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Abstract

The dissertation delves into innovative methodologies for dynamic decision-making in

stochastic environments characterized by large decision spaces. It specifically aims to

improve after-sales field services and shipment consolidation by applying these innovative

techniques. The motivation stems from the rapidly evolving economic landscape that

demands unprecedented agility and adaptability from businesses. Such a landscape

necessitates the ability to make informed decisions over time, even with limited information

about future events. Operationally, this involves moving away from the traditional static

and deterministic approach to decision-making, which assumes all necessary information

is available at decision time. Central to this research is the development of the Hybrid

Value Function Approximation (H-VFA), a novel approach that merges a graph-encoding

method with a genetic search mechanism and a graph neural network. Methodologically,

the transition from conventional tabular methods to a graph neural network, coupled

with the handling of the combinatorial decision space through genetic search, enables the

H-VFA to effectively navigate the well-known curses of dimensionality. Additionally, this

dissertation introduces a learning framework based on the post-decision state concept

(Powell, 2022), which excels in finding near-optimal policies in problems with extensive

transition spaces. Finally, the comprehensive numerical studies conducted provide valuable

insights and have practical implications for industry practitioners.
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1
Chapter

Introduction

1.1 Motivation

In the rapidly evolving economic landscape, businesses must demonstrate unprecedented

agility and adaptability. This involves making informed decisions over time, even when

complete information about the future is unavailable. From an operational perspective,

it necessitates a paradigm shift from traditional static and deterministic decision-making,

which assumes that all relevant information is available at the decision time and remains

unchanged over time. Dynamic decision-making involves continuously evaluating and

re-evaluating decisions based on evolving circumstances and information availability. In

this environment, stochastic elements add further to the complexity.

Consider, for instance, a repair service provider who must decide on technician dispatches

and manage the spare parts inventory in their service vehicle without complete knowledge

of future repair requests or part failures. Similarly, a transport manager in a multi-echelon

supply chain faces the challenge of deciding how to consolidate transportation requests

to a lower echelon without foresight into future orders. The difficulty is often further

amplified by the combinatorial aspect of decisions at each decision point, which is typical

in operations planning problems.

This dissertation aims to thoroughly address the previously described challenges, with a
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specific focus on the after-sales service sector. The overarching theme of the dissertation

revolves around dynamic decision-making in stochastic environments with large decision

spaces. Specifically, the first two essays concentrate on the joint planning of technician

routing and spare parts management in service vehicles for white goods repair. The final

essay builds on the optimization methodologies from the first two essays and shifts focus

to a different problem setting, developing near-optimal shipment consolidation policies in

a multi-echelon supply chain with advance demand information.

While after-sales support is often considered a major source of revenue and a primary

factor distinguishing competitors in the context of durable goods (Kurata and Nam, 2010),

the operational complexity in this sector cannot be understated. Service providers face

significant logistical challenges, particularly in the complex coordination of spare parts

management and technician routing. This is especially pronounced for products with

a large number of replaceable components and when dealing with sparsely distributed

repair requests across expansive geographical areas. In this setting, uncertainties manifest

in two ways. First, despite the rapid modernization of appliances, perfect triangulation of

needed spare parts before the first technician visit remains difficult. Second, the exact

repair request location and initiation time are also uncertain in this field, largely due to

the erratic nature of breakdowns and the widespread presence of white goods. Meanwhile,

dynamism is a pertinent characteristic in field service optimization, as decisions have to

be re-evaluated daily (i.e., re-planning) with the availability of new information. Finally,

the combinatoric nature of the decisions originates from the large number of routing and

repair kit stocking options, further exacerbates the issue. Even in deterministic and static

environments, choosing a good decision from the set of potential decisions is already an

extremely difficult task.

According to Dutta (2013), even though top-performing firms prioritize resolving issues

during the initial visit, their success rate, known as the first-time fix rate, is only

approximately 89%. Furthermore, in over half of the cases requiring a second visit, the
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need arises due to the unavailability of necessary parts during the initial technician call-out

(Dutta, 2013). Upon reviewing customer feedback from an online review platform1, it is

evident that the problem of missing spare parts during call-outs persists across major

players in the field. This issue is particularly significant in the household appliance market,

which generates 44.1 billion Euros in revenue in Europe alone (Applia Statistical Report

2021-2022).

From the customer’s perspective, a fast and inexpensive repair process can increase the

willingness to choose repairs over purchasing new products. This is also better for the

environment, as extending product lifespans through repair is a crucial aspect of the

circular economy (Laitala et al., 2021). Accordingly, manufacturers and authorized repair

providers aim to fulfill these customer expectations while balancing costs and maintaining

profitability. Unfortunately, the aforementioned logistical complexities of combined spare

parts management and technician routing, often under uncertain and rapidly changing

operational environments, represent a huge obstacle on the path to achieving this goal.

Similarly, in the trucking sector, the practice of shipment consolidation, which involves

merging multiple smaller shipments into a single larger load for dispatch on the same

vehicle, serves as an effective logistics strategy to reduce carbon emissions and energy

waste (Ülkü, 2012). However, as shown in the third essay of this dissertation, even in a

rather stylized setting, the shipment consolidation problem under consideration is also

plagued with extensive dynamism and stochasticity, stemming from the fact that decisions

made in one shipment cycle have long-lasting consequences, while exact information

about future order placements is not known in advance.

In summary, to effectively address dynamic operational problems involving stochasticity

and a large decision space spanning multiple periods, it is crucial to adopt a holistic

strategy that simultaneously addresses three dimensions. These include the selection

1A compilation can be found at tinyurl.com/cus-compl

tinyurl.com/cus-compl
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of appropriate modeling techniques and the development of computationally efficient

solution approaches.

1.2 Research Questions

This dissertation seeks to develop a deeper understanding and to propose innovative

approaches for solving the aforementioned complex planning problems. Specifically, it

aims to provide answers to the following research questions:

Research Question 1. How can a holistic approach be developed to tackle the

complexities associated with multiperiod, dynamic, and stochastic problems that feature

a combinatorial decision space?

Research Question 2. What impact do solution search and solution evaluation have on

the success of the methodology?

Research Question 3. When does having perfect information about the future add

value to the planning tasks?

Research Question 4. What impact do the spatial distribution of customer requests, the

urgency of these requests, and their arrival rate have on the strategy for joint technician

routing and spare parts stocking?

The subsequent section of this dissertation provides an extensive and detailed examination

of the existing literature pertinent to the topics addressed herein. This comprehensive

review is carefully constructed to situate this work within the broader spectrum of current

research, highlighting specific gaps and opportunities that this dissertation aims to

explore. It delves into a range of problem settings, models, and methodologies previously

established in this field, offering a critical analysis of their strengths, limitations, and

relevance to the objectives of this dissertation. Following the literature review, a concise



1 Introduction 5

yet comprehensive summary of the contributions of this dissertation to the current state

of research is presented.

1.3 Literature Review

This section presents a comprehensive discussion of the literature. It covers a wide range

of topics, including repair kit problem, on-site repair activities, dynamic and stochastic

logistical problems over multiple periods, value function approximation, and shipment

consolidation. A brief tangent on related work involving the application of reinforcement

learning in routing and inventory control is also presented. This is particularly relevant to

the methodology employed in this dissertation’s second and third essays.

1.3.1 Repair Kit Problem

The spare parts planning aspect in this dissertation originates from the repair kit problem

(RKP), which was introduced by Smith, Chambers, and Shlifer (1980) and focuses on

the optimal assortment of service parts for field technicians to carry in their repair kits.

This research balances the holding costs of these parts against the penalty costs incurred

due to spare part shortages during technician visits. Building on this, Graves (1982)

addresses a similar issue but includes a minimum service level requirement in the analysis.

Mamer and Smith (1982) explore a more complex scenario where the demand for various

service parts may be interdependent, and multiple parts of the same kind may be required

for a single repair task. Early studies on the RKP often assume that technicians can

replenish their repair kits immediately after each job, a scenario termed the single-job

repair kit problem (SJRKP).

The concept of technicians performing multiple jobs between restocking their repair kits,

or a tour, was proposed by Heeremans and Gelders (1995), leading to the introduction of
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the multiple-job repair kit problem (MJRKP). A notable advancement in MJRKP was

made by Teunter (2006), who derived a formula for calculating the job fill rate assuming

independent demand for different part types. In this work, Teunter (2006) assumed that

required parts are left at the customer’s location whether or not the job is completed.

Teunter (2006) also proposed two efficient heuristics, the job heuristic and the part

heuristic, for quickly solving large-scale problem instances. Bijvank, Koole, and Vis (2010)

expanded this research by considering the number of jobs in a tour as a random variable

and incorporating scenarios where multiple units of the same part type may be required

for a single job. Differing from Teunter (2006), Bijvank, Koole, and Vis (2010) argued

that parts should only be removed from the kit if the job is successfully completed and

developed a formula for computing the expected job fill rate under these conditions.

More recent studies, such as those by Saccani et al. (2017) and Prak et al. (2017),

explore optimizing the budget-constrained repair kit and its replenishment frequency and

consider scenarios with positive lead times, respectively. Another extension of the repair

kit problem has been recently introduced by Rippe and Kiesmüller (2023), focusing on

advance demand information. Their study explores a scenario in which appliances are

equipped with sensors capable of displaying error codes when malfunctions are detected.

These error codes act as imperfect yet proactive indicators of the spare parts needed.

The authors propose two well-performing heuristics for addressing this scenario.

Notably, many studies in this field are driven by practical industrial settings. For instance,

the research presented in Saccani et al. (2017) is based on an actual case from a global

office equipment company. Similarly, Prak et al. (2017) and Neves-Moreira, Veldman,

and Teunter (2021) introduce service models that have been tested using data from an

equipment manufacturer and a wind turbine manufacturer, respectively.

Despite these significant advancements in addressing the RKP, previous research has often

overlooked aspects such as planning routes, allocating customers to trips, and the impact

of incomplete repairs on subsequent tours in white goods repair. In situations where



1 Introduction 7

external emergency services are available, imposing a penalty cost is an adequate way to

model the problem. However, when a technician must revisit a site, failure in repairing the

appliance on the first call-out results in additional waiting time and increased workload

for the technician in subsequent days, ultimately leading to customer dissatisfaction with

the services provided.

1.3.2 Planning On-site Repair Activities

The planning of on-site repair activities, due to its high practical relevance, has garnered

significant attention in the operations research and operations management communities.

A key focus within this research domain is the technician routing and scheduling problem

(TRSP). Castillo-Salazar, Landa-Silva, and Qu (2016) offer a comprehensive review of

TRSP.

Research on the routing and scheduling of technicians for maintenance activities often

considers various real-world attributes such as technician skill levels, team formations,

and time-dependent rewards. For example, Tsang and Voudouris (1997) explored the

scheduling challenges faced by British Telecom, emphasizing the variable proficiency

levels of technicians and their impact on task completion times. Similarly, Xu and Chiu

(2001) delved into scenarios where service requests vary in priority and are subject to the

technicians’ skill levels. Tang, Miller-Hooks, and Tomastik (2007) investigated scenarios

where the rewards for task completion vary depending on the service period, reflecting

customer preferences in choosing the desired repair date. The challenge posed by the

French Operations Research Society led to studies by Hashimoto et al. (2011), Kovacs

et al. (2012), and Fırat and Hurkens (2012), focusing on the formation of technician

teams with diverse skills to accomplish a range of tasks. Meanwhile, Chen, Thomas,

and Hewitt (2017) introduced the concept of learning, where technicians enhance their

proficiency through repeated task performance.
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However, research that concurrently addresses technician routing and spare parts man-

agement remains scarce. Pillac, Gueret, and Medaglia (2013) pioneered this approach by

integrating consumable resources, such as spare parts, with technician routing. In their

model, however, spare part demands at each customer site were known prior to the tour,

and technicians had the opportunity to replenish their repair kits by visiting the depot.

More recently, Mathlouthi, Gendreau, and Potvin (2021) tackled a similar deterministic

problem, adding the challenge of a special spare part that cannot be initially carried by

technicians and must be picked up from the depot during the day.

Another closely related area of research is the scheduling and routing of maintenance

activities for offshore wind farms. This field, while incorporating unique industry-specific

attributes like extended offshore durations and variable weather conditions, shares many

parallels with onshore maintenance planning. In a recent study, Neves-Moreira, Veldman,

and Teunter (2021) addressed optimizing service operation vessels for offshore wind farm

maintenance, modeling the onboard spare parts inventory management problem as an

RKP. Their model, however, assumed known wind turbine locations, with the vessel

stationed offshore for extended periods and the option for helicopter resupply of spare

parts. This dissertation models and solves the multiperiod combined routing and spare

parts planning problem, where future requests and spare parts demands are not known in

advance.

1.3.3 Multiperiod Dynamic and Stochastic Logistical Problems

with Combinatorial Decision Space

The planning problems investigated in this dissertation share similarities with various

multiperiod dynamic and stochastic logistical problems, particularly those involving

combinatorial decision spaces. In these problems, decision-makers are confronted with a

wide array of choices at each decision point, ranging from selecting transportation routes
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to restocking inventory or scheduling personnel, all undertaken amidst the uncertainties

of operations that extend over multiple time periods. The long-term implications of these

decisions are intensified by the inherent dynamism and stochasticity in these settings.

In general, there are primarily two modeling strategies used to address these types

of problems: two-stage stochastic programming with recourse and sequential decision

problems. The former, a method commonly used for modeling uncertainties, often falls

short in fully capturing the dynamics over extended periods, as pointed out in Powell

(2022). This approach has been applied to a range of multiperiod problems in areas such

as location-transportation (Klibi et al., 2010), disaster relief logistics (Alem, Clark, and

Moreno (2016); Moreno, Alem, and Ferreira (2016)), and waste management (Gambella,

Maggioni, and Vigo, 2019). Conversely, the sequential decision model emphasizes the

progressive nature of real-world planning problems over multiple time periods. Notable

examples include Chen, Thomas, and Hewitt (2017) in technician scheduling, Avraham

and Raviv (2021) in mobile personnel scheduling, and Ulmer, Soeffker, and Mattfeld

(2018) and Liu and Luo (2022) in vehicle routing and driver dispatching, respectively.

However, many existing studies tend to overlook one or more key aspects: dynamism,

stochasticity, or the combinatorial nature of decision-making. For instance, Chen, Thomas,

and Hewitt (2017) circumvents stochasticity through point forecasting; Avraham and

Raviv (2021) sidestep combinatorial decision space by utilizing tentative routes; Ulmer,

Soeffker, and Mattfeld (2018) limit decision points through periods categorization, and

Liu and Luo (2022) employ decision decomposition and myopic policies to approximate

the cost-to-go function.

Neglecting or oversimplifying any of the three aspects, either in modeling or in developing

solution strategies, can undermine the model’s adaptability and the quality of the decisions

derived from it. This dissertation aims to address this issue by comprehensively and

simultaneously considering all three aspects in both the modeling process and the solution

methodology.
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1.3.4 Value Function Approximation

Value function approximation (VFA), as described in Powell (2007), is a technique for

solving sequential decision problems that aim to balance immediate rewards with future

rewards. It operates by mapping problem states to their expected values, thereby enabling

decision-making processes that consider future impacts. These mapping functions, often

referred to as cost-to-go functions, support forward-looking decision-making by selecting

options that minimize the sum of immediate and anticipated future costs.

However, implementing VFA in practical, real-world scenarios poses substantial challenges,

primarily due to the well-known curses of dimensionality. To manage the complexity

of the transition space, many methods favor a model-free learning approach over a

model-based strategy. This model-free methodology circumvents the need for explicit

computation of state transition probabilities, relying instead on iterative learning through

trial and error, often using Monte Carlo simulation for exploration and learning (Gläscher

et al., 2010). Conversely, the model-based approach requires an explicit model, including

complete state transitions, to derive the optimal policy. Addressing the vast state

space often necessitates extensive aggregation into basis functions, each with a unique

weight. Solutions typically involve a linear combination of these basis functions with

learned weights, integrated into integer programs that are then solved, either accurately

or approximately, to make decisions, as seen in the work of Van Heeswijk, Mes, and

Schutten (2019) and Heinold, Meisel, and Ulmer (2022). The primary challenge is

developing a set of basis functions that effectively capture complex, potentially nonlinear

relationships between state representations and future value contributions. A significant

drawback of using basis functions is their assumption of well-defined relationships between

attributes and state value, potentially limiting the quality of the derived policy, as noted

in Ulmer (2017). Moreover, the frequent reliance on integer programs and mathematical

solvers for decision extraction limits the size of solvable problems and hampers learning

speed. The high-dimensional discrete decision space poses another formidable challenge
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for advanced deep-learning-based reinforcement learning methods, as highlighted in

Hildebrandt, Thomas, and Ulmer (2022).

In modern reinforcement learning approaches, the focus is on directly learning policies

or values linked to state-decision pairs. However, these methods face a significant

challenge when dealing with high-dimensional discrete decision spaces, as this leads to

an exponential increase in the potential decision set. Off-the-shelf reinforcement learning

algorithms, such as deep Q-network (DQN) (Mnih et al., 2015), policy gradient (Sutton

et al., 1999), and actor-critic (Konda and Tsitsiklis, 1999), are not directly applicable

in real-world operational settings as they require significant modifications to handle the

combinatorial nature of the decision space.

This work introduces two novel solutions to address the aforementioned challenges in

applying VFA: a unique graph-encoding technique, and a genetic search combined with a

graph neural network learning method.

1.3.5 Shipment Consolidation

Previous research has identified three practical and easy-to-implement policies for shipment

consolidation: time-based, quantity-based, and hybrid policy (Çetinkaya, 2005). In the

time-based consolidation policy, outbound shipments are dispatched at regular intervals,

each spanning a specific number of time units. For the quantity-based policy, an

outbound shipment is initiated each time the total quantity of items for consolidation

reaches a predetermined level. In the case of the hybrid policy, outbound shipments are

scheduled either at the conclusion of a set time interval or when the specified quantity

for consolidation is achieved, depending on which condition is met first.

Cetinkaya and Lee (2000) and Axsäter (2001) explore stochastic single-echelon inventory

systems using policies where orders are placed when inventory falls below a certain level
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and are filled up to another level (i.e., an (s, S) policy), along with time-based shipment

consolidation. In this setting, Axsäter (2001) presents an exact approach for determining

the parameters for the shipment and inventory policies. Studies by Çetinkaya and

Bookbinder (2003), Chen, Wang, and Xu (2005), and Çetinkaya, Mutlu, and Lee (2006)

compare time-based and quantity-based dispatch policies. Analytical expressions for three

heuristic policies are provided by Mutlu, Çetinkaya, and Bookbinder (2010) and Wei,

Kapuscinski, and Jasin (2021). Joint transport and inventory decisions in single-echelon

systems are addressed in works by Cheung and Lee (2002) and Toptal, Çetinkaya, and Lee

(2003). In multi-echelon inventory systems, Marklund (2011) offers an exact approach

for time-based consolidation setting, while quantity-based consolidation is studied by

Kiesmüller and De Kok (2005) and Malmberg and Marklund (2023). Extensions to

time-based dispatching can be found in Stenius et al. (2016), Johansson et al. (2020),

and Sonntag, Schrotenboer, and Kiesmüller (2023).

While a significant amount of research has been conducted on shipment consolidation in

the realm of inventory management, studies that integrate advance demand information

are rare. Wang and Toktay (2008) were pioneers in studying a stochastic single-echelon

inventory system featuring periodic shipments and flexible deliveries. More recently, Ralfs

and Kiesmüller (2022) explored a single-stage inventory system that incorporates advance

demand information and flexible deliveries, operating under a time-based shipment

consolidation policy, although their approach was based on a heuristic outbound shipment

strategy. Notably, research that integrates shipment consolidation with advance demand

information and focuses on the derivation of optimal or near-optimal dispatching policies

remains unexplored.

This dissertation explores near-optimal outbound shipment policies for single-echelon

inventory systems using reinforcement learning, focusing on time-based consolidation

with flexible deliveries, and incorporating advance demand information.
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1.3.6 Reinforcement Learning in Vehicle Routing and Inventory

Control

In recent years, there has been a significant increase in publications applying deep

reinforcement learning (DRL) to address operational planning problems. While the

number of research applying reinforcement learning to technician routing is limited, there

are extensive studies on the vehicle routing problem (VRP), a setting that shares many

similarities. In the following, only works that apply reinforcement learning to solve the

dynamic and/or stochastic variant of the VRP is discussed. A summary of work using

reinforcement learning for the deterministic and static versions is discussed in Raza, Sajid,

and Singh (2022).

The stochastic dynamic vehicle routing problem (SDVRP), situated in the realm of dynamic

combinatorial optimization within operations research, tackles sequential decision-making

while searching vast routing action spaces and evaluating those actions concerning future

uncertainties (Hildebrandt, Thomas, and Ulmer, 2022). Most of the work on SDVRP

is usually in the context of online routing. In this context, customers (or requests)

appear dynamically throughout the day, and the decisions typically involve acceptance,

assignment, and/or routing. Ulmer et al. (2019) studied the single-vehicle routing problem

with stochastic service requests. The authors developed an anticipatory algorithm that

employs a roll-out strategy combined with VFA. In a similar context, Joe and Lau (2020)

developed an algorithm combining simulated annealing and a fully connected deep neural

network to solve the dynamic vehicle routing problem, considering time windows and

stochastic requests. Wang et al. (2018) solve the online order dispatching problem using

a DQN. The authors also propose a transfer learning method to quickly learn and adapt

to changes in location and time. The problem of electric vehicle routing with uncertain

energy consumption and stochastic requests was investigated by Basso et al. (2022),

where the authors developed a Q-learning-based algorithm. Chen, Ulmer, and Thomas
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(2022) also applied a DQN, but in the context of same-day delivery using both vehicles

and drones. The recent survey by Hildebrandt, Thomas, and Ulmer (2022) offers a

comprehensive discussion in this field. In the same survey, the authors also expressed their

desire to develop a general-purpose algorithm capable of both searching and evaluating

vast decision spaces.

In the field of inventory control, there has also been a notable increase in the application

of DRL methodologies. A recent survey by Boute et al. (2022) provides a thorough

overview of DRL in inventory control, including implementation guidelines. Key recent

studies in this area include research by Gijsbrechts et al. (2022) on the lost sales

problem, Vanvuchelen, Gijsbrechts, and Boute (2020) investigating the joint replenishment

problem, Oroojlooyjadid et al. (2022) exploring the supply chain beer game, and De

Moor, Gijsbrechts, and Boute (2022) concentrating on perishable inventory management.

These studies commonly utilize advanced DRL methods, such as the DQN (Mnih et

al., 2013), asynchronous advantage actor-critic (Mnih et al., 2016), and proximal policy

optimization (Schulman et al., 2017), all of which depend on a learned “policy network”

for decision-making.

1.4 Contributions and Methodologies

Drawing upon the comprehensive literature review presented in Section 1.3, this section

is dedicated to elucidating the research gaps in the field and delineating the ways in

which this dissertation aims to bridge these gaps. It includes a detailed discussion of the

dissertation’s contributions across several dimensions: the novelty of the problem settings

under study, the development and application of innovative solution methodologies, and

the derivation of valuable practical insights.
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1.4.1 Contributions in Problem Formulations

The literature review presented in Sections 1.3.1 and 1.3.2 highlights a substantial gap

in existing research, particularly in the simultaneous planning of technician routing and

repair kit stocking amidst stochastic demands for spare parts. The first and second

essays in this dissertation aim to bridge this gap by developing a novel approach to

address these challenges. Moreover, scenarios where incomplete tasks require the same

technician to revisit rather than relying on external emergency services for completion

are also incorporated.

Another unique contribution of this dissertation is the integration of new stochastic

requests that emerge within the planning period. This aspect introduces a dynamic

element to the problem, necessitating continuous re-planning to effectively integrate

these new requests along with the evolving information collected from previous visits,

particularly about the remaining missing spare parts.

The first essay of this dissertation presents a comprehensive modeling of the joint

planning problem, formulating it as a stochastic mixed-integer program. Building upon

this foundation, the second essay delves deeper by addressing a similar problem through

the lens of a sequential decision process. Furthermore, the problem is enriched by including

the element of random deadlines, adding another layer of complexity to the planning and

execution of technician routing and repair tasks and allowing for the derivation of the

added value of flexibility. The two essays offer a novel approach to managing routing and

spare part planning in maintenance and repair operations, especially under dynamism

and stochasticity spanning multiple periods.

The problem discussed in the third essay, revolving around the optimization of shipment

consolidation, was previously examined in the study by Ralfs and Kiesmüller (2022). The

third essay builds upon that foundation by conceptualizing the problem as a sequential

decision process and introducing an innovative methodology. The essay focuses on
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efficiently learning a near-optimal policy for shipment consolidation by leveraging advance

demand information.

1.4.2 Contributions in Solution Methodologies

This dissertation introduces innovative solutions for improving value function approxima-

tion, referred to as hybrid value function approximation (H-VFA). The first and second

essays stress the importance of simultaneously considering dynamism, stochasticity, and

large decision spaces. The first contribution is a novel graph-encoding method that

captures both spatial and temporal aspects of operations planning, thereby eliminating the

need for manually created basis functions. This state-encoding is based on multi-attribute

graphs, where nodes represent individual repair requests (i.e., the request’s attributes),

and edges reflect the travel distances between them. Additionally, spatial markers, which

are artificial nodes, are incorporated into the graph to assist in determining the relative

positions of repair requests within the service area.

The second contribution is a method that combines genetic search with a graph neural

network, facilitating efficient policy learning in large, discrete decision spaces. This method

demonstrates high performance and adaptability in various scenarios and maintains

robustness against changes in problem parameters and cost structures. These versatile

strategies may also be applicable to other multiperiod operations planning tasks that

face similar challenges.

The H-VFA is designed to tackle the curse of dimensionality through several strategies.

First, this approach avoids the immense state space by moving away from traditional

tabular methods and instead utilizes a graph neural network along with graph represen-

tation to generalize state values more effectively. Additionally, the H-VFA addresses

the complex combinatorial decision space using a genetic search method. Finally, this

strategy tackles the vast transition space by implementing systematic state sampling
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Figure 1.1: High-level overview of the H-VFA

within the genetic search procedure. Figure 1.1 shows the high-level overview of the

H-VFA. By developing the H-VFA and testing it against other benchmark policies in

various problem and parameter settings, an answer to Research Question 1 is provided.

This strategy specifically demonstrates how to develop a comprehensive approach for

tackling the complexities inherent in multi-period, dynamic, and stochastic problems,

which feature a combinatorial decision space.

The third essay introduces a learning framework based on the concept of post-decision

states, as described by Powell (2022). This framework adopts state value approximation

as a strategy to navigate the constraints of fixed size that are commonly present in

the decision space of policy-based reinforcement learning methods. Unlike policy-based

techniques, which are limited by the number of output nodes in the policy network,

state value approximation allows for a more general optimization problem for decision-

making. However, accurately approximating pre-decision state values often requires

extensive forward simulation to determine the expected cost-to-go for decisions. This
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can be problematic in scenarios with large transition spaces, a common characteristic in

real-world problems. To address this, the learning framework in the third essay involves

approximating the value of the post-decision state, following the methodology outlined

by Powell (2022), thereby providing a partial solution to this challenge. In problems with

a relatively small decision space, this modification enables near-instantaneous decision-

making since no forward simulation is required to estimate the cost-to-go of making a

decision. This speeds up the decision process when the policy is already in place and

facilitates rapid roll-out during training to aid post-decision state value approximation.

1.4.3 Contributions in Practical Insights

From the extensive numerical studies performed in the three essays, this dissertation

derives several practical insights, which are particularly helpful for industry practitioners

who wish to improve their operations and researchers who would like to adopt the method

for problems facing similar challenges.

The following insight provides an answer to Research Question 2 :

Insight 1. In the context of jointly planning technician route and spare parts, precise

evaluation is more crucial than an exhaustive search for solutions, especially in scenarios

that demand intelligent anticipation, such as those with high arrival rates but moderate

to low urgency. A basic approach to generating solutions can lead to good performance,

provided that the evaluations are accurate. However, achieving an accurate cost-to-go

estimation during the training phase necessitates a comprehensive solution search.

Concurrently, the following insights relate to Research Question 3 :

Insight 2. The significance of possessing information about future requests in the

technician routing problem diminishes as the urgency of incoming requests increases.

When these requests have distant deadlines, having accurate foresight greatly reduces
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costs by providing more opportunities for efficient consolidation.

Insight 3. In the context of time-based shipment consolidation, where flexible deliveries

are permitted, having advance demand information can significantly reduce costs. This

reduction is achieved by avoiding late delivery fees and emergency shipping expenses

through the proactive dispatch of orders. However, the cost-saving impact of advance

demand information diminishes with longer lead times. Additionally, the impact of

advance demand information on total cost reductions is not linear.

Meanwhile, the following insights provide answers to Research Question 4 :

Insight 4. Planning in an anticipatory manner is important, especially when customer

requests are sparsely distributed, or when there are opportunities to perform spatial and

temporal consolidation (e.g., when the incoming requests are not immediately urgent, or

when requests are in clusters).

Insight 5. In situations where there is a frequent high influx of incoming requests with

extended deadlines, it is crucial for anticipatory learning policies to be trained using an

accurate data distribution. Moreover, inaccuracies such as underestimating the arrival

rate or overestimating the urgency parameter during training can lead to significantly

increased costs in the execution phase.

Insight 6. As the average daily volume of repair requests rises, it is advisable to increase

the inventory of frequently used spare parts on the service vehicle.

Insight 7. A high arrival rate coupled with elevated urgency levels results in more missed

deadlines and escalated costs due to service delays. The strategy should involve either

allocating technicians to areas with manageable arrival rates or exploring methods to

enhance flexibility, such as extending due dates.
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1.5 Outline of the Dissertation

This section offers an overview of the dissertation’s remaining chapters, providing a clear

roadmap for the reader to navigate the subsequent parts of the dissertation.

In Chapter 2, a summary of each essay is provided, along with a detailed description of

my individual contributions to each essay. All original publications (the first and second

essays) and the working paper (the third essay) have been included in the Appendix of

this dissertation.

Chapter 3 marks the conclusion of this dissertation, summarizing the key findings and

reflecting on their implications. The limitations of the applied methodologies are also

discussed. Additionally, this chapter explores potential avenues for future research,

suggesting how upcoming studies could build upon the insights presented in this work to

further advance understanding in this area.



2
Chapter

Summary of Essays

and Author Contribution

Publication 1: Pham, D. T., & Kiesmüller, G. P. (2022). Multiperiod integrated spare

parts and tour planning for on-site maintenance activities with stochastic repair requests.

Computers & Operations Research, 148, 105967.

DOI: https://doi.org/10.1016/j.cor.2022.105967

• Problem: The paper addresses the challenge faced by home-attended maintenance

service providers in jointly optimizing spare parts planning and routing a single

technician for on-site maintenance activities at geographically distributed customers.

This includes dealing with stochastic spare parts demand, customer requests, and

the necessity for return visits.

• Methods and main results: The problem is formulated as a stochastic mixed-

integer program, which captures various real-world characteristics. An anticipatory

solution approach is proposed, utilizing a look-ahead technique to incorporate

stochastic information into the planning process. This method is compared with

two myopic approaches. The paper also investigates the value of having perfect

information about yet-to-be-realized requests and spare part demand.

• Practical insights: The findings suggest there are benefits from integrating repair
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kit planning and technician tour scheduling, notably in reducing penalty costs for

late service. The numerical study demonstrates that this anticipatory approach can

offer cost reductions and improved service levels, particularly in scenarios where

customers are sparsely distributed.

My contributions to this paper encompass several areas: First, I participated in modeling

the problem. Then, I developed and proposed methods to address this problem. I was

primarily responsible for programming and implementing the proposed method, along

with other benchmark methods for comparison. Additionally, I played a significant role in

analyzing the results obtained from the numerical experiments. Lastly, I was responsible

for drafting the manuscript of this paper and participating in subsequent revisions.

Publication 2: Pham, D. T., & Kiesmüller, G. P. (2024). Hybrid value function

approximation for solving the technician routing problem with stochastic repair requests.

Transportation Science. Available online. Pending volume and page number.

DOI: https://doi.org/10.1287/trsc.2022.0434

• Problem: The paper focuses on the complex planning problem of routing techni-

cians and stocking spare parts for servicing geographically distributed repair tasks.

This problem is characterized by operational uncertainties such as unpredictable

future repair requests and spare parts needed for replacing malfunctioned compo-

nents. In addition, new requests are not immediately due but rather have randomly

sampled due dates.

• Methods and main results: The problem is modeled as a sequential decision

problem, with decisions made daily about the technician’s route and the spare

parts inventory. Exact methods are intractable due to high-dimensional state,

decision, and transition spaces. To address this, two novel algorithmic techniques

are introduced: a hybrid value function approximation method combining a genetic
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search with a graph neural network, and a unique state-encoding method using multi-

attribute graphs and spatial markers. These methods facilitate efficient learning

without the need for instance-specific hyperparameter tuning. The numerical study

shows that the hybrid learning technique surpasses other benchmark policies and

adapts effectively to environmental changes.

• Practical insights: The study reveals several key managerial insights for optimizing

on-site repair tasks. The value of having information about future repair requests is

shown to diminish as the urgency of these requests increases; however, when requests

have distant deadlines, possessing accurate information can significantly reduce

operational costs by facilitating more efficient consolidation of tasks. Training

anticipatory learning policies using accurate data distributions is crucial, particularly

under conditions of frequent, high-volume requests with extended deadlines. Any

miscalculations in estimating arrival rates or urgency during the training phase can

lead to increased costs in execution. Additionally, as the average daily volume of

repair requests rises, it becomes advisable to increase the inventory of frequently

used spare parts on service vehicles. Finally, in scenarios where there is a high

arrival rate of requests coupled with elevated urgency, it is essential to adopt

strategies that either allocate technicians to areas with manageable arrival rates

or enhance operational flexibility, for instance, by extending due dates, to avoid

missed deadlines and escalating costs.

My responsibilities and contributions to this paper are as follows. I participated in concep-

tualizing and modeling the problem. Subsequently, I was responsible for developing and

proposing methods to tackle the problem. Furthermore, I proposed various competitive

benchmark methods for comparison. I also took the lead in analyzing the results from

the numerical experiments, ensuring a comprehensive understanding of the outcomes.

Finally, I was responsible for drafting the manuscript and actively participated in the

revision process that followed.
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Working Paper: Ralf, J., Pham, D. T., & Kiesmüller, G. P. (2023). Optimal outbound

shipment policy for an inventory system with advance demand information. (Working

paper)

• Problem: This paper focuses on a single-echelon inventory system that fulfills

stochastic orders from a production facility under a time-based shipment consolida-

tion scheme. The key objective is to determine the optimal outbound shipment

quantities while considering the costs associated with early-delivery, late-delivery,

and shipping.

• Methods and main results: The problem is modeled as a Markov decision

process. A deep reinforcement learning algorithm that approximates the value of

the post-decision state was developed. The algorithm’s effectiveness is validated

through comparison with value iteration, revealing an impressively low average

optimality gap of 0.08%. The study also finds an easy-to-implement policy, which

follows a multi-threshold structure, is competitive. Additionally, simpler heuristic

policies are proposed and found to be reasonable in specific cost settings, though

they are less effective than the multi-threshold policy.

• Practical insights: A key finding is that the value of advance demand information

does not increase linearly but decreases as the demand lead time increases. This

implies that while advance demand information is beneficial if flexible deliveries

are allowed, its utility diminishes over a longer lead time. Furthermore, it is

recommended that transportation capacity be planned around the mean demand

level occurring between two shipments.

As a co-author, my responsibilities and contributions to this paper are as follows: I

was involved in modeling the problem as a Markov decision process. Subsequently, I
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was responsible for developing the DRL approach to tackle the problem. I also took

part in programming the main methods and other benchmark policies. I participated in

analyzing the results from the numerical experiments. Finally, I contributed to drafting

the manuscript, particularly in the sections on modeling and solution approach.



Chapter

3 Summary and Outlook

In summary, this dissertation has advanced the understanding of decision-making in

dynamic, stochastic environments with large decision spaces. These advancements were

achieved by leveraging value function approximation methodology, combined with other

techniques such as graph-encoding, graph neural networks, and genetic search. While

focused on the integrated planning of spare parts and technician routing, the developed

methodologies could potentially be applied to other problems facing similar challenges.

Computational experiments demonstrate that these novel approaches are capable of

producing effective decisions in complex planning scenarios. The practical insights derived

from this dissertation are beneficial for industry practitioners and researchers, offering

useful applications and guiding future research in this field.

This dissertation, while yielding promising results, also encounters certain limitations

that necessitate further exploration and refinement. A notable challenge is the extensive

training time. To address this, we suggest exploring more rigorous hyperparameter

tuning and shifting towards distributed and asynchronous learning models, as proposed by

Mnih et al. (2016). Additionally, our efforts to estimate problem parameters accurately

could benefit from a more thorough empirical analysis and expanded data collection

within the repair industry. This would better align our study with real-world planning

scenarios. An exciting future direction would be to investigate dynamic route adaptations

in real-time, responding to changes in repair kit compositions and new service requests as
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they arise during the day. This approach could significantly enhance the responsiveness

and efficiency of field service operations. Furthermore, the demonstrated effectiveness of

post-decision state learning, when combined with deep neural networks and fast roll-out

evaluation in managing large state and transition spaces, calls for continued development

to further explore and improve this relatively under-explored methodology.
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Gläscher, J. et al. (2010). “States versus rewards: dissociable neural prediction error

signals underlying model-based and model-free reinforcement learning”. Neuron 66(4),

pp. 585–595.

Graves, S. C. (1982). “Note—A Multiple-Item Inventory Model with a Job Completion

Criterion”. Management Science 28(11), pp. 1334–1337.

Hashimoto, H. et al. (2011). “A GRASP-based approach for technicians and interventions

scheduling for telecommunications”. Annals of Operations Research 183(1), pp. 143–

161.

Heeremans, D and L. Gelders (1995). “Multiple period repair kit problem with a job

completion criterion: A case study”. European Journal of Operational Research 81(2),

pp. 239–248.

Heinold, A., F. Meisel, and M. W. Ulmer (2022). “Primal-Dual Value Function Ap-

proximation for Stochastic Dynamic Intermodal Transportation with Eco-Labels”.

Transportation Science.

Hildebrandt, F. D., B. W. Thomas, and M. W. Ulmer (2022). “Opportunities for rein-

forcement learning in stochastic dynamic vehicle routing”. Computers & Operations

Research, p. 106071.



Bibliography 31

Joe, W. and H. C. Lau (2020). “Deep reinforcement learning approach to solve dynamic

vehicle routing problem with stochastic customers”. Proceedings of the international

Conference on Automated Planning and Scheduling. Vol. 30, pp. 394–402.

Johansson, L. et al. (2020). “Controlling distribution inventory systems with shipment

consolidation and compound Poisson demand”. European Journal of Operational

Research 280(1), pp. 90–101.

Kiesmüller, G. P. and A. De Kok (2005). A multi-item multi-echelon inventory system

with quantity-based order consolidation. Technische Universiteit Eindhoven.

Klibi, W. et al. (2010). “The stochastic multiperiod location transportation problem”.

Transportation Science 44(2), pp. 221–237.

Konda, V. and J. Tsitsiklis (1999). “Actor-critic algorithms”. Advances in Neural Infor-

mation Processing Systems 12.

Kovacs, A. A. et al. (2012). “Adaptive large neighborhood search for service technician

routing and scheduling problems”. Journal of Scheduling 15(5), pp. 579–600.

Kurata, H. and S.-H. Nam (2010). “After-sales service competition in a supply chain:

Optimization of customer satisfaction level or profit or both?” International Journal of

Production Economics 127(1), pp. 136–146.

Laitala, K. et al. (2021). “Increasing repair of household appliances, mobile phones and

clothing: Experiences from consumers and the repair industry”. Journal of Cleaner

Production 282, p. 125349.

Liu, S. and Z. Luo (2022). “On-Demand Delivery from Stores: Dynamic Dispatching and

Routing with Random Demand”. Manufacturing & Service Operations Management.

Malmberg, F. and J. Marklund (2023). “Evaluation and control of inventory distribution

systems with quantity based shipment consolidation”. Naval Research Logistics (NRL)

70(2), pp. 205–227.

Mamer, J. W. and S. A. Smith (1982). “Optimizing field repair kits based on job

completion rate”. Management Science 28(11), pp. 1328–1333.



Bibliography 32

Marklund, J. (2011). “Inventory control in divergent supply chains with time-based

dispatching and shipment consolidation”. Naval Research Logistics (NRL) 58(1),

pp. 59–71.

Mathlouthi, I., M. Gendreau, and J.-Y. Potvin (2021). “A metaheuristic based on

Tabu search for solving a technician routing and scheduling problem”. Computers &

Operations Research 125, p. 105079.

Mnih, V. et al. (2013). “Playing atari with deep reinforcement learning”. arXiv preprint

arXiv:1312.5602.

Mnih, V. et al. (2015). “Human-level control through deep reinforcement learning”.

Nature 518(7540), pp. 529–533.

Mnih, V. et al. (2016). “Asynchronous methods for deep reinforcement learning”. Inter-

national Conference on Machine Learning. PMLR, pp. 1928–1937.

Moreno, A., D. Alem, and D. Ferreira (2016). “Heuristic approaches for the multi-

period location-transportation problem with reuse of vehicles in emergency logistics”.

Computers & Operations Research 69, pp. 79–96.
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