans 

were acquired at 800 nm. Mb: probe membrane, Sk: skin, Mu: muscle, Fa: fascia, Ca: common carotid 



  
 

artery, Ju: jugular vein, Th: thyroid, Tr: trachea, Ve: blood vessel, Ne: nerve, Ft: fat, Gl: glandular 

tissues, Co: colon.  

 

Figure 3: Data residual norms of optoacoustic images from deep model-based (DeepMB), model-

based (MB), and backprojection (BP) reconstruction. (a) Data residual norms of in-focus images 

reconstructed with optimal speed of sound (SoS) values, on all 4814 samples from the in vivo test set. 

(b) Data residual norms of out-of-focus images reconstructed with sub-optimal SoS values, on a subset 

of 638 samples. The five sub-panels depict the effect of SoS mismatch via gradual increase of the offset 

ΔSoS in steps of 10 m/s. The inner bars indicate the 25th, 50th, and 75th percentiles. 

 

Figure 4: Unmixing of a representative multispectral breast scan for deep model-based (DeepMB; 

a, d), model-based (MB; b, e), and backprojection (BP; c, f). The unmixed components for fat and 



  
 

water and for oxyhemoglobin and deoxyhemoglobin are shown in the first two rows, respectively. The 

third row depicts the reference absorption spectra of the four chromophores used during unmixing (g) 

and a schematic sketch of the anatomical context for the depicted scan (h). All optoacoustic images 

show the unmixed components in arbitrary units and were slightly cropped to a field of view of 

4.16×2.80 cm2 to disregard the area occupied by the probe couplant above the skin line. Mb: probe 

membrane, Sk: skin, Fa: fascia, Mu: muscle, Ve: blood vessel, Ft: fat, Gl: glandular tissues. 
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