
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Gloria Bondel, Florian Matthes

TUM-I23101

API Management Pattern Catalog for
Public, Partner, and Group Web APIs
with a Focus on Collaboration

API Management Pattern Catalog for Public,
Partner, and Group Web APIs with a Focus on

Collaboration

Gloria Bondel, Florian Matthes
Chair for Informatics 19

Software Engineering for Business Information Systems (sebis)
Technical University of Munich

Boltzmannstr. 3, 85748 Garching bei München, Germany
{gloria.bondel, matthes}@tum.de

December 2023
version 3.0

Acknowledgments

We want to thank all industry partners who participated in the creation of this Web API
management pattern catalog for their valuable insights and feedback. Furthermore, we want
to thank Andre Landgraf for the data collection and the design of the first pattern drafts.

Garching b. München, December 2023

Gloria Bondel
Prof. Dr. Florian Matthes

Abstract

Web Application Programming Interfaces (Web APIs) enable the emergence of platforms,
efficient partner integration, reuse of functionality, or compliance (e.g., in banking), thus
gaining attention from organizations. Managing Web APIs at the interface between several
stakeholders inside and outside an organization makes API management an inherently
collaborative organizational function. Nevertheless, explicitly formulated, context-dependent
best practices for collaboration between stakeholders in API management are scarce.

Therefore, we present a pattern catalog comprising 22 patterns and 37 pattern candidates
for managing Web APIs used across company borders, focusing on an API management
team’s interactions with external and internal stakeholders. The patterns apply to different
types of organizations, including established organizations. Moreover, we relate the patterns
to each other and to patterns belonging to previously published software pattern languages
and catalogs. Also, the pattern catalog defines a standardized taxonomy used throughout the
patterns.

ii

Contents

Acknowledgments i

Abstract ii

1. Introduction 1
1.1. Pattern Catalog Objective . 2
1.2. Pattern Catalog Design Approach . 3

1.2.1. Data Collection and Analysis . 4
1.2.2. Iterative Improvements . 5

2. API Management Pattern Catalog Taxonomy 8
2.1. Software Artifacts in Web API Management . 8
2.2. Stakeholders in Web API Management . 10

3. Structure of the API Management Pattern Catalog 12
3.1. Elements of the API Management Pattern Catalog 12
3.2. Visualization of the Pattern Catalog Structure 15
3.3. API Management Pattern Summaries . 16

3.3.1. Interface Type Patterns Summaries . 16
3.3.2. API Provider Internal Patterns Summaries 17
3.3.3. API Consumer-facing Patterns Summaries 18

4. Interface Type Patterns 19
4.1. Web API . 20
4.2. Client Library . 26
4.3. Frontend Venture . 34

5. API Provider Internal Patterns 39
5.1. API-as-a-Product . 40

iii

Contents

5.2. API Product Owner . 49
5.3. Collaborative Pilot Project . 54
5.4. Play-it-fast Approach . 59
5.5. Idea Backlog . 64
5.6. Testing Strategy . 69
5.7. API Clearing Process . 74
5.8. API Facade . 79
5.9. API Quality Monitoring . 85

6. API Consumer-facing Patterns 92
6.1. Role-based Marketing . 93
6.2. Customer Success Stories . 98
6.3. Newsletter . 103
6.4. Consumer-centric API Description . 108
6.5. Integration Guide . 113
6.6. Onboarding Self-service . 120
6.7. Integration Partner Program . 128
6.8. API provider-wide ticketing management . 134
6.9. Dedicated Support Team . 139
6.10. Service-Level Agreement (SLA) . 146

7. Pattern Candidates 153
7.1. Interface Type Pattern Candidates . 153
7.2. API Provider Internal Pattern Candidates . 154
7.3. API Consumer-facing Pattern Candidates . 156

8. Summary 160

A. Expert Interviews 162

B. Case Base 163

C. Related patterns and pattern languages/catalogs 165

List of Figures 167

List of Tables 169

Bibliography 170

iv

CHAPTER 1

Introduction

Web Application Programming Interfaces (Web APIs)1 are the defacto leading approach to
data exchange between organizations. A Web API is an interface between two software
components that defines how these components interact (De, 2017; Jacobson et al., 2012)
and uses HTTP(S) as communication protocol (Bermbach & Wittern, 2016; De, 2017). More
precisely, the components leverage HTTP as data transport protocol, e.g., SOAP/WSDL,
or as an application protocol that additionally dictates the semantics of the API behavior,
e.g., RESTful APIs (Daigneau, 2011). Common architectural styles of Web APIs are REST
(REpresentational State Transfer) (Fielding, 2000), RPC-style (Remote Procedure Call) (Maleshkova
et al., 2010; Santoro et al., 2019), and SOAP2 (Santoro et al., 2019; Spichale, 2017) architectures.

Nowadays, Web APIs are pervasive as interfaces enabling inter-organizational data ex-
change. An international survey questioning 800 IT leaders revealed that at the beginning of
2021, 96% of organizations used public or private APIs (MuleSoft, 2021). The organizations
using APIs report, among others, increased productivity and more innovation (MuleSoft,
2021). Moreover, the public sector recognizes the increasing importance of Web APIs for the
digital transformation of government services (Santoro et al., 2019). For example, in 2018,
the European Commission launched the “APIs4DGov: APIs for Digital Government” study
to analyze the use of Web APIs in governmental initiatives across Europe (Vaccari et al.,
2020). The study found that Web APIs are valuable assets for different European government
institutions.

Current Information Systems (IS) research conceptualizes Web APIs as resources at the
interface between an organization and third-party developers (de Reuver et al., 2018; Eaton et
al., 2015; Ghazawneh & Henfridsson, 2010, 2013; Karhu et al., 2018) that enable the emergence
of platforms (de Reuver et al., 2018; Eaton et al., 2015; Ghazawneh & Henfridsson, 2010,

1In the remainder of this document the term ‘API’ refers Web APIs if not explicitly stated otherwise.
2Since the publication of SOAP version 1.2, SOAP is not an acronym of Simple Object Access Protocol anymore

(Gudgin et al., 2007).

1

1. Introduction

2013; Karhu et al., 2018), the realization of new business models (De, 2017; Medjaoui et al.,
2018), efficient partner integration (Jacobson et al., 2012), or compliance (e.g., in banking).
Therefore, Web APIs are resources with strategic value (Yoo et al., 2010), and firms need to
design and maintain them carefully. The organizational function responsible for designing
and maintaining Web APIs as well as additional technical and social resources that enable
consumers to use an API is commonly denoted as API Management.

Hence, the management of Web APIs increases in importance for organizations.

1.1. Pattern Catalog Objective

However, the analysis of current research and practice-driven API management literature
reveals some gaps.

First, most current research on API management focuses on ex-post analyses’ of successful
platforms controlled by tech-giants like Apple3 and Google4 (de Reuver et al., 2018), neglecting
the perspective of established organizations in traditional industry sectors. Moreover, the
analyzed organizations are mostly located in entrepreneurial regions in North America,
especially Silicon Valley. Also, the research lacks clear instructions on API management for
practitioners.

More specific API management guidelines, including patterns, can be found in the practice-
driven API management literature. Yet, most of the practice-driven literature is concerned
with rather technical aspects of API management, e.g., how to achieve RESTful compliance or
improve security using particular authentication and authorization mechanisms (De, 2017).

Finally, an API management function cannot exist in isolation, but ongoing collaboration
and knowledge transfer (Islind et al., 2016) with various stakeholders inside and outside the
organization is necessary. Nevertheless, to the best of the authors’ knowledge, only a few best
practices for knowledge transfer and collaboration in API management have been explicitly
formalized.

As a result, the research objective of this pattern catalog is:

The identification of API management patterns focusing on collaboration in public,
partner, and group API initiatives, for different types of API provider organizations,
including established organizations located in Europe.

In the following, we break down the research objective into its aspects and elaborate on
each of them:

• Pattern form. Web API management initiatives have different characteristics and aim
to achieve different strategic goals. Therefore, API management best practices need
to consider the context in which an organization wants to apply them. Thus, we

3https://www.apple.com/de/ (accessed 20.12.2023).
4https://www.google.com/ (accessed 20.12.2023).

2

https://www.apple.com/de/
https://www.google.com/

1. Introduction

choose to document Web API management best practices as patterns. The purpose of
patterns is to enable knowledge dissemination in the respective domain (Buckl et al.,
2013). In addition, patterns document operational knowledge on current practices for
practitioners and encode knowledge on the evolution of a discipline for academia (Buckl
et al., 2008; Buckl et al., 2013; Khosroshahi et al., 2015). Also, recording best practices
as patterns allows for the stepwise creation and adaptation of an API management
function tailored to the context of an organization (Khosroshahi et al., 2015). In software
engineering, several pattern languages have already been successfully introduced, e.g.,
by Buschmann et al. (1996) and Gamma et al. (1994).

• Collaboration. We aim at identifying API management patterns focusing on collaboration
between an API management team and other internal and external stakeholders of a
Web API initiative.

• Organizational affiliation. The pattern catalog focuses on API initiatives with the API
provider and API consumer belonging to different organizations, i.e., public, partner,
and group API initiatives.

• Organizational scope. We derive the patterns by analyzing API initiatives of different
types of organizations, including established European and young digital organizations
seated in the US. Thus, the pattern catalog applies to different types of organizations,
including established organizations in Europe.

• API provider perspective. While we aim to encode knowledge for all stakeholders involved
in API management, we document them from the perspective of the API provider.

Additionally, we present consistent API management terminology, allowing for easy pattern
integration. Also, standardized terminology fosters the communication and evolution of
patterns (Khosroshahi et al., 2015).

The patterns and terminology contribute to practice since API management teams can
explore proven solutions for specific concerns, considering their respective API initiative
characteristics. Additionally, they can use the pattern catalog to benchmark their practices
with proven solutions. The scientific contribution is the documentation of state-of-the-art
collaborative activities between API management stakeholders that provides a basis for
theorizing on collaboration and knowledge transfer within and outside an organization. In
the future, we aim to extend and revise the API management pattern catalog based on new
insights from existing or new cases.

1.2. Pattern Catalog Design Approach

The goal of the research approach is to create a pattern catalog supporting API provider
teams in API management activities focusing on collaboration with stakeholders. Hence, we
collected data from different data sources, analyzed the data, and iteratively improved the

3

1. Introduction

pattern catalog based on feedback from different stakeholders5. We will discuss the data
collection and analysis, and the iterative improvements in the following.

1.2.1. Data Collection and Analysis

Each pattern description combines information from expert interviews, publicly available
information on selected public API initiatives, other software pattern languages and catalogs,
and practice-driven books on API management. In the following, we will describe each of
these data sources.

Expert Interviews

Since API management patterns aim at capturing current best practices, we interviewed
practitioners working in API management to collect data as previously reported in Bondel
et al. (2022) and Landgraf (2021). We conducted 16 semi-structured interviews with 15
interviewees between August 2020 and January 2021. An overview of the interviews is
provided in Appendix A. The interviews focused on past and current tasks or issues that the
interviewees face in their API management daily work. Furthermore, we discussed solutions
to address the tasks or solve the issues successfully. From these interviews, we created a
case base holding 14 unique cases. We enriched the information from the interviews with
publicly available information on the cases, if available. Moreover, we assigned each case
an ID consisting of the letter ‘C’ and a number (see Appendix B). In the remainder of this
catalog, we use the ID to link information on practices to the cases in which we observed
them to enable reproducibility of results.

In parallel, we analyzed the collected data by applying a Grounded Theory Methodology
(GTM) approach that guides qualitative content analysis in Information Systems (IS) research
(Wiesche et al., 2017). We first identified pattern candidates. Next, we analyzed which pattern
candidates can be conceptualized as genuine patterns applying the rule of three (Coplien, 1996)
(also applied by Buckl et al. (2008), Khosroshahi et al. (2015), and Uludağ et al. (2019)). The
rule of three states that "[...] a good pattern should have three examples that show three insightfully
different implementations." (Coplien, 1996, p. 35).

The data analysis was conducted by two researchers, with the second researcher reviewing
and building on the results of the initial data analysis6.

5Formally we applied a design science research approach (Hevner, 2007; Hevner et al., 2004). However, for
reasons of readability, we summarize the process into data collection, analysis, and iterative improvements.

6The results of the first data analysis are published in student thesis Landgraf (2021). The second researcher
used the initially identified pattern and pattern candidate names as input to the second round of data analysis
to validate and refine the results.

4

1. Introduction

Selected Public API Initiatives

In addition, we add the two public API initiatives Stripe7, and Twilio8 as additional cases to
the case base, i.e., we systematically reviewed if and how these public API initiatives apply
previously identified pattern candidates. These two cases add further insights since they
represent initiatives of organizations that use Web APIs as their primary product distribution
channel. An overview of the final case base is presented in Appendix B.

Software Pattern Catalogs and Languages

Moreover, we analyzed existing software pattern catalogs and languages to identify related,
alternative, or overlapping patterns and enrich our pattern descriptions. Tab. 1.1 presents
an overview of the reviewed pattern collections. An overview of the relation between these
software patterns and the Web API management patterns presented in the pattern catalog at
hand is provided in Appendix C.

Practice-driven API Management Literature

Moreover, we systematically reviewed relevant, practice-driven literature on API management
to enrich and validate our pattern descriptions. The reviewed practice-driven Web API
management literature comprises De (2017), Jacobson et al. (2012), Medjaoui et al. (2018), and
Spichale (2017).

1.2.2. Iterative Improvements

In addition to enriching the pattern descriptions with information from different sources,
we iteratively improved the pattern catalog based on feedback from the scientific pattern
community and practitioners. In the following, we will describe the feedback and adoption
processes.

Feedback from the Scientific Pattern Community

We adopted the API Management Pattern Catalog to meet the requirements and best practices
of the scientific software engineering pattern community. We collected feedback from the
scientific pattern community by participating in the European Conference on Pattern Lan-
guages of Programs 2021 (EuroPLoP’21)9. The Hillside Group10, the defacto leading research
community for software engineering pattern creation, organizes the conference. Significant
changes resulting from the feedback are a new pattern structure and a new approach to
relating patterns. As part of this process, we published Bondel et al. (2022), which presents
an intermediate summary of the pattern catalog and initial description of two patterns.

7https://stripe.com/ (accessed 20.12.2023).
8https://www.twilio.com/ (accessed 20.12.2023).
9https://www.europlop.net/content/conference (accessed 20.12.2023).

10https://hillside.net/ (accessed 20.12.2023).

5

https://stripe.com/
https://www.twilio.com/
https://www.europlop.net/content/conference
https://hillside.net/

1. Introduction

Table 1.1.: Overview of pattern languages and catalogs reviewed and related to patterns in
this API management pattern catalog.

Name of the Pattern Language/Catalog Source
Patterns for API Design (previously known
as Microservice API Patterns (MAP))

Zimmermann et al. (2017), Stocker et al.
(2018) and Zdun et al. (2018), Lübke et al.
(2019), Zimmermann, Lübke, et al. (2020),
Zimmermann, Pautasso, et al. (2020), Zim-
mermann et al. (2019), and Zimmermann et
al. (2022)

Design Patterns Geewax (2021)
Patterns for RESTful Conversations Pautasso et al. (2016)
Control-Flow Patterns for Decentralized
RESTful Service Composition

Bellido et al. (2013)

Service Design Patterns Daigneau (2011)
SOA Design Patterns Erl (2008)
SOA Patterns Rotem-Gal-Oz (2012)
Microservices Patterns Richardson (2019) and Richardson (n.d.)
Microservices Patterns Newman (2019) and Newman (n.d.)
Enterprise Integration Patterns Hohpe and Woolf (2003) and Hohpe (n.d.)
Remoting Patterns Völter et al. (2004)
Patterns for Enterprise Application Architec-
ture

Fowler (2003)

Object-oriented Software Design Patterns
(also known as Gang of Four or GoF book)

Gamma et al. (1994)

Pattern-Oriented Software Architecture (also
known as POSA series)

Buschmann et al. (1996), Schmidt et al. (2000),
Kircher and Jain (2004), and Buschmann et al.
(2007a, 2007b)

Patterns for High-Capability Internet-Based
Systems

Dyson and Longshaw (2004)

6

1. Introduction

Feedback from Practitioners

We used a survey to collect feedback on the pattern catalog’s applicability, comprehensi-
bility/usability, completeness, and correctness from a practitioner’s viewpoint. Overall,
18 practitioners responded to the survey. The practitioners evaluated the pattern catalog
as applicable to real-world settings, understandable, usable, and correct. Also, individual
pattern descriptions meet the readers’ information needs. However, future work should
comprise the identification of further patterns and the evolution of existing patterns. Also,
the pattern catalog should be published as an HTML document to improve its searchability
and navigability.

7

CHAPTER 2

API Management Pattern Catalog Taxonomy

The basic concepts and relationships between software artifacts and stakeholders in API man-
agement are illustrated in Fig. 2.1. The model aims to create a clear and shared understanding
and basic naming conventions for the pattern catalog. A consistent taxonomy is an essential
aspect of a pattern language (Buckl et al., 2008; Buckl et al., 2013; Khosroshahi et al., 2015).
The model is derived from literature and interview data and has previously been published in
Bondel et al. (2022)1. We will first focus on the software artifacts, followed by the stakeholders
involved in API management.

2.1. Software Artifacts in Web API Management

The basic concepts and relationships between software artifacts in API management are
illustrated in the lower part of Fig. 2.1.

"The API management software artifacts are a backend, an API gateway, a web
API, an API developer portal, and the API-consuming [client] application. The
backend can be any software component that provides a particular capability, i.e.,
functionality or data, that should be made accessible to other stakeholders. The
Web API is used to make the functionality or data of the backend accessible. A
Web API is an interface available over the public internet and thus can be accessed
using the HTTP protocol. An [client] application integrates the functionality or
data provided via the Web API. This application could itself also be a backend
providing (enhanced) functionality or data to further applications.

1In this chapter, we highlight direct quotes of Bondel et al. (2022) using quotation marks, indenting the respective
paragraphs, and adding the source at the end of the quote (i.e., – (Bondel et al., 2022)). A quote can span
several paragraphs. We highlight changes using squared brackets.

8

2. API Management Pattern Catalog Taxonomy

Figure 2.1.: Conceptual overview of software artifacts and stakeholders involved in API
management (adapted from Bondel et al. (2022)).

Besides, two types of software platforms support API management, i.e., the
API gateway and the API developer portal. The API gateway is a reverse proxy
that intercepts incoming requests from clients. Hence, an API gateway is an
infrastructure platform managing the API provider and consumer interaction
at runtime (Zimmermann et al., 2022). Management capabilities provided by
the API gateway include authentication, rate limiting, statistics and analytics,
monitoring, policies, alerts, and security [(De, 2017)]. The API developer portal is
a web application that allows the API provider to communicate information to
API consumers needed to find and use an API. This information should comprise
the API documentation including information on the APIs location (URI) and
the structure of valid API calls. Additional information can contain, among
other things, terms and conditions, contact information, marketing information,
changelogs, prizing information, and social content like forums or blogs (De, 2017).
Also, self-services supporting the API consumer can be part of the API portal,
e.g., a self-service for API consumer registration (De, 2017). Often, the API portal
shares data with the API gateway, for example to ensure that only registered users
can make requests to an API. Both API management software components, the
API gateway and the API developer portal, are optional.

9

2. API Management Pattern Catalog Taxonomy

An API initiative denotes any new or ongoing endeavor of providing a Web API to
potential consumers, irrespective of the use of an API gateway or API portal."

– (Bondel et al., 2022)

2.2. Stakeholders in Web API Management

We identify nine stakeholder groups as illustrated in the upper part of Fig. 2.1.

"[...] We visualize the collaboration between the API provider and other stakehold-
ers. While the other stakeholders also communicate, we did not illustrate those
collaboration flows for conciseness reasons. Also, a stakeholder role does not have
to be occupied by one or more dedicated persons. Instead, a person could have
several roles.

The API provider is responsible for carrying out API management tasks. The
API management comprises all tasks related to designing and maintaining the
Web API, the API gateway, and the API developer portal. An API provider team
includes business and technical roles, with business roles defining and pursuing
business goals and technical roles aiming to ensure technical KPIs (Medjaoui
et al., 2018). The tasks of an API provider comprises all activities aimed towards
realizing the goals defined by the API management lifecycle. In many cases,
backend developers also design and maintain the respective Web API and thus
occupy two roles.

The API provider team also collaborates with the API consumer. The API consumer
is the team that integrates the Web API into its application. Such an application
can be either an end-user application or an application that other API consumers
use, e.g., an API wrapper. Thus, communication can include inter alia passing
on additional information on the API functionality, change requests, or issue
reporting. The API consumer can belong to a different organization than the API
provider team. The differences in the organizational affiliation between the API
provider and the API consumer are discussed in the literature (De, 2017; Jacobson
et al., 2012; Santoro et al., 2019). Accordingly, if the API provider and the API
consumer belong to the same organization, the API is categorized as a private
API. If the actors belong to different organizations, the API can be a partner
or a public API. Partner APIs are accessible only for selected external partners,
while public APIs are accessible to every interested developer. The presented API
management pattern language focuses on partner and public APIs. The end-user
denotes the person using the application and thus mainly communicates with the
API consumer who provides the application.

The API provider also collaborates with the backend provider who designs and
maintains the backend. Here, the collaboration mainly focuses on change requests
and bug reporting for backend functionality that the API consumer or monitoring

10

2. API Management Pattern Catalog Taxonomy

tools report to the API provider team. The API provider and the backend provider
often belong to the same organization, thus the organization makes its own
functionality or data accessible to external consumers. However, there are two
settings in which the API provider and the backend provider belong to different
organizations. In the first setting, the API provider operates a marketplace,
that allows other backend and API providers to publish APIs. Still, all API
marketplaces that are part of our case base also offer APIs provided by the API
providers organization. Secondly, we observed two cases in corporate group
settings where the API provider is employed by one subsidiary firm focused
on IT provision, and the backend providers are other subsidiaries in the group.
Nevertheless, the groups’ overall goals still guide the interaction between the
backend provider and the API provider.

Additionally, several other stakeholders can interact with the API provider team.
First of all, the upper management can support the API provider, e.g., by promoting
API management in strategic initiatives. The API management team needs to
involve the legal department to ensure privacy conformance of APIs. Moreover,
the legal department can negotiate contracts with partners using the APIs. Sales
& Marketing supports the marketing activities for new APIs or enforces com-
pliance with corporate identity specifications. [The integration partner supports
API consumers lacking technical capabilities to integrate a Web API.] Finally, an
existing customer support can be a contact point for API consumers, which then
forwards tickets to the API provider team. All these stakeholders belong to the
same organizations as the API provider.

Our pattern language focuses on collaboration patterns for the API provider."

– (Bondel et al., 2022)

This pattern catalog presents Web API management patterns from the API provider
perspective.

11

CHAPTER 3

Structure of the API Management Pattern Catalog

In this section, we describe the elements of the API management pattern catalog, provide a
visual overview of the instantiated patterns and their relationships, and present summaries
of each pattern.

3.1. Elements of the API Management Pattern Catalog

This API management pattern catalog consists of patterns and their relations.
A pattern describes an abstract solution to a problem that captures the solution’s core

without prescribing any implementation details (Alexander et al., 1977; Henfridsson et al.,
2014). Thus, API management teams can reuse patterns and adapt them to different contexts
(Buckl et al., 2013). A pattern has to meet the rule of three (Coplien, 1996), i.e., a solution
approach is only a pattern if we observed its successful implementation in at least three cases.
Thus, the presented patterns are proven solutions for collaboration in API management.

A pattern catalog denotes a collection of related patterns that together do not entirely cover
a problem domain (Coplien, 1996). Since the presented patterns do not completely cover the
API management problem domain, the document at hand is a pattern catalog. In comparison,
a pattern language is a collection of patterns and their relationships that address a problem
domain exhaustively (Alexander et al., 1977; Meszaros & Doble, 1997). Many of the most
renowned and used pattern collections are pattern catalogs (Coplien, 1996), e.g., Buschmann
et al. (1996) and Gamma et al. (1994).

Patterns should have a consistent structure for convenience and clarity reasons (Alexander
et al., 1977). Therefore, each pattern in this catalog has the same set of mandatory and
optional elements. We describe each of these elements in detail in the following:

• Each pattern has a name and potentially one or more aliases. A name allows readers
to find relevant patterns quickly and can become part of an API management team’s

12

3. Structure of the API Management Pattern Catalog

vocabulary (Coplien, 1996).

• Furthermore, each pattern belongs to one of the pattern categories Interface Type Pattern,
API Provider Internal Patterns, and API Consumer-facing Patterns. Interface Type Patterns
capture different approaches to making functionality and data provided via Web API
available to API consumers. API Provider Internal Patterns describe patterns that
require the API provider team to collaborate mainly with API provider organization
internal stakeholders. In contrast, API Consumer-facing Patterns are concerned with
the interaction between the API provider and consumer.

• A short summary of each pattern allows the reader to grasp the essence of a pattern
quickly.

• A sketch visualizes the patterns basic concept (Coplien, 1996).

• The context describes the situation in which the reader can apply a pattern (Meszaros
& Doble, 1997). The situation imposes constraints that the solution needs to address
(Meszaros & Doble, 1997).

• A concern captures the (design) problem that the pattern addresses (Coplien, 1996;
Meszaros & Doble, 1997). Concerns usually represent the interests and goals of the
stakeholders applying a pattern (Buckl et al., 2008; Khosroshahi et al., 2015; Uludağ
et al., 2019), i.e., the API provider team.

• Patterns address concerns that are difficult to solve due to contradictory goals and
considerations of stakeholders (Coplien, 1996; Meszaros & Doble, 1997). The forces
describe these trade-offs (Coplien, 1996; Meszaros & Doble, 1997). The context usually
indicates which forces the pattern should optimize (Meszaros & Doble, 1997). Moreover,
understanding the forces allows the reader to better understand the concern and the
solution (Coplien, 1996).

• The solution captures the core approach to solving the concern in a given context
(Meszaros & Doble, 1997). The solution provides enough detail to enable the API
provider team to apply the pattern. Nevertheless, simultaneously, the solution is generic
enough to apply to many contexts (Coplien, 1996). Furthermore, the solution dictates
how the forces are resolved (Meszaros & Doble, 1997). In some cases, we observed
variants of a solution.

• The stakeholders list all roles involved, affected, or influenced by API management.
Stakeholders can be internal or external to the API provider team’s organization. This
pattern catalog focuses on the API provider team, including the Web API provider, the
API gateway provider, the API developer portal provider, and the API governance role.

• The implementation hints provide additional information supporting the successful
implementation of the pattern.

13

3. Structure of the API Management Pattern Catalog

• The consequences pick up on the forces and explain which considerations the solution
optimizes at the expense of others (Gamma et al., 1994).

• The related patterns within this pattern catalog section relates a pattern to other
patterns presented in this pattern catalog.

• Similarly, other related patterns point to patterns already published by other authors.
Tab. 1.1 provides an overview of the reviewed pattern catalogs and languages. This
section is only instantiated if the respective pattern relates to any of these other patterns.

• Known uses describe the cases in which we observed the pattern and, if possible,
provide some details on its implementation. Since we apply the rule of three (Coplien,
1996), each pattern has at least three known uses.

Finally, we also present pattern candidates. Pattern candidates are solution approaches we
observed in our case base but did not meet the rule of three (Coplien, 1996), i.e., we observed
them only in one or two cases. However, they bear the potential to become patterns in the
future. Hence, we briefly describe the essence of each pattern candidate.

14

3. Structure of the API Management Pattern Catalog

3.2. Visualization of the Pattern Catalog Structure

In Fig 3.1, we make the relations between patterns explicit.

Figure 3.1.: Visualization Web API management pattern relations.

15

3. Structure of the API Management Pattern Catalog

3.3. API Management Pattern Summaries

In the following sections, we present short summaries of each pattern. The overview enables
readers to gain a quick understanding of the pattern language and identify patterns relevant
to their problem at hand.

3.3.1. Interface Type Patterns Summaries

Table 3.1.: Summaries of the Interface Type Patterns.
Pattern Name Pattern Solution Description
Web API A provider uses a Web Application Programming Interface (Web API)

that exposes functionality or data via the public internet, i.e., uses
HTTP(S) as communication protocol (Bermbach & Wittern, 2016; De,
2017; Santoro et al., 2019). The Web API decouples the functionalities
implementation from the interface that makes it accessible (De, 2017;
Medjaoui et al., 2018; Spichale, 2017). Also, the Web API defines the
contract for interactions between the backend and the client application
(De, 2017; Jacobson et al., 2012).

Client
Library

A client library wraps a Web API and enables consumers to access it
using code in a specific programming language and compliant with a
certain framework (De, 2017; C3). Hence, the application consumer does
not have to interact with the Web API directly but indirectly through the
library functions in the programming language of choice.

Frontend
Venture

The API provider enables consumers who cannot, for any reason, inte-
grate an API or client library, to still use the functionality or data via
a simple frontend, i.e., a website with fields and buttons that trigger
API functionality. If enough consumers are interested in the frontend,
a product team can take over the development and maintenance of the
frontend.

16

3. Structure of the API Management Pattern Catalog

3.3.2. API Provider Internal Patterns Summaries

Table 3.2.: Summaries of the API Provider Internal Patterns.
Pattern Name Pattern Solution Description
API-as-a-
Product

The API provider treats APIs like any other consumer-facing (software)
product, including technical, business, legal, marketing, and other as-
pects.

API Product
Owner

An API product owner is responsible for an API’s economic success, de-
signs and evolves the API according to consumers’ needs, and represents
the API internally.

Collaborative
Pilot
Project

The API provider designs a new API iteratively in close collaboration
with one or a limited set of API consumers to increase the likelihood of
the API meeting API consumers’ needs.

Play-it-fast
Approach

The API provider designs and publishes an API based on initially pro-
vided consumer requirements but without consumer collaboration during
API design and implementation (C4) to achieve fast time-to-market.

Idea Backlog An idea backlog is a dynamic list that stores and aggregates consumer
wishes for API endpoints derived from consumer support requests, dis-
cussions, or surveys.

Testing
Strategy

A centrally defined testing strategy enforces the testing of new APIs or
changes to existing APIs to reduce the likelihood of unexpected behavior
of new or changed APIs or backends (C3).

Data
Clearing
Process

A data clearing process ensures that all API endpoints comply with
legal and strategic requirements before they are published externally by
involving different stakeholders who provide feedback and need to sign
off on a new API or the change to an existing API.

API Facade An API facade abstracts the invocation of several backend services into a
single API (Gamma et al., 1994). The API facade thereby supports the
tailoring of APIs that fit the user stories of the API consumers.

API Quality
Monitoring

API quality monitoring describes continuously testing an API’s non-
functional properties to detect anomalies and take countermeasures
quickly.

17

3. Structure of the API Management Pattern Catalog

3.3.3. API Consumer-facing Patterns Summaries

Table 3.3.: Summaries of the API Consumer-facing Patterns.
Pattern Name Pattern Solution Description
Role-based
Marketing

Role-based marketing denotes the clear separation of marketing material
and other consumer-facing resources targeted at different user roles in
the developer portal.

Customer
Success
Stories

A customer success story exemplifies an API consumer’s successfully
finalized use case or product implementation utilizing the provider’s
APIs (C3) with the aim to demonstrate an API’s potential to future
consumers.

Newsletter The API provider publishes summaries of changes to existing APIs (De,
2017) and other announcements related to APIs in a newsletter to keep
current and potential future API consumers up-to-date.

Consumer-
centric API
Description

The API provider describes the API products functionality from a con-
sumer perspective as use cases or user stories addressing a consumer’s
business need.

Integration
Guide

An integration guide documents the implementation of common function-
ality using step-by-step instructions (Spichale, 2017) to reduce consumers’
effort implementing the specific functionality (Medjaoui et al., 2018).

Onboarding
Self-service

An onboarding self-service automates (parts of) the API onboarding pro-
cess by allowing API consumers to choose a monetization plan, register a
user account, generate authentication credentials, and register a finalized
client application without interacting with API provider team members.

Integration
Partner
Program

API providers support API consumers with finding suitable integration
partners by creating and maintaining a curated list of potential integration
partners that meet specific quality criteria.

API provider-
wide
Ticketing
Management

The API provider uses a uniform ticketing system that manages all API-
related tickets and is available to all teams involved in API provision.
Hence, the ticketing system enables transparency, e.g., on ticket resolution
times or recurring issues.

Dedicated
Support Team

The dedicated support team accepts all API consumers’ questions, service
requests, and incident reports and immediately answers or resolves
low- or medium-complexity tickets. Only high-complexity tickets are
forwarded to the respective experts, relieving the API and backend
provider teams of a portion of the support activities.

Service
Level
Agreement
(SLA)

An SLA is an agreement between two parties that specifies the quality
of services, i.e., the APIs’ non-functional properties and support service
levels, as well as contractual punishments in case of SLA breaches. Hence,
an SLA increases API consumers’ trust in an API’s quality.

18

CHAPTER 4

Interface Type Patterns

This chapter presents three Interface Type Patterns. Interface Type Patterns document the
technical components and resources via which the API provider makes data and functionality
available to consumers. The API provider should carefully choose between Interface Type
Patterns depending on the API provider’s strategy and the target consumers’ capabilities.

19

4. Interface Type Patterns

4.1. Web API

Pattern Overview
Name Web API
Pattern Type Interface Type Pattern
Summary A provider uses a Web Application Programming Interface (Web API) that

exposes functionality or data via the public internet, i.e., uses HTTP(S) as
communication protocol (Bermbach & Wittern, 2016; De, 2017; Santoro et al.,
2019). The Web API decouples the functionalities implementation from the
interface that makes it accessible (De, 2017; Medjaoui et al., 2018; Spichale, 2017).
Also, the Web API defines the contract for interactions between the backend
and the client application (De, 2017; Jacobson et al., 2012).

Figure 4.1.: A Web API makes functionality and data accessible to API consumers via the
HTTP protocol.

Context:

A system provides some valuable assets, i.e., functionality or data. The organization that owns
the system wants to make these assets available to other organizations or the public with
the goal of enabling platformization (de Reuver et al., 2018; Eaton et al., 2015; Ghazawneh
& Henfridsson, 2010, 2013; Karhu et al., 2018), realizing new business models (De, 2017;
Medjaoui et al., 2018), enabling efficient partner integration (Jacobson et al., 2012), or achieving
compliance (e.g., in banking or automotive) (Bondel et al., 2020).

Concern:

How can an organization (provider) make functionality or data accessible to other organiza-
tions (consumers)?

Forces:

• Stability. Close coupling between the backend and a client application forces the
developers of the client application to change or at least test the integration after each
change to the backend (Erl, 2008; Spichale, 2017).

20

4. Interface Type Patterns

• Information hiding. Direct integration between a backend and client application requires
that the client application developer knows and understands the backend implementa-
tion.

• Programming language and platform independence. Direct interaction between a backend
and a frontend requires that both software components communicate using the same
programming language or platform. If the components do not communicate in the
same programming language or use the same platform, the provider or consumer have
to implement a wrapper.

• Security. Exposing internal assets via the web creates a vulnerability that adversaries
could try to exploit (De, 2017).

• Web API quality. Badly implemented web API interfaces are difficult to understand
and use for API consumers and, thus, lead to increased development costs for API
consumers. If API consumers can choose between Web APIs, they may abandon a
low-quality Web API (Spichale, 2017).

Solution:

The asset owner implements a Web Application Programming Interface (Web API). Generally,
APIs separate the backend implementing a functionality or managing data from the interface
that makes these assets accessible to consumers (De, 2017; Medjaoui et al., 2018; Spichale,
2017). Hence, the API is an interface between two software components that define how
these components interact, including the data format specification and the protocol used to
transport the data (De, 2017; Jacobson et al., 2012). Therefore, an API is often described as a
"contract" between two applications (De, 2017; Jacobson et al., 2012). A Web API is a specific
type of API that exposes its endpoints over the public internet (Santoro et al., 2019), i.e.,
leverages HTTP as transport protocol for data or as an application protocol that additionally
dictates the semantics for API behavior (Daigneau, 2011).

Stakeholders:

The API provider has to collaborate with the backend provider to make the backend functionality
or data accessible via Web API. The API provider is responsible for designing, publishing,
and maintaining the Web API. Furthermore, the API provider has to collaborate with the API
consumers to identify the required level of quality.

Implementation Hints:

Web API types. Web APIs can be categorized into different types depending on the organi-
zational affiliation of the API consumer. First, private APIs describe Web APIs that are used
either by internal developers (internal APIs) or by a restricted set of partners (partner APIs)
(De, 2017; Jacobson et al., 2012). In addition, we introduce a third type of private API, group
APIs, which describe Web APIs that one subsidiary makes accessible to other subsidiaries

21

4. Interface Type Patterns

within a group setting. In comparison, public APIs are accessible to every internal and external
developer (De, 2017) as long as they adhere to the terms of use (Jacobson et al., 2012) and
potentially pay a usage fee.

In this Web API management pattern catalog, we focus exclusively on Web APIs with
consumers outside the API provider’s organization. Hence, public, partner, and group Web
APIs are in scope, while internal APIs are out of scope.

Web API Management. A Web API is a software component that the API provider imple-
ments to achieve a business goal (Jacobson et al., 2012; Medjaoui et al., 2018). Hence, the API
provider has to manage the Web API throughout its lifecycle (Medjaoui et al., 2018). Such API
management comprises, e.g., testing, documenting, publishing, monitoring, securing, and
handling changes of the API (Medjaoui et al., 2018) similar to classic software development
management.

Architectural styles. API providers can implement Web APIs using different architectural
styles. The most prominent architectural style for Web APIs is REST since it uses many HTTP
built-in functionalities (De, 2017). REST stands for REpresentational State Transfer and was
published by Fielding (2000).

An alternative to REST are RPC-style (Remote Procedure Call) Web APIs (Daigneau, 2011;
Maleshkova et al., 2010; Santoro et al., 2019). RPC-style APIs define their own operations,
which consumers can invoke using HTTP methods (Maleshkova et al., 2010).

Finally, a relevant architectural style for Web APIs is SOAP (Simple Object Access Protocol,
often also referred to as Web Services (Daigneau, 2011; Santoro et al., 2019; Spichale, 2017).
SOAP usually uses HTTP(S) as a communication protocol, but it could also be implemented
using another protocol, e.g., SMTP (Spichale, 2017).

Consequences:

Benefits:

• Stability. A Web API separates the backend that implements functionality from the Web
API interface that makes the functionality accessible to API consumers. Hence, the API
provider can make changes to the backend without affecting the client integration as
long as the Web API interface model remains the same. As a result, integrations are
more stable (Medjaoui et al., 2018; Spichale, 2017).

• Information hiding. The separation between the backend and the Web API allows the
API provider to hide the details and complexities of the backend implementation from
the client developer (Bermbach & Wittern, 2016; Spichale, 2017).

• Programming language and platform independence. Web APIs are programming language
and platform independent due to their use of the HTTP protocol (Spichale, 2017).

• Security. There are many best practices and patterns for ensuring the security of Web
APIs (De, 2017; Jacobson et al., 2012; Medjaoui et al., 2018; Spichale, 2017). However,
the design and implementation of security measures require effort.

22

4. Interface Type Patterns

Drawbacks:

• Stability. While the API provider can easily change the backend implementation without
impacting the API consumer, changes to the Web API itself can lead to the need to
adopt client applications (Spichale, 2017). If such changes happen frequently, it can
frustrate the consumers (De, 2017). Hence, the API provider has to carefully evaluate,
design, implement, and communicate such changes.

• Web API quality. API providers have to design, implement, and maintain high-quality
Web APIs. This pertains not only to the technical aspects of Web APIs but also to
additional resources like documentation and processes like onboarding.

Related Patterns within this Pattern Catalog:

The pattern Web API provides the basis for all patterns within this catalog. Therefore, API
providers can apply the pattern in conjunction with all other patterns.

Other Related Patterns:

First, Geewax (2021) presents a collection of API Design Patterns that document the technical
implementation of a Web API.

Pautasso et al. (2016) presents patterns describing sequences of interactions between a REST
API and a client that realize specific non-functional requirements. An API provider can refer
to these patterns when implementing the Web API as a REST API.

Similarly, Bellido et al. (2013) documents four types of control-flows for decentralized
RESTful service composition with different variations. An API provider can use these
patterns when designing a Web API.

Daigneau (2011) describes 25 web service design patterns, including web service API
styles, client-service interaction styles, request and response management, web service
implementation styles, web service infrastructure, and web service evolution patterns. The
web service API styles comprise RPC APIs, Message APIs, and Resource APIs. An API
provider can use these patterns to implement a Web API.

Hohpe and Woolf (2003) presents a pattern language for enterprise integration focusing
on asynchronous messaging. Their root pattern Messaging is a foundation for Web API
implementation.

In comparison, Richardson (2019) and Richardson (n.d.) present the pattern Messaging, and
alternatively, the pattern Remote Procedure Invocation (RPI). While Messaging describes
asynchronous communication between services, RPI captures the concept of a client interact-
ing with a service via a synchronous, remote procedure invocation-based protocol. Hence,
both approaches can enable the realization of Web APIs.

23

4. Interface Type Patterns

Similarly, Erl (2008) presents Service Messaging. Service Messaging captures the ap-
proach of exchanging data between applications via "[...] independent units of communication
routed via the underlying infrastructure" (Erl, 2008, p. 533). Moreover, Erl (2008) emphasizes
the need for delivery guarantees, security, state and context management, efficient real-time
interactions, and coordination of cross-service transactions to enable SOA based on mes-
saging. Also, several other patterns specialize Service Messaging in Erl (2008), e.g., State
Messaging, Service Callback, and Reliable Messaging.

Known Uses:

We observed the pattern in 13 cases:

The API initiative of C2 makes simulation and modeling algorithms accessible. The Web
APIs follow the REST architectural style.

The API portal provider of an automotive organization (C3) makes vehicle data available
to car owners and maintenance data available to workshops via Web APIs implemented
following the REST architectural style.

Cases C4 and C5 represent a software service provider’s public and partner API initiatives.
End users with a license for the API provider’s software product automatically have access
to the public API to enable customized system integration. The partner API allows other
software providers to create integrations with their software products, thus creating more
integrated solutions for end-users. Again, these Web APIs follow the REST architectural style.

In C6, the API provider is a subsidiary within a mobility group that offers API manage-
ment services. The backend providers and API consumers are both subsidiaries within the
same group. The API management service supports API providers with Web APIs’ design,
implementation, and maintenance.

The organization C7 is an insurance subsidiary that provides insurance services within a
group setting. The API management team offers a mix of Web APIs and frontends. If the
API provider exposes a Web API or a frontend depends on the nature of the product. The
products that need much integration into backend systems, customization, or branding are
exposed as Web APIs. Additionally, the API provider provides frontends for products that do
not need much integration.

Next, in C9, the organization offers a marketplace for IoT applications. The API provider
again offers Web APIs and frontends, however, most consumers prefer frontends. Nevertheless,
the API provider also provides Web APIs to enable integration and automation.

The API provider of C10 offers partner Web APIs for easy integration of a financial service
into websites and online shops to major clients.

Case C12 captures a financial service provider that provides SaaS software to end-users.
The API provider uses Web APIs to enable other software providers to integrate their software

24

4. Interface Type Patterns

with the SaaS system of C12, thus offering an integrated solution to the end users.

In C13, the organization offers a public marketplace for financial services applications.
The API marketplace provider offers core platform software, and third-party developers can
build additional modules for the platform using Web APIs. Users can buy the core platform
software and add pre-integrated modules according to their needs.

C14 captures the Web API of a SaaS software product to which users with a software
license automatically have access. Access to the Web API enables the end-users to integrate
the software product with their application landscape.

Stripe (C16) provides an API for online payment processing1. The Stripe API is a REST
API2. Stripe also offers several server-side and client-side libraries3.

Twilio (C17) is an API provider for customer engagement using voice, messaging, video,
and email services4. Twilio offers REST APIs5 and several client libraries for server-side and
client-side programming6.

Cross-case observations:
Since the provision of a Web API is the requirement for inclusion as a case in this Web API

management catalog, we listed all cases. There is only one exception, case C11, since the
provider decided to exclusively publish an SDK. The included cases vary concerning their
scope, size, and monetization.

1https://stripe.com/en-de/about (accessed 20.12.2023).
2https://stripe.com/docs/api?lang=ruby (accessed 20.12.2023).
3https://stripe.com/docs/api?lang=ruby (accessed 20.12.2023).
4https://www.twilio.com/ (accessed 20.12.2023).
5https://www.twilio.com/docs/usage/api (accessed 20.12.2023).
6https://www.twilio.com/docs/libraries (accessed 20.12.2023).

25

https://stripe.com/en-de/about
https://stripe.com/docs/api?lang=ruby
https://stripe.com/docs/api?lang=ruby
https://www.twilio.com/
https://www.twilio.com/docs/usage/api
https://www.twilio.com/docs/libraries

4. Interface Type Patterns

4.2. Client Library

Pattern Overview
Name Client Library
Alias Helper Library (Higginbotham, 2016; C16)
Pattern Type Interface Type Pattern
Summary A client library wraps a Web API and enables consumers to access it using code

in a specific programming language and compliant with a certain framework
(De, 2017; C3). Hence, the application consumer does not have to interact
with the Web API directly but indirectly through the library functions in the
programming language of choice.

Figure 4.2.: A Client Library wraps a Web API so that API consumers can access the API
functionality and data using a specific programming language and framework.

Context:

An API provider exposes Web APIs and their documentation. The Web APIs make data
and functionality available via the HTTP protocol using different paradigms like REST or
data query languages like GraphQL7. However, API consumers want to access the data
and functionality with their applications written in specific programming languages and
potentially using certain frameworks8 (De, 2017). Thus, each API consumer has to transform
the API requests and responses from the HTTP protocol into the respective programming
languages or frameworks, resulting in additional effort and longer API adoption times (De,
2017; Spichale, 2017).

7https://graphql.org/ (accessed 20.12.2023).
8A framework predefines the architecture of an application, including "[...] the overall structure, its partitioning

into classes and objects, the key responsibilities thereof, how the classes and objects collaborate, and the thread of control."
(Gamma et al., 1994, p. 26). Instead of the application developer implementing the main body of the application
and calling libraries or toolkits to reuse existing code, the framework provides the main body and architecture,
and the application developer implements the code that the framework calls (Gamma et al., 1994). Thus, a
framework "[...] emphasize[s] design reuse over code reuse" (Gamma et al., 1994, p. 27).

26

https://graphql.org/

4. Interface Type Patterns

Concern:

How can API providers enable API consumers to easily integrate an API into applications
using different programming languages and frameworks?

Forces:

• Adoption time. API consumers want to be able to integrate APIs into their applications
quickly. Hence, an API provider should provide resources that accelerate API adoption
(De, 2017).

• Boilerplate code. API consumers have to write boilerplate code to access Web APIs in
specific programming languages.

• Developer Experience. A solution should positively affect the developer experience of API
consumers.

• Design and maintenance. The API provider has limited resources. Thus, the solution
should create little additional effort for the API provider organization.

• API changes. The API provider changes an API often or less often over time, depending
on the provider’s chosen change management strategy.

• Creativity. A solution should not limit the creativity of API consumers.

Solution:

The API provider offers client libraries as additional resources for the API consumers. Client
libraries wrap the Web API and enable API consumers to access the API using code in a
specific programming language and compliant with a certain framework (De, 2017; C3). The
API provider makes the client libraries available to the API consumer on a developer portal,
public repositories, or package managers. In addition to the library code itself, the API
provider publishes client library documentation.

Stakeholders:

The API provider has to design, publish, and maintain the Client Library. However, the API
provider has to collaborate with the API consumers to ensure that they publish the correct
client libraries with the right quality.

Implementation Hints:

Basic idea. The API provider offers a Web API and associated client libraries for specific
programming languages and frameworks. A client library is code that transforms HTTP
requests into classes or functions and processes HTTP responses in a particular programming

27

4. Interface Type Patterns

language following the language’s conventions9. Thus, the client library encapsulates the
lower-level details of the communication with a Web API. More precisely, client libraries
present an object-oriented API to API consumers (Spichale, 2017). API consumers have to
download and install the library to use it (Spichale, 2017). Afterward, the API consumer
integrates the client library functionality into an application to communicate with the Web
API.

Even though out of scope of this pattern, the libraries are sometimes not restricted to
transforming the API calls into different programming languages but also offer additional
functionality (Gamma et al., 1994) like authentication10 (C9; C16) or predefined UI compo-
nents11 (C16).

Client library types. Client libraries can be either server-side libraries or client-side libraries.
Server-side libraries run on the backend server of the API consumers application and support
server-side programming languages12 (C17). Server-side libraries usually cover C#, Java,
Node.js, PHP, Python, Ruby, Go, and .NET client libraries13 (C16; C17).

On the other hand, client-side libraries are processed in a client, e.g., a web browser or a
mobile app. Such client-side libraries often cover JavaScript libraries and libraries for mobile
devices, e.g., for iOS or Android14 (C16; C17). Most API providers offer server-side and
client-side client libraries15 (C16; C17).

SDKs. Furthermore, most of the reviewed literature and many API providers use the
terms Software Developer Kit (SDK)16 (Spichale, 2017; C16) or devkit (De, 2017) in conjunction
with client libraries, without clearly defining or delineating the concepts. Generally, the
goal of an SDK is to simplify and speed up the integration of a Web API with applications
in different programming languages (Higginbotham, 2016; Spichale, 2017). Furthermore,
blog posts define different potential components of SDKs, comprising APIs, client libraries,
frameworks, documentation, examples scripts for SDK usage, CLI scripts, compilers, and
debuggers (Higginbotham, 2016; IBM Cloud Education, 2021; Red Hat, 2020). Hence, we
understand an SDK as a set of tools that enable API consumers to use an API with a specific
operating system, a specific programming language, or a specific framework. As described in
this pattern, a client library consists of code and the associated client library documentation.
Therefore, an SDK can comprise a client library.

Documentation. The API provider has to document the client library to enable API con-
sumers to use it, including instructions on how to download and set up the client libraries
(De, 2017; Spichale, 2017; C11). Preferably, the documentation includes sample calls that the
consumer can use right away (De, 2017; Spichale, 2017). Furthermore, the documentation of

9https://cloud.google.com/apis/docs/cloud-client-libraries (accessed 20.12.2023).
10https://stripe.com/docs/api?lang=ruby (accessed 20.12.2023).
11https://stripe.com/docs/libraries (accessed 20.12.2023).
12https://www.twilio.com/docs/libraries (accessed 20.12.2023).
13https://www.twilio.com/docs/libraries, https://stripe.com/docs/libraries (accessed 20.12.2023).
14https://www.twilio.com/docs/libraries, https://stripe.com/docs/libraries (accessed 20.12.2023).
15https://www.twilio.com/docs/libraries, https://stripe.com/docs/libraries (accessed 20.12.2023).
16https://www.twilio.com/docs/libraries (accessed 20.12.2023).

28

https://cloud.google.com/apis/docs/cloud-client-libraries
https://stripe.com/docs/api?lang=ruby
https://stripe.com/docs/libraries
https://www.twilio.com/docs/libraries
https://www.twilio.com/docs/libraries
https://stripe.com/docs/libraries
https://www.twilio.com/docs/libraries
https://stripe.com/docs/libraries
https://www.twilio.com/docs/libraries
https://stripe.com/docs/libraries
https://www.twilio.com/docs/libraries

4. Interface Type Patterns

a client library should refer to the documentation of the underlying API and the other way
around (C3).

We observe that many API providers integrate the documentation of server-side client
libraries into the API documentation17 (C16; C17). The API provider documents the API with
use cases according to Consumer-centric API Description. The API provider complements
each use case step with an HTTP message or curl command code snippet that implements
the step. Moreover, the API provider adds code snippets to realize these steps with each of
the client libraries. Then, the API consumer can simply choose the programming language
of the code snippets18. Moreover, the API provider should publish reference documentation
following the conventions of the respective programming languages of the client library, e.g.,
Javadoc19 for the Java library.

However, in all cases, the documentation of client-side libraries is detached from the Web
API documentation and follows documentation conventions of the respective programming
languages and frameworks20 (C16; C17).

Repository. API providers make the client libraries available for download via their devel-
oper portal (De, 2017; Spichale, 2017) , public repository platforms, or package managers.
For example, many API providers enable API consumers to download client libraries from
GitHub21 (C9; C11), npm22 (C16; C17) or PyPi23 (C17). Also, the API provider can decide to
publish client libraries as open-source projects24 (C11; C17).

Automation. Several tools exist that automatically generate client libraries for different
programming languages and frameworks from machine-readable API descriptions (C3; C4;
C5). For example, the tools Swagger Codegen25 and Restlet Studio26 can generate client libraries
based on OpenAPI specifications27 (De, 2017). Similarly, Postman28 enables a user to generate
code snippets for 29 programming language and framework combinations29 from postman
collections30. The tools APIMatic.io31 and REST United32 can generate SDKs using RAML33

descriptions (De, 2017). Also, tools exists for generating SDKs from Blueprint34 (De, 2017).

17https://www.twilio.com/docs/libraries, https://stripe.com/docs/libraries (accessed 20.12.2023).
18https://www.twilio.com/docs/usage/api (accessed 20.12.2023).
19https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html (accessed 20.12.2023).
20https://stripe.com/docs/libraries (accessed 20.12.2023).
21https://github.com/ (accessed 20.12.2023).
22https://www.npmjs.com/ (accessed 20.12.2023).
23https://pypi.org/project/pip/ (accessed 20.12.2023).
24https://www.twilio.com/docs/libraries/go (accessed 20.12.2023)
25https://swagger.io/tools/swagger-codegen/ (accessed 20.12.2023).
26https://restlet.talend.com/ (accessed 20.12.2023).
27https://swagger.io/specification/ (accessed 20.12.2023).
28https://www.postman.com/ (accessed 20.12.2023).
29https://learning.postman.com/docs/sending-requests/generate-code-snippets/ (accessed 20.12.2023).
30https://www.postman.com/collection/ (accessed 20.12.2023).
31https://www.apimatic.io/ (accessed 20.12.2023).
32https://restunited.com/ (accessed 20.12.2023).
33https://raml.org/ (accessed 20.12.2023).
34https://apiblueprint.org/ (accessed 20.12.2023).

29

https://www.twilio.com/docs/libraries
https://stripe.com/docs/libraries
https://www.twilio.com/docs/usage/api
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://stripe.com/docs/libraries
https://github.com/
https://www.npmjs.com/
https://pypi.org/project/pip/
https://www.twilio.com/docs/libraries/go
https://swagger.io/tools/swagger-codegen/
https://restlet.talend.com/
https://swagger.io/specification/
https://www.postman.com/
https://learning.postman.com/docs/sending-requests/generate-code-snippets/
https://www.postman.com/collection/
https://www.apimatic.io/
https://restunited.com/
https://raml.org/
https://apiblueprint.org/

4. Interface Type Patterns

The API provider can generate client libraries, potentially enhance them, and offer them
to API consumers. Alternatively, the API provider can make structured API descriptions
accessible to API consumers, thus enabling the API consumers to auto-generate the client
libraries themselves (C3; C4; C5). However, manually designed client libraries allow API
providers to integrate domain knowledge into the libraries and prevent biases imposed by
automation tools, e.g., biases regarding preferred API styles (Medjaoui et al., 2018).

Know your audience. The creation and maintenance of client libraries create additional
effort for the API provider. Therefore, the API provider should only provide client libraries
for which a demand exists. Hence, the API provider needs to know the API consumers and
what programming languages and frameworks they prefer (De, 2017; Spichale, 2017; C4; C5).

Change. As soon as the API implements a breaking change, the API provider has to create
new versions of all client libraries wrapping an API (Medjaoui et al., 2018; C4; C5; C16). For
every change to the client library, the API provider has to update the related documentation
and inform users. In addition, the API provider has to deprecate the old client library version.
Thus, the API provider should define a change management strategy, e.g., only offering the
latest version of a library, thus forcing the API consumers to adapt their application with each
breaking update. Alternatively, the API provider can maintain several versions of the same
library (C9; C17).

Client libraries only. In most cases, the API provider offers direct access to an API and, in
addition, client libraries. However, we also observed one case where the API provider gives
access to an API exclusively via a client library (C11).

Consequences:

Benefits:

• Adoption time. The provision of client libraries relieves consumers from writing wrap-
pers. Thus, libraries allow API consumers to integrate Web APIs faster and thus reduce
adoption times (De, 2017; Spichale, 2017). Thus, API consumers with specific program-
ming language expertise do not need to understand or learn how to access the raw Web
API or transform the API requests and responses (C2).

• Boilerplate code. Client libraries reduce the need for API consumers to write boilerplate
code to access Web APIs using specific programming languages35.

• Developer Experience. Since the consumers do not need to spend time implementing
boilerplate code to access the API36, a client library can positively affect the developer
experience.

Drawbacks:

35https://cloud.google.com/apis/docs/cloud-client-libraries (accessed 20.12.2023).
36https://cloud.google.com/apis/docs/cloud-client-libraries (accessed 20.12.2023).

30

https://cloud.google.com/apis/docs/cloud-client-libraries
https://cloud.google.com/apis/docs/cloud-client-libraries

4. Interface Type Patterns

• Design and maintenance. The creation and maintenance of client libraries lead to addi-
tional effort for the API provider (Spichale, 2017; C4; C5). The API provider has to create
the API manually, or automatically with a tool and potentially enhance it. Moreover,
the API provider must create documentation and link or integrate it with the Web API
documentation (De, 2017; Spichale, 2017). In addition, the API provider has to manage
changes to the client library and the respective documentation (Medjaoui et al., 2018).
Finally, the API provider should manage a client library similar to a product, which
includes marketing the library and providing support to API consumers (De, 2017; C4;
C5). Due to the high effort connected to the provision of client libraries, few internal
APIs offer client libraries (Spichale, 2017).

• API changes. Changes to an API can lead to a ripple effect that requires adjusting client
libraries. Thus, especially in settings where APIs change frequently, it can be effortful to
update client libraries constantly. Moreover, in addition to the client libraries themselves,
the API provider has to adapt the client libraries’ documentation in case of changes to
the libraries (Medjaoui et al., 2018). Thus, overall, the cost of changing client libraries
and other supporting assets can account for a significant amount of an API product’s
overall change cost (Medjaoui et al., 2018). However, the API provider can take measures
to minimize the effort necessary to adapt client libraries in case of changes to the API,
e.g., using tools and automation (Medjaoui et al., 2018). A prerequisite for automation is
that the API provider uses machine-readable API specifications (Medjaoui et al., 2018).
However, Medjaoui et al. (2018) also points out that even though tools for automated
code generation support the API provider in improving the developer experience, they
also introduce biases, e.g., with regards to API styles. Moreover, the API provider
should ensure the tooling does not create a lock-in effect (Medjaoui et al., 2018).

• Creativity. The client libraries encapsulate the web API, making it easier to use the
API in a programming language but also imposing a certain structure. Thus, client
libraries can hinder the creativity and freedom of API consumers (Dal Bianco et al.,
2014). However, if the API provider additionally makes the API itself accessible, API
consumers can nevertheless use all the APIs functionality.

Related Patterns within this Pattern Catalog:

An API provider can publish a Client Library in conjunction with a Web API to allow API
consumers to easily integrate an API into applications using different programming languages
and frameworks. In one case (C11), the API provider even decides to offer only the Client
Library as an interface for API consumers and not make the Web API accessible.

Also, the API provider can realize a Client Library through a Collaborative Pilot
Project or a Play-it-fast Approach. Furthermore, API Quality Monitoring can monitor
the breach of non-functional properties of a Client Library. The Dedicated Support Team
enables consumers to report issues related to Client Library and a Newsletter can commu-
nicate changes of a Client Library. Finally, an Onboarding Self-service enables access to
a Client Library.

31

4. Interface Type Patterns

Other Related Patterns:

A Client Library is a specific implementation of an Adapter as presented by Gamma et al.
(1994). The Adapter pattern captures the general concept of converting an existing interface
into another (domain-specific) interface to meet clients’ expectations.

Known Uses:

We observed the pattern in five cases:

The API initiative of C2 makes simulation and modeling algorithms accessible. The API
provider additionally offers a client library to relieve the API consumers from making REST
HTTP calls.

In C9, the organization offers a public marketplace for IoT applications. The organization
provides a core platform software, and third-party developers can build additional modules
for the platform using APIs. API consumers can interact with the core platform software
using RESTful APIs. In addition, the API provider offers client libraries that allow API
consumers to interact with the API in different programming languages. These libraries often
also offer additional functionality, e.g., easy authentication. All libraries are available for
download on the API provider’s developer portal, and some libraries are also available on
a public repository. For some libraries, different versions exist, and the API consumers are
advised to use or upgrade to the latest versions. Furthermore, the API provider refers to open
source libraries created by the developer community.

The API provider of C11 offers a financial service for API consumers to integrate into their
systems. The API itself is not exposed, but the API provider publishes an SDK in a very
popular programming language. The API provider documents the SDK, including sample
calls and release notes.

Stripe (C16) provides an API for online payment processing37. The Stripe API is a REST
API38 but Stripe offers several server-side libraries for programming languages, including
Ruby, Python, and Java. The documentation of these client libraries is integrated with the
documentation of the Stripe REST API 39. Additional client libraries for JavaScript frameworks
include a wrapper for the API and predefined user interface (UI) components40. Also, Stripe
publishes client libraries for mobile platforms, including iOS and Android41. These JavaScript
and mobile client libraries follow documentation conventions of the respective programming
languages and frameworks42. Most of the client libraries are open source and available on

37https://stripe.com/en-de/about (accessed 20.12.2023).
38https://stripe.com/docs/api?lang=ruby (accessed 20.12.2023).
39https://stripe.com/docs/invoicing/connect (accessed 20.12.2023).
40https://stripe.com/docs/libraries (accessed 20.12.2023).
41https://stripe.com/docs/libraries (accessed 20.12.2023).
42https://stripe.com/docs/libraries (accessed 20.12.2023).

32

https://stripe.com/en-de/about
https://stripe.com/docs/api?lang=ruby
https://stripe.com/docs/invoicing/connect
https://stripe.com/docs/libraries
https://stripe.com/docs/libraries
https://stripe.com/docs/libraries

4. Interface Type Patterns

GitHub43 or npm44. Finally, Stripe also refers to open source libraries created by the Stripe
community45.

Twilio (C17) is an API provider for customer engagement using voice, messaging, video,
and email services46. Twilio offers REST APIs47 and several client libraries for the server-side
programming languages C#, Java, Node.js, PHP, Python, Ruby, and Go48. The API consumer
can download the client libraries using different package managers, e.g., Maven to download
the Java helper library49 or PyPi to download the Python library50. Some of the client libraries
are open source, e.g., the Go library51. Twilio integrates the documentation of these client
libraries in the REST API documentation52. Moreover, Twilio offers different versions of client
libraries, but new features and bug fixes are only added to the latest version of each library53.
Also, Twilio offers client-side libraries, including iOS, Android, and JavaScript SDKs54, and
refers to open-source libraries developed by external developers55. Finally, Twilio publishes
machine-readable OpenAPI specifications for the APIs, enabling API consumers to use tooling
that automatically generates client libraries in many more programming languages56.

Cross-case observations:

Four out of the five API initiatives are very similar. These cases describe public initiatives
in production with high numbers of consumers. Furthermore, the providers use APIs as
the main or only distribution channel for a software product. In addition, these initiatives
have predefined plans or pay-per-call rates to monetize access to their APIs. Therefore, it
makes sense that the providers invest much effort into making the APIs accessible to a broad
audience.

Case C2 is an outlier. The partner initiative is in a pilot stage, has few consumers, and does
currently not monetize the use of the API. However, we assume that the provider wants to
attract first users and thus provides simple libraries.

43https://github.com/stripe (accessed 20.12.2023).
44https://www.npmjs.com/package/stripe (accessed 20.12.2023).
45https://stripe.com/docs/libraries (accessed 20.12.2023).
46https://www.twilio.com/ (accessed 20.12.2023).
47https://www.twilio.com/docs/usage/api (accessed 20.12.2023).
48https://www.twilio.com/docs/libraries (accessed 20.12.2023).
49https://mvnrepository.com/artifact/com.twilio.sdk/twilio (accessed 20.12.2023).
50https://pypi.org/project/twilio/ (accessed 20.12.2023).
51https://www.twilio.com/docs/libraries/go (accessed 20.12.2023).
52https://www.twilio.com/docs/usage/api (accessed 20.12.2023).
53https://www.twilio.com/docs/libraries/java/usage-guide-8 (accessed 20.12.2023).
54https://www.twilio.com/docs/libraries (accessed 20.12.2023).
55https://www.twilio.com/docs/libraries/community-supported-libraries (accessed 20.12.2023).
56https://www.twilio.com/docs/libraries (accessed 20.12.2023).

33

https://github.com/stripe
https://www.npmjs.com/package/stripe
https://stripe.com/docs/libraries
https://www.twilio.com/
https://www.twilio.com/docs/usage/api
https://www.twilio.com/docs/libraries
https://mvnrepository.com/artifact/com.twilio.sdk/twilio
https://pypi.org/project/twilio/
https://www.twilio.com/docs/libraries/go
https://www.twilio.com/docs/usage/api
https://www.twilio.com/docs/libraries/java/usage-guide-8
https://www.twilio.com/docs/libraries
https://www.twilio.com/docs/libraries/community-supported-libraries
https://www.twilio.com/docs/libraries

4. Interface Type Patterns

4.3. Frontend Venture

A previous version of this pattern has been published in Bondel et al. (2022). In this pattern
catalog, we evolved the pattern.

Pattern Overview
Name Frontend venture
Pattern Type Interface Type Pattern
Summary The API provider enables consumers who cannot, for any reason, integrate an

API or client library, to still use the functionality or data via a simple frontend,
i.e., a website with fields and buttons that trigger API functionality. If enough
consumers are interested in the frontend, a product team can take over the
development and maintenance of the frontend.

Figure 4.3.: A Frontend Venture makes data and functionality available to consumers
lacking the capabilities to use a Web API or Client Library.

Context:

Integrating an API into an existing IT landscape creates effort for the API consumers. However,
some API consumers lack technical capabilities or the budget for API integrations and can
thus not realize beneficial use cases. Such consumers are often municipalities or small,
non-digital businesses (C3).

Concern:

How can an API provider enable API consumers that cannot, for any possible reason, integrate
an API to use the API’s functionality or data nonetheless?

Forces:

• Consumer capabilities. Some potential consumers, especially municipalities or small,
non-digital organizations, are not able to use or integrate APIs since they have no
or small IT departments that are already working at capacity. For example, in one
observed case, the API consumers are small, non-digital organizations that usually only
have a website based on a content management system maintained by freelancers (C3).

34

4. Interface Type Patterns

Furthermore, these potential consumers often have no budget to hire external IT service
providers to execute the integration project (C3).

• Profits. API consumers are willing to pay for solutions that meet their needs.

• Public perception. The API provider can make data and functionality available to
municipalities or small, non-digital businesses in a way that supports some societal
interest. Such initiatives are viewed positively by the public (C3).

• Legal obligation. An API provider can be legally obliged to make specific data available
to certain consumer groups through APIs, even if some consumers cannot use the API
(C3). Such legal obligations exist, for example, in the banking or automotive industry.

• Effort. API providers often work at capacity and consumers use a software solution only
if the API provider can provide it with a certain level of quality.

• Reusability. Solutions always need to balance the specific needs of the first API consumer
or end user with the reusability of the solution for other consumers.

• Flexibility. An API and an interface provide different flexibility with regards to integra-
tion (C9), automatizing (C9), customization (C7), and branding (C7).

Solution:

The API provider identifies and evaluates a use case with an API consumer or a consumer
group and implements a frontend, i.e., a website with fields and buttons that trigger API
functionality. As soon as the frontend reaches a certain level of maturity, the API provider
markets it to other potential consumers. If enough consumers are interested, a product team
takes over the development and maintenance of the product. Thus, implementing a frontend
can be a venture opportunity.

Stakeholders:

The API provider has to design and implement the frontend. During the design and imple-
mentation, the API provider has to collaborate with the API consumers to ensure that the
frontend meets the consumers’ needs concerning functional and non-functional requirements.
Furthermore, the API provider should aim to hand over the responsibility for the frontend to
a dedicated product team after its publication.

Implementation Hints:

Basic approach. A frontend implements a specific use case for a consumer or consumer
group. Therefore, the first step is to analyze the need of the future consumer or consumer
group. Once the use case is defined, the API provider assesses the benefits and drawbacks.
The benefits can include additional direct profits from billing the consumers, the chance of
further profits from reselling the frontend to other external consumers, internal reuse of the

35

4. Interface Type Patterns

frontend, or positive marketing impact (C3). The API provider has to weigh these advantages
against the additional effort required to develop and maintain the frontend.

Furthermore, as part of the initial analysis, the API provider should check if similar
frontends exist within the organization. If an internal team has already built a similar
frontend, the API provider can reuse (parts of) it (C3). Based on this benefit-cost evaluation,
the API provider decides if or how to implement the frontend.

Assuming the API provider decides to move forward with the frontend implementation,
in the next step, the API provider designs and implements the frontend. The API provider
can choose to employ either a Collaborative Pilot Project or a Play-it-fast Approach
to design and implement the frontend. An alternative approach would be to implement a
simple first version of the frontend in the course of a hackathon57.

After the frontend reaches a certain level of maturity, the API provider can present it to
other interested parties. If enough consumers are interested in using the frontend, the API
provider can hand it over to a dedicated product team to evolve and maintain it as a product
following the API-as-a-Product pattern (C3). Thus, designing and implementing a frontend
is a venture opportunity for the providing organization. The product team then acts as an IT
provider to the consumer while the API platform provides the underlying API services (C3).

Types of frontends. A frontend realizes a specific use case and typically concentrates on
a subset of the APIs functionality. In general, the goal is to provide a user interface using
state-of-the-art design elements that consumers without technical capabilities can easily and
intuitively use. The most basic type of a frontend is a user interface that simply makes the
as-is API functionality usable for non-technical consumers. For example, the API provider
can implement a website that allows users to upload data, set transformation parameters and
response filtering options, and subsequently download a file containing the APIs response
(C3; C7). A more advanced frontend can also implement some logic that augments the
response data with additional data or visualizations. As an example, a frontend can show a
map and locate certain events on it (C3).

Consequences:

Benefits:

• Consumer capabilities. The frontend allows API providers to make API data and function-
ality available to organizations with insufficient IT capabilities or budgets. Still, other
interested API consumers with enough IT capabilities can consume the API to create
custom integrations or proprietary frontends.

• Profits. The API provider can monetize the implemented frontend, and it can thus
become a source of profit. If the API provider does not provide the frontend, a third
party could skim these profits.

57A hackathon is an event with a pre-defined timeframe during which small development teams compete to
implement the best solution to a pre-defined problem.

36

4. Interface Type Patterns

• Public perception. Making data and functionality available to municipalities or small,
non-digital businesses in a way that supports some societal interest results in positive
publicity for the API provider (C3).

• Legal obligation. In case of a legal obligation, the API provider has to implement the API
anyway. Therefore, the API provider might view the legal obligation as an opportunity
to create new business relationships or profits through the frontend (C3).

Drawbacks:

• Effort. The design, implementation, and especially the maintenance of the frontend
create additional effort for the API provider. If the frontend is of insufficient quality, the
API consumers will not use it, and it would thus be a loss of investment (C3). The API
provider has to ensure that enough resources are available to realize a frontend venture.

• Reusability. The API provider has to put effort into balancing the needs of different
frontend consumers (C3). If the API provider tailors the frontend too much to the need
of one API consumer, other API consumers will not use the frontend. However, if the
frontend is too generic, it might be of less value for all consumers.

• Flexibility. A frontend limits the consumers flexibility compared to an API with regards
to integration (C9), automation (C9), configuration (C7), and branding (C7). Thus, it is
important that the API provider also keeps providing the API.

Related Patterns within this Pattern Catalog:

An API provider can design and publish a Frontend Venture in addition to a Web API if, for
any possible reason, the consumer cannot integrate a Web API (C3). However, the provider
should also publish the Web API to preserve the flexibility of consumers that want to integrate
it directly (C7; C9).

Also, the API provider can realize a Frontend Venture through a Collaborative Pilot
Project or a Play-it-fast Approach. Furthermore, API Quality Monitoring can monitor
the breach of non-functional properties of a Frontend Venture. The Dedicated Support
Team enables consumers to report issues related to Frontend Venture and a Newsletter can
communicate changes of a Frontend Venture. Finally, an Onboarding Self-service enables
access to a Frontend Venture.

Finally, the pattern Frontend Venture is suitable if the consumer has neither the technical
nor the financial capabilities to integrate a Web API. However, suppose the consumer lacks
only technical capabilities but has a sufficient budget for API integration. In that case, the
API provider can alternatively use a Integration Partner Program to introduce integration
partners to the consumer.

Known Uses:

We observed the pattern in three cases:

37

4. Interface Type Patterns

The API portal provider of an automotive organization (C3) wanted to provide data to two
municipalities via APIs. However, the municipalities did not have the capabilities to integrate
the APIs and requested a user interface that a non-technical stakeholder can use. The API
provider implemented such an interface during a pilot project since the organization expected
positive marketing effects. After the pilot phase, the API provider team handed the prototype
over to a product team that now maintains the frontend. As a result, the API provider reports
that only 50% of consumers directly access the API behind the frontend, while 50% use the
frontend.

The organization C7 is an insurance subsidiary that provides insurance services within a
group setting. The API management team offers a mix of APIs and frontends. If the API
provider exposes an API directly or uses a frontend depends on the nature of the product.
The products that need much integration into backend systems, customization, or branding
are exposed as APIs. Additionally, the API provider provides frontends for products that do
not need much integration. Those are primarily products offering only data access or simple
functionality.

Finally, in C9, the organization offers a marketplace for IoT applications. The API provider
again offers APIs and frontends, however, frontends are dominant. According to the interview
partner, most consumers prefer frontends. Nevertheless, the API provider also provides APIs
to enable integration and automation.

Cross-case observations:

All the cases are in early phases (pilot phase or early production phase). This makes
sense, since it can be beneficial for API initiatives in early stages to implement frontends
to attract first consumers. However, it is also essential to maintain the Web APIs since Web
APIs provide more flexibility regarding backend integration or frontend customization to
organizations with more IT capabilities or budget.

Also, not surprisingly, the consumers are rather small business or municipalities.

38

CHAPTER 5

API Provider Internal Patterns

This chapter presents nine API Provider Internal Patterns. API Provider Internal Patterns
require the API provider to collaborate mainly with stakeholders internal to the API provider
organization.

39

5. API Provider Internal Patterns

5.1. API-as-a-Product

Pattern Overview
Name API-as-a-Product (AaaP) (Medjaoui et al., 2018)
Alias Tailoring APIs into Services (C5)
Pattern Type API Provider Internal Pattern
Summary The API provider treats APIs like any other consumer-facing (software) product,

including technical, business, legal, marketing, and other aspects.

Figure 5.1.: When applying the pattern API-as-a-Product, an API provider has to take
technical, business, legal, and marketing aspects into consideration for each Web

API.

Context:

An API provider wants to launch an API initiative by exposing existing APIs or creating new
APIs for external API consumers. Successful API initiatives have to solve the specific business
needs of API consumers. However, the API provider does not know how to design APIs that
meet such consumers’ business needs.

Concern:

How can an API provider design APIs that meet the business needs of potential API con-
sumers?

40

5. API Provider Internal Patterns

Forces:

• Business needs. API consumers use APIs that address their business needs (ITIL 4, 2019).
Also, consumer needs change over time. If consumers do not use an API, its design and
development results in a waste of resources (ITIL 4, 2019).

• Product management. The identification and definition of new processes, methods, and
techniques for managing APIs create effort for API providers. A solution should enable
API providers to employ proven product management methods.

• Perception. An API is a consumer-facing piece of software that influences the perception
of the API provider’s organization and the relationship with customers.

• Quality. API consumers use APIs only if they meet their quality expectations. Further-
more, APIs with low quality can result in high maintenance and evolution costs for the
API provider (ITIL 4, 2019).

• Developer experience. The developer experience plays an important role in API consumers’
choice of an API. The developer experience describes the experience of an API consumer
interacting with an API to achieve a certain outcome (ITIL 4, 2019). Thus, a solution
should take into account the functional and non-functional characteristics of an API
and additional aspects that influence the API consumers’ ease of interaction with the
API, e.g., access, support, documentation.

• Unanticipated innovation. A goal of APIs is to enable unanticipated innovation (Jacobson
et al., 2012). Hence, in addition to defined use cases, an API should foster unforeseen
innovation through its consumers.

• Effort. The API provider has limited resources. Thus, a solution should require little
effort.

Solution:

An API product is a bundle of endpoints that the API provider manages like any other
(software) product, including business, financial, legal, and marketing aspects (Medjaoui
et al., 2018). The API provider presents a Web API that solves a business need and defines a
monetization scheme to create an API product. Furthermore, the provider can differentiate
API products into tiers based on non-functional characteristics, e.g., the number of calls,
support service levels, or analytics services.

Stakeholders:

The API provider has to collaborate with the upper management to identify relevant consumer
groups. Moreover, the API provider should collaborate with sales & marketing, finance &
controlling, and legal to align the marketing, business model, and legal considerations for an
API product. Also, the API provider has to communicate with the backend providers to adapt

41

5. API Provider Internal Patterns

or create and bundle endpoints into API products. Finally, the API provider should closely
collaborate with API consumers to identify their needs and design suitable API products.

Implementation Hints:

API Product characteristics. An API product denotes an API or a set of APIs that the API
provider treats like any other (software) product (Medjaoui et al., 2018). An API product has
the following characteristics:

• Business need. An API product addresses an external consumer’s business need (C6)
and thus creates value. Instead of simply making an existing functionality available to
external API consumers, the API provider identifies use cases or user stories that the
API provider can realize with an API (C3; C6). For example, instead of providing an
API that allows to "send emails," an API provider can address the user story "notify
customers that a package has been delivered" (C6).

• Strategic goal: An API product has a strategic goal derived from the organization’s
overall business strategy (Jacobson et al., 2012; Medjaoui et al., 2018). Strategic goals are,
for example, the improvement of customer reach or the acceleration of time-to-market
(De, 2017; Medjaoui et al., 2018). Furthermore, the API provider monitors KPIs to
analyze if the API products reach their strategic goals (De, 2017; Jacobson et al., 2012).

• Endpoint bundles. Instead of publishing single endpoints, the API provider combines
API endpoints into a bundle. An API endpoint combines related endpoints or endpoints
that together enable a more complex functionality (De, 2017; C3; C10; C13).

• Business models and monetization. An API product has a business model (C6). A business
model balances the expected benefits of publishing an API product with the investment
made to design and manage it (De, 2017). The business model can rely on direct or
indirect monetization, depending on the strategic goal of the API product (De, 2017).
In the case of direct monetization1, the API provider can choose between flat-rate
subscription, usage-based pricing, and auction-style allocation approaches (Stocker
et al., 2018). In many cases, API providers also use a freemium model that allows new
API consumers to use the API for free up to a specific rate limit or point in time (Stocker
et al., 2018).

• Portfolio management. The API provider considers dependencies of API products on the
overall product landscape of the organization (ITIL 4, 2019).

• Lifecycle. API products have a lifecycle. The API provider actively manages the API
products along the lifecycle (C6) from inception and design through maintenance to
retirement (ITIL 4, 2019; Medjaoui et al., 2018).

1A more detailed overview of possible monetization schemes can, for example, be found here: https://medium.
com/@ama.thanu/what-are-the-different-api-business-models-9709ae45f416 (accessed 20.12.2023).

42

https://medium.com/@ama.thanu/what-are-the-different-api-business-models-9709ae45f416
https://medium.com/@ama.thanu/what-are-the-different-api-business-models-9709ae45f416

5. API Provider Internal Patterns

• Product Team. Each product has a product team (C13), including an API Product Owner
(De, 2017).

• Mindset. An API provider organization fosters an internal API product mindset, i.e.,
the understanding of APIs as strategic products that must be managed accordingly (C6;
C9). Furthermore, the API provider acknowledges the ongoing relationship between
the API provider and the consumers (Medjaoui et al., 2018).

• Product marketing. An API provider employs product marketing approaches to gain API
consumers’ interest. Such marketing approaches comprise campaigns and advertising
at events and organizations (C3).Also, the API provider should target business and tech-
nical API consumers with targeted marketing measures, e.g., by applying Role-based
Marketing (C3).

• Support. The API provider organization provides support for API consumers in the same
way the organization supports consumers of other (software) products (C14). Either
the product team provides consumer support, or the API provider uses the pattern
Dedicated Support Team, transferring some support tasks from the product team to a
dedicated support team.

• Security concept. The API provider has a security concept in place for API products just
like for other (software) products the organization offers (C14).

• Discoverability. The API provider aims to ensure that consumers can discover and
understand the value of API products (C3; C13). In some cases, the API providers use
Consumer-centric API Description to support discoverability.

• Product tiers. An API provider can offer different product tiers (De, 2017). Each
product tier makes the same functionality available but under different conditions (De,
2017). Such different conditions can comprise different rate limits2 (De, 2017),pricing
(C11), terms and conditions (C14), SLAs (Stocker et al., 2018), rights regarding allowed
operations (read-only vs. read-write) (De, 2017), or support services. Different product
tiers address the needs of different types of API consumers, e.g., private or business
users (C3). In many cases, the API consumer can choose product tiers on the API
developer portal in a self-service fashion (De, 2017).

• Change. API products are part of an open, distributed system and require change
over time (Lübke et al., 2019). The API provider actively manages change and acts on
consumers’ feedback (Medjaoui et al., 2018).

• Product families. In cases in which APIs are not stand-alone products but part of a
landscape, they can be viewed as part of a "product family" (Medjaoui et al., 2018). APIs
that are part of a product family should implement similar usage patterns since it allows

2A rate limit defines how many calls an API consumer can make to an API within a specific time interval
depending on the API product (tier) (De, 2017; Jacobson et al., 2012).

43

5. API Provider Internal Patterns

developers working with several API products to benefit from similarities (Medjaoui
et al., 2018).

However, in practice, we observed that not all API products completely fulfill these
characteristics. For example, the interview partners mentioned several times that the API
product mindset still needs improvement. Similarly, in the case base, we rarely observed the
definition of a strategic goal for each API and the monitoring of goal achievement.

API product design. An API product must address a consumer group’s business need to
succeed (ITIL 4, 2019). Thus, before creating an API product, the API provider has to identify
a target consumer group (Jacobson et al., 2012; Medjaoui et al., 2018), which is potentially
derived from the organization’s overall strategy (Medjaoui et al., 2018). For example, the API
provider could use an end-user or developer segmentation analysis3 in combination with
force-ranking4 priority segments to identify relevant target groups (Jacobson et al., 2012).

Given the target consumer group, the API provider has to analyze the consumers’ business
needs and design products that address these business needs (Medjaoui et al., 2018). Potential
approaches for identifying consumer needs and useful API products are the Value Proposition
Canvas5 (Osterwalder et al., 2014) or Design Thinking6 (ITIL 4, 2019; Medjaoui et al., 2018).
Additionally, the concept of "Jobs To Be Done"7 (JTBD) can help API providers to design
consumer-centric API products (Medjaoui et al., 2018).

In the case base, we also observed "Domain Story Telling"8 and "Event Storming"9 as
approaches to identify functionality with value for API consumers (C6).

Finally, since designing products that meet the consumers’ and providers’ goals is challeng-
ing, the provider should employ iterative and incremental approaches to developing such

3Market segmentation describes the process of categorizing consumers within a market into groups according to
characteristics, e.g., behavioral or geographic characteristics. Market segmentation enables targeted marketing,
and advertising (Tynan & Drayton, 1987).

4Force-ranking describes the ranking of segments against each other to identify the most important segments.
5The value proposition canvas is a tool to systematically define a value proposition, i.e., the benefits a solution

creates for a customer or customer group. The value proposition canvas relates customer jobs, pains, and
potential gains to the provider’s solution. It forces the provider to clarify how the solution relieves pains and
creates gains for the consumer. Thus, it tries to ensure that a provided solution meets a need of the target
consumer (Osterwalder et al., 2014).

6Design thinking is a method or mindset that aims to create innovative solutions for complex problems using
diverging thinking and an iterative and end user-oriented approach (Uebernickel & Brenner, 2016).

7"Jobs-to-be-done" (JTBD) describe what a customer tries to achieve in a particular circumstance. Thus, JTBD
describe the causal driver for a buying decision instead of focusing on correlations between a customer’s
characteristics and a purchase (Christensen et al., 2016).

8The goal of domain storytelling is to transfer domain knowledge from domain experts to the team responsible
for designing and implementing business software, e.g., developers, testers, product owners, product managers,
and business analysts (Hofer & Schwentner, 2021). Domain storytelling is a workshop format during which
a domain expert tells a story, i.e., a real example, from their domain. In parallel, the workshop moderator
visualizes the story as a diagram. All participants observe how the story and visualization unfold, thus
preventing misunderstandings and detecting issues.

9Event Storming describes a workshop format in which participants collectively describes changes to the state
of a domain, i.e., domain events, to gain a better understanding of the domain and identify or solve related
problems (Brandolini, 2013). The approach results in models that support domain-driven design.

44

5. API Provider Internal Patterns

products (ITIL 4, 2019).
However, we mainly observed less structured approaches to API product design. In many

cases, the API providers simply design API products based on consumer feedback or requests.
For example, the pattern Idea Backlog allows API consumers to communicate ideas for
new APIs or changes to existing APIs to the API provider (C13). A commonality between
most cases is that the API providers implement APIs only if at least one external consumer
specifically requests them (C11; C13). Also, close collaboration with API consumers and
feedback cycles should be part of identifying functionality (C6).

Moreover, API providers can hire design agencies to support user research and user
experience design (C13).

After identifying an API product, the API provider implements it. The API provider can
apply incremental and iterative methods to the API development process (ITIL 4, 2019). More-
over, the API provider can use a Collaborative Pilot Project to ensure that the product
meets the consumers’ requirements (C11; C13). In addition to the technical implementation
of the API product itself, the API provider has to consider the needs of the target consumer
concerning the user experience, i.e., the ease of use and other non-functional requirements
(ITIL 4, 2019).

Consequences:

Benefits:

• Business needs. The design and development of APIs using approaches like the Value
Proposition Canvas (Osterwalder et al., 2014), Design Thinking (Medjaoui et al., 2018;
Uebernickel & Brenner, 2016), JTBD (Medjaoui et al., 2018), Domain Story Telling
(Hofer and Schwentner, 2021; C6), and Event Storming (Brandolini, 2013; C6) increases
the likelihood of an API meeting consumer needs. Furthermore, the iterative and
incremental evolution of APIs (ITIL 4, 2019) enables the API provider to adopt the API
product to changing consumer needs. Moreover, the API provider combining several
endpoints into an API product relieves API consumers from identifying and subscribing
to separate endpoints that address a business need together. In summary, offering an
API product that addresses business needs makes it easier for the API consumer to
discover, commit to, and integrate the APIs.

• Product management. Bundling APIs into products enables the API provider to apply
proven (software) product design, development, and marketing techniques (C3).

• Perception. Treating APIs as products ensures that API providers are aware of the
influence of APIs on how consumers perceive the organization.

• Quality. Treating APIs as products instead of mere technical interfaces leads to increased
prioritization of API quality (C9).

• Developer experience. API products aim not only to meet the consumers’ needs with
regards to functional and non-functional requirements but also regarding business and

45

5. API Provider Internal Patterns

other aspects, e.g., support services. Moreover, the design of API as products considers
the overall developer experience for API consumers and aims to achieve a positive
experience.

Drawbacks:

• Business needs. The API provider should be aware that the success of an API strongly
depends on the attractiveness of the assets that the APIs make accessible. Thus, creating
an API product does not lead to the success of an API initiative if the assets are not
attractive for API consumers in the first place (Jacobson et al., 2012).

• Unanticipated innovation. The design of API products that address specific use cases
of certain consumer groups might limit the potential for unanticipated innovation,
especially if the API provider combines APIs into bundles and makes them accessible
only as part of such bundles.

• Effort. The API provider has to identify, design, and maintain API products that meet
the consumers’ needs. Due to the continued collaboration with API consumers and the
involvement of other departments, API product management can lead to much effort
for the API provider.

Related Patterns within this Pattern Catalog:

The pattern API-as-a-Product documents an overarching concept of API management that
guides the design, implementation, evolution, and maintenance of an API. A provider who
chooses to apply the pattern API-as-a-Product should also appoint an API Product Owner
responsible for the APIs realization (De, 2017; Medjaoui et al., 2018; C6; C11; C14).

Other Related Patterns:

In Zimmermann et al. (2022), Zimmermann et al. (n.d.), and Stocker et al. (2018), the authors
describe the pattern Pricing Plan. Pricing allows the API provider to charge API consumers
for using an API product. A pricing plan can follow a subscription-based, usage-based,
market-based allocation, or freemium approach.

Similarly, Zimmermann et al. (2022), Zimmermann et al. (n.d.), and Stocker et al. (2018)
present the pattern Rate Limit. A rate limit enforces a limit for API calls according to a
specific API product tier.

Hence, the patterns Pricing Plan and Rate Limit are more specialized patterns that can
support the realization of certain aspects of the pattern API-as-a-Product.

Next, Medjaoui et al. (2018) presents the concept "API-as-a-product," which means "We
treat our APIs just like any other product we offer" (Medjaoui et al., 2018, p. 39) including
"[...] proper design thinking, prototyping, customer research, and testing, as well as long-term
monitoring and maintenance." (Medjaoui et al., 2018, p. 39). In addition, Medjaoui et al. (2018)
emphasizes the management of API products along their lifecycle and introduce ten pillars

46

5. API Provider Internal Patterns

representing the API product management work domains. The pillars are Strategy, Design,
Documentation, Development, Testing, Deployment, Security, Monitoring, Discovery, and
Change Management.

Finally, ITIL 4 (2019) defines products as "A configuration of an organization’s resources designed
to offer value for a consumer" (ITIL 4, 2019, p. 12). These resources comprise people, information,
technology, value streams and processes, and partners and suppliers. An organization designs
products to meet the needs of one or a set of specific consumer groups. Moreover, consumers
usually only see the components of a product necessary to meet these needs.

Services build on products and are "A means of enabling value co-creation by facilitating
outcomes that customers want to achieve, without the customer having to manage specific costs
and risks" (ITIL 4, 2019, p. 12). A service offering is a description of one or more services
(ITIL 4, 2019). Service offerings can include goods transferred to the consumer, access to
resources under the provider’s control, and agreed-on service actions, e.g., support services.
An organization can make the same product available as different service offerings with
varying conditions to several consumer groups. For example, a provider can make a software
service available as a limited free version and a full paid version.

Known Uses:

We observed the pattern in seven cases.

The API portal provider of an automotive organization (C3) makes vehicle data accessible
to businesses and private consumers. The organization bundles API endpoints into products
and provides descriptions for business and technical stakeholders. Moreover, the API provider
describes the products using API consumer use cases. Finally, the organization uses marketing
campaigns to market the API products.

In C6, the API gateway provider is a subsidiary within a mobility group that offers API
management services. These services comprise the management of a central API gateway
and the consultation of subsidiaries during API development. In some cases, the API gateway
provider even implements the APIs for these other subsidiaries. The API gateway provider
does not speak about "API products" but instead uses the term "digital services" to talk about
the same concept. A digital service combines a technical interface with a use case, a business
model, and lifecycle management. The API gateway provider collaborates with the other
subsidiaries to identify relevant use cases that create consumer value. The gateway provider
uses Domain Storytelling and Event Storming workshops to identify these use cases.

The API provider of C11 offers financial services for API consumers to integrate into their
systems. The organization invests much effort into an API product’s initial design to reduce
changes after the publication to a minimum.

In C13, the organization offers a marketplace for insurance services. The API marketplace
provider allows third-party API providers to publish their API products on the marketplace.
In addition, the API provider organization offers its own API products on the marketplace.

47

5. API Provider Internal Patterns

These API products are developed in close collaboration with future API consumers. Also,
each API product documentation describes the product’s business value.

C14 is a financial services provider that offers software operated in the cloud to end users.
APIs enable users to integrate the software into their system landscapes. Additionally, third-
party software provider organizations can create integrations with their software products,
thus offering an already integrated solution to the end-users. The API provider treats the
API like any other software product. Each product has its own support and security concept.
Moreover, a central governance unit governs all API products.

Stripe (C16) provides an API suite for online payment processing and related services10.
Stripe lists several API products, e.g., the product "Online payments"11. The online payments
product comprises several use cases, for example, "Accept online payments" or "Create a
subscription"12.

Twilio (C17) is an API provider for customer engagement using voice, messaging, video,
and email services13. Twilio groups products into categories, e.g., the category "Channel
APIs"14. Within the channel API category, Twilio groups APIs into products according to
communication channels, e.g., into the group "Programmable Messaging"15. Furthermore,
Twilio defines fees for the usage of the different APIs16.

Cross-case observations:

We observed API providers using API products in the context of public or group API
initiatives. Most cases reflect more mature API initiatives with several APIs in production
and several existing consumers. Added to this, most organizations are software or IT service
providers. Thus they have experience with designing and managing intangible products.

10https://stripe.com/en-de/about (accessed 20.12.2023).
11https://stripe.com/docs/products (accessed 20.12.2023).
12https://stripe.com/docs/payments (accessed 20.12.2023).
13https://www.twilio.com/ (accessed 20.12.2023).
14https://www.twilio.com/products (accessed 20.12.2023).
15https://www.twilio.com/products (accessed 20.12.2023).
16For example https://www.twilio.com/sms/pricing/de, https://www.twilio.com/whatsapp/pricing/de, and

https://www.twilio.com/conversations/pricing (accessed 20.12.2023).

48

https://stripe.com/en-de/about
https://stripe.com/docs/products
https://stripe.com/docs/payments
https://www.twilio.com/
https://www.twilio.com/products
https://www.twilio.com/products
https://www.twilio.com/sms/pricing/de
https://www.twilio.com/whatsapp/pricing/de
https://www.twilio.com/conversations/pricing

5. API Provider Internal Patterns

5.2. API Product Owner

Pattern Overview
Name API Product Owner
Alias Product Manager (Jacobson et al., 2012), API Product Manager (Medjaoui et al.,

2018)
Pattern Type API Provider Internal Pattern
Summary An API product owner is responsible for an API’s economic success, designs

and evolves the API according to consumers’ needs, and represents the API
internally.

Figure 5.2.: An API Product Owner connects knowledge about the API provider
organization’s internal processes with knowledge of API consumers’ needs.

Context:

An API provider wants to expose a new or existing API externally. The API provider treats the
API as an API-as-a-Product that needs to meet the API consumers’ needs to be successful.
Thus, managing APIs requires knowledge of external API consumers’ needs and API provider
organization internal capabilities and processes to design and implement a successful API.

Concern:

How can an organization realize API management that focuses on API consumers’ needs?

49

5. API Provider Internal Patterns

Forces:

• Required knowledge. A solution needs to bring together internal knowledge of an organi-
zation’s capabilities and processes with the understanding of external API consumers’
needs to design feasible and demanded APIs.

• Introduction effort. The API provider should be able to quickly and easily introduce the
solution with as little change to the organizational structure as possible.

Solution:

An organization can realize consumer needs-driven API management by introducing an
API product owner (API PO) role for each API. An API product owner is responsible for
investigating consumers’ needs and ensuring that new APIs or changes to existing APIs meet
these needs, thus enabling economic success. Furthermore, the product owner represents and
drives the design and implementation of APIs internally.

Stakeholders:

The API product owner as part of the API provider team has to collaborate with all stakeholders
interested in the API. This includes the collaboration with the Backend providers to identify and
access existing functionality or initiate the implementation of new functionality. Furthermore,
the API product owner has to collaborate with the API consumers to collect feedback and keep
track of their needs.

Implementation Hints:

Role and responsibilities. An organization appoints an API product owner for each API
or API product (C5; C6; C12; C14). The API product owner belongs to the API provider
organization and thus knows internal capabilities and processes (C5; C6; C12; C14). At
the same time, the API product owner is responsible for the economic success of the API
throughout its lifecycle (Medjaoui et al., 2018) by packaging these APIs into a product
(De, 2017; Medjaoui et al., 2018; C14). Thus, an API product owner needs to combine the
understanding of the organizational context and the API product domain (Medjaoui et al.,
2018).

Tasks. The API product owner can have several responsibilities and tasks. The following
list of responsibilities is non-exhaustive:

• Understand consumer needs. An API product owner has to understand and collect the
consumers’ needs (De, 2017; C12). Hence, an API product owner regularly talks to
existing and potential future API consumers to identify their pains, needs, and wishes
(C5). The person taking over the API product owner role should be able to understand,
simplify, and prioritize consumer requirements (Jacobson et al., 2012), and speak the
API consumers’ language (C14). Finally, based on the knowledge from discussions

50

5. API Provider Internal Patterns

with API consumers, the API product owner creates use cases that address existing and
potential API consumers’ pains, needs, and wishes (C5).

• Decision-making. An API product owner is responsible for making decisions on imple-
menting new APIs (C5) and evolving existing APIs (C5; C11).

• Business goal definition. A task of the API product owner is to define business goals, and
KPIs for an API (Medjaoui et al., 2018).

• Business case calculation and funding. Additionally, an API product owner is responsible
for analyzing the expected profitability of a new or changed use case (C6). To do so,
the API product owner calculates business cases and defines monetization schemes (De,
2017). If a use case is profitable, the API product owner initiates all necessary internal
processes to request funding for new APIs or changes to existing APIs (C3; C6).

• Translate business requirements. The API product manager translates business require-
ments into technical requirements (De, 2017; Medjaoui et al., 2018).

• Developer experience. The API product owner accounts for the API consumers’ developer
experience (Medjaoui et al., 2018), including the definition of design rules and processes
for app approval (De, 2017).

• Consumer relation management and communication. The API provider maintains rela-
tions with the API consumers (C5; C12; C14). Additionally, the API product owner
communicates new APIs or changes to existing APIs to consumers (C12).

• Internal representation and collaboration. The API product owner represents the API or
API product within the API provider organization. For example, the API product owner
initiates necessary review processes, e.g., by a control board (C14), and represents the
API throughout these processes (C3; C9; C12). Also, the API product owner collaborates
with internal stakeholders like sales and marketing and coordinates work with the
backend teams (De, 2017).

• Product roadmap. An API product owner designs a strategy and realization plan or
roadmap that drives API changes (Jacobson et al., 2012; Medjaoui et al., 2018). These
realization plans or roadmaps must fit the organization’s goals (Medjaoui et al., 2018).

• Monitoring of competition. The API product owner keeps an eye on competing APIs and
defines measures to keep the own API competitive (C11).

• Central point of contact. The API product owner is the central point of contact for all
concerns related to the API (Medjaoui et al., 2018).

The API product owner shares many of these tasks and responsibilities with other roles.
For example, an architect can support the decision on API designs (C5) or a portfolio manager
can help calculate business cases (C6).

51

5. API Provider Internal Patterns

Consequences:

Benefits:

• Required knowledge. On the one hand, the API Product Owner belongs to the API
provider’s organization and thus knows the API provider’s internal capabilities and
processes. On the other hand, one of the API product owner’s main tasks is communi-
cating with API consumers and identifying their needs. Hence, an API product owner
combines internal and external knowledge to design feasible and demanded APIs.

• Introduction effort. The API product owner role is a concept used in agile development.
Introducing an API product owner role in an organization that already applies agile
development practices should be easy since the necessary structures and mindset are
already in place.

Drawbacks:

• Introduction effort. The concept of an API product owner is part of agile development
practices. Thus, it can be effortful for organizations using non-agile development
practices to introduce an API product owner role.

Related Patterns within this Pattern Catalog:

The API Product Owner is the role responsible for productizing an API (De, 2017; Med-
jaoui et al., 2018). Hence, the introduction of an API Product Owner supports the pattern
API-as-a-Product (C6; C11; C14).

In addition, the provider can make it a requirement to appoint an API Product Owner as
part of the API Clearing Process process.

Known Uses:

We observed the pattern in four cases:

The partner API initiative of the software and IT service provider in C5 allows users of
their software product to integrate said software with the consumers’ system landscape easily.
An API product owner and an integration architect are responsible for the API’s evolution.
The API product owner talks to consumers and collects feedback to identify new functionality
and use cases.

Case C6 describes an API initiative within a group setting. The API provider organization
is a subsidiary that manages the API platform and supports other subsidiaries with API
design, provision, and consumption. As soon as a subsidiary proposes a new API, the API
provider’s portfolio management team calculates the API’s profitability. Suppose the API
provider organization expects an API drawing on a subsidiaries’ backends to return profits
in the future. In that case, the API provider funds the API’s design, implementation, and

52

5. API Provider Internal Patterns

maintenance and assigns an API product owner. However, if the API provider does not expect
the API to return profits but the backend provider wants to implement the API anyways,
the API provider organization requires the subsidiary to fund the API and appoint an API
product owner from the subsidiary organization. Nevertheless, the central API provider
supports the API product owner with the API design and implementation. Either way, each
API has to have an API product owner.

The API provider of C11 offers a financial service for API consumers to integrate into their
systems. The organization assigns a product team to each API. Each API product team has
an API product owner who identifies and decides on implementing API changes. In addition,
API product owners have to monitor competing APIs and ensure the competitiveness of the
organization’s APIs.

C12 is a financial services provider that provides software to end-users. APIs enable
other software providers to integrate their software with the system of C12, thus offering an
integrated solution to the end users. A dedicated product team, including an API product
owner, manages the API by applying agile development practices. The API product owner’s
tasks include, for example, the collection of feedback from consumers and communicating
planned changes to consumers.

C14 is a financial service that offers software operated in the cloud to end users. APIs
enable other software providers to integrate their software with the system of C14, thus
offering an integrated solution to the end users. Again, dedicated teams are responsible for
the evolution of the APIs, each including an API product owner and using agile practices.
The API product owners must understand their consumers, know their pains, and implement
solutions to these pains. API product owners must constantly adapt their understanding of
the pains and evolve the APIs to address them. Furthermore, an API management program
can identify the need for new APIs. However, the API management program can only initiate
a project once an API product owner is assigned.

Cross-case observations:

The cases represent public, partner, and group API initiatives. Further, three API initiatives
are in production, and only one is in the pilot stage. Also, all but one initiative uses
developer portals, and the remaining one is a backend API. However, the API initiatives
differ regarding monetization, including contractual agreements, free use as part of a product
license, completely free use, and pay-per-call. Finally, the size of the API initiatives varies
from small (<20) to moderate (<100) to a large (<10,000) numbers of API consumers. Hence,
API providers can apply the pattern to API initiatives with different characteristics.

However, all the organizations have in common that they already use agile development
practices. This makes sense since the role of a product owner is a concept introduced by agile
development approaches.

53

5. API Provider Internal Patterns

5.3. Collaborative Pilot Project

Pattern Overview
Name Collaborative Pilot Project
Pattern Type API Provider Internal Pattern
Summary The API provider designs a new API iteratively in close collaboration with one

or a limited set of API consumers to increase the likelihood of the API meeting
API consumers’ needs.

Figure 5.3.: The pattern Collaborative Pilot Project involves one or a selected number of
API consumers in all steps of the API design. This includes the API consumer

reviewing and providing feedback on the API’s specification and the prototypical
implementation before publication to all consumers.

Context:

An API provider wants to create a new API. For an API to succeed, the APIs must meet the
API consumers’ needs. Especially for complex use cases, it can be challenging to understand
the API consumers’ needs correctly (C2).

Concern:

How can the API provider ensure that a new API meets the consumer’s needs?

54

5. API Provider Internal Patterns

Forces:

• Consumer demand. The API provider needs to ensure that APIs meet the consumers’
needs so that consumers adopt the APIs. The creation of an API that does not meet
consumer needs leads to a loss of investment (C3).

• Time-to-market. In specific markets, i.e., high-speed markets, API providers must publish
APIs as fast as possible to gain or maintain a competitive advantage (C3). Moreover,
even outside of high-speed markets, API consumers that rely on the API to run their
business can be negatively affected by long waiting times for new APIs (Medjaoui et al.,
2018).

• Monetization. The API provider might want to create a new API only if its future
monetization is secured. The API provider can ensure future API monetization by
negotiating contracts with future API consumers before the API implementation.

• API stability. API consumers rely on the stability of the APIs that they integrate. Frequent
changes, especially breaking changes, creates effort for API consumers (C2) and can
lead to them abandoning an API (Medjaoui et al., 2018).

• Generic API design. In public API and marketplace settings, the API provider wants to
design APIs to meet the needs of several API consumers.

Solution:

The API provider designs the API iteratively in close collaboration with one or a limited
amount of API consumers in a pilot project. The partnering API consumer communicates
needs and requirements and provides feedback to the API provider before and during the API
implementation project (C3). Hence, the API provider can easily realize changes to the API
design before its publication, i.e., before the API is accessible to and integrated by consumers
(Medjaoui et al., 2018).

Stakeholders:

The API provider has to collaborate with the partnering API consumer(s) to discuss and test
API implementations during the pilot phase. Usually, these collaborations are based on a
contractual agreement. Thus, the provider has to involve the legal team. Also, the API provider
has to collaborate with the backend provider(s) who provide the functionality accessible via the
API.

Implementation Hints:

Partner identification. A collaborative pilot project starts with identifying a use case and
a consumer who wants to partner. The API provider can identify use cases and partnering
consumers during informal direct discussion or via account management or other consumer-
facing teams. Alternatively, the API provider can use a more structured process, e.g., the use

55

5. API Provider Internal Patterns

of an Idea Backlog. However, it is also possible that an API consumer actively approaches
an API provider and proposes a pilot project. In all cases, the API provider has to evaluate
the business case before agreeing to the partnership (C3).

For public APIs, the API provider can also approach top developers with respected positions
in specific developer communities. These developers’ involvement in the design of new APIs
enables improvements of the API and free marketing through evangelization (Jacobson et al.,
2012).

Collaboration mode agreement. The partners must negotiate the legal basis for the project.
Also, the pilot project partners have to formalize the collaboration and agree upon general
conditions, including the mode and intervals of collaboration. These topics can be discussed
during a Pilot Workshop, which launches the pilot project.

Collaboration modes. The API provider can collect feedback using lab-based usability tests,
focus groups, surveys, and interviews (Medjaoui et al., 2018).

Generally, the API consumer can provide feedback at some or all of the following stages
of the collaborative pilot project. First, the API provider and consumer can create, discuss,
and agree upon API specifications before the API implementation (C3). For example, mocks
form a basis to discuss and review APIs (Spichale, 2017). Also, API consumers can review
and test the API implementation at specific points during the API implementation, e.g.,
after each iteration in an agile context (C2; C3). Finally, the consumer can perform the final
acceptance test before an API is released into production and potentially made accessible to
other external consumers (C2). Furthermore, the API provider can also request feedback from
the API consumer on additional artifacts, like the developer portal or API documentation
(C2).

Consequences:

Benefits:

• Consumer demand. Collecting consumer feedback before an API’s publication reduces
the need to make assumptions about the API design (Medjaoui et al., 2018) by creating
a better understanding of API consumers and their needs. Thus, the chances of API
adoption increase. Also, close collaboration creates API consumer buy-in.

• Monetization. An API consumer is more likely to sign a contract to use and pay
for an API before its implementation if they are closely involved during the APIs
design and implementation phases. Hence, a Collaborative Pilot Project increases
the likelihood of an API consumer agreeing to an upfront contractual monetization
agreement.

• API stability. It is harder to change APIs after their publication when API consumers have
already built integrations (Medjaoui et al., 2018). Iterative improvement of an API based
on consumer feedback before publication should reduce the need to make changes after

56

5. API Provider Internal Patterns

publication. A stable API with few changes affecting consumer integrations prevents a
negative impact on API consumer satisfaction.

Drawbacks:

• Consumer demand. API providers sometimes have to implement APIs for legal reasons.
In such settings, the consumers’ demand for such APIs is a secondary concern for the
API provider (C3).

• Time-to-market. The API provider depends on the partner providing feedback while
testing a new API design. API consumers can have other priorities in their daily business
and may not provide feedback to the API provider in a timely manner. Thus, close
collaboration with an API consumer can lead to waiting times for the API provider
team (C4). Such waiting times disrupt the development processes of the API provider,
and postpone planned API go-live dates (C4).

• Generic API design. Close collaboration with just one API consumer during the design
of an API can lead to a specialized API. Potentially, only one or a small group of API
consumers can use an overfitted API (C4). A specialized API is suitable if the API
provider aims for a point-to-point integration but not if the API provider wants to
provide a public API or a platform in a developer ecosystem that many API consumers
can integrate (C12). Finally, close collaboration with third parties comes with the risk of
scope creeping (Kendrick, 2015).

Related Patterns within the Pattern Catalog:

A Collaborative Pilot Project is an approach to realize a new Web API, Frontend Venture,
or Client Library that passed the API Clearing Process. The provider can apply a Testing
Strategy for testing as part of the Collaborative Pilot Project.

A Collaborative Pilot Project presents an alternative approach to designing and imple-
menting a new API compared to the Play-it-fast Approach. While Collaborative Pilot
Project increases the likelihood of a new API meeting consumer needs due to close and
ongoing collaboration, it also increases time-to-market. In comparison, a Play-it-fast
Approach enables fast time-to-market for new APIs but also increases the risk of not meeting
API consumer needs.

Known Uses:

We observed the pattern in three cases:

In case C2, the API provider offers simulation and modeling algorithms for the analysis of
energy data. The API provider initiates a new project only if a concrete demand exists, i.e., if
an API consumer agrees to partner with them during a pilot project. The API provider gives
the collaborating partner access to the developer portal and asks them for feedback. Based on
the feedback, the API provider evolves the API endpoint.

57

5. API Provider Internal Patterns

The API portal provider of an automotive organization (C3) shares anonymized road
condition data with public authorities. The API provider partners with API consumers in
pilot projects to better understand the market demand for a new API. Different stakeholders
can trigger new projects, but primarily external organizations with prior relations to the
provider organization contact the API provider team with new use cases. Furthermore, the
API provider aims to design a first prototype of the API endpoint to show to the consumer
as fast as possible. Based on the prototype, which can be nothing more than a handwritten
specification in the first iteration, the API provider discusses the API endpoint design with
the consumer. However, the API provider admits that this kind of close collaboration is not
always possible for each API endpoint. Instead, in some cases, the API provider also applies
the Play-it-fast Approach, i.e., develops and releases an endpoint based on only one prior
discussion with a potential API consumer to realize a faster time-to-market.

Case C12 captures a financial services provider that provides SaaS software to end-users.
APIs enable other software providers to integrate their software with the SaaS system of C12,
thus offering an integrated solution to the end users. The API provider closely collaborates
with consumers when creating new APIs for the software product since API consumers
often have very concrete expectations regarding the API. However, this approach leads to the
creation of several APIs for the same software product, i.e., one API for each consumer.

Cross-case observations:

These cases represent API initiatives still in a pilot phase or in production. The API
initiatives are partner and public API initiatives but have a relatively small number of API
consumers. This makes sense since collaborative pilot projects usually focus on the specific
requirements of single API consumers.

Further, the API providers apply Collaborative Pilot Project for API initiatives with
other business organizations as well as with government institutions.

58

5. API Provider Internal Patterns

5.4. Play-it-fast Approach

Pattern Overview
Name Play-it-fast Approach
Pattern Type API Provider Internal Pattern
Summary The API provider designs and publishes an API based on initially provided

consumer requirements but without consumer collaboration during API design
and implementation (C4) to achieve fast time-to-market. to enable fast time-to-
market.

Figure 5.4.: If an API provider applies the Play-it-fast Approach pattern to design a new
API, API consumers are not involved in the API specification and

implementation.

Context:

An API provider wants to publish a new API as fast as possible since a fast time-to-market
is of the essence to ensure a competitive advantage (C3). Such a fast time-to-market is
relevant, for example, in high-speed markets. Alternatively, even in environments that are not
high-speed markets, long waiting times for new APIs can negatively affect API consumers
that rely on the API to run their business (Medjaoui et al., 2018). At the same time, the API
must meet API consumers’ needs.

59

5. API Provider Internal Patterns

Concern:

How can an API provider publish new APIs in a fast manner?

Forces:

• Time-to-market. In specific markets, i.e., high-speed markets, API providers must publish
APIs as fast as possible to gain or maintain a competitive advantage (C3). Moreover,
even outside of high-speed markets, API consumers that rely on the API to run their
business can be negatively affected by long waiting times for new APIs (Medjaoui et al.,
2018).

• Consumer demand. The API provider needs to ensure that APIs meet the consumers’
needs so that consumers adopt the APIs. Creating an API that does not meet consumer
needs leads to a loss of investment (C3).

• Generic API design. In public API and marketplace settings, the API provider wants to
design APIs to meet the needs of several API consumers. A generic API design allows
different consumers to use an API (C12).

• Monetization. The API provider might want to create a new API only if its future
monetization is secured. The API provider can ensure future API monetization by
negotiating contracts with future API consumers before the API implementation.

• API stability. API consumers rely on the stability of the APIs that they integrate. Frequent
changes, especially breaking changes, creates effort for API consumers (C2) and can
lead to them abandoning an API (Medjaoui et al., 2018).

Solution:

The API provider collects the API consumers’ requirements for a new API but designs and
implements it in isolation (C4). Afterward, the API provider publishes the finalized API to all
API consumers, i.e., makes the API accessible and allows consumers to integrate it (Medjaoui
et al., 2018). API consumers can now provide feedback on the published API (C2). Based on
consumer feedback, the API provider iteratively improves the published API (C2; C4; C12).

Variants:

The API provider can also collect the API consumers’ requirements for a new API, design and
implement it, and publish the API in a sandbox to which only a limited number of selected
consumers have access (C4). This approach is also called a beta release (De, 2017). In such
settings, the API consumers with access to the sandbox provide feedback to the API provider
before the API is published to all API consumers. However, the API provider has to give the
API consumers with access to the beta version enough time to test it and provide feedback
(De, 2017). Hence, the time until the API provider can publish the API to all consumers, and

60

5. API Provider Internal Patterns

therefore time-to-market, increases. Nevertheless, the number of required changes to the API
after its publication likely decreases.

Stakeholders:

The API provider has to initially collect the requirements of the API consumer(s) but does not
engage with them during the API design and implementation. However, the provider has to
collaborate with the backend provider(s) to design and adapt the APIs.

Implementation Hints:

Aggregate wishes. The API provider should collect the wishes of API consumers to identify
the need for a new API (C4). The pattern Idea Backlog enables the collection and aggregation
of consumer wishes.

API and documentation. The API provider should not only iteratively improve the API
design based on consumer feedback but also the API documentation (C2).

Communication channels. The API provider must provide suitable communication chan-
nels that allow API consumers to provide feedback easily after publishing a new API (C2;
C12). Furthermore, the API provider needs to ensure that API consumers are aware of these
communication channels.

Feedback filter. The API provider has to review received feedback and distinguish between
useful and useless remarks (C12).

Consequences:

Benefits:

• Time-to-market. The API provider decouples the implementation of an API from the API
consumers’ feedback allowing for a fast time-to-market (C4; C12). In comparison, if the
API provider chooses an approach that requires regular feedback from an API consumer,
e.g., by applying the pattern Collaborative Pilot Project, the API provider might
has to wait for the API consumer’s feedback for a long time (C4; C12).

• Generic API design. The API provider does not closely collaborate with an API consumer,
reducing the risk of overfitting a new API to the needs of just one or a small group
of API consumers (C4). Hence, the approach is especially suitable for public and
marketplace APIs.

Drawbacks:

• Consumer demand. A solution following the Play-it-fast Approach pattern collects
the API consumers’ requirements and wishes at the beginning of the implementation
project and involves the API consumer only after the API’s initial publication. Hence,

61

5. API Provider Internal Patterns

the API provider has to make a lot of assumptions on API design (Medjaoui et al.,
2018). As a result, there is a risk of implementing an API that does not meet the API
consumers’ needs, leading to a loss of investment.

• Monetization. It is unlikely that an API consumer will sign a contract to use and pay for
an API before its implementation without close collaboration during the APIs design
and implementation phases. Hence, the API provider has to carry the initial project
costs and the risk of API consumers not using the API after publication.

• API stability. It is more difficult to change an API after its publication to the API
consumers (Medjaoui et al., 2018). Publishing an API without collecting consumer
feedback can result in the need to make more changes after publication. Frequent
changes in published APIs will likely negatively affect API consumers’ satisfaction with
the API provider. In some cases, frequent changes lead to API consumers abandoning
an API (Medjaoui et al., 2018).

Related Patterns withing this Pattern Catalog:

A Play-it-fast Approach is an approach to realize a new Web API, Frontend Venture, or
Client Library that passed the API Clearing Process.

The provider can apply a Testing Strategy for testing during the Play-it-fast Approach.
In addition, it is an alternative approach to designing and implementing new APIs com-

pared to Collaborative Pilot Project. While the application of Play-it-fast Approach
enables fast time-to-market for new APIs, it increases the risk of not meeting API con-
sumer needs and the need to make changes to the API after its publication. In comparison,
Collaborative Pilot Project increases the likelihood that the API design meets API con-
sumer needs but increases the time until a provider can publish an API since the provider
has to wait for the consumer to review intermediate API specifications and designs.

Known Uses:

We observed the pattern in three cases.

In the case of C2, the API provider offers simulation and modeling algorithms to analyze
energy data. The API provider implements and publishes new APIs based on consumer
feedback but without the consumer’s involvement during the API implementation. API con-
sumers can access the published APIs via Onboarding Self-service and provide feedback
to the API provider. Since the API has a limited number of users and the API provider knows
all API consumers, the API consumers provide their feedback via Microsoft Teams or Email.
The feedback triggers further API changes and improvements to API documentation.

Case C4 represents a software service provider’s public API initiative. End users with a
license for the API provider’s software product automatically have access to the public API
to enable customized system integration. The API provider reported that they initially
tried involving specific API consumers in the design of APIs according to the pattern

62

5. API Provider Internal Patterns

Collaborative Pilot Project. However, the approach disrupted the running sprints since
the API provider had to wait for feedback from API consumers. In addition, the API provider
wants to provide generic APIs that large groups of API consumers can use, but the close
collaboration with one API consumer bears the risk of designing APIs specific to specific cases
of the partnering API consumer. Hence, the API provider decided to use the Play-it-fast
Approach pattern. First, the API provider identifies generic use cases that meet the needs of
many consumers via the Idea Backlog. Then, the API provider designs and implements a
new API or change to an existing API and releases it in a sandbox environment to which API
consumers have access. The API consumers provide feedback to the API provider as soon as
the API or API changes are released. The API provider reports that in the past, they only had
to make small changes to APIs after the initial release.

Finally, case C12 captures a financial services provider that provides software to end-users.
APIs enable other software providers to integrate their software with the system of C12, thus
offering an integrated solution to the end users. The API provider decides on a project-by-
project base if they apply the Play-it-fast Approach or the Collaborative Pilot Project
pattern to the design of a new API. In projects that require fast time-to-market, the API
provider applies the Play-it-fast Approach pattern. The organization receives feedback not
only from API consumers but also from end-users. These fast feedback cycles are possible due
to well-established communication channels that allow API consumers to provide feedback
and new ideas.

Cross-case observations:

All cases have in common that they are partner or public API initiatives. Also, they are
either in production or in the pilot phase. However, the number of API consumers varies
from very few to several thousand. Hence, the applicability of the pattern Play-it-fast
Approach does not seem to depend on any of these API initiatives’ characteristics.

63

5. API Provider Internal Patterns

5.5. Idea Backlog

Pattern Overview
Name Idea Backlog
Pattern Type API Provider Internal Pattern
Summary An idea backlog is a dynamic list that stores and aggregates consumer wishes

for API endpoints derived from consumer support requests, discussions, or
surveys.

Figure 5.5.: The API provider collects and aggregates consumers’ ideas for new APIs and
changes to existing APIs in an Idea Backlog.

Context:

An API provider wants to start a new or evolve an existing API initiative. For an API initiative
to succeed, the APIs must meet the API consumers’ needs. However, API consumer needs
can be many and very different. Thus, the API provider needs an approach to identify and
integrate consumer wishes into the development process.

Concern:

How can the API provider collect and utilize information on API consumer needs?

Forces:

• Specific vs. generic consumer needs. API consumers request new functionality tailored to
their particular needs. However, each endpoint needs to be designed and maintained

64

5. API Provider Internal Patterns

by the API provider, i.e., even an API endpoint used by only one consumer results in
operating costs. Hence, when designing a new or changing an existing API, the API
provider has to find a balance between meeting the needs of specific consumers and
making the API generic enough that the API addresses the needs of a broader range of
consumers (C4).

• Unknown consumer groups. The API provider might not be aware of API consumer
groups interested in the APIs and, thus, not of their needs.

• Number of consumers. For API initiatives with few consumers, the API provider can easily
and informally track API consumer requests for new or changed endpoints. However,
for API initiatives with many consumers, it can be difficult to track the wishes of API
consumers and identify similarities between them without a structured approach (C4).

• Process effort. The structured collection and review of new ideas require resources.

Solution:

An idea backlog is a dynamic list that stores and organizes consumer wishes for new or
changed endpoints derived from consumer support requests, discussions, or surveys. The
API provider uses the idea backlog to aggregate and abstract the consumer’s wishes to design
new APIs or evolve existing APIs that meet consumer needs. Also, the API provider can
validate planned changes against the idea backlog.

Stakeholders:

The API provider has to collaborate with API consumers to collect and verify ideas for API
design. Also, customer support can help collect API consumer needs and wishes.

Implementation Hints:

Idea collection. First, the API provider has to collect the wishes of (potential) API consumers
for new APIs or changes to APIs and enter them into the backlog. The API provider can
collect such wishes through feature requests (Spichale, 2017) or abstract incoming support
requests. Also, the API provider can talk to API consumers in meetings or during conferences
(C4; C5). Another approach is to create and monitor online communities with end users and
extract ideas from discussions (C12). Furthermore, an API provider can actively send surveys
to API consumers asking for wishes (C3). Finally, the API provider could target influential
developers and ask for their feedback and ideas for improving API initiatives (Jacobson et al.,
2012). Such collaborations lead to improved APIs and additional marketing through the
developers’ channels (Jacobson et al., 2012). In all cases, the API provider should also collect
context information and information on the requesting party, including contact information
(C4).

65

5. API Provider Internal Patterns

Idea consolidation. In the next step, the API provider needs to organize the wishes. For
example, the provider can cluster the ideas according to endpoints, use cases, or business
objects (C4). This way, an API provider creates an overview of how many customers requested
a feature and what variants of requests exist. In a further step, the API provider could allow
API consumers to vote for ideas that are useful for them (Spichale, 2017).

Implementation. Finally, the API provider can use clustered ideas to design new APIs or
evolve existing APIs to meet several API consumers’ wishes (C4). The API provider must
abstract the ideas in the backlog to design a generic solution that meets the wishes of as many
consumers as possible (C4). The backend and provider teams implement the aggregated ideas
according to their development approach, e.g., using an agile approach. In a marketplace
setting, the marketplace provider can also decide not to implement a consumer wish but
instead search for partners who want to realize a requested feature or product (C13).

Validation. Moreover, the API provider can validate already planned changes against the
idea backlog to ensure that a consumer need for these changes exists.

Consequences:

Benefits:

• Specific vs. generic consumer needs. The idea backlog allows API providers to collect the
specific wishes of several API consumers and aggregate them in a way that results in
designing an API endpoint that meets the needs of several consumers. Hence, the API
provider can design an API that might not perfectly meet the requirements of each API
consumer but, in sum, balances the operating costs of the API with its overall usage
across consumers (C4).

• Unknown consumer groups. The consumers can submit ideas for new or changed end-
points, e.g., via support requests, discussions, or surveys, and the API provider docu-
ments and analyzes these ideas. Hence, all kinds of consumers can submit ideas.

• Number of consumers. An idea backlog provides a structured approach for documenting
and analyzing consumer requests for new or changed API endpoints, even for large
numbers of API consumers.

Drawbacks:

• Process effort. The API provider has to design a structured process for collecting
consumers’ wishes in an idea backlog and allocate resources to the process execution.

Related Patterns within this Pattern Catalog:

An Idea Backlog helps identify relevant use cases that the provider submits to the API
Clearing Process.

66

5. API Provider Internal Patterns

Known Uses:

We observed the pattern in five cases:

The API portal provider of an automotive organization (C3) shares vehicle data with car
owners. The organization uses online surveys to collect ideas for new APIs or required
changes to existing APIs to increase future adoption. In addition, they plan to create a forum
that allows API consumers to exchange experiences. The API provider also wants to use the
forum as a source of new ideas.

Cases C4 represents the public API initiative of a software service provider. End users
with a license for the API provider’s software product automatically have access to its public
API to enable customized integration with their systems. The API provider collects ideas
for new or changed endpoints for the public API based on support requests and personal
discussions with consumers or potential consumers. All wishes are entered into an idea
backlog and categorized according to business objects. The API provider team reviews the
idea backlog before every quarter to define the functionality they will implement in the next
quarter. During internal refinement meetings, the provider team abstracts the ideas and
designs or evolves APIs specifications to be generic enough to meet the wishes of several API
consumers. In the next quarter, the API providers and backend providers implement and
publish the APIs using a Play-it-fast Approach. After publishing the initial API version, API
consumers can provide feedback.

Case C12 captures a financial services provider that provides software to end-users. APIs
enable other software providers to integrate their software with the system of C12, thus
offering an integrated solution to the end users. The organization operates an online forum
that allows end users to discuss ideas for new functionality. The API provider then derives
ideas from these discussions for the idea backlog.

Next, the API provider in C13 provides a core platform that allows external third-party
software providers to publish modules (APIs and solutions) and end-user to consume these
modules. The platform provider collects wishes from existing or potentially new consumers
and reviews if there are currently providers on their platform that already provide these
functionalities. If not, they approach module providers that could possibly offer these
functionalities and ask them to provide these functionalities on the platform in the future.
Also, in some strategic cases, the API provider decides to build new APIs themselves.
However, the API provider admits that this process is currently rather manual and needs to
be more structured in the future.

Twilio (C17) is an API provider for customer engagement using voice, messaging, video,
and email services17. As part of the Twilio developer portal, API consumers can submit
feature requests18. In addition, other consumers or interested parties can vote for or comment
on these feature requests. Hence, Twilio involves consumers in the prioritization of feature

17https://www.twilio.com/ (accessed 20.12.2023).
18https://roadmap.respond.io/feature-request(accessed 20.12.2023).

67

https://www.twilio.com/
https://roadmap.respond.io/feature-request

5. API Provider Internal Patterns

requests.

Cross-case observations:

Across all cases, we observe the pattern Idea Backlog in more mature API initiatives with
APIs already in production. Additionally, the number of API consumers is high enough to
make informal tracking of consumer wishes without a process difficult. The initiatives are
primarily public, which makes sense since the pattern also allows the API provider to identify
new consumer groups that the API consumer did not target in the first place. We further
observe the pattern for API portals as well as marketplaces.

68

5. API Provider Internal Patterns

5.6. Testing Strategy

Pattern Overview
Name Testing Strategy
Pattern Type API Provider Internal Pattern
Summary A centrally defined testing strategy enforces the testing of new APIs or changes

to existing APIs to reduce the likelihood of unexpected behavior of new or
changed APIs or backends (C3).

Figure 5.6.: The API provider enforces a centrally defined Testing Strategy for new APIs or
changes to existing APIs.

Context:

API providers introduce new APIs or change APIs, e.g., to evolve their functionality or fix
bugs. APIs are complex software artifacts requiring the interaction between several software
components, i.e., the API itself, the backend, and potentially a gateway, usually with different
teams or persons responsible for each of them. Hence, changes to one component could affect
other components in unexpected ways, e.g., a backend change could impact the API’s behavior
unexpectedly. However, API consumers expect APIs to meet communicated functional and
non-functional specifications continuously. Therefore, the API provider has to ensure that
changes do not lead to unexpected API behavior, performance degradation, or any other
issues impacting API consumers before releasing changes into production.

Concern:

How can the API provider ensure that new or changed APIs behave as specified regarding
functional and non-functional properties?

69

5. API Provider Internal Patterns

Forces:

• Consumer expectations. Consumers expect APIs to meet documented functional and
non-functional requirements. Failure to meet these specifications leads to frustration for
API consumers, who might abandon using such an API.

• Existing integrations. API consumers already integrated with an API rely on the API
provider not to make any breaking changes or to communicate these changes ahead of
time. Unexpected changes that break a consumer integration lead to frustration and
potentially to contractual fines. Hence, the API provider has to ensure that changes not
meant to be breaking do not influence the behavior of the APIs.

• Support effort. If API consumers notice unexpected changes to an API, they will contact
the support asking for a resolution. Hence, unexpected changes can lead to high
volumes of support requests (C4; C5).

• Test design. Testing new APIs and changes to an API requires the adequate design and
execution of test cases.

• Required collaboration. Often, different teams or persons are responsible for the different
software components interacting to deliver an API. Errors arising at the interface
between such components require collaboration between these teams. However, these
teams might have different priorities or approaches to solving such issues.

Solution:

The API provider designs and implements a testing strategy that enforces the testing of new
APIs or changes to existing APIs. The testing approach encompasses different testing types
and involves all teams concerned with API provision (C3).

Stakeholders:

An API governance team within the API provider team could design and coordinate the testing
strategy. Also, the API provider has to involve the backend providers into testing.

Implementation Hints:

Types of testing. The test strategy should comprise different types of testing conducted by
various teams involved in the API initiative. These types of testing can be:

• Backend testing (C3)

• Unit testing (Medjaoui et al., 2018)

• API gateway configuration testing (De, 2017; C3)

• End-to-end testing (C3; C4; C5)

70

5. API Provider Internal Patterns

• API specification testing (De, 2017)

• Integration testing (Medjaoui et al., 2018)

• API performance and load testing (De, 2017; Medjaoui et al., 2018)

• API security testing (De, 2017; Medjaoui et al., 2018)

• API documentation testing (De, 2017)

• UX testing (Medjaoui et al., 2018)

• Production testing (Medjaoui et al., 2018)

Decentralized vs. centralized testing. Decentralized teams can execute early test stages to
increase speed. However, the API provider should run later test stages in a centralized
manner to ensure safety (Medjaoui et al., 2018).

Test automation. At the beginning of an API initiative with few APIs, API providers can
manually test APIs. However, an increasing amount of APIs and consumers leads to high
costs of manual testing (Medjaoui et al., 2018). Thus, the API provider should introduce
and continuously evolve testing tools that support automated testing (Medjaoui et al., 2018;
C4; C5). Additionally, the test tools potentially enable parallel testing, virtualization, and
canary testing (Medjaoui et al., 2018). Also, test tools provide capabilities for test data
management (De, 2017). An API provider can also enforce the testing strategy through CI
pipeline configurations (C3; C14).

Test-driven development. Test-driven development and the early inclusion of testing ex-
perts in the design and development of an API usually results in improved testing solutions
for the APIs (Medjaoui et al., 2018).

Consequences:

Benefits:

• Consumer expectations. Even though testing cannot guarantee uncovering all unexpected
behaviors or errors (Medjaoui et al., 2018, p. 50), proper test design and execution can
reduce the likelihood of unexpected behaviors or errors before deploying a new API
or making a change (C4; C5). Thus, the new APIs or changes are less likely to affect
consumer expectations negatively.

• Existing integrations. Testing decreases the likelihood that changes to APIs unexpectedly
break API consumer integrations.

• Support effort. Testing decreases the likelihood of high loads of support requests resulting
from unexpected behavior of changes to an API.

71

5. API Provider Internal Patterns

• Required collaboration. Clearly defined testing approaches include processes to handle
errors arising at the interface between components, thus reducing frictions or delays in
the resolution.

Drawbacks:

• Test design. The design and execution of testing are effortful. The API provider has to
define and manage test cases and test data for functional and non-functional testing.
Also, organizations potentially have to maintain test infrastructure. Nevertheless, testing
cannot guarantee uncovering all unexpected behaviors (Medjaoui et al., 2018).

Related Patterns within this Pattern Catalog:

The provider should apply a Testing Strategy for testing a new API that the provider
introduces through a Collaborative Pilot Project or Play-it-fast Approach.

When testing new or changed APIs, the provider creates test cases as part of the Testing
Strategy. These test cases can be reused for API Quality Monitoring.

In addition, a Service-Level Agreement (SLA) defines the thresholds for non-functional
requirements of an API. The Testing Strategy must ensure that APIs meet these thresholds
before publication.

Other Related Patterns:

The book Richardson (2019) together with the online resource Richardson (n.d.) present the
pattern Consumer-driven Contract Test, which captures the idea of a consumer writing a
test suite for an API to ensure that it meets the consumer’s needs. Also, Service Component
Test (Richardson, n.d., 2019) describes the testing of services in isolation. An API provider can
use Consumer-driven Contract Tests and Service Component Tests as part of the Testing
Strategy.

Furthermore, Fowler (2003) presents the Service Stub pattern. A service stub is a locally
running, fast service that replaces a service outside a development team’s control for easy
testing. API providers can use service stubs in the context of a Testing Strategy.

Known Uses:

We observed the pattern in four cases:

The API portal provider of an automotive organization (C3) shares vehicle data with
car owners and workshops and anonymized road condition data with government bodies.
New APIs and changes to existing APIs have to pass backend testing, gateway testing, and
end-to-end testing before being released into production.

Cases C4 and C5 represent a software service provider’s public and partner API initiatives.
End users with a license for the API provider’s software product automatically have access to

72

5. API Provider Internal Patterns

the public API to enable customized system integration. The partner API allows other software
providers to create integrations with their software products, thus managing more integrated
solutions for end-users. The API gateway team is responsible for the API overall testing
strategy in these two cases. The API gateway team uses a commercial testing framework
to create and automate end-to-end tests, ensuring that the APIs behave as expected by the
consumers. Successful testing is part of the Definition of Done (DoD). Hence, the backend
and API providers only deploy new APIs or changes if all tests are successful. This testing
strategy is supported by the DevOps culture of the organization, meaning that developers
are interested in publishing high-quality software since they have to maintain and evolve it
afterward.

Finally, case C12 captures a financial services provider that provides software to end-users.
APIs enable other software providers to integrate their software with the system of C12, thus
offering an integrated solution to the end users. The organization enforces its testing strategy
through its CI pipeline configuration.

Cross-case observations:

These cases have little in common. The API initiatives are private or public, have different
amounts of API consumers, and are partially in a pilot phase or already in production.
This heterogeneity in API initiative characteristics makes sense since software testing is a
universally recognized approach to ensure software quality in different contexts and plays an
essential role in modern development practices, including agile development and DevOps.

73

5. API Provider Internal Patterns

5.7. API Clearing Process

Pattern Overview
Name API Clearing Process
Pattern Type API Provider Internal Pattern
Summary A data clearing process ensures that all API endpoints comply with legal

and strategic requirements before they are published externally by involving
different stakeholders who provide feedback and need to sign off on a new API
or the change to an existing API.

Figure 5.7.: All new APIs or major changes need to pass the API Clearing Process.

Context:

An employee or team belonging to the API provider has the idea to create a new API or
perceives the need for a significant change to an existing API. The employee or team assumes
a market demand for the new or changed API. However, introducing a new API or changes
to an existing API creates effort and is connected with risks, e.g., legal or security risks.

Concern:

How can an API provider ensure that new or changed APIs create profit for or at least don’t
harm the API provider’s organization?

Forces:

• Return on investment. The design and implementation of new APIs or changes to existing
APIs are costly (C3; C6). Usually, creating a reusable API is more effort compared

74

5. API Provider Internal Patterns

to designing and implementing a point-to-point integration. The additional effort is
caused, e.g., by the need to design the API in a generalist way that allows for reuse
and the need to design monetization models (C6). Therefore, a solution should ensure
that the additional effort of creating and changing APIs yields a positive return on
investment (C3).

• Risks. Publishing an API to external users is accompanied by risks. For example, the
API provider could accidentally publish privacy-relevant or strategic data, or open up
the application landscape to security attacks.

• Play it fast. If new or changed APIs enable new business opportunities for API con-
sumers, API providers need to introduce the APIs into the market quickly. Competing
API providers might try to offer similar data or functionality if they perceive a demand
in the market (C3).

• Centralized decision making cost. Centralizing decisions creates cost, since the organization
needs funds to maintain the governance body, but also in the sense of potential decreases
in employee happiness and rate of technological innovation (Medjaoui et al., 2018).

Solution:

The API provider designs and coordinates a data clearing process to ensure that any API
endpoint meets legal, strategic, and other requirements before being exposed externally.
An employee or team that wants to create a new API or make a significant change to an
existing API has to prepare specifications and a business case and present it to stakeholders
from different departments. The stakeholders assess the proposal and potentially request
improvements. The API provider can implement the API only after successfully passing the
data clearing process.

Stakeholders:

The API provider involves the legal, finance & controlling, sales & marketing, and research &
development departments into the review of new APIs or major changes to APIs.

Implementation Hints:

Process goal. The API governance or another central entity designs and manages the data
clearing process. Hence, the pattern API Clearing Process describes a process for central-
ized decision making. An API provider should centralize decisions if they can impact a
system negatively and in an irreversible way (Medjaoui et al., 2018). For example, governance
should centralize API security since a vulnerability can lead to extensive and long-lasting
damage (Medjaoui et al., 2018). Overall, the purpose of the data clearing process is to ensure
that all endpoints are assessed for legal, strategic, and other requirements to increase the
likelihood that the implementation of a new API or changes of an existing API leads to

75

5. API Provider Internal Patterns

positive results for the API provider (C3). In case of changes to an existing API, the process is
only relevant for major changes or customer-facing changes (C11).

Process steps. Ideas for new APIs or changes to existing APIs emerge from new or changing
business agreements or experiences of community managers, business analysts, or solution
architects (De, 2017). An employee or team with an idea for a new API or suggestions for
changes of an existing API start the data clearing process. The API provider should define
requirements for the initiation and successful execution of the data clearing process (see
below). Moreover, the team organizing the data clearing process can make available best
practices supporting and preparing the employees or teams (C6).

Once the process starts, the organizing unit identifies all stakeholders potentially affected
by the new API and departments that can support data clearing with their expert knowledge.
The involved stakeholders potentially comprise API provider teams, business departments,
legal, finance & controlling, sales & marketing and others (C3).

In the next step, all stakeholders review the idea for a new API. Each stakeholder can reject
or propose changes to the propsal for strategic, financial, privacy-related, or other reasons.
Besides not meeting any of the data clearing process’s requirements, reasons to reject a new
API can be that publishing the data or functionality would disrupt the business or bad past
experiences with the potential API consumer. Potentially, the employee or team pitching the
new API has to improve the idea iteratively until it meets the demands of all stakeholders of
the data clearing process.

The data clearing process only approves the new API if it satisfies the demands of all
involved parties. Afterward, the API provider can initiate the implementation of the API (C3).

Requirements. The data clearing process can place various requirements on an API:

• The prescription that each API needs to have a strategic goal (Medjaoui et al., 2018).

• The calculation of a business case that considers potential partners that already showed
interest in the idea, expected sales, acquired funding (Medjaoui et al., 2018), and
migration costs. Potentially, finance & controlling can support the creation of the business
case (C3).

• A partnership with at least one API consumer who commits to participating in a pilot
project or provides continuous feedback during API implementation according to the
pattern Collaborative Pilot Project (C3).

• The creation of a technical specification that complies with the organization’s guidelines,
e.g., regarding documentation, reviews, versioning approach, and technology choices
(De, 2017). This step should also entail an analysis of the impact of the proposal on
existing functionality.

• The creation of a prototype to show the feasibility (C3) and the validation of the
prototype from the consumer perspective (Medjaoui et al., 2018), to show the APIs
value.

76

5. API Provider Internal Patterns

• The appointment of the future API Product Owner for the API (C3).

• The successful passing of legal and privacy assessments (Jacobson et al., 2012). The
future API provider usually conducts these assessments in close collaboration with the
legal department (C11).

• The compliance with an organization’s security guidelines (Medjaoui et al., 2018; C6).

• The removal of any internal terminology or knowledge attached to the endpoint (C3).

These exemplary requirements are not exhaustive, and the API provider needs to adapt
them to an organization’s needs.

Consequences:

Benefits:

• Return on investment. A data clearing process can entail the calculation of a business case
in cooperation with experts from the finance & controlling department. Furthermore, the
collection of feedback and execution of pilot projects with potential consumers validates
market demand. Security and legal assessments ensure that the API provider does not
have to shut down a new or changed API after implementation due to security and legal
issues. Thus, the data clearing process lowers the likelihood of a loss of investments
(Medjaoui et al., 2018; C3).

• Risks. The thorough vetting of new APIs or major changes to APIs reduces the risks
of harming the API provider organization, e.g., by accidentally opening up systems to
security vulnerabilities.

Drawbacks:

• Play it fast. A data clearing process can eat up a lot of time, especially if the process
requires the involvement of many different stakeholders. For example, resource lim-
itations within the governance body might decrease decision throughput and thus
decrease time-to-market (Medjaoui et al., 2018). Thus, the API provider might introduce
new APIs and changes to existing APIs late (C3).

• Centralized decision making cost. The centralization of decisions using a data clearing
process creates cost for maintaining the governance body. In addition, employee
happiness and the rate of technological innovation might decrease (Medjaoui et al.,
2018).

Related Patterns within this Pattern Catalog:

The API provider derives ideas for new APIs or changes to existing APIs from the Idea
Backlog. As soon as the new API or changes pass the API Clearing Process, they are
realized in a Collaborative Pilot Project or using a Play-it-fast Approach.

77

5. API Provider Internal Patterns

Moreover, the provider could make it a requirement for APIs to appoint a API Product
Owner to pass the API Clearing Process.

Known Uses:

We observed the pattern in four cases:

The API portal provider of an automotive organization (C3) makes vehicle data available to
car owners and maintenance data available to workshops. New APIs have to go through a
data clearing process. The person steering the idea of a new API through the data clearing
process should also be the future product owner of the API. The data clearing process of the
organization involves IT, legal, finance & controlling, aftersales, sales & marketing, research
& development, and other affected departments. The data clearing process requires at least
one external partner that commits to participate in a Collaborative Pilot Project before
approving an API. The API provider uses a simplified data clearing process for legally
prescribed APIs. The goal of the data clearing process is to prevent unsuccessful investments.

The partner API portal of a software and IT service provider (C4) integrates software
products of other ecosystem players with the API portal providers software to present end
users with more integrated overall solutions. An API governance reviews APIs only after
their implementation.

Case C6 comprises an API initiative within a group setting. The API provider organization
is a subsidiary that manages the API platform and supports other subsidiaries with the API
design, provision, and consumption. A central entity within the API provider organization
assesses each API that a subsidiary wants to expose to ensure compliance with existing
guidelines, e.g., security guidelines.

The API provider of C10 offers a financial service for API consumers to integrate into their
systems. The API Product Owner has to get legal to approve the introduction of new APIs or
major consumer-facing changes.

Cross-case observations:

The cases do not have much in common. They span public, partner, and group API
initiatives and have few or high numbers of users. Also, the types of clients range from
businesses to governmental institutions and individual developers. Also, monetization
differs between the API initiatives, including contractual agreements, per-call fees, and
non-monetized APIs. However, what all API initiatives have in common, is that they are
already in production. Also, we observed the pattern in rather big organizations operating
in traditional industry sectors, which makes sense since these organizations are often more
prone to processes.

78

5. API Provider Internal Patterns

5.8. API Facade

Pattern Overview
Name API Facade
Pattern Type API Provider Internal Patterns
Summary An API facade abstracts the invocation of several backend services into a single

API (Gamma et al., 1994). The API facade thereby supports the tailoring of
APIs that fit the user stories of the API consumers.

Figure 5.8.: The API Facade presents a unified interface to a set of backends (Gamma et al.,
1994).

Context:

An API provider wants to realize a use case for an API consumer but must draw on the
data or functionality of several backends (C4). For each backend, an internal API already
exists. However, the internal APIs are structured according to internal needs and afflicted
with internal knowledge, which the provider wants to hide from consumers (C3).

Concern:

How can an API provider create an API tailored to external API consumers’ needs that draws
on several internal backend APIs?

Forces:

• Developer friendliness. An API consumer wants to integrate with a developer-friendly,
high-quality API (C2). Hence, an API consumer prefers a single API that realizes their
use case over a set of APIs for which they must first implement some logic.

79

5. API Provider Internal Patterns

• Waste. The implementation of a use case might only require access to a subset of
functionality and data of an internal API. A solution should prevent an API consumer
from having to fetch unnecessary data.

• Sensitive data and functionality. Implementing a use case might require access to an
internal API that exposes sensitive functionality or data. The API provider might need
to hide some data for legal or strategic reasons (C3).

• Flexibility. The backend systems evolve. The API provider should reduce the impact of
changes on client applications to a minimum.

• Internal API initiatives. Some organizations have internal API initiatives, meaning
that either the upper management or a central governance body motivates or forces
development teams to create APIs for internal data exchange.

• Coordination effort. The solution should require as little coordination effort between
teams as possible (C4).

• Issue tracing. A solution should ensure easy issue tracing across all associated compo-
nents involved in realizing a use case (C3).

• Effort. The API provider has limited resources. Thus, a solution should require little
effort.

Solution:

The API provider can introduce an additional software component as a API Facade (Erl,
2008; Gamma et al., 1994) between internal backend APIs and external API consumers (De,
2017). The facade allows the API provider to logically link functionality and data of different
backends and design a single, simple API that meets the consumers’ needs (Gamma et al.,
1994). The exposed API can also hide technology choices, remove internal knowledge, and
filter data (De, 2017).

Variants:

The API gateway can be a facade shielding the backends (De, 2017). Using an API gateway
as a facade is intuitive since it is usually the single entry point into an organization’s
systems already (De, 2017). The API gateway as a facade usually realizes mainly traffic
management tasks, including security enforcement, data validation, message transformation,
traffic throttling, and routing (De, 2017; Jacobson et al., 2012). Therefore, an API gateway
can help API development teams to focus on API development by relieving them from
infrastructure tasks (Jacobson et al., 2012). However, an API gateway could also realize the
composition of backend and database services (De, 2017; Jacobson et al., 2012).

80

5. API Provider Internal Patterns

Stakeholders:

The API provider has to collaborate with several backend providers to access and understand
their APIs. Furthermore, the API provider should communicate with the API consumer to
ensure that a new API meets their needs.

Implementation Hints:

Goals of the facade. An API Facade is an additional component between internal backend
APIs and external API consumers (Erl, 2008; C2). The API provider should design the layer to
logically orchestrate the functionality and data of several backends in a way that realizes new
use cases for API consumers (De, 2017; Erl, 2008; Spichale, 2017; C2; C3; C4; C6). The logic
implemented in the API Facade can be very complex, e.g., realizing several sequential or
parallel calls to the backend, or relatively simple, e.g., renaming endpoint fields (C3; C6). The
goal of the API Facade is to improve the usability of the API (Gamma et al., 1994; C2; C6; C12).
Another goal of the API Facade should be to hide technology choices of the backend (De,
2017; C6). Finally, the API Facade layer should hide internal knowledge linked to internal
APIs (C3; C12).

Technology choice. An API provider can choose different technologies to implement the
API Facade. An option that is gaining popularity with digital organizations is GraphQL19.
GraphQL allows, for example, targeted data queries without waste, easier versioning, and
safe deprecation of unused fields (C10).

Consequences:

Benefits:

• Developer friendliness. A facade allows the API provider to design a new API tailored to
the use cases of the API consumers (C2). Integration efforts for consumers decrease since
a client application communicates with only one API instead of several backend APIs
(De, 2017). Hence, a facade reduces chattiness between backend and client application
since the client application has to make fewer calls (De, 2017). In addition, the facade
can centralize security negotiations, meaning that the API consumer only authenticates
with the facade once, instead of having to authenticate with each backend system (De,
2017). Hence, the resulting API is more developer-friendly (De, 2017).

• Waste. A facade can exclusively expose the functionality and data of a backend API
needed to realize a use case. Thus, the API consumer does not over-fetch data.

• Sensitive data and functionality. A facade can expose only the functionality and data of a
backend API needed to realize a use case. Therefore, sensitive functionality and data
remain hidden (C3).

19https://graphql.org/ (accessed 20.12.2023)

81

https://graphql.org/

5. API Provider Internal Patterns

• Flexibility. A facade increases the flexibility and agility of a system architecture by allow-
ing the API provider to replace certain backends without impacting client applications
(De, 2017; Erl, 2008; Gamma et al., 1994; Spichale, 2017).

• Internal API initiatives. A facade can draw on existing internal backend APIs and
orchestrate them into a use case (C3).

Drawbacks:

• Developer friendliness. The design of a developer-friendly, high-quality API is difficult. A
facade provides some design flexibility, but the API provider still needs to put effort
into discovering a good design. Also, it is more difficult to create a good design if you
realize a more complex use case drawing on several backend APIs instead of exposing
a simple functionality (C2).

• Internal API initiatives. Not all teams put the same effort into realizing internal API
initiatives. Thus, APIs can be of bad quality, and the API provider either needs much
effort to enhance them with a facade or can not use them at all (C3).

• Coordination effort. The realization of a use case with an API facade requires access
to different backend APIs, and therefore the teams responsible for these backends
must collaborate. Such collaboration can be time-consuming. Also, teams might have
different priorities, leading to conflicts (C4).

• Issue tracing. A facade can make issue tracing more difficult. If an error occurs, a
facade with issue tracing capabilities can identify issues within the facade component
or point to the backend producing the issue. However, some issues also result from
dependencies between backends. These issues are often difficult to identify and complex
to fix (C3).

• Effort. The introduction of an additional component introduces design effort, develop-
ment effort, and communication effort (Erl, 2008).

Related Patterns within this Pattern Catalog:

A API Facade can be used to implement a public Web API.

Other Related Patterns:

An API Facade is a specialized implementation of the Facade pattern presented by Gamma
et al. (1994) and Buschmann et al. (2007a). In Fowler (2003), the same pattern is presented
under the name Remote Facade and Erl (2008) names the pattern Service Façade. In contrast
to a Proxy or an Adapter that capsules the interface of one component, a Facade capsules a
whole subsystem and presents a new, simplified API (Gamma et al., 1994; Spichale, 2017).

82

5. API Provider Internal Patterns

Known Uses:

We observed the pattern in seven cases:

The API initiative of C2 makes a simulation and modeling algorithm accessible. The API
provider implemented an adapter and a REST API between the backend components and
the API consumers. The goal of the facade layer is to ensure a clear structure and good
performance.

The API portal provider of an automotive organization (C3) makes several APIs available
to car owners and businesses. Internally, a guideline animates developer teams to create
APIs for data exchange between departments as part of every new project. However, the
API design is an additional effort, and developer teams do not always design the APIs with
high-quality structures. Therefore, the API provider creates a facade layer for internal APIs
before they are exposed externally. Besides improving the API structure, the facades also
connect data and functionality of several backends, remove sensitive data, and hide internal
knowledge. The only APIs used internally and externally without an orchestration layer are
APIs built for regulatory compliance with precise structure specifications.

The public API portal of software and IT service provider C4 allows other ecosystem
players to integrate their software products with the API portal provider’s software to present
end users with more integrated overall solutions. The same organization has a separate
partner API initiative C5, allowing users of their software product to integrate it with the
consumers’ system landscape. Both API initiatives draw on backend functionality and data
that several functional backend development teams implement and maintain. However, the
API provider team does not have a functional area but implements an API layer on top of
the functionality and data of the backends. During regular coordination meetings, the API
provider and backend teams discuss the resulting dependencies.

Case C6 describes an API initiative within a group setting. The API provider organization
is a subsidiary that manages the API platform and supports other subsidiaries with the
API design, provision, and consumption. The API provider creates an API utilizing the
backends of other subsidiaries. These API Facades hide technologies, augment the API with
the functionality of several systems or cut the API differently. Depending on the use case, a
facade layer can implement a lot of logic or be simple. The API provider created a guideline
for backend providers and API provider teams that guides the creation of such services.

The API initiative C10 provides financial services to partners. The partners are high-volume
consumers with special requirements for their API. All backend development teams create
APIs and register them in a central registry. Thus, the API provider team serving an API
consumer implements these special requirements in a facade that uses the backend APIs.

The same organization also offers a pre-defined financial service API (C11) for low-volume
API consumers to integrate into their systems. The API provider does not create a customized
API for each API consumer, but the consumers must use the existing interface. The organiza-

83

5. API Provider Internal Patterns

tion uses a GraphQL orchestration layer for the financial service interface to call the REST
APIs of the different backends that make up the financial service. However, the orchestration
layer is not visible to the API consumer. Instead, the API consumers interact with a JavaScript
SDK. A dedicated team develops and maintains the orchestration layer. The organization
plans to expose the GraphQL API directly in the future.

Cross-case observations:

The cases are heterogeneous, spanning public, partner, and group API initiatives. Also,
the number of consumers ranges from small to very high amounts, and the consumers are
primarily businesses but also government intuitions and single developers. Furthermore, the
monetization approaches differ and comprise contractual, pay-per-use, free use as part of a
software license, and completely free schemes. However, all cases are in production except
for one API initiative in a pilot phase. Also, all API initiatives are developer portals and not
marketplaces.

84

5. API Provider Internal Patterns

5.9. API Quality Monitoring

Pattern Overview
Name API Quality Monitoring
Alias Error reporting (Medjaoui et al., 2018), Service-level monitoring (De, 2017)
Pattern Type API Provider Internal Pattern
Summary API quality monitoring describes continuously testing an API’s non-functional

properties to detect anomalies and take countermeasures quickly.

Figure 5.9.: According to the pattern API Quality Monitoring, the provider continuously
monitors the non-functional properties of an API in production.

Context:

API consumers integrating APIs to support a business model rely on the APIs’ performance,
e.g., low latency and high availability. Therefore, API consumers might only adopt an API
if the API provider guarantees specific non-functional API properties in a Service-Level
Agreement (SLA). However, even if the API provider has a Testing Strategy in place, API
testing cannot guarantee to uncover all unexpected behaviors in case of changes to an API
(Medjaoui et al., 2018). Also, new issues might arise during operations. Hence, an API
provider should be aware of anomalies or degradation of an API’s performance to react to
such issues quickly.

Concern:

How can an API provider identify performance anomalies or degradation of APIs in produc-
tion in a timely manner?

85

5. API Provider Internal Patterns

Forces:

• Awareness and resolution of issues. API consumers integrate APIs to support their business
models only if they can rely on their performance, e.g., high availability and low latency.
If APIs do not meet the API consumers’ requirements, they will not adopt them
(Jacobson et al., 2012) or abandon them (De, 2017). Also, API consumers might only
adopt an API if performance guarantees are in place, i.e., an Service-Level Agreement
(SLA). Such SLAs can tie failures to meet the guaranteed performance to financial fines.
Hence, API providers must be aware of and resolve performance issues as quickly as
possible.

• Error-free operations. Testing of APIs cannot guarantee to uncover all unexpected behav-
iors (Medjaoui et al., 2018) and new issues might arise during operations. Such issues
should be fixed before the API consumers become aware of them.

• Support effort. As soon as consumers notice an API performance degradation, they
contact the support. Therefore, unexpected performance issues lead to high support
requests and many support employees trying to solve the issue in parallel.

• Monitoring design. Proper monitoring requires the API provider to design or buy,
implement or configure, and operate a monitoring system.

Solution:

API quality monitoring describes the continuous testing of an API’s non-functional properties
in production. API quality monitoring allows API providers to detect anomalies and take
countermeasures quickly.

Variants:

In a marketplace setting, the marketplace provider is a neutral instance acting as a broker
between an API provider and an API consumer. In such settings, the marketplace provider
should monitor the performance of the APIs to create neutral reports and alert both the API
provider and the API consumer.

Stakeholders:

The API provider has to collaborate with the backend provider in case an anomaly is rooted in
the backend implementation.

Implementation Hints:

Measurable requirements. A prerequisite for API quality monitoring is the definition of
measurable performance KPIs. An example of such a requirement is the achievement of 99,99%
availability (C10; C11). The API provider should derive such KPIs from the organizations and

86

5. API Provider Internal Patterns

API initiatives strategy (Medjaoui et al., 2018). Furthermore, API consumers can request the
definition of performance KPIs as part of an Service-Level Agreement (SLA).

Test cases and data. Given the requirements, the API provider has to create test cases and
data. If possible, the API provider can reuse existing test cases and data, e.g., generated
during testing new APIs, changes to existing APIs, or changes to backend systems according
to the Testing Strategy. The test cases should be end-to-end tests of the API in production,
meaning that they test the behavior of the API from a consumer perspective (C3).

Tooling. At the beginning of an API initiative, a monitoring system can be simple, but with
a growing API landscape, the API provider should adopt a more sophisticated monitoring
strategy and standardize the monitoring approach (Medjaoui et al., 2018). Monitoring requires
gathering and analyzing large amounts of data which can become challenging. Hence the API
provider should buy or design suitable tools to realize a monitoring strategy (Medjaoui et al.,
2018). The choice and configuration of a monitoring tool that enables monitoring automation
is a significant decision (C3). The monitoring tool executes the tests and logs the results of the
tests. Often, API management platforms also provide the capabilities for API traffic logging
and analytics (De, 2017; C14).

Dashboards and Reports. Monitoring comprises gathering data on the APIs’ performance
and health and transforming it into meaningful reports or dashboards (Medjaoui et al., 2018).
Usually, monitoring tools support the creation of such dashboards (C4; C5).

Automated internal notifications. Monitoring tools should automatically notify the API
provider and the responsible backend provider team in case of detected anomalies (Jacobson
et al., 2012; C3; C13). These notifications can be human-readable, but generating machine-
readable reports might also make sense. For example, specific machine-readable notifications
could automatically trigger, e.g., the allocation of additional backend resources or instant
redeployment (Stocker et al., 2018).

Automated notification of consumers. API providers should proactively inform API con-
sumers about performance disruptions (Jacobson et al., 2012) and make statistics on API
performance available to API consumers (De, 2017), e.g., via the API provider portal or
social media (Jacobson et al., 2012). Furthermore, the API provider should inform the API
consumer about known performance disruptions for specific APIs in the ticket form when
the developer opens a ticket for the respective API according to pattern candidate Contact
Form Automation. Such a measure could reduce the number of repetitive tickets (C3).

Monitoring impact. The API provider should employ mechanisms that ensure that logging
does not impact the performance of the API (De, 2017). Such a mechanism is the use of a
health check endpoint (Richardson, n.d., 2019).

Action plans. The knowledge of a performance issue is only helpful if processes are in
place to resolve these issues. Hence, the API provider needs action and escalation plans to
react to these alerts (Jacobson et al., 2012).

87

5. API Provider Internal Patterns

Data volumes. Monitoring requires gathering and analyzing extensive amounts of data
(Medjaoui et al., 2018). A possible approach to managing vast amounts of monitoring data
is that distributed API provider teams collect data for their respective API and only pass a
subset of the data to a central storage (Medjaoui et al., 2018). Then, a central API team uses
the data in the central storage to derive information across the whole API initiative to reveal
patterns across endpoints (Medjaoui et al., 2018).

Consequences:

Benefits:

• Awareness and resolution of issues. API quality monitoring enables API consumers to
identify performance issues quickly (Medjaoui et al., 2018). Hence, monitoring increases
the likelihood that consumers are satisfied with an API’s performance and prevents
SLA breaches and their consequences.

• Error-free operations. Monitoring enables the API provider to identify performance issues
that testing did not capture.

• Support effort. The API provider can communicate a performance issue on the developer
portal, thus informing API consumers that they do not need to open a ticket. Also, the
API provider can inform the support team about known issues and ongoing resolution
activities, which enables them to use their resources efficiently.

Drawbacks:

• Awareness and resolution of issues. Even if API quality monitoring enables API consumers
to identify performance issues quickly, the API provider still has to resolve the issues.
Hence, monitoring is only effective if the API provider has well-defined processes in
place to address identified issues quickly.

• Error-free operations. Even if monitoring enables the API provider to identify performance
issues that testing did not capture quickly, it is very likely that consumers notice these
issues as well (C3; C4; C5).

• Monitoring effort. A monitoring system’s design, implementation, and operation are
effortful. The monitoring system needs to collect, store, and analyze potentially big
amounts of data (Medjaoui et al., 2018).

Related Patterns within this Pattern Catalog:

First, Service-Level Agreement (SLA)s define performance thresholds for Web APIs, Frontend
Ventures, or a Client Library. API Quality Monitoring enables the API provider to iden-
tify breaches of these thresholds (Jacobson et al., 2012; C4; C5).

Also, the provider designs and implements test cases and data as part of the Testing
Strategy that can be reused for API Quality Monitoring.

88

5. API Provider Internal Patterns

Other Related Patterns:

The book Richardson (2019) and the online resource Richardson (n.d.) present a pattern
language for microservices. Given a microservices setting, some of these patterns refine
the pattern API Quality Monitoring. First, the pattern Health Check API prescribes the
design of a health check API endpoint, i.e., an endpoint with the sole purpose of returning
data on the health of a service. A monitoring service invokes the endpoint periodically to
retrieve the service’s health data. In addition, the pattern Application Metrics captures the
implementation of a service that gathers statistics about operations, creates reports, and alerts
developers.

Similarly, Hohpe and Woolf (2003) describe the Test Message pattern. The pattern covers
the core idea of regularly sending messages to a component and analyzing the component’s
response for testing purposes.

In comparison, Rotem-Gal-Oz (2012) presents the Service Watchdog pattern. The pattern
is broadly formulated and captures the active monitoring of a service’s internal state and the
implementation of self-healing approaches. Also, it entails the continuous publication of a
service’s status. Hence, the Service Watchdog pattern comprises API Quality Monitoring.

Finally, Dyson and Longshaw (2004) presents the patterns Continual Status Reporting
and Operational Monitoring and Alerting. While Continual Status Reporting describes
creating a reporting interface or protocol that displays and logs the status of relevant oper-
ational system components. Operational Monitoring and Alerting captures the practice
of identifying indications of failures, thus enabling preventive actions. These patterns can
support the implementation of API Quality Monitoring.

Known Uses:

We observed the pattern in nine cases:

Cases C4 and C5 represent a software service provider’s public and partner API initiatives.
End users with a license for the API provider’s software product automatically have access
to the public API to enable customized system integration. The partner API allows other
software providers to create integrations with their software products, thus managing more
integrated solutions for end-users. The API provider applies the pattern Testing Strategy
for both API initiatives to prevent issues in the production environment. Nevertheless,
sometimes testing misses issues, and errors arise in production. Monitoring of API response
success rates alerts the API provider in case of such issues. However, the API provider states
that the API consumers also almost always notice these issues.

The API provider of C10 and C11 offers a public and several partner APIs for easy
integration of a financial service into websites and online shops. This organization built
an analytics tool in-house. The analytics tool provides dashboards to API provider teams
showing statistics on the number of API calls over time and the availability. Across the

89

5. API Provider Internal Patterns

organization, all API provider teams strive for a 99,999% availability. In case the availability
drops below this threshold, the analytics tool alerts the API provider team.

Case C12 captures a financial services provider that provides SaaS software to end-users.
APIs enable other software providers to integrate their software with the system of C12, thus
offering standard integrations to the end users. The organization uses the out-of-the-box
monitoring capabilities of the commercial API gateway portal in use.

The case C13 applies the pattern API Quality Monitoring as described in the variant. The
case describes an API marketplace, i.e., the organization provides a core platform that allows
external third-party software providers to publish modules (APIs and solutions) and end-user
to consume these modules.

In the past, if a module consumer encountered issues with a third-party module, the
consumer and the third-party software provider often created separate monitoring reports.
Unfortunately, the individual monitoring reports created by different parties often deviated,
leading to confusion and friction between the involved parties. In subsequent escalation calls,
discussions often focused on which report was right and which party to blame instead of
finding an actual solution. Thus, the marketplace provider implemented a central monitoring
system that monitors the third-party software providers’ modules’ health status. In case of
anomalies, the API marketplace provider automatically alerts all involved parties and makes
the neutral monitoring report available as a basis for problem resolution.

Furthermore, the marketplace provider organization of case C13 sees itself as responsible for
ensuring the quality of offered third-party modules. A major selling point of the marketplace
is that all offered third-party modules and their providers have been thoroughly vetted. The
monitoring system enables the marketplace to check each module’s performance continuously.
If a module does not provide the expected performance, the marketplace requests the module
provider to take measures to improve the performance or the module is removed from the
marketplace.

Stripe (C16) provides APIs for online payment processing20. Stripe monitors their APIs’
performance and proactively communicate performance degradation or outages to API
consumers on their API developer portal. Stripe visualizes API uptimes over the last 90 days
on their developer portal and publishes outage updates on Twitter21.

Twilio’s (C17) is an API provider for customer engagement using voice, messaging, video,
and email services22. It presents an overview of currently open incidents and the API
response times over time23. In addition, the Twilio developer portal provides information
about scheduled maintenance and past incidents and enables developers to contact the
support 24. Finally, interested parties can sign up for updates on created, updated, or

20https://stripe.com/en-de/about (accessed 20.12.2023).
21https://status.stripe.com/ (accessed on 20.12.2023).
22https://www.twilio.com/ (accessed 20.12.2023).
23https://status.twilio.com/ (accessed on 20.12.2023).
24https://status.twilio.com/ (accessed on 20.12.2023).

90

https://stripe.com/en-de/about
https://status.stripe.com/
https://www.twilio.com/
https://status.twilio.com/
https://status.twilio.com/

5. API Provider Internal Patterns

resolved incidents which they can request via different channels, e.g., email, SMS, webhook,
or Twitter25.

Cross-case observations:

We observe that all API initiatives applying the pattern API Quality Monitoring are
in production, which makes sense since monitoring is only relevant for API initiatives in
production. Furthermore, most API initiatives in the case base have in common that they
employ commercial gateway systems which provide quality monitoring capabilities.

However, concerning other characteristics, the cases differ. For example, the cases comprise
public and partner API initiatives, developer portals and marketplaces, different amounts of
users, and different volumes of API products. Thus, API Quality Monitoring is a pattern
suitable for a broad range of API initiatives.

25https://status.twilio.com/# (accessed on 20.12.2023).

91

https://status.twilio.com/#

CHAPTER 6

API Consumer-facing Patterns

This chapter presents ten API Consumer-facing Patterns. API Consumer-facing Patterns
comprise patterns concerned with the interaction between the API provider and an external
consumer.

92

6. API Consumer-facing Patterns

6.1. Role-based Marketing

A previous version of this pattern has been published in Bondel et al. (2022). In this pattern
catalog, we evolved the pattern.

Pattern Overview
Name Role-based Marketing
Pattern Type API Consumer-facing Pattern
Summary Role-based marketing denotes the clear separation of marketing material and

other consumer-facing resources targeted at different user roles in the developer
portal.

Figure 6.1.: According to the pattern Role-based Marketing, the API provider presents
information tailored to different roles on an API portal landing page.

Context:

API initiatives can target different types of user roles. For example, in established organi-
zations, technical and non-technical stakeholders are involved in buying an API (C3; C13).
Similarly, in marketplace settings, the API provider has to address the information needs of
platform users (API consumers) and third-party developers (API providers) (C13).

Concern:

How can an API portal provider address the information needs of different API stakeholder
groups?

93

6. API Consumer-facing Patterns

Forces:

• Business information. The API provider offers an API of strategic relevance for the API
consumers’ business model. Integrating a strategically relevant API has far-reaching
consequences since the consumers’ business relies on the API. Thus, business stakehold-
ers like business owners or upper management want to evaluate the API from a business
point of view (De, 2017) and be involved in the buy decision. The procurement of a
consumer organization can be another non-technical stakeholder involved in a buying
decision (C13). Hence, the business stakeholders need to understand an API but are
often overwhelmed by technical specifications (C3; C13).

• Technical information. The API provider has to convince developers of the technical
capabilities of an API. Developers need technical specifications to understand and work
with an API. They do not want the API provider to flood them with business-related
marketing information (Spichale, 2017; C3).

• Consumer types. A marketplace provider has two stakeholder groups which are third-
party providers offering modules or APIs on the platform and users or API consumers
that consume these modules. Both stakeholder groups have to understand the mar-
ketplace platform and its benefits. These two roles have different goals and often also
different IT capabilities. While third-party developers are usually tech-savvy, the main
business of platform users is not always technical. Therefore, they also have different
information needs (C13).

• Effort. The API provider has limited resources. Thus, the solution should create little
additional effort for the API provider organization.

Solution:

Role-based marketing denotes the design, maintenance, and clear separation of marketing
material and other consumer-facing resources in the developer portal targeted at different
stakeholder roles. The API provider tailors the resources to the information needs of the
respective stakeholders, potentially in collaboration with the sales & marketing department.
The different types of resources have to be clearly distinguished and easily navigable to ensure
that additional information does not interfere with the other stakeholders‘s user journey.

Variants:

We observed the pattern in two types of settings. First, in settings with an API provider that
offers an API via an API portal to partners or the public, the API consumers often involve
developers and business stakeholders in the decision to use an API. Hence, the API provider
has to address the technical information needs of developers and the business information
needs of the business stakeholders in these settings (C3).

94

6. API Consumer-facing Patterns

Secondly, in a platform setting, the platform provider has to address the information needs
of the third-party providers that offer modules on the platform and the information needs of
the platform and module consumers (C13).

Stakeholders:

The API provider has to identify the different roles in the API consumer organization that are
involved in the API buying decision. In addition, the provider can collaborate with sales &
marketing to create the website.

Implementation Hints:

Landing page. The landing page describes the purpose of the overall API portal and provides
links to the product pages. Using the pattern Role-based Marketing, the landing page allows
a visitor to choose between different views, e.g., a technical and a business view, or a platform
consumer and a third-party developer view. Each view should carry a short description of
the associated information.

Views. Each view contains information relevant to the respective stakeholder in a language
that the stakeholder is accustomed to. The technical view focuses on the needs of developers,
for example, by describing the user journey from registration to deployment, providing
links to documentation early on, reducing marketing material to a minimum, and using
illustrations to which developers are accustomed, e.g., UML diagrams (C3). Furthermore,
the resources that the API portal provider compiles for developers should include technical
specifications and code samples. The information can also include Consumer-centric API
Description.

On the other hand, the business view addresses business users and presents more abstract
information on potential use cases, lists advantages of using the platform, provides pricing
information, and includes marketing material, e.g., Customer Success Stories. Additionally,
the view can comprise an Integration Partner Program to point business stakeholders
towards integration partners (C3; C13).

Similarly, in a platform setting, the view for a third-party developer should focus on
technical documentation that allows the organizations to develop modules, sell them, and
analyze their success.

Finally, the platform user view is mainly concerned with describing the platform’s business
value and additional services for the platform user (C13). Both platform views can include
Customer Success Stories. The API provider can present the third-party developers with
examples of successful modules developed by other third-party developers and the platform
users with successful cases of platform usage (C13).

Content creation. The API provider can use the concept of Personas1 (Cooper, 2004; Pruitt

1The concept of personas has emerged in the field of user-centered software design and denotes "[...] descriptions
of imaginary people constructed out of well-understood, highly specified data about real people" (Pruitt & Adlin, 2005).
The advantages of using Personas are that assumptions about users are made explicit, allowing the designer

95

6. API Consumer-facing Patterns

& Adlin, 2005) to get a clear picture of the information requirements of different stakeholders.
Furthermore, the API provider should collaborate with several internal stakeholders to ensure
that the content created for the different external stakeholders is of high quality. For example,
the API provider should involve Sales & Marketing in the design of marketing materials. All
resulting resources have to be cross-checked to ensure consistency (C3).

Consequences:

Benefits:

• Business information. Information tailored to business stakeholders allows the business
stakeholders to make better decisions. This is especially important in settings where
integrating an API is of strategic relevance making it difficult for the API consumer to
replace it later.

• Technical information. Separating the documentation into business and technical infor-
mation makes it easier for developers to identify relevant information. The developers
do not need to read any marketing information and can directly dive into technical
documentation (C3).

• Consumer types. Role-based Marketing allows the API provider to address the informa-
tion needs of different stakeholders in platform settings.

Drawbacks:

• Business information. The API consumers business stakeholder will potentially use the
dedicated online documentation only for discovery. The actual buy decision usually
happens only after personal contact and contract negotiations since the API consumer
wants to create close ties and get service guarantees before choosing to use a strategically
relevant API.

• Effort. It is laborious to create and maintain developer information and marketing re-
sources, especially if they reference each other (C3). The API provider must ensure that
the organization has enough resources to keep the documentation and marketing mate-
rial up-to-date, especially if they release new API versions. Outdated documentation
can lead to negative experiences for all stakeholders, business and technical.

Related Patterns within the Pattern Catalog:

The provider uses Role-based Marketing to organize information on the developer por-
tal. Both business and technical stakeholders are interested in Consumer-centric API
Description to understand which use cases or user stories an API can realize. Further-
more, information relevant for business stakeholders are Customer Success Stories and the

to focus on a specific type of users, and creating empathy and a shared understanding for the user (Pruitt &
Adlin, 2005). Thus, the designer can address the needs of a user in a more targeted manner.

96

6. API Consumer-facing Patterns

list of integration partners resulting from the Integration Partner Program. On the other
hand, Integration Guides focus on the information needs of technical stakeholders.

Known Uses:

We observed the pattern in four cases:

First, the API initiative captured in C3 offers APIs to partner and third-party developers.
The developer portal provides and separates technical and business information according to
Role-based Marketing.

In C9, the organization offers a public marketplace for IoT applications. The organization
provides core platform software, and third-party developers can build additional modules for
the platform using APIs. Users can buy the core platform software and add pre-integrated
modules according to their needs. The API marketplace offers dedicated documentation for
two roles; users of the platform and its modules and the third-party developers that create
these modules.

The API provider of C11 offers a financial service for API consumers to integrate into their
systems. The API provider separates information for business stakeholders and developers.
The information for business stakeholders comprises, e.g., use case descriptions, Customer
Success Stories, and direct contact with sales. In comparison, the information for developers
enables developers to request API credentials and links to API and SDK documentation.

Finally, in C13, the setting is the same as in C9, except that the platform is specific to
the financial industry. Again, the marketing material is aimed at two groups; the platform
software users and the third-party developers. The landing page of the API initiative shows
advantages of being a provider or consumer on the marketplace.

Cross-case observations:

All these cases have in common that the API initiatives offer APIs to partners and the
public. Also, the initiatives are in production and have 1-100 consumers. The dominant
monetization strategy are the use of individual contractual agreements.

These characteristics are in unison with the observation that the APIs offer industry-specific
functionality with a strategic impact on a consumer‘s business as opposed to commodity
functionality. Strategic functionality is difficult to replace once the API consumer integrates it
into its landscape and business plan. Thus, it makes sense that business stakeholders of the
consumer organization are steering or at least involved in the decision of buying. Also, the
API consumer relies on the API provider to deliver functionality with business impact, which
makes close ties with the provider organization and service guarantees essential. Hence the
parties create individual contractual agreements. The provision of strategic functionality for
specific industries further limits the number of potential consumers, explaining why the API
initiatives have between 1-100 consumers.

97

6. API Consumer-facing Patterns

6.2. Customer Success Stories

Pattern Overview
Name Customer Success Stories
Alias Inspire Case (C3); Customer Stories (C17)
Pattern Type API Consumer-facing Pattern
Summary A customer success story exemplifies an API consumer’s successfully finalized

use case or product implementation utilizing the provider’s APIs (C3) with the
aim to demonstrate an API’s potential to future consumers.

Figure 6.2.: An API provider presents Customer Success Stories on the API developer
portal.

Context:

Especially in established organizations, technical and non-technical stakeholders are involved
in buying an API (C3; C13). Thus, the API provider potentially already applies the pattern
Role-based Marketing to address the information needs of different stakeholders separately.
The API provider wants to create information relevant to business stakeholders, e.g., the
upper management or procurement, to support these stakeholders with their buy decision
(C3; C13).

Concern:

What information can the API provider make available for business stakeholders to support
their understanding of an APIs value?

98

6. API Consumer-facing Patterns

Forces:

• API value. Business stakeholders want to understand the use cases that an API enables
and, thus, the value of the API before deciding to buy it (C3).

• Trust. API consumers want to gain an understanding of how reliable API providers and
their APIs are before starting to use them.

• Effort. The API provider has limited resources. Thus, a solution should require little
effort.

Solution:

An API provider can demonstrate an API’s potential using success stories. A success story
exemplifies an API consumer’s successfully finalized use case or product implementation
utilizing the provider’s APIs (C3). Thus, a success story shows the potential of an API by
describing a real-world example from a consumer perspective.

Stakeholders:

The API provider has to collaborate with the API consumers to identify and document success-
fully finalized use cases or product implementations. The provider can also involve sales &
marketing in the creation and publication of Customer Success Stories.

Implementation Hints:

Approach. Success story creation comprises identifying successfully finalized projects. Next,
the API provider has to collaborate with the API consumer to create and publish the story.
sales & marketing can support the success story creation.

Contents. API providers can include different kinds of content in a success story. We
observed the following contents (non-exhaustive):

• A description of the resulting use case or product, sometimes using visualizations or a
video (C3; C9; C17).

• Tags categorizing the resulting use case or product (C17).

• A description of the consumer’s business, usually with a link to their website (C3; C9;
C17).

• A description of benefits for the partnering API consumer (C3), potentially using KPIs
to substantiate these benefits (C9; C17).

• Quotes or whole interviews with the middle or upper management of the partnering
API consumer emphasizing the advantages of the API (C3; C9; C17).

• A description of the final product’s benefits for different end-users (C3).

99

6. API Consumer-facing Patterns

• Links to the API(s) used to realize the success story (C3).

• Offers and options to replicate the resulting use case or product (C9).

• A contact form to contact the API provider (C9).

Success stories can be concise (C4), e.g., only mentioning the partnering API consumer and
a quote, or quite extensive (C3; C9), containing almost all of the content types mentioned
above.

API Portal. The API provider can display success stories differently on the API portal. For
example, the API provider can show short success stories as banners on the landing page
(C4). If the API provider decides to create more extensive success stories, it makes sense to
create an overview page listing all success stories and linking to each success stories page
(C3; C9). The overview page should include a filtering option if the API provider lists many
success stories (C9).

Consequences:

Benefits:

• API value. Success stories enable business stakeholders to understand which use cases
an API enables (C3). Thus, stakeholders get a better understanding of the value of an
API for their business.

• Trust. Success stories show that an API provider has already successfully collaborated
with other API consumers. Hence, success stories increase trust in the API provider
organization and their ability to provide APIs reliably.

Drawbacks:

• Effort. It is laborious to create and maintain information and marketing resources,
especially if the API provider has to coordinate success stories with existing API
consumers.

Related Patterns within this Pattern Catalog:

The provider publishes Customer Success Stories on the developer portal, thus enabling
API discovery. Customer Success Stories target business stakeholders according to Role-based
Marketing.

Known Uses:

We observed the pattern in six cases.

100

6. API Consumer-facing Patterns

The API portal provider of an automotive organization (C3) makes vehicle data available to
car owners and maintenance data available to workshops. The API provider applies the pat-
tern Role-based Marketing and uses Customer Success Stories as part of the information
provided to business stakeholders. A success story comprises, among others, a description of
the solution, a description of the partnering API consumer, the benefits of using the API for
the consumer, a quote of a high-ranked role at the API consumer organization stressing the
benefits of the APIs, and links to the integrated APIs.

Cases C4 represents the public API initiative of a financial software service provider. End
users with a license for the API provider’s software product automatically have access to the
public API to enable customized integration with their systems. The API provider publishes
banners with statements of consumers’ executive employees about the successful integration
of their products on their developer portal landing page.

In C9, the organization offers a public marketplace for IoT applications. The organization
provides core platform software, and third-party developers can build additional modules for
the platform using APIs. The platform provider publishes a gallery of success stories. The
success stories range from concise one-pager descriptions of the use case and the benefits
of using the platform to extensive blogs accompanying the integration project, including
marketing material like videos. Due to the high number of success stories, the API provider
offers filter facilities.

The API provider of C11 offers a financial service for API consumers to integrate into their
systems. The API provider uses Role-based Marketing to differentiate between business
stakeholders and developers. As part of the information for business stakeholders, the API
provider presents pictures and consumer employee quotes describing the positive experience
of using the API.

Stripe (C16) provides APIs for online payment processing2. Stripe presents a filterable
gallery of success stories3. Most success stories follow a pre-defined structure comprising
a description of the consumer’s challenge, the solution, the results, and a quote from a
consumer’s employee4. Moreover, Stripe presents KPIs substantiating the consumer’s benefits
of using a product5.

Twilio (C17) is an API provider for customer engagement using voice, messaging, video,
and email services6. Twilio publishes a gallery of success stories with filtering facilities7.
Filtering options comprise filtering for use cases, industry, region, and products8. A success
story typically consists of a use case description, a description of the benefits for the consumer,

2https://stripe.com/en-de/about (accessed 20.12.2023).
3https://stripe.com/en-de/customers/all (accessed 20.12.2023).
4For example https://stripe.com/en-de/customers/agua-bendita (accessed 20.12.2023).
5For example https://stripe.com/en-de/customers/agua-bendita (accessed 20.12.2023).
6https://www.twilio.com/ (accessed 20.12.2023).
7https://customers.twilio.com/ (accessed 20.12.2023).
8https://customers.twilio.com/ (accessed 20.12.2023).

101

https://stripe.com/en-de/about
https://stripe.com/en-de/customers/all
https://stripe.com/en-de/customers/agua-bendita
https://stripe.com/en-de/customers/agua-bendita
https://www.twilio.com/
https://customers.twilio.com/
https://customers.twilio.com/

6. API Consumer-facing Patterns

and quotes from the consumer employees9.

Cross-case observations:

All the use cases have in common that their APIs are already in production, which makes
sense since otherwise, it would not be possible to showcase past implementations. Also,
while the API initiatives can focus on partner or public API consumers, the number of
existing consumers is always higher than 20. Moreover, the API initiatives are API portals or
marketplaces.

9For example https://customers.twilio.com/3321/birdeye/ (accessed 20.12.2023).

102

https://customers.twilio.com/3321/birdeye/

6. API Consumer-facing Patterns

6.3. Newsletter

Pattern Overview
Name Newsletter
Pattern Type API Consumer-facing Pattern
Summary The API provider publishes summaries of changes to existing APIs (De, 2017)

and other announcements related to APIs in a newsletter to keep current and
potential future API consumers up-to-date.

Figure 6.3.: The API provider creates a Newsletter to keep consumers up-to-date on changes.

Context:

API initiatives evolve, and API providers change APIs or publish new APIs. The API provider
must inform (potential) API consumers about changes impacting existing integrations, en-
abling new integrations, or new business models (C4; C5).

Concern:

How can the API provider inform existing and potential API consumers about new APIs and
changes to existing APIs?

Forces:

• Breaking Changes. Changes to existing APIs can impact API consumers. API consumers
will abandon an API if their clients break due to unannounced changes too often.

103

6. API Consumer-facing Patterns

• New Business Models. New APIs and changes to existing APIs might enable (potential)
API consumers to realize new use cases or business models (C4; C5).

• API Consumer Roles. API consumer organizations consist of business and technical
stakeholders. Communication with consumers should address the needs of each of
these roles (C3).

• Effort. The API provider has limited resources. Thus, a solution should require little
effort.

• Privacy Concerns. The collection of consumer data and the use of this data for marketing
purposes is subject to strict privacy regulations.

Solution:

The API provider announces changes to existing APIs (De, 2017) and new APIs in a newsletter.
Newsletter management comprises the collection and management of potential future and
current API consumers’ contact information, newsletter creation, and newsletter distribution.

Stakeholders:

The API provider can potentially collaborate with sales & marketing to design the newsletter.
Furthermore, the provider should consult legal to ensure compliance with privacy regulations
when collecting consumer information.

Implementation Hints:

Contents. A newsletter communicates information on changes to existing APIs (De, 2017;
Medjaoui et al., 2018) and newly designed APIs. For example, newsletter content includes
communication of changes to endpoints, use cases, or API products (C4; C5). Also, the API
provider should communicate new features useful to the consumer (Medjaoui et al., 2018).
However, not all changes are relevant for the API consumer, and communication should be
limited to those changes that can affect the API consumers’ client applications (Medjaoui
et al., 2018).

Close collaboration with sales & marketing allows the API provider to use marketing best
practices and tools for newsletter management, including contact management, newsletter
creation, and distribution.

Contact data. The API provider collects and manages contact data of current and potential
future API consumers in different ways. First of all, the developer portal should collect the
contact information of all registered or subscribed developers (De, 2017; C4; C5). Furthermore,
the API provider can collect contact information through support tickets. Also, the API
provider should collect the contact information of anyone who contacts the API provider and
shows interest in becoming an API consumer, even if no business relationship emerges at that
point in time (C4; C5).

104

6. API Consumer-facing Patterns

Consequences:

Benefits:

• Breaking Changes. API consumers can react to changes that affect their client applications
on time if an API provider informs them ahead of time via a newsletter (Medjaoui et al.,
2018).

• New Business Models. (Potential future) API consumers can stay up-to-date on new
APIs and API changes that enable new use cases (Medjaoui et al., 2018) or business
models. For example, a potential API consumer might did not adopt an API in the past
because a certain functionality was missing (C4; C5). However, the newsletter informs
this consumer that the functionality is now available, and they start using the API (C4;
C5). Hence, using newsletters to announce changes can lead to increased adoption of
APIs (C4; C5).

• API Consumer Roles. The API provider can customize newsletter content for business
and non-business users.

Drawbacks:

• Breaking Changes. API consumers might miss the announcement of breaking changes in
newsletters. Therefore, the API provider should use several communication channels to
inform consumers about upcoming changes. Also, the API provider must communicate
these changes ahead of time to allow the API consumers to react to them.

Moreover, the API consumer should adopt a balanced API evolution approach that
does not lead to breaking changes too often. Otherwise, the effort for API consumers
to adopt clients might become too high, and they abandon an API, even if the API
provider announces all changes in time.

• Effort. All communication with API consumers requires additional effort, especially if
the API provider involves other departments like sales & marketing or legal.

• Privacy Concerns. API providers must ensure that the collection of API consumer data
complies with current privacy regulations. The achievement of compliance creates effort
for the API provider.

Related Patterns within this Pattern Catalog:

The API provider uses the Newsletter to inform current and potential consumers about
changes to interfaces and contents of the developer portal.

105

6. API Consumer-facing Patterns

Known Uses:

We observed the pattern in six cases.

The API portal provider of an automotive organization (C3) makes vehicle data available to
car owners and maintenance data available to workshops. API consumers can subscribe to a
newsletter on the API portal. The newsletter focuses on communicating new API products,
but also API related events and success stories.

Cases C4 and C5 represent the public and partner API initiatives of a financial software
service provider. End users with a license for the API providers software product automati-
cally also have access to the public API to enable customized integration with their systems.
The partner API allows other software providers to create integrations with their software
products, thus managing more integrated solutions for end-users.

In these two cases, the API provider uses in-product and mailing list newsletters to
promote changes in the API initiatives. In addition, contact data of (potential) API consumers
is collected during business relation meetings, via support requests, and via the Idea Backlog.
The API provider team has a dedicated marketing role that curates the content and manages
the newsletters.

Next, in C13, the organization offers a public marketplace specific to the financial industry.
Consumers can subscribe to a newsletter on the API portal’s landing page. The newsletter
communicates updates about new product features and API operations-related topics.

Stripe (C16) provides APIs for online payment processing10. API consumers can subscribe
to a Stripe Dev Digest11 to receive updates on APIs, products, SDKs, and client libraries. In
addition, the newsletter communicates code examples, tutorials, and articles for developers
to subscribers12.

Twilio (C17) is an API provider for customer engagement using voice, messaging, video,
and email services13. Twilio connects different kinds of support material for developers on
their developer community website Ahoy14. On the Ahoy website, developers can subscribe to
the Ahoy Newsletter15 to receive an email newsletter on updates and other Twilio API-related
content.

Cross-case observations:

All six cases have in common that the API initiatives are quite mature, meaning that
the APIs are already in production and the number of API consumers is more than 20.

10https://stripe.com/en-de/about (accessed 20.12.2023).
11https://go.stripe.global/dev-digest (accessed 20.12.2023).
12https://go.stripe.global/dev-digest (accessed 20.12.2023).
13https://www.twilio.com/ (accessed 20.12.2023).
14https://www.twilio.com/ahoy (accessed 20.12.2023).
15https://www.twilio.com/ahoy (accessed 20.12.2023).

106

https://stripe.com/en-de/about
https://go.stripe.global/dev-digest
https://go.stripe.global/dev-digest
https://www.twilio.com/
https://www.twilio.com/ahoy
https://www.twilio.com/ahoy

6. API Consumer-facing Patterns

Furthermore, all API initiatives are for partners or the public. Thus, communication of
changes should follow a structured approach that reaches all API consumers.

107

6. API Consumer-facing Patterns

6.4. Consumer-centric API Description

Pattern Overview
Name Consumer-centric API Descriptions
Pattern Type API Consumer-facing Pattern
Summary The API provider describes the API products functionality from a consumer

perspective as use cases or user stories addressing a consumer’s business need.

Figure 6.4.: A Consumer-centric API Description lists the major use cases or user stories
of the APIs on the developer portal.

Context:

The value of an API depends on API consumers using it (Medjaoui et al., 2018). API
consumers look for APIs to solve specific business needs. Therefore, an API provider has
already applied the pattern API-as-a-Product and created API products. However, API
consumers need to find and understand the API’s functionality before they can start using it
(De, 2017; Medjaoui et al., 2018). Thus, the API provider has to ensure that the API consumer
can discover and understand the business value of the API product.

Concern:

How can the API provider describe API products to ensure discoverability and comprehensi-
bility for API consumers?

108

6. API Consumer-facing Patterns

Forces:

• Different roles: Within an API consumer organization, different roles are involved in
the search and decision process for new applications and APIs. Such roles comprise
technical and business roles who might not have a good understanding of APIs (De,
2017; C13). Hence, a solution should enable each of these roles to easily understand the
value of an API or API product’s functionality.

• Searchability. Especially if the API provider operates a marketplace, the API consumer
has to search a long list of available APIs. In such settings, the API provider should
support the API consumer with the search for suitable APIs.

• Marketing information. Developers do not like to read marketing information (Jacobson
et al., 2012). Instead, API documentation should focus on facts. Hence, a solution
should not add unnecessary marketing information to the API documentation.

• Provider Effort. The API provider has limited resources. Therefore, a solution should
create little additional effort for the API provider.

Solution:

The API provider describes the API products functionality from a consumer perspective as
use cases or user stories addressing a consumer’s business need. As part of the API portal,
an API product overview page lists all API products and their use cases or user stories.

Stakeholders:

The API provider can collaborate with sales & marketing to publish Consumer-centric API
Description on the developer portal.

Implementation Hints:

Use cases and user stories. After bundling APIs into products according to API-as-a-Product,
API providers describe the functionality of the products as use cases16 and user stories17 from
a consumer perspective. Therefore, the API provider specifies the overall purpose of an API

16A use case describes the functionality of a system that is of value for users and other stakeholders (OMG UML,
2017; Spichale, 2017). Use cases enable the definition of requirements for a system with the API consumers’
goals in mind, but also the description of an existing systems functionality (OMG UML, 2017). In addition,
use cases focus on the behavior of a system and are often described as interactions between the system and
its users (OMG UML, 2017). Therefore, Cockburn (2000) defines a use case as "[...] a contract between the
stakeholders of a system about its behavior" (Cockburn, 2000, p. 2).

17In the context of agile development, "A user story describes functionality that will be valuable to either a user
or purchaser of a system or software." (Cohn, 2004). However, agile teams use user stories in the context
of requirements definition and consisting of a written description, discussions about the description, and
acceptance tests (Cohn, 2004). We assume that discussions and acceptance tests happened before publishing
the API product, and the user stories describing an API product or use case reflect that process.

109

6. API Consumer-facing Patterns

and the core functionality of a product that addresses consumers’ business needs (Spichale,
2017). These descriptions of the functionality do not comprise any technical details (OMG
UML, 2017). However, the high-level description links to more detailed information in the
documentation (Spichale, 2017).

API portal. The API provider creates an overview of all products on a product overview
page in the developer portal (De, 2017). The product overview page can list products in
different formats, but in most cases, API providers represent products as tiles, including the
product’s name and the user story or stories it implements. In addition, if the API portal
lists many products, the API provider can implement search or filter options, e.g., a filter for
geographic regions in which an API product is available.

Consequences:

Benefits:

• Different roles: The description of an API or API product’s functionality as use cases
or user stories does not entail technical details (OMG UML, 2017) but describes the
functionality from a consumer perspective. Hence, different roles, including business
roles, can understand the value of the functionality for an organization.

• Searchability. API consumers usually search for an API that fulfills a business need.
Consumer-centric API descriptions enable API providers to offer search and filter
options that allow API consumers to search more efficiently for APIs that offer a certain
functionality (De, 2017).

• Marketing information. Consumer-centric API descriptions do not entail any technical
information. However, the developers need to understand the functionality of the API
or API product, which the API provider can convey through use cases or user stories.
Nevertheless, the consumer-centric API descriptions should be as short as possible.

Drawbacks:

• Provider Effort. The identification of suitable use cases and user stories that help an
API consumer to understand an API’s functionality creates effort for the API provider
(Medjaoui et al., 2018). However, the API provider might already create these consumer-
centric descriptions during the design and development of the API or API product
(Spichale, 2017). The API provider can easily reuse the use cases or user stories in such
cases.

Related Patterns within this Pattern Catalog:

The provider publishes Consumer-centric API Description on the developer portal, thus
enabling API discovery. Consumer-centric API Description target business as well as
technical stakeholders according to Role-based Marketing.

110

6. API Consumer-facing Patterns

In addition, Consumer-centric API Description defines user stories or use cases which
is a prerequisite for Integration Guides since they use user stories or use cases to guide
integration documentation.

Other Related Patterns:

In Zimmermann et al. (2022), Zimmermann et al. (n.d.), and Lübke et al. (2019), the pattern
API Description defines what knowledge should be shared between the API provider and
consumer. The solution states that the API provider should include different kinds of
knowledge, including technical-, quality-, and organization-related information, with API
consumers. Furthermore, Lübke et al. (2019) presents a template for API documentation.
The template includes the definition of "user stories and quality attributes (design forces)."
Hence, the pattern Consumer-centric API Description could be part of the pattern API
Description.

Similarly, the pattern Consumer-centric API Description could support the realization
of the Interface Description pattern presented by Völter et al. (2004).

Known Uses:

We observed the pattern in four cases:

The API portal provider of the automotive organization in C3 makes vehicle data accessible
to business and private consumers. The API provider describes each API product with a use
case on their developer portal.

The API provider of C11 offers a financial service client library for API consumers to
integrate into their websites and online shops. The API provider uses use cases to describe
the API’s functionality and structure the documentation.

Stripe (C16) provides APIs for online payment processing18. Stripe uses use cases to show
the value of the functionality of their API. For example, Stripe describes the "Payments" API
with the high-level use case "Build a web or mobile integration to accept payments online
or in person"19. Moreover, Stripe breaks down the overall use case into more specific use
cases, e.g., "Accept online payments: Build a payment form or use a prebuilt checkout page
to accept online payments"20. These use cases structure the documentation of the payment
APIs from a user perspective and link to integration guides that support API consumers with
the use case implementation.

Twilio (C17) is an API provider for customer engagement using voice, messaging, video,
and email services21. Twilio describes subsets of the channel APIs with high-level use

18https://stripe.com/en-de/about (accessed 20.12.2023).
19https://stripe.com/docs (accessed 20.12.2023).
20https://stripe.com/docs/payments (accessed 20.12.2023).
21https://www.twilio.com/ (accessed 20.12.2023)

111

https://stripe.com/en-de/about
https://stripe.com/docs
https://stripe.com/docs/payments
https://www.twilio.com/

6. API Consumer-facing Patterns

cases22. For example, "Programmable Messaging" covers the high-level user story "Send and
receive messages on SMS, MMS, and WhatsApp"23, which API consumers can realize with the
"Programmable Messaging API"24, the "WhatsApp Business API"25, and the "Conversations
API"26.

Cross-case observations:

The cross-case observations are similar to those made for the pattern API-as-a-Product.
API initiatives within our case base that describe API products as user stories are public
initiatives. Describing API products as user stories for public initiatives makes sense since
a major goal of user stories is to make the APIs easily discoverable for a broad range of
consumers with whom no prior relationship exists. Also, the API initiatives are quite mature,
with several APIs in production and several existing consumers. Additionally, three out of
four API initiatives belong to software or IT service provider organizations with experience
designing and managing intangible products. Finally, almost all of the API products are
monetized and not for free.

22https://www.twilio.com/products (accessed 20.12.2023).
23https://www.twilio.com/products (accessed 20.12.2023).
24https://www.twilio.com/messaging (accessed 20.12.2023).
25https://www.twilio.com/whatsapp (accessed 20.12.2023).
26https://www.twilio.com/messaging (accessed 20.12.2023).

112

https://www.twilio.com/products
https://www.twilio.com/products
https://www.twilio.com/messaging
https://www.twilio.com/whatsapp
https://www.twilio.com/messaging

6. API Consumer-facing Patterns

6.5. Integration Guide

Pattern Overview
Name Integration Guide
Alias Tutorials (Medjaoui et al., 2018; Spichale, 2017; C17), Usage Guides (C17),

Scenario documentation (Medjaoui et al., 2018), Walkthroughs (De, 2017), Cook-
book (Spichale, 2017)

Pattern Type API Consumer-facing Pattern
Summary An integration guide documents the implementation of common functionality

using step-by-step instructions (Spichale, 2017) to reduce consumers’ effort
implementing the specific functionality (Medjaoui et al., 2018).

Figure 6.5.: The Integration Guide provides step-by-step instructions to implement a
specific functionality.

Context:

An API provider uses APIs as the primary channel to make a product accessible to external
consumers or the API is a major feature of a software product. Moreover, the API provider
has published technical reference documentation. The number of API consumers is high,
and the API is in a relatively mature state (Medjaoui et al., 2018). Many consumers want
to use the API to realize the same functionalities. However, realizing these functionalities
is challenging and creates effort for the API consumers. Especially in markets with several
APIs and solutions for the same functionality, API consumers consider the effort necessary to
implement functionality when choosing an API (Lübke et al., 2019).

Concern:

How can the API provider support API consumers with the implementation of common API
functionalities?

113

6. API Consumer-facing Patterns

Forces:

• Knowledge Transfer. API consumers cannot use an API without the API provider trans-
ferring the necessary knowledge to them (De, 2017; Jacobson et al., 2012; Lübke et al.,
2019; Medjaoui et al., 2018; Spichale, 2017). If API providers only publish reference
documentation, API consumers might make assumptions (Lübke et al., 2019), try to
reverse engineer the APIs behavior (Lübke et al., 2019), implement bugs (Medjaoui
et al., 2018), or fail to implement a functionality altogether. Thus, ambiguities can
lead to violations of the information hiding principle and increase the API consumers’
effort to maintain a client application (Lübke et al., 2019). Therefore, a solution has to
communicate relevant knowledge to the API consumers.

• Consumer Effort. API consumers do not have the time nor the willingness to work
through a lot of documentation (Jacobson et al., 2012). Thus, documentation is a "key
success factor for an API" (Jacobson et al., 2012, p.100) and can be a competitive advantage
compared to other APIs with the same functionality (Jacobson et al., 2012; Medjaoui
et al., 2018).

• Developer Experience. Documentation is part of the developer experience (Medjaoui et al.,
2018; C11). Moreover, the usability of documentation influences consumers’ decision to
use an API (Lübke et al., 2019) and therefore affects the APIs strategic value (Medjaoui
et al., 2018), and social adoption (De, 2017). Fewer API consumers will use an API that
is difficult to learn or use due to insufficient documentation (Medjaoui et al., 2018).

• Support. The quality of documentation can influence the number of support requests
(Spichale, 2017). The more knowledge the documentation transfers to the API consumer,
the less support the API consumers need.

• Beginners and Advanced User. Consumers starting to use an API have different informa-
tion needs compared to advanced consumers (Spichale, 2017). Nevertheless, a solution
should cater to the information needs of all consumer groups (Spichale, 2017).

• Consistency. API consumers expect consistency and accuracy across all types of docu-
mentation (Lübke et al., 2019). Errors or inconsistencies in the documentation can drive
API consumers to abandon an API (Medjaoui et al., 2018).

• Provider effort. API providers have limited resources to design and maintain API
documentation. Thus, a solution should require little additional effort or investment for
API providers.

Solution:

The API provider creates and publishes integration guides that support API consumers with
the implementation of common functionality using step-by-step instructions (Spichale, 2017).
Such an integration guide usually comprises a description of the functionality, a specification
of activities necessary before implementing the functionality, the steps for implementing the

114

6. API Consumer-facing Patterns

functionality enriched with copyable code snippets, and a guide to testing the implemented
functionality. Hence, an integration guide reduces consumers’ effort to implement the specific
functionality (Medjaoui et al., 2018).

Stakeholders:

This pattern addresses a concern of an API provider. The provider has to communicate with
API consumers to decide for which functionality the effort of creating integration guides
is justified. Furthermore, the provider should communicate with consumers to identify
improvement potentials for existing integration guides. In addition, the provider can involve
sales & marketing to enhance the design of integration guides on the developer portal.

Implementation Hints:

Structure. An integration guide provides step-by-step directions that allow an API consumer
to implement the solution to a specific consumer problem (Medjaoui et al., 2018; Spichale,
2017). An integration guide first specifies the functionality, e.g., using a user story or use
case description27, that the integration guide helps to implement (C11; C16; C17). These
specifications should be easy to understand and can include additional resources, e.g.,
visualizations (C11). Also, the integration guide introduces necessary domain knowledge in a
straightforward and easy-to-understand manner (C11).

Afterward, the integration guide lists tasks or requirements that API consumers must
fulfill before starting to code (C11; C16; C17). Such preceding tasks include, for example,
the registration of a user account (C17), the retrieval of relevant authentication information
(Spichale, 2017; C11; C17), or the download of specific libraries (Spichale, 2017; C11; C16).

Next, the integration guide describes the steps to implement the functionality (C11; C16;
C17). If applicable, the descriptions are enriched with code snippets that the API consumer
can copy (De, 2017; Spichale, 2017; C11; C16; C17). Such code examples should take into
account the programming languages that most API consumers use (Spichale, 2017). The
code snippets implement the logic necessary to realize the functionality and are optimized

27In the context of agile development, "A user story describes functionality that will be valuable to either a user
or purchaser of a system or software." (Cohn, 2004, p. 4). Agile teams use user stories for the definition of
requirements. A user story consists of a written description, discussions about the description, and acceptance
tests (Cohn, 2004).

A use case describes the functionality of a system that is of value for users and other stakeholders (OMG
UML, 2017; Spichale, 2017). Use cases enable the definition of requirements for a system, but also the
description of an existing systems functionality (OMG UML, 2017). Moreover, use cases focus on the behavior
of a system and are often described as interactions between the system and its users (OMG UML, 2017).
Therefore, Cockburn (2000) defines a use case as "[...] a contract between the stakeholders of a system about its
behavior" (Cockburn, 2000, p. 2).

Thus, in summary, user stories and use cases describe the functionality of a system. Also, both do not
disclose any technical or implementation details (OMG UML, 2017). However, we understand use cases
as descriptions of functionality derived from users’ goals with a focus on the system and its behavior. In
comparison, user stories focus on the consumer perspective by describing the functionality as a solution to a
consumer’s problem from the consumer’s point of view.

115

6. API Consumer-facing Patterns

for quality properties like performance (C11). The Integration Guide also explains how
API consumers must adapt the code snippets, e.g., where to replace placeholders with
authentication information (C11; C16; C17).

An alternative approach is to provide querying tools embedded into the documentation
(Jacobson et al., 2012). Such tools allow API consumers to test different calls and thus gain an
understanding of the API without the need to go through setup activities (Jacobson et al.,
2012).

After the implementation, the integration guide supports testing implemented functionality
(C11; C16).

Throughout all parts of the integration guide, the API provider includes links to other
resources that provide more detailed information not necessarily relevant for implementing
the functionality (C11; C16; C17). Moreover, the API provider can add best practices or tips
that support the API consumer, e.g., the best placement of buttons on a website (C11).

In summary, an integration guide captures the knowledge, steps, and code snippets
necessary to realize a certain functionality from beginning to end in an easy-to-understand
manner. Hence, the guide relieves API consumers from the effort of repetitively developing
the same or similar workflows. The provider can offer basic "Hello World" guides and more
advanced tutorials building on the basic guides (Spichale, 2017).

APIs and Libraries. The API provider can offer integration guides for the Web API itself,
client libraries, or both (Medjaoui et al., 2018). In many cases, the API consumer can choose
the preferred programming language at the beginning of the integration guide (C16; C17).

Publication Platform. The API provider should make integration guides available on the
developer portal since it should be the single source for all information related to an API (De,
2017; Jacobson et al., 2012; Lübke et al., 2019; Medjaoui et al., 2018; C11; C16; C17).

API Changes. With every change of an API, the API provider has to validate or adapt the
associated integration guides (De, 2017; Medjaoui et al., 2018). Therefore, an API provider
should design processes and execute tests to ensure that integration guides are still up to
date after an API change (De, 2017; Lübke et al., 2019). In addition, if the API provider offers
several versions of an API, integration guides need to indicate which version they support
clearly.

Continuous improvement. Tutorials are part of the onboarding experience for API con-
sumers. Therefore, the API provider should automatically and manually gather data and
feedback on the API consumers’ use of tutorials to continuously derive and implement
improvements (Medjaoui et al., 2018).

Documentation requirements. Also, an API provider can centrally prescribe documentation
requirements that each API team needs to fulfill (Medjaoui et al., 2018). For example, a
potential requirement is that the documentation includes an integration guide.

116

6. API Consumer-facing Patterns

Consequences:

Benefits:

• Knowledge Transfer. It depends on the complexity of the API or functionality that an
API consumer wants to implement as well as on the experience of the API consumer
if integration guides add value for API consumers (Spichale, 2017). For example, in
settings where the API and functionality are complex, or most API consumers have
little experience with the API, reference documentation might not be sufficient to enable
the API consumers to implement the functionality. Integration guides describing each
step necessary to implement specific functionality are useful in such settings. Hence,
integration guides support knowledge transfer and remove ambiguities.

• Consumer Effort. Insufficient documentation leads to increased learning, experimentation,
development, and testing effort for API consumers (Lübke et al., 2019). An integration
guide can decrease the time and effort for implementing a specific functionality.

• Developer experience. Human-readable documentation delivers the most popular learning
experience (Medjaoui et al., 2018). Furthermore, step-by-step guides help API consumers
to learn a new API quickly. Thus, integration guides can improve the developer
experience.

• Support. Integration guides support API consumers with the solution of recurring
issues and the implementation of standard functionality (Spichale, 2017). Thus, the API
consumers need less support from the support team.

• Beginners and Advanced User. A beginner’s learning curve should be as flat as possible
(Spichale, 2017). In addition, app developers look for quick-start guides and tutorials
when they start using an API (De, 2017). Thus, integration guides are handy for new
API consumers just learning the API (Medjaoui et al., 2018; Spichale, 2017).

Drawbacks:

• Knowledge Transfer. In settings where the API and functionality are simple, or most API
consumers have much experience with the API, reference documentation can be suffi-
cient to remove ambiguities and enable API consumers to implement the functionality.

• Beginners and Advanced User. Advanced users are probably less interested in integration
guides for common use cases but instead in best practices and reasons for specific
design decisions (Spichale, 2017). However, the integration guides can link to such
documentation.

• Consistency. If different types of documentation provide redundant information, the
effort of creating and maintaining the documentation increases (Lübke et al., 2019). In
addition, since the reference documentation and integration guides comprise partially
redundant information, integration guides can increase the likelihood of inconsistencies
between documentation types.

117

6. API Consumer-facing Patterns

• Provider effort. The creation and maintenance of integration guides are effortful and
costly (Lübke et al., 2019; Medjaoui et al., 2018). The API provider organization experts
must manually generate and review the integration guides (Jacobson et al., 2012) and test
associated code snippets. Furthermore, the API provider needs to check and potentially
update the integration guides with every API change (De, 2017; Medjaoui et al., 2018).
To prevent errors or inconsistencies, the API provider should design processes and tests
that ensure that the documentation is always up to date (De, 2017; Lübke et al., 2019).
However, the API provider needs to invest effort into setting up such processes. In
addition, the API provider should continuously try to improve the integration guides.
In comparison, reference documentation is easier to design and update, especially if
the API provider uses tools to generate the documentation automatically (Lübke et al.,
2019). Thus, the API provider has to carefully evaluate if the number of API consumers
benefiting from the integration guide justifies the additional effort (Medjaoui et al.,
2018).

Related Patterns within this Pattern Catalog:

Integration Guides are published on the developer portal and target technical stakeholders
according to Role-based Marketing.

Moreover, Integration Guides provide step-by-step instructions on how to integrate user
stories or use cases as defined in Consumer-centric API Description.

Other Related Patterns:

In Zimmermann et al. (2022), Zimmermann et al. (n.d.), and Lübke et al. (2019), the authors
introduce the pattern API Description. The pattern tackles what knowledge an API provider
should share with API consumers and how to document the shared knowledge. The solution
states that the API provider should include different kinds of knowledge, including technical-
, quality-, and organization-related information, with API consumers. In addition, it is
crucial to share basic facts about the API, like network addresses and call structures, and
provide additional information on, e.g., invocation sequences. Such information reduces the
API consumers’ effort to understand and use the API. However, how much knowledge a
description comprises should depend on a specific API’s market dynamics and development
culture. Hence, an Integration Guide could be part of the pattern API Description.

Similarly, the pattern Consumer-centric API Description could support the realization
of the Interface Description pattern presented by Völter et al. (2004).

Known Uses:

We observed the pattern in five cases:

The API portal provider of an automotive organization (C3) makes vehicle data available
to car owners and maintenance data available to workshops. The API provider presents a

118

6. API Consumer-facing Patterns

step-by-step guide on implementing the most common functionality for each API. These
guides comprise code examples.

Case C4 represents a software service provider’s public API initiative. End users with a
license for the API provider’s software product automatically have access to the public API
to enable customized system integration. The API provider publishes an integration guide
on the developer portal. The integration guide describes the most common calls to each API
endpoint, including code examples.

The API provider of C11 offers a financial service client library for API consumers to
integrate into their systems. This API provider offers integration guides that support API
consumers with the realization of specific functionality. The integration guides consist of
step-by-step directions informing the API consumer about relevant domain knowledge, code
snippets, explanations on how to adapt the code, and guidance on testing.

Stripe (C16) provides APIs for online payment processing28. To support API consumers
with API integration, Stripe offers integration guides. For example, if API consumers want
to "accept a payment"29, they can simply follow the listed steps. Each of these steps has
a description potentially enriched with code snippets. The steps also comprise setup and
testing guidance. Moreover, since Stripe provides several Client Library, the API consumer
can choose the code snippets in different programming languages. Thus, Stripe guides the
API consumer through the integration of the "accept payment" functionality with a detailed
description.

Twilio (C17) is an API provider for customer engagement using voice, messaging, video,
and email services30. In addition to other services, Twilio offers several channel APIs, each
focused on a specific communication channel31. Focusing on the "Programmable Messaging
API" for sending and receiving SMS and MMS messages, the documentation includes a set of
"Tutorials"32 that describe the integration of the APIs functionality into a client application.

Cross-case observations:

The five cases have a lot in common. First, they represent mature API initiatives with a high
number of API consumers. Thus, investing additional effort into documentation makes sense
since good documentation can reduce the need for personal interactions and thus enables the
scaling of API initiatives. Also, all API initiatives have predefined monetization schemes and
high levels of self-service automation. Finally, in these cases, the API is the primary channel
to make a software product accessible, or it is a significant feature of the software product.

28https://stripe.com/en-de/about (accessed 20.12.2023).
29https://stripe.com/docs/payments/accept-a-payment?platform=web&ui=checkout#set-up-stripe (accessed

20.12.2023).
30https://www.twilio.com/ (accessed 20.12.2023).
31https://www.twilio.com/products (accessed 20.12.2023).
32https://www.twilio.com/docs/api (accessed 20.12.2023).

119

https://stripe.com/en-de/about
https://stripe.com/docs/payments/accept-a-payment?platform=web&ui=checkout##set-up-stripe
https://www.twilio.com/
https://www.twilio.com/products
https://www.twilio.com/docs/api

6. API Consumer-facing Patterns

6.6. Onboarding Self-service

Pattern Overview
Name Onboarding Self-Service
Pattern Type API Consumer-facing Pattern
Summary An onboarding self-service automates (parts of) the API onboarding process by

allowing API consumers to choose a monetization plan, register a user account,
generate authentication credentials, and register a finalized client application
without interacting with API provider team members.

Figure 6.6.: If the API provider offers an Onboarding Self-service, the consumer does not have
to interact with the provider before starting to use an API.

Context:

API consumers want to use an API as fast as possible after discovery. However, some
interaction between consumers and the API provider is necessary before API consumers can
start using an API. Such interactions comprise the negotiation of monetization schemes and
service levels as well as the execution of identification and authentication mechanisms.

Concern:

How can API providers enable API consumers to start using an API as fast as possible?

Forces:

• Fast access. An API provider should implement security measures, e.g., API consumer
identification, authentication, and authorization (Jacobson et al., 2012). These security

120

6. API Consumer-facing Patterns

mechanisms require an interaction between the API provider and the API consumer.
However, an API consumer does not want to wait for manual responses from the API
provider (Jacobson et al., 2012). If the onboarding processes take too long or are too
complicated, API consumers might lose interest in an API (Jacobson et al., 2012). Ideally,
the registration process should take less than five minutes (Jacobson et al., 2012). Hence,
user registration, application authentication, and application review processes impact
the developer experience (Jacobson et al., 2012). Especially in the context of APIs that
follow the API-as-a-Product approach, the API provider should put effort into creating
a fast onboarding experience for API consumers (Medjaoui et al., 2018).

• Transparency. An API consumer will only enter a business relationship with an API
provider if the monetization scheme and the SLAs are transparent and attractive (C13).

• Negotiations. Especially in partner API initiatives, API consumers often do not want
to accept standard monetization schemes and SLAs. Instead, they want to negotiate
special monetization and service levels for using an API (C13).

• Effort. The API provider has limited resources. Thus, a solution should require little
effort.

Solution:

An API provider can automate some or all of the interactions between the API provider
and API consumer necessary to allow the API consumer access to the API. First, instead of
negotiating monetization schemes, the API provider can present predefined monetization
plans to the API consumer. Similarly, the API provider can create predefined service levels
and other contractual agreements. Also, the API provider can provide the means for the API
consumer to register a user account and access credentials for authenticating API requests via
the developer portal. Thus, the API consumer can start using the API within minutes without
the need to spend time and effort to interact with the API provider.

Stakeholders:

Within the API provider team, the API portal provider has to integrate the self-service function-
ality in the developer portal. In addition, the API portal provider can collaborate with legal and
finance & controlling to design predefined monetization plans, SLAs, and other contractual
agreements.

Implementation Hints:

Approach. Self-service means that the API provider automates tasks necessary to start using
an API that would usually require an interaction between the API provider and the API
consumer. The API provider team designs the API consumers workflow from registration of
an account to the use of an API (De, 2017; Medjaoui et al., 2018). The consumer workflow
comprises, for example, account registration (De, 2017), acceptance of monetization schemes,

121

6. API Consumer-facing Patterns

SLAs, and other contractual terms, potentially a client application review, and the application
authentication (Jacobson et al., 2012). The API consumers can trigger these tasks by entering
information into the self-service system. Self-service features are usually part of the API
developer portal (De, 2017; Jacobson et al., 2012).

In the following, we will present each activity that the API provider can automate as a self-
service in more detail, i.e., registration, monetization, terms guiding the business relationship,
client application review, and application authorization. The activities can be in a different
order than the order in which they are described.

Registration. The API consumers can register with their personal or company information
on the developer portal to create a user account (De, 2017). The API consumer must provide
billing information if the API is not free (C9). Furthermore, especially in the finance sector,
API consumers sometimes need to validate their real-world identity (C11; C16). However, the
registration should only require the API consumer to provide as little information as possible
not to drive the consumers away (De, 2017).

Potential authentication methods include username and password (e.g., HTTP basic au-
thentication), OAuth, SAML, or X.509 certificates, two-way SSL (Secure Socket Layer), or
WS-security specifications (Jacobson et al., 2012). In most cases, the API provider enables
API consumers to register new accounts with an email address and a password (C3; C9; C11;
C16).

Monetization. An API provider has to offer predefined monetization schemes and service
levels to realize a self-service. Often API providers offer several plans (De, 2017) that differ
regarding the accessible functionality, the number of allowed calls, or the different service
levels. An API consumer can choose one of these predefined plans (C3; C9; C11; C16). The
API provider should collaborate with the finance & controlling department to calculate business
plans and create monetization schemes. However, if an API consumer does not want to accept
a predefined plan, self-service is impossible.

Terms guiding the business relationship. Similarly, the API provider should create and
publish a Service-Level Agreement (SLA), terms of use, and any other agreements that
determine the business relationship between the API provider and API consumer. These
agreements should be acceptable for most API consumers, who have to accept them as they
are. The API provider should collaborate with the legal department to design and review the
agreements.

Client application review. In some cases, the API provider only hands out authentication
credentials for a sandbox environment right away. The API consumer only gains access to the
live API only after a client application review (C11; C14). The API consumers usually trigger
an application review in the developer portal (De, 2017), e.g., by filling in a form describing
the application. An API provider might decide to automatically or manually review and
approve the consumer application (De, 2017). If the review does not raise any concerns
or questions, the API consumer receives the authentication credentials for the production
environment. However, if there are any questions or issues, the API provider and API

122

6. API Consumer-facing Patterns

consumer must communicate to resolve the problem or uncertainty (C3; C11).

Application authorization. An API key (De, 2017; Jacobson et al., 2012) allows the API to
know which application and thus which developers use it (Jacobson et al., 2012). The API
provider blocks requests to the API without valid authentication credentials (Jacobson et al.,
2012; Spichale, 2017). The API provider can automate the generation and management of
authentication credentials in the developer portal instead of communicating these credentials
manually (C3; C4; C14; C16).

Full and partial self-service. In general, an API provider can decide to offer self-service for
all or only some of the tasks described above. For example, for public API initiatives, we
often observed that the API provider offers API consumers self-service capabilities covering
monetization, terms guiding the business relation, registration, and authentication only for
test environments. Thus, the API consumers can start using the test environment within
minutes. Still, the API provider restricts access to the production environment without prior
application review, which can take several days (C3; C11; C14).

However, we observed that sometimes API consumers do not want to accept standard
monetization schemes and other contractual conditions but instead like to negotiate individual
agreements, especially in partner API settings. Thus, it takes time until the API consumer
can access the API. However, afterward, they also rely on self-service for registration and
authentication (C13).

Continuous improvement. A measure to improve the onboarding experience is to monitor
the API consumer behavior during onboarding, e.g., measuring the time it takes the consumer
to complete a task or identifying steps where the consumer fails or stops using the API
(Medjaoui et al., 2018).

Consequences:

Benefits:

• Fast access. A self-service allows API consumers to use an API in minutes without
waiting for the API provider to perform manual activities (C2). The advantages of a good
onboarding experience are reduced support costs and increased customer satisfaction
(Jacobson et al., 2012; C14).

• Transparency. The API provider can formulate clear and attractive standard monetization
schemes and SLAs for API consumers. Such standard monetization schemes and SLAs
enable the API consumer to quickly and easily enter a business relationship with an
API provider.

Drawbacks:

• Negotiations. The API provider cannot offer full self-service when API consumers do
not accept standard monetization schemes and SLAs. However, in these cases, the

123

6. API Consumer-facing Patterns

API provider can offer at least a partial self-service for authentication and application
registration (C13).

• Effort. The API provider has to create attractive standard monetization schemes and
agreements, which require effort and collaboration with different departments, e.g.,
legal and, finance & controlling (C13). Also, an API provider must implement a user
interface for the API consumer to register and manage the account and authorization
credentials (Jacobson et al., 2012). However, commercial API gateways usually offer
these functionalities as out-of-the-box features (Jacobson et al., 2012; Medjaoui et al.,
2018; Spichale, 2017).

Related Patterns within this Pattern Catalog:

After discovery of an API, the Onboarding Self-service allows consumers to quickly access
the Web API, Client Library, or Frontend Venture.

Other Related Patterns:

In Zimmermann et al. (2022), Zimmermann et al. (n.d.), and Stocker et al. (2018), the authors
present two patterns related to the pattern Onboarding Self-service. First, the pattern API
Key is a unique, provider-allocated key that the API consumer includes in each request to the
API. The API Key enables the identification and authentication of client applications. Thus,
API providers use API Keys to ensure that only registered consumers can make successful
API calls. Also, the API Key enables monitoring calls, allowing for pay-per-call monetization
or enforcing different access rights for each consumer. An additional advantage of an API
Key is that API consumers do not have to include account login credentials in each call to
the API. Hence, the API Key decouples consumer accounts from consumer roles, allowing
for more fine-grained permissions management. Also, the API consumer can easily replace
an API Key in case of a security break. Alternative names for the pattern API Key are Access
Token and Provider-Allocated Client Identifier.

Similarly, Richardson (2019) and Richardson (n.d.) present the pattern Access Token. An
Access Token identifies a consumer sending requests to a service.

Hence, an API Key (Stocker et al., 2018; Zimmermann et al., n.d., 2022) or Access Token
(Richardson, n.d., 2019) can support the realization of the pattern Onboarding Self-service.

Known Uses:

We observed the pattern in nine cases:

In the case of C2, the API provider offers simulation and modeling algorithms to analyze
energy data. The API provider aims to provide a full onboarding self-service for API
consumers. API consumers are requested to provide feedback if the onboarding self-service
is not self-explanatory to enable the API provider to improve the consumer experience.

124

6. API Consumer-facing Patterns

The API portal provider of an automotive organization (C3) makes vehicle data accessible to
business and private consumers. The organization offers different options for accessing APIs.
The first potential option is a sandbox with limited test data. The second option is private use
of the API using personal car data. For both, the sandbox and the private use of an API, the
developer has to register on the portal using an email address and a password. Afterward,
the developer subscribes to relevant APIs, receives an API key or OAuth credentials, and
can start using the APIs. The third option for accessing an API is a business option. In this
case, the API consumer has to contact the API provider to negotiate a contract. As soon as
the contractual agreement is in place, the API consumer can access all data provided by the
API. However, before the application using the API goes live, the API provider reviews it.
Therefore, the API consumer can only publish the application after the approval of the API
provider. Hence, the organization offers full self-service in some situations and only partial
self-service in others.

The API provider of C4 provides a financial services software product. In addition, the API
provider offers an API that allows users of the software product to integrate the software
product with their system landscape. First, API consumers must register on the developer
portal to create a user account. Afterward, the API consumer generates an API key in
the developer portal. To be successful, the API consumer must include the API key as an
authentication credential in the API requests. With the API key, the API consumer can access
all available APIs.

In C9, the organization offers a public marketplace for IoT applications. The organization
provides core platform software, and third-party developers can build additional modules
for the platform using APIs. These developers can register for a free account with an email
address and a password but also need to provide further information about their organization
to complete the registration process successfully. Moreover, the API consumer has to agree to
a standard privacy notice and terms & conditions. The features of a free account are limited,
but developers can run applications on the IoT platform. While API provider can set up a free
account as a complete self-service, paid accounts require interaction between the provider
and consumer.

The API provider of C11 offers a financial service for API consumers to integrate into their
systems. First, the API consumer has to register for a developer, a personal, or a business
user account. After registration, a developer dashboard issues a client ID and credentials that
identify and authorize the consumer’s application to access the sandbox. A switch from the
sandbox to the production environment requires the API consumer to request credentials for
the live API. Hence, an API consumer can access the sandbox environment within minutes
since the API provider provides self-service capabilities for identification and authorization.

In C13, the organization offers a public marketplace for insurance applications. The API
marketplace provider allows third-party API providers to integrate additional modules via
APIs and publish these modules on the marketplace. These modules can be accessible via
API or as apps. Users of the platform can buy the modules according to their needs. Thus,

125

6. API Consumer-facing Patterns

the marketplace provider has to enable third-party API providers and API consumers to
access the marketplace. First, no matter if a user becomes a third-party API provider or an
API consumer, they have to register with some basic personal information, an email, and a
password. As part of the registration, the user must confirm the email address and accept
the marketplace’s terms and conditions with a click on the respective checkbox. Next, the
user has to choose between a third-party module provider and a consumer account. The
documentation describes the sign-up steps for each of these roles following a Role-based
Marketing approach.

A third-party module provider who developed a module for the platform must register
it before the marketplace provider publishes it. The registration comprises the third-party
provider submitting information on the module, e.g., the name and description, pricing
options, and contracts and terms. Further, the third-party provider has to add information
on technical details describing how consumers can access the module. For example, if the
module is accessible via an API, the third-party provider has to provide the API’s base URL
and the authentication options (OAuth2.0 or API Key). In the next step, the third-party
API provider submits the information for review by the marketplace provider. Finally, the
marketplace provider sends feedback or approves the service within a set time frame.

However, if the user in C13 decides to become a marketplace and module consumer, she
must subscribe to a service by choosing an available monetization plan. With a subscription,
the API consumer agrees to the contractual terms of the third-party API provider. After
subscribing, if the module is accessible via API, the API consumer can retrieve the API
credentials in the marketplace portal and start using it.

Overall, the marketplace described in C13 provides all functionality for third-party API
providers and API consumers as a self-service. Nevertheless, many users contact the market-
place and prefer to build personal relationships before publishing or consuming an API.

C14 is a financial services provider that offers software operated in the cloud to end-users.
APIs enable other software providers to integrate their software with the system of C14, thus
offering an integrated solution to the end users. Consumer organizations have to enter a
contractual agreement with the API provider before being able to access the APIs. The process
requires non-automated interactions between the API provider and the consumer. However,
as soon as a consumer organization has a contractual agreement with the API provider, the
consumer can access APIs sandboxes through a developer portal that provides all necessary
credentials to authenticate the consumer’s application. After the API provider reviews and
approves the consumer application developed in the sandbox environment, the consumer
receives the credentials to access the production environment. Hence, only the provision of
the sandbox API key is a self-service.

Stripe (C16) provides APIs for online payment processing33. Consumers that want to use
Stripe can choose between two payment options which are a pay-as-you-go model or the
option to negotiate an individualized agreement34. If a business owner chooses the pay-as-

33https://stripe.com/en-de/about (accessed 20.12.2023).
34https://stripe.com/de/pricing (accessed 20.12.2023).

126

https://stripe.com/en-de/about
https://stripe.com/de/pricing

6. API Consumer-facing Patterns

you-go model, they can right away register with an email address and password to create
a Stripe account35. After successful registration and account creation, a consumer can use
the API in a test mode36. In the test mode, Stripe provides a test API key37 that enables
the business owner to use all Stripe features, but the account can only process test data38.
However, immediately after registration, the business owner can activate the account by filling
in an account application that inquires information about the business, the product, and the
relation between the business owner and the business39. Stripe collects the information for
regulatory reasons40. Furthermore, Stripe reviews the information and contacts the consumer
in case of questions41. As soon as the account is activated, the business owner can access
a new API key42 that allows an application to accept real payments43. As a result, most
business owners should be able to use Stripes capabilities within minutes44 and without any
manual interaction with Stripe employees.

Twilio (C17) is an API provider for customer engagement using voice, messaging, video,
and email services45. An API consumer has to register to create an account46. As part of
the registration process, the API consumer must agree to the terms of service, the privacy
statement, and other relevant terms47. If required, the consumer can upgrade the trial account
to a full paid account via a billing page48. Hence, Twilio provides complete self-service.

Cross-case observations:

Across all cases, the API initiatives are in production, and the cases capture public and
partner API initiatives. Moreover, the API initiatives are developer portals and marketplaces
and offer different monetization schemes. Thus, we assume that the API initiatives providing
self-services are in more mature stages. Also, the more mature an API initiative, the more
onboarding process steps are available as self-service. However, regarding other characteristics,
the API initiatives can differ.

35https://stripe.com/de/pricing (accessed 20.12.2023).
36https://stripe.com/docs/account/manage (accessed 20.12.2023).
37https://stripe.com/docs/keys (accessed 20.12.2023).
38https://stripe.com/docs/account/manage (accessed 20.12.2023).
39https://stripe.com/docs/account/manage (accessed 20.12.2023).
40https://stripe.com/docs/account/manage (accessed 20.12.2023).
41https://stripe.com/docs/account/manage (accessed 20.12.2023).
42https://stripe.com/docs/keys (accessed 20.12.2023).
43https://stripe.com/docs/account/manage (accessed 20.12.2023).
44https://stripe.com/de/pricing (accessed 20.12.2023).
45https://www.twilio.com/ (accessed 20.12.2023).
46https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account#

sign-up-for-your-free-twilio-trial (accessed 20.12.2023).
47https://www.twilio.com/try-twilio (accessed 20.12.2023).
48https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account#

how-to-upgrade-your-account (accessed 20.12.2023).

127

https://stripe.com/de/pricing
https://stripe.com/docs/account/manage
https://stripe.com/docs/keys
https://stripe.com/docs/account/manage
https://stripe.com/docs/account/manage
https://stripe.com/docs/account/manage
https://stripe.com/docs/account/manage
https://stripe.com/docs/keys
https://stripe.com/docs/account/manage
https://stripe.com/de/pricing
https://www.twilio.com/
https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account##sign-up-for-your-free-twilio-trial
https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account##sign-up-for-your-free-twilio-trial
https://www.twilio.com/try-twilio
https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account##how-to-upgrade-your-account
https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account##how-to-upgrade-your-account

6. API Consumer-facing Patterns

6.7. Integration Partner Program

Pattern Overview
Name Integration Partner Program
Alias Integration Partner Management; Integration Partner Referral
Pattern Type API Consumer-facing Pattern
Summary API providers support API consumers with finding suitable integration partners

by creating and maintaining a curated list of potential integration partners that
meet specific quality criteria.

Figure 6.7.: The provider presents a list of integration partners on the API developer portal
according to the pattern Integration Partner Program.

Context:

API consumers want to integrate a software product into their application landscape via an
API. However, not all consumers have the technical capabilities or capacities for such API
integration projects. Also, they have not previously worked with a suitable integration or
development partner (C4). This context often occurs in settings with an API consumer base
consisting of many SME businesses (C14).

Concern:

How can the API providers support API consumers without technical capabilities or capacities
to identify suitable API integration partners?

128

6. API Consumer-facing Patterns

Forces:

• Lack of integration capabilities and capacities. Some potential API consumers lack the
technical capabilities or capacities to integrate a product into their system landscape.

• Lack of market expertise. The potential API consumers do not have an existing relation-
ship with a suitable integration partner (C4). Also, they lack experience in choosing
integration partners, which could lead to contracts with integration partners of bad
quality. The bad quality of integration partners could negatively reflect on the API
provider’s product.

• Lack of budget. Some potential API consumers lack the budget to hire integration partners
to support the integration of a software product into an existing application landscape.
For example, this is often a challenge for governmental institutions.

• Effort. The API provider has limited resources. Thus, a solution should require little
effort.

Solution:

API providers support API consumers with finding suitable integration partners through
creating and maintaining a curated list of potential integration partners that meet specific
quality criteria. To do so, the API providers attract potential integration partners through
existing business relations or via their API portal and validate them according to predefined
quality aspects. Integration partners that meet the quality criteria are marketed to potential
API consumers via the API portal.

Stakeholders:

This pattern addresses a concern of an API provider. The provider has to contact, vet, and gain
the interest of integration partners. Furthermore, the provider can ask API consumers to help
identify suitable integration partners.

Implementation Hints:

Partner acquisition. First, the API provider has to identify suitable implementation partners,
including software companies and freelancers. Depending on the maturity of the API
initiative, approaches to partner acquisition can differ. In the early stages of an API initiative
with few API consumers, API providers can simply ask existing API consumers if they employ
implementation partners. If so, the API provider can approach the implementation partner
with the offer of applying to become an official API provider partner. Another approach is
that the API provider collects information on organizations contacting the API management or
support team and analyzes if these organizations are implementation partners working for an
API consumer. Additionally, the API provider can advertise and explain an implementation

129

6. API Consumer-facing Patterns

partner program on the API portal or at events. Hence, interested implementation partners
can contact the API provider, potentially using a dedicated application form (C9).

Quality assurance. An API consumer’s bad experience with an official integration partner
negatively reflects on the API provider. Hence, the API provider must ensure that officially
referenced integration partners meet pre-defined quality criteria. A quality check can target
different aspects of the implementation partner organization, e.g., the number of employees
with specific competencies, the number of successful past API integration projects, or the gen-
eral economic status of the organization. Furthermore, API providers can require integration
partners to complete API, software, or process training (C14).

Monetization. The API provider can monetize the partner program by charging partners
for mandatory training. However, monetization can prevent partners from applying to a
partner program. Hence, API initiatives in the early are only beginning to build a partner
ecosystem should refrain from monetization (C4).

Tiered partner programs. Advanced integration partner programs can set up a tiered cer-
tification process. The integration partner has to achieve specific goals to reach higher
certification levels, but a higher certification renders the partner eligible for more benefits,
e.g., access to specific resources.

API portal. A dedicated partner list page comprises an overview of all partners. In many
cases, the API consumer can apply filters to partner lists, e.g., geographic or industry
filters. Furthermore, the partner list can link to separate pages describing each partner,
potentially including Customer Success Stories, and linking to the external integration
partner’s website. Finally, the API portal’s landing page can refer to the integration partner
list for improved visibility.

Consequences:

Benefits:

• Lack of integration capabilities and capacities. An integration partner program acts as a
broker to match potential API consumers lacking technical capabilities or capacities
with integration partners that can realize an integration project.

• Lack of market expertise. API consumers profit from integration partner programs since
they do not have to search for suitable partners themselves. In addition, since the API
provider vets the integration partners, it is less likely that the API consumer will have a
negative experience working with the integration partner and the API provider product.
Thus, API consumers are more likely to use the API, which leads to additional business
for the API provider.

Drawbacks:

• Lack of budget. Contracting an integration partner requires a budget.

130

6. API Consumer-facing Patterns

• Effort. The API provider has to design an integration partner program and needs to
acquire new and maintain existing integration partner relationships continuously. Also,
the API provider has to offer benefits to the integration partners that motivate them
to join a partner program, especially if the admission criteria are strict. Such benefits
are often access to training material, expert resources, or better support. Hence, the
solution can require quite some effort.

Related Patterns within this Pattern Catalog:

The provider publishes the list of partners resulting from the Integration Partner Program
on the developer portal, thus addressing the information needs of business stakeholders
according to Role-based Marketing.

In addition, the Integration Partner Program enables consumers lacking technical capa-
bilities or capacities to identify suitable API integration partners. Therefore, the program
supports the consumers’ integration of a Web API or Client Library.

An alternative to the Integration Partner Program is the pattern Frontend Venture since
both patterns aim to enable consumers lacking technical capabilities or capacities to access Web
API or Client Library functionality. The API provider should create a Frontend Venture
in a setting where a frontend would meet the need of several API consumers so that it can
be evolved into a product. Also, a Frontend Venture does not require the API consumer to
have any budget for API integration. In comparison, in a setting where a consumer requests
an integration into their application landscape and has the budget for such an integration,
the API provider should recommend implementation partners to the API consumer.

Known Uses:

We observed the pattern in six cases:

Case C4 represents the public API initiative of a software service provider. End users
with a license for the API provider’s software product automatically have access to its
public API to enable customized integration with their systems. The API provider initiated
an integration partner program after realizing that, quite often, software developer firms
implementing individual integrations for consumers contracted their support. The goal of the
integration partner program is not to generate additional income, e.g., via monetized courses
that partners have to complete before becoming an official partner, but to provide end-users
of the software with a curated list of software developers that can help them solve their
individual challenges and thus increase consumer satisfaction. Instead, the requirements for
becoming an integration partner are pretty easy since the provider wants to foster the growth
of the integration partner ecosystem. The requirements are that a software development firm
has already realized one successful integration project with the provider’s API and passes a
few formal checks, e.g., has a professional website. As of now, the API provider’s developer
portal lists all integration partners with links to their respective websites.

In C9, the organization offers a public marketplace for IoT applications. The organization

131

6. API Consumer-facing Patterns

provides core platform software, and third-party developers can build additional modules
for the platform using APIs. In addition, consumers can integrate the platform and chosen
modules. The API provider created an ecosystem of partners that support customers when
working with the platform. One type of partner is the integration partner, who helps
customers integrate solutions offered via the platform into their application landscape.
Software firms must master a series of courses within a predefined time and implement at
least one use case to become official integration partners.

The API provider of C11 offers a public API for easy integration of a financial service into
websites and online shops. This organization offers a partner program for different types of
partners, including system integrators. In addition to publishing a searchable list of potential
integration partners, the API provider also highlights a small number of preferred partners.

Similar to C4, C14 also captures the API of a software product to which users with a
software license automatically have access. Access to the API enables the end-users to
integrate the software product with their application landscape. The API provider publishes
and markets a list of integration partners on the developer portal. The end-users can filter for
regions and topics to find integration partners most suitable for them. Also, the API provider
requires the integration partner to attend specific courses and acquire certificates before they
can become integration partners.

Stripe (C16) provides APIs for online payment processing49. Stripe also offers a consulting
partner program that allows software firms to become official Stripe consulting partners50.
These partners are listed on Stripes developer portal51.

Twilio (C17) is an API provider for customer engagement using voice, messaging, video,
and email services52. Twilio offers the partner program "Build" for consulting partners stating
that "Partners are a vital extension of Twilio’s sales organization and go-to-market strategy" Twilio,
2022, p. 3. One type of consulting partner are System integrator (SI) partners. The partner
program defines different tiers, which are ’registered,’ ’bronze,’ ’silver,’ ’gold,’ and ’global
strategic partner.’ Consulting partners fall into one of these tiers depending on the number
of dedicated certified and trained resources and revenue thresholds. Depending on their
respective tier, the consulting partners receive different benefits from Twilio, e.g., training,
early beta access to Twilio products, or even market development funds Twilio, 2022.

API consumers can view and filter the list of curated consulting partners on the Twilio
developer portal53.

Cross-case observations:

All these cases have in common that the API initiatives are already in production. However,

49https://stripe.com/en-de/about (accessed 20.12.2023).
50https://stripe.com/docs/partners (accessed 20.12.2023).
51https://stripe.com/partners/directory?t=Consulting (accessed 20.12.2023).
52https://www.twilio.com/ (accessed 20.12.2023).
53https://showcase.twilio.com/partner-listings?type=Consulting (accessed 20.12.2023).

132

https://stripe.com/en-de/about
https://stripe.com/docs/partners
https://stripe.com/partners/directory?t=Consulting
https://www.twilio.com/
https://showcase.twilio.com/partner-listings?type=Consulting

6. API Consumer-facing Patterns

approaches to integration partner management differ depending on the initiative’s maturity
and the number of API consumers. More mature API initiatives with a more extensive API
consumer base (> 10,000) let interested integration partners approach them and have more
complex partner programs, e.g., tiered certifications. API initiatives in the early stages must
acquire implementation partners more actively. This makes sense since mature API initiatives
are already well connected within their ecosystem, while early-stage API initiatives have to
put more effort into establishing such connections.

Also, we observed the pattern Integration Partner Program in settings where the API
consumers are the end-users who want to integrate a software product into their system
landscape.

133

6. API Consumer-facing Patterns

6.8. API provider-wide ticketing management

Pattern Overview
Name API provider-wide Ticketing Management
Pattern Type API Consumer-facing Pattern
Summary The API provider uses a uniform ticketing system that manages all API-related

tickets and is available to all teams involved in API provision. Hence, the ticket-
ing system enables transparency, e.g., on ticket resolution times or recurring
issues.

Figure 6.8.: The API consumers enter tickest into the API provider-wide ticketing
management, which the system routes to the responsible teams within the API

provider organization.

Context:

API consumers want to contact an API provider in case of issues or questions. The ability
to answer these requests is spread across different teams or roles within the API provider
organization (ITIL 4, 2019). Some of these teams or roles are potentially distributed across
entities outside the API provider organization, e.g., various subsidiaries (ITIL 4, 2019). These
teams or roles should respond to consumer requests in a timely manner not to upset the API
consumers. A good support experience can also be a differentiating factor that attracts more
developers to an API (Jacobson et al., 2012).

Concern:

How can the API provider transparently and quickly manage consumer requests in an
organizational setting with distributed teams in- and outside of the API provider organization?

134

6. API Consumer-facing Patterns

Forces:

• Transparency. In the early days of an API initiative, it is common that API consumers
can contact the API provider by email, Slack, or video conferences. However, managing
support requests via email prevents transparency. Hence, it is difficult to answer how
many support request emails a team or person receives, how long it takes to answer
them, or what issues are more common than others. A solution for managing consumer
requests should allow for transparency, e.g., the solution should enable the API provider
to get an overview of types of tickets, the average ticket resolution time, and recurring
issues. Such transparency allows the API provider to uncover improvement potentials
(C3).

• Consumer pressure. Sometimes a consumer-facing team sits in between the API consumer
and the API provider and backend team. Due to a the missing direct contact with
the consumer, the backend and API providers do not feel the pressure to resolve
API consumer requests with high priority. Thus, a solution should enable direct
communication between the API consumer and all teams involved in API provision
(C3).

• High support costs. An API provider and backend team has limited resources to answer
tickets. The costs for supporting different API audiences can differ, e.g., single devel-
opers using a public API might ask for more support compared to a strategic partner.
An imbalance between the provided support and the business value that each audience
group creates can lead to cost-inefficiencies (Jacobson et al., 2012).

• System introduction. The introduction of a solution should be of minimum possible
effort.

• Privacy requirements. Privacy relevant data is part of a ticket, e.g., the API consumer’s
name or email address. Therefore, the solution must ensure compliance with privacy
regulations (C3).

Solution:

An API provider-wide ticketing system holds and organizes all API provision-related tickets.
The API consumers or the API provider team itself can create new tickets in the system. All
teams involved in API provision, i.e., all backend providers, API providers, and platform
providers, have access to the system. The ticketing system allocates the tickets to the
responsible teams or roles. Hence, the ticketing system allows for transparency regarding,
e.g., ticket resolution times or recurring issues.

Stakeholders:

The different roles within the API provider team have to agree on an API provider-wide
ticketing system. In this setting, an API governance team or a consumer-facing team can lead

135

6. API Consumer-facing Patterns

the decision process. Furthermore, the upper management has to approve the introduction of
the ticketing system.

Implementation Hints:

Ticket generation and routing. New tickets can enter the ticketing system in different ways.
For example, the support staff can generate tickets for issues that API consumers report (C9).
Also, API consumers should be able to create tickets themselves via the API developer portal
(De, 2017; C3; C9). Finally, new tickets can enter the system automatically, e.g., similar to
crash reports in Microsoft (Jacobson et al., 2012).

After a ticket enters the system, it is categorized according to the product it pertains to or
the request type, e.g., if it is a technical or business inquiry. Based on the categorization, the
ticketing system assigns the ticket to the responsible team or role (C3). All parties involved
in API provision must use the same ticketing system, even if the teams belong to different
organizations, to ensure that the ticket reaches the team or role responsible for addressing it.

Interaction capabilities. The closer the interaction between API consumers and API providers
in case of issues, the better (Jacobson et al., 2012). A relevant capability of the ticketing tool
is that the API consumer who generates a ticket can later check the ticket’s status (C3). In
addition, the API provider should be able to add comments to the ticket, e.g., detailing the
measures taken to address the issue. The API provider should also be able to choose whether
the API consumer sees these comments. Thus, the API provider can communicate some
information to the API consumer and keep other information internal (C3).

Tooling. The API provider has to make a conscious choice for a ticketing system, e.g., JIRA
Service Desk54 (C3) or Gitlab55 (C2). The ticketing tool should integrate with the organizations
API management platform, if one is in place (De, 2017; Spichale, 2017).

When planning to introduce a new ticketing system, the API provider should first check if
other teams in their organization already use a ticketing tool. If other teams already use such
tools, the API provider should evaluate the tool’s suitability for their purposes (C2; C3; C9).

Prioritization. The API provider should define clear rules for prioritizing tickets depending
on the importance of the issue or the consumer (Jacobson et al., 2012). For example, a partner
using an API might creates the most traffic, but developers using the public API might open
many tickets that require much time to answer but add little business value for the API
provider. In this case, tickets opened by the partner organization should have a higher priority.
Also, the API provider should clearly communicate the expected responsiveness to each
audience group, not to set wrong expectations (Jacobson et al., 2012).

Consequences:

Benefits:

54https://www.atlassian.com/software/jira/service-management/features/service-desk (accessed 20.12.2023).
55https://gitlab.com/gitlab-org/gitlab (accessed 20.12.2023).

136

https://www.atlassian.com/software/jira/service-management/features/service-desk
https://gitlab.com/gitlab-org/gitlab

6. API Consumer-facing Patterns

• Transparency. An API provider-wide ticketing system manages all tickets in one place,
and most tools also provide analytics functionality. Thus, API provider-wide ticketing
systems allow for transparency and help to reveal improvement potentials. Other
communication channels like email, Slack, or video conferences do not provide such
transparency and traceability (C3; C7).

• Consumer pressure. With an API provider-wide ticketing system, API consumers directly
communicate with the internal teams and roles involved in API provision, e.g., via
comments and status updates. Thus, all API provider teams feel direct pressure from
the API consumers to resolve requests (C3).

• High support costs. An API provider-wide ticketing system allows for configuring and
enforcing prioritization rules for tickets depending on their audience or the type of
issue. Hence, such a tool can prevent cost inefficiencies due to the inadequate allocation
of support to different tickets.

• System introduction. In case the organization already uses a ticketing tool within the
organization, and the ticketing system provides the necessary capabilities, the API
provider can introduce the ticketing system with minimum effort. Nevertheless, the
API provider organization has to train its employees using the system.

• Privacy requirements. Ticketing tools usually provide capabilities for compliance with
privacy regulations, e.g., the encryption of personal data or the ability to delete data
upon request (C3).

Drawbacks:

• System introduction. In case the organization does not already use a ticketing tool, the
API provider has to choose and introduce a new ticketing system. The introduction of
a ticketing system is expensive and effortful. Licenses for ticketing systems are costly,
and the API provider has to configure the system and train its employees (C3).

Related Patterns within this Pattern Catalog:

The Dedicated Support Team creates tickets that the API provider-wide ticketing management
forwards to the responsible teams or persons within the provider organization.

Known Uses:

We observed the pattern in four cases:

The API initiative of C2 makes simulation and modeling algorithms accessible. Internal
departments and one partner already access the API, but the API should become public in
the future. In this case, the API provider teams adopted the ticketing system already used in
the organization.

137

6. API Consumer-facing Patterns

The API portal provider of an automotive organization (C3) makes vehicle data available
to car owners and maintenance data available to workshops. The API provider recently
adopted a new ticketing system. Initially, the ticketing system was used only by the API
consumer-facing team, but now other teams involved in API provision also adopted the
system, even if they belong to other subsidiaries. The chief reason for using a company-wide
ticketing system is to move away from emails and to create transparency on the number and
types of tickets and the processing times. The support team can enter new tickets into the
system, or API consumers can generate tickets using a form on the API portal. The form
allows consumers to specify the type of inquiry and the product, adding information to the
ticket that allows the system to forward it to the responsible team automatically. Additionally,
the chosen tool enables API consumers to check the ticket’s status after sending it.

In C9, the organization offers a public marketplace for IoT applications. Again, the API
provider teams adopted the ticketing system already in use within the organization.

C14 is a financial services provider that offers software operated in a cloud to end-users.
APIs enable other software providers to integrate their software with the system of C14, thus
offering an integrated solution to the end-users. In this setting, the API providers also adopted
the ticketing system already in use in the organization. However, the system first sends all
tickets to a dedicated consumer-facing team, which assigns the tickets to the responsible
parties.

Cross-case observations:

The cases are very heterogeneous, as they span public and partner API initiatives with low
to high numbers of API consumers. Also, the API initiatives are developer portals as well
as marketplaces and monetization approaches cover primarily contractual agreements and
free API access as part of a software license purchase, but also free and pay-per-use plans.
Three of the API initiatives are in production, and one is still in the pilot phase. Further, all
API initiatives focus on B2B consumer relationships, with one API initiative operating in the
B2C and B2G sectors. Thus, the application of the pattern API provider-wide ticketing
management seems to be beneficial to a broad range of API initiatives.

138

6. API Consumer-facing Patterns

6.9. Dedicated Support Team

Pattern Overview
Name Dedicated Support Team
Pattern Type API Consumer-facing Pattern
Summary The dedicated support team accepts all API consumers’ questions, service

requests, and incident reports and immediately answers or resolves low- or
medium-complexity tickets. Only high-complexity tickets are forwarded to the
respective experts, relieving the API and backend provider teams of a portion
of the support activities.

Figure 6.9.: The Dedicated Support Team forms the interface between the API consumer
and provider. The support team solves low- or medium-complexity tickets and

forwards more complex requests to the respective experts in the provider
organization.

Context:

An API provider designs, develops, tests, and publishes an API to external users. However,
the satisfaction and user experience of consumers depend not only on the API itself but
also on the resources and processes that support the API consumer with the use of the API
(ITIL 4, 2019; Jacobson et al., 2012; Medjaoui et al., 2018). Hence, the API provider publishes
resources that help API consumers to understand and use the API, e.g., documentation like
Consumer-centric API Description or Integration Guide. Nevertheless, the additional
resources cannot answer all consumer questions. Furthermore, the API consumer sometimes
runs into issues with the API itself, e.g., if the API is down (Jacobson et al., 2012). In such
events, API consumers expect to be able to contact the API provider who will solve their
problems so they can keep being productive (De, 2017; ITIL 4, 2019).

139

6. API Consumer-facing Patterns

Concern:

How can an API provider support an API consumer in case of questions, service requests56,
and incidents57?

Forces:

• Support as success factor. Support is a success factor for API initiatives (Medjaoui et al.,
2018), and API providers can differentiate their APIs from competitors by offering better
support services (Jacobson et al., 2012).

• Resource specialization. The API provider teams have many different tasks, including the
operation and evolution of APIs. A solution should minimize the support activities for
API provider teams to free up resources for more complex tasks that advance the API
initiative (C14).

• Immediate resolution. API consumers requesting support do not like to be forwarded
or to hang up and wait for a return call from the API provider organization. Thus, a
solution should allow API consumers to talk to an entity that can resolve their questions
and issues right away (C14).

• Scaling. In the case of a successful API initiative, the number of API consumers increases
over time. With an increasing number of consumers, it is likely that the number of
support requests increases as well (Jacobson et al., 2012).

• Personal connections. The creation of a personal relationship between members of the API
consumer and the API provider organizations increases the likelihood of a long-term
business relationship (Medjaoui et al., 2018).

• Internal collaboration. The resolution of complex incidents can require the collaboration
between different stakeholders of an organization, e.g., API provider and backend
provider teams (ITIL 4, 2019). A solution should not add any unnecessary coordination
and communication levels and efforts.

• Morale. A solution should foster the internal morale and motivation of all employees of
the API provider organization.

• Cost. Additional support leads to increased costs. The API provider has to decide how
much funding they want to invest in support activities (Jacobson et al., 2012).

56ITIL defines a service request as "A request from a user or a user’s authorized representative that initiates a service
action which has been agreed as a normal part of service delivery." (ITIL 4, 2019, p. 156).

57ITIL defines an incident as "An unplanned interruption to a service or reduction in the quality of a service." (ITIL
4, 2019, p. 121). Problems cause incidents, and a service provider needs to resolve a problem or find a
workaround to reduce future incidents (ITIL 4, 2019).

140

6. API Consumer-facing Patterns

Solution:

The API provider has a dedicated support team as the first point of contact for API consumers.
The dedicated support team accepts all API consumers’ questions, service requests, and
incident reports. The support team immediately answers or resolves low- or medium-
complexity questions, service requests, and incidents. However, in case of high-complexity
questions, service requests, and incidents, the support team forwards these support requests
to experts in the API provider and backend provider teams. Since the support team relieves
the API provider and backend provider teams of a portion of the support activities, the API
provider and backend teams can focus on support activities requiring their expertise and
other API management tasks, e.g., API evolution.

Stakeholders:

This pattern addresses a concern of an API provider. The provider has to onboard a poten-
tially already existing customer support team and continuously transfer knowledge regarding
changes of the API to them. Additionally, the support team has to report statistics and
insights on consumer support requests and incidents back to the API provider to support
the improvement of the API initiative, e.g., if consumers repetitively ask for clarification due
to ambiguous documentation. The API provider potentially also has to collaborate with
the backend providers to answer complex support requests or to resolve specific incidents.
Furthermore, the formation or onboarding of a dedicated support team constitutes a change
of the organizational structure. Therefore, the API provider needs the approval of the upper
management.

Implementation Hints:

Process. The support team is the first point of contact for API consumers, e.g., if an API
consumer wants to report technical issues, make a feature request, or ask questions regarding
the functionality of an API (De, 2017; C5). The API provider organization can offer API
consumers different means to contact the support team, e.g., via email, phone, or chat
function (Medjaoui et al., 2018; C5). The API consumer can find the contact information or
other means to contact the support team on the developer portal (De, 2017; Jacobson et al.,
2012; C5). As soon as an API consumer contacts the support team with a question, service
request, or incident report, the support team must categorize the request into one of two
categories. The first category comprises support requests and incidents that the support team
can answer or resolve immediately. The second category comprises support requests and
incidents the support team can not answer and thus needs to forward to the responsible API
or backend providers (C4; C5; C14). The responsible API or backend team then takes over the
communication with the API consumer and answers the request or resolves the incident or
problem (C4; C5). As a result, the API provider and backend provider teams have to manage
fewer support requests and incidents and can focus on development activities instead (C14).

In addition, it is also crucial that the support team collects and communicates repetitive
support activities back to the API provider and backend provider teams. This kind of feedback

141

6. API Consumer-facing Patterns

allows the API provider and backend provider teams to improve the API initiative, e.g., by
removing ambiguities in the documentation. Such improvements help to reduce the number
of support requests and incidents altogether (C4).

Organizational structure. The support team is organizationally independent of the API
provider and backend provider teams (C5). In the cases that form the basis of this pattern
catalog, all API provider organizations already had dedicated support teams for the product
or platform to which the API belongs. These support teams additionally took on the support
for the API channel.

Division of responsibility. We observed that the organizations always have two tiers of
support (Walker, 2001), which are a dedicated support team as the first tier and API provider
and backend provider teams as the second tier.

With two tiers, the API provider organization has to decide which types of support activities
the first tier should handle. In some cases, the support team might only answer routine
questions or refer the API consumer to relevant information sources, e.g., FAQs. Such routine
inquiries can, for example, cover whether an API exists for a specific software or what
high-level functionality an API provides (C5). However, as soon as the support activities are
more technical or require non-public knowledge, the support team forwards the request and
incidents to the respective API provider or backend teams (C5; C14).

In other cases, the support team additionally resolves specific technical and slightly more
complex requests and incidents. Hence, the support forwards fewer support requests and
incident reports to the API provider and backend providers (C14). However, this approach
increases the need for training in the support team and precise documentation.

Knowledge transfer. The API provider has to enable the support team to respond to support
requests and incidents. Thus, the API and backend provider teams must transfer knowledge
to the support team. An option is that the API provider team creates an internal FAQ
document that guides the support team. The support team can use a Growing FAQ which they
continuously extend and adapt to cover unforeseen questions (C4).

Expectation management. It is essential to clearly communicate the expected support
response and resolution times to the API consumers (Jacobson et al., 2012). API consumers
expect responses to support requests immediately, even if the API provider only informs the
API consumer that they are working on finding a solution (Jacobson et al., 2012).

Ticket management. The provider organization can use a API provider-wide ticketing
management to create and forward tickets and manage communication between internal teams
and the API consumer (C14).

Consequences:

Benefits:

• Support as success factor. A dedicated support team can improve the support services

142

6. API Consumer-facing Patterns

and thus contribute to the success of an API initiative.

• Resource specialization. Since the support team takes over a part of the support activities,
API provider teams can spend more time on tasks that advance the API initiative, e.g.,
API design and evolution activities (C14). Thus, a dedicated support team shields
expensive experts from having to process non-complex support requests and enables
optimized resource allocation (Walker, 2001). However, a dedicated support team cannot
completely free up the API experts from all support activities, e.g., in case of complex
incidents (ITIL 4, 2019).

• Immediate resolution. The API provider team has limited resources. Therefore, in case of
a high volume of API consumer requests, the API provider might not answer requests
immediately and has to call the API consumer back later. Especially if the API consumer
has a small and simple question, waiting for a return call negatively impacts the
consumer experience. Thus, a dedicated support team that answers a portion of support
requests immediately can improve the consumer experience.

• Scaling. The API provider has to decide on strategies to scale the support for a growing
API consumer community (Jacobson et al., 2012). By distributing support requests
across the support, API, and backend provider teams, the API provider organization
can answer more support requests overall.

Drawbacks:

• Resource specialization. A dedicated support team can free up expert resources for other
activities, but it is not the only possible approach to reducing support requests to
experts. Alternatively, the API provider can publish high-quality documentation or
provide other self-help facilities. For example, the API provider can provide a public
website where API consumers can post questions that the API provider team answers
or create a community that enables API consumers to help each other (Jacobson et al.,
2012). Such a measure should reduce the number of repetitive, low-complexity support
requests to the API provider organization in the first place.

• Immediate resolution. The support team is the first point of contact for API consumers.
However, the API provider team has the most expertise regarding the API, and in
case of complex requests, the support team has to forward the ticket or call to the API
provider team. Depending on the API provider’s processes, the API provider team
might even call API consumers back later. Also, API consumers might have to explain
the support request several times to different API provider support members (Walker,
2001). Thus, using a dedicated support team might negatively impact the consumer
experience (C14).

• Scaling. Even if a dedicated support team adds additional resources for answering
support requests, each support team member can only take over a limited amount
of API consumer requests. Thus, the support team needs to grow with an increasing

143

6. API Consumer-facing Patterns

number of API consumer requests. Moreover, the support team can only take over the
portion of support requests within their abilities and assigned responsibilities. Thus, a
support team can not relieve the API provider team of an increasing number of higher
complexity issues.

• Personal connections. A dedicated support team does not assign single members to
support specific API consumers. Also, the support staff can only solve a specific set of
support requests and has to forward the consumers’ requests to the API or backend
provider teams in some cases. Thus, a dedicated support team does not foster long-term
personal relationships with members of the API consumer organization.

• Internal collaboration. A dedicated support team as the first point of contact for API
consumers adds another party to the support request resolution process. For example,
the dedicated support team has to collect initial information about an incident and
communicate it to other teams. Similarly, after the resolution of a problem, potential
API changes might have to be communicated to the support team (ITIL 4, 2019). Hence,
a dedicated support team increases internal coordination and communication efforts for
the API provider organization (Walker, 2001).

• Morale. A dedicated support team can lead to members of the support team being seen
as lower-class employees, which might negatively impact morale and motivation within
the organization (Walker, 2001).

• Cost. A dedicated support team increases the cost of support activities.

Related Patterns within this Pattern Catalog:

Consumers can report issues with an interface to the Dedicated Support Team, which can
solve low to medium-complexity support requests immediately. In addition, the Dedicated
Support Team can create tickets for higher complexity issues that the API provider-wide
ticketing management forwards to the responsible teams or persons within the provider
organization.

Also, the API provider and backend teams have to enable the support to answer support
requests and solve incidents. A pattern candidate that allows for knowledge transfer and
creation is the Growing FAQ.

Known Uses:

We observed the pattern in four cases:

The API provider of C4 provides a financial services software product. In addition, the API
provider offers an API that allows users of the software product to integrate the software
product with their system landscape. The software product has an integrated tool that allows
users to create tickets. The tool sends the tickets to the software’s support team, which
answers or forwards inquiries regarding the associated APIs. The organization uses internal

144

6. API Consumer-facing Patterns

FAQs to transfer knowledge from the API provider team to the support team. The support
team adapts and extends the FAQ over time to meet the support’s needs. Additionally, the
support team communicates repeating questions to the API provider team to enable the API
provider team to improve the APIs and decrease the support request volume.

C5 is a different API initiative of the same organization described in C4. Again, the starting
point is a financial services software product, but the APIs aim to enable other software
providers to integrate their software with the product, thus offering an integrated solution to
the end users. A dedicated support team receives all support requests regarding the APIs via
email, phone, or chat. The support team answers high-level questions regarding the API right
away or refers the API consumer to resources, e.g., FAQs and documentation, that solve their
problems. However, the support team forwards technical requests to the API provider team.

In C9, the organization offers a public marketplace for IoT applications. The organization
provides core platform software, and third-party developers can build additional modules
for the platform using APIs. The API provider has a dedicated support team that answers
support requests from third-party developers.

C14 is a financial services provider that offers software operated in the cloud to end-users.
APIs enable other software providers to integrate their software with the system of C14,
thus offering an integrated solution to the end users. The API provider organization has
a dedicated support team that is the first point of contact for all consumer inquiries. The
support team can answer high-level questions regarding the API but does not solve any
technical issues. Instead, the support team forwards these tickets to the responsible API team.
In the future, the API provider organization wants to enable the support team to solve simple
technical issues to reduce the number of support requests for the API teams. Furthermore,
the immediate resolution of issues also improves the consumer experience.

Cross-case observations:

All API initiatives have in common that they are in production and focus on a B2B audience.
Furthermore, the cases comprise public and partner API initiatives, of which three are
developer portals, and one is a marketplace. However, monetization differs between the cases
and includes contractual plans, free use, and free use as part of a product license.

Most interesting, however, is that all API initiatives belong to existing software products
or platforms. For these software products and platforms, dedicated support teams already
existed. Hence, the existing support teams also took over the role of a dedicated support
team for high-level support requests and incidents for the API initiative.

145

6. API Consumer-facing Patterns

6.10. Service-Level Agreement (SLA)

Pattern Overview
Name Service Level Agreement (SLA)
Pattern Type API Consumer-facing Pattern
Summary An SLA is an agreement between two parties that specifies the quality of

services, i.e., the APIs’ non-functional properties and support service levels, as
well as contractual punishments in case of SLA breaches (Zimmermann et al.,
2022). Hence, an SLA increases API consumers’ trust in an API’s quality.

Figure 6.10.: An Service-Level Agreement (SLA) specifies the quality of services for an
API.

Context:

API consumers rely on an external API’s functionality or data to realize their business
model (Zimmermann et al., 2022). Downtimes or unsatisfactory performance of the API
can negatively impact the API consumers’ business (Zimmermann et al., 2022). Thus, API
consumers want guarantees that APIs meet specific non-functional requirements over time
and that the API provider treats their interests with sufficient priority before choosing an API.

Concern:

How can API providers identify API consumers’ non-functional requirements and create the
trust that the API will meet these non-functional requirements?

146

6. API Consumer-facing Patterns

Forces:

• Trust. It is difficult for an API consumer to anticipate the quality of an API over time.

• Alignment of interest. The backend provider, API provider, and API platform provider
can belong to the same or different organizations. Either way, some teams might have
different interests, e.g., the backend provider prioritizes its own tickets over tickets
created by the API provider (C3).

• Special Requirements. API consumers often want to negotiate special conditions for their
endeavors, even if a standard contract exists (C13).

• Contractual risk. Even if the API provider takes adequate measures to meet specific
non-functional requirements, unexpected downtimes or other issues may occur.

Solution:

Service-level agreements (SLAs) are agreements between two parties defining target values for
non-functional properties of APIs and measures in case the APIs do not meet these properties
(Zimmermann et al., 2022). An SLA can also include prescriptions on issue management
processes and support services. Thus, the API consumer can define measures that motivate
the API provider to provide a certain API quality. At the same time, the API provider can
monetize APIs with consistently high quality better.

Stakeholders:

The API provider negotiates the contents of an SLA with the backend provider and the API
consumer. Furthermore, legal supports SLA negotiations and potentially creates a standard
SLA contract (Zimmermann et al., 2022).

Implementation Details:

SLA contents. An SLA defines service levels comprising non-functional properties that an
API has to achieve at all times and issue resolution or support services in case the API fails to
meet these properties (Jacobson et al., 2012; Zimmermann et al., 2022; C6). The non-functional
properties are, for example, maximum downtimes or maximum data loss (C6). As part of
an issue resolution process, an SLA can define, e.g., at what times the API consumer can
reach the support, or the maximum length for the API provider to respond to a consumer
request (C3; C6). In addition, SLAs can define maintenance and downtime information (De,
2017). Also, additional provisions concerning the collaboration between API provider and
API consumer can be part of the SLA, e.g., how long an API will be in operation without
changes or how much time in advance changes have to be announced (Zimmermann et al.,
2022; C12).

147

6. API Consumer-facing Patterns

Which service level an API consumer chooses should depend on the use case that the
consumer wants to realize (C6). The breach of an SLA can be tied to monetary penalties to
motivate the parties to adhere to the guarantees (Zimmermann et al., 2022; C3).

SLAs and other contracts. An SLA can be part of a more comprehensive contract that
also includes provisions on monetization, a maximum number of allowed transactions, or
restrictions to the use of the accessible functionality or data (C6).

Types of SLAs. SLAs should be negotiated between all parties involved in API provision
and consumption. However, during the case analysis, three types of SLAs stood out in
particular, which are:

• Backend SLAs. First, in the most simple setting, an API provider provides APIs which
consumers use. In this setting, the API provider and the API consumer directly negotiate
an SLA.

• Marketplace SLAs. Second, in marketplace settings, the API platform provider has
to manage API and backend providers from different organizations as well as API
consumers. In this setting, the API platform provider can ensure the quality of the
services on the marketplace by enforcing service levels with the API providers according
to API consumer requirements (C6).

• Gateway SLAs. Finally, the API platform is part of the infrastructure for API provision.
Thus, the non-functional properties of all APIs provided on the platform depend on the
properties of the API platform. Therefore, the API platform has to meet the SLA of the
API with the most demanding service level. The API platform provider can make these
service levels explicit in an SLA to the backend providers (C6).

Generally, the API provider has to consider the performance of all services that the API
depends on and potentially make SLAs with them to ensure that the API can meet its SLA
(Jacobson et al., 2012).

Public and partner APIs. Furthermore, SLAs often differ between public and partner APIs.
SLAs for public APIs are usually relatively weak, meaning that the API providers do not want
to make any firm promises, even if they internally strive for good performance. In partner
API constellations, SLAs are often more robust. In either case, it is essential to communicate if
an SLA is in place and what the SLA covers (Jacobson et al., 2012; Zimmermann et al., 2022).

For public APIs, the API provider should publish all relevant information about SLAs on
the developer portal (De, 2017).

Standard SLAs. The API provider can predefine standard service levels and a standard SLA
agreement, which the involved parties can adopt without changes or adapt to their specific
needs (C13). Also, during SLA negotiations or standard SLA creation, the API provider may
involve the legal department (C13).

Monitoring. The API provider needs to monitor the service level, which is a capability that
an API platform should be able to provide (De, 2017). The API gateway intercepts all API

148

6. API Consumer-facing Patterns

calls and can apply the pattern API Quality Monitoring to audit the compliance with the
non-functional requirements defined in the SLA (C4; C5; C13).

Infrastructure and Processes. The backend provider, API provider, and API platform
provider need to adapt the infrastructure that enables the provision of APIs depending
on the respective service levels. Also, cloud infrastructures allow for easier redundancies and
automation in case of downtimes (C6).

Consequences:

Benefits:

• Trust. A binding agreement on the quality of an API can increase the API consumers’
trust in an API initiative (Zimmermann et al., 2022). Also, the availability of publicly
accessible standard SLAs influences an API platform’s external perception positively
(C3).

• Alignment of interest. SLAs create incentives that align the interests of all parties involved
in API provision (C3).

Drawbacks:

• Special Requirements. SLA negotiations can be laborious and lengthy. API providers
can rarely use standard contracts without modification since API consumers want
special conditions. Also, the API provider usually has to involve the legal department
(Zimmermann et al., 2022; C13).

• Contractual risk. Unexpected downtimes or other issues may occur even if the API
provider took adequate measures. Since SLAs can trigger monetary penalties (Jacobson
et al., 2012), such events can be costly.

Related Patterns within this Pattern Catalog:

An Service-Level Agreement (SLA) defines thresholds for performance metrics. Since API
Quality Monitoring entails the continuous testing of the non-functional properties of an API,
it allows the provider to identify breaches of these thresholds (Jacobson et al., 2012; C4; C5).

In addition, the Testing Strategy tests the non-functional properties of a new or changed
API. Thus, the Service-Level Agreement (SLA) also defines non-functional testing goals for
the Testing Strategy.

Other Related Patterns:

Zimmermann et al. (2022), Zimmermann et al. (n.d.), and Stocker et al. (2018) introduce
the pattern Service Level Agreement, which, in essence, captures the same solution as this
pattern. The authors describe an SLA as the explicit and unambiguous definitions of the
Quality-of-Service (QoS), the service support, the monitoring processes, and the consequences

149

6. API Consumer-facing Patterns

for not meeting these prescriptions. An SLA contains measurable Service Level Objectives (SLOs)
to realize this goal. An SLO measures, for example, performance, scalability, or availability.
The API provider has to define a threshold value, the unit of measurement, the monitoring
conditions, and the interpretation for each SLO. Thus, SLAs should contain explicitly defined
metrics instead of ambiguous free-form text. Also, Zimmermann et al. (2022), Zimmermann
et al. (n.d.), and Stocker et al. (2018) also recognize that SLAs are especially relevant in settings
in which the API is business-critical for the API consumer. Also, the authors agree that SLA
design and maintenance are effortful since the API provider has to involve many internal and
external stakeholders in SLA negotiations. Moreover, monitoring and risk mitigation efforts
can be costly. Thus, many public APIs publish weak or no SLAs. Finally, Zimmermann et al.
(2022), Zimmermann et al. (n.d.), and Stocker et al. (2018) introduce an internal SLA as an
additional SLA variant. An internal SLA specifies QoS and other measures internally but
does not propagate this information to external stakeholders.

Hence, the essence of the pattern Service Level Agreement presented in Zimmermann
et al. (2022), Zimmermann et al. (n.d.), and Stocker et al. (2018) and the pattern Service-Level
Agreement (SLA) presented in this pattern catalog is very similar, but the scope and level of
detail differ. Therefore, we view the two pattern descriptions as confirmation and extension
of each other.

Known Uses:

We observed the pattern in six cases:

In C6, the API provider is a subsidiary within a mobility group that offers API management
services. The backend providers and API consumers are both subsidiaries within the same
group. Inside the group, a set of predefined service levels focusing on maximum downtimes
and support exist. For example, the highest service level ensures the availability of a
responsible person 24 hours a day and seven days a week plus immediate issue resolution in
case of a downtime breaching an SLA provision. Lower service levels only ensure availability
of support during business hours and an issue resolution time of one day. API providers
have to choose which service level to adopt depending on the business-criticality of the APIs
functionality. Since all APIs rely on the infrastructure provided by the API platform, the
API platform has the highest service level. The SLAs also include information on incident
management processes but do not include monetary penalties in case of SLA breaches.

The API provider of C10 offers a financial service for API consumers to integrate into their
systems. Smaller API consumer organizations have to accept a standard SLA. Since the API
provider offers a financial service with high business criticality, the availability thresholds
of the SLA are high. However, larger API consumers can also negotiate special conditions,
including increased support services.

C12 is a financial services provider that provides software to end-users. APIs enable
other software providers to integrate their software with the system of C12, thus offering an
integrated solution to the end-users. The API provider teams of C12 negotiate SLAs with

150

6. API Consumer-facing Patterns

other software providers. The SLAs also include information concerning the timeframe during
which the API provider does not change an API and how long before a change happens it is
announced.

Next, in C13, the organization offers a public marketplace for financial services applications.
The API marketplace provider offers a core platform software, and third-party developers can
build additional modules for the platform using APIs. Users of the platform can buy the core
platform software and add pre-integrated modules according to their needs. The API provider
team negotiates SLAs with third-party developers providing modules and with users of the
platform. A standard SLA exists, but the partners usually want to negotiate special conditions.
Self-service capabilities for users do exist, but in a limited fashion, since it requires high effort
to create transparent SLAs and monetization schema. The API marketplace gateway acts as a
central point of truth for monitoring the non-functional properties of the platform and its
modules and reports issues to the responsible parties.

Stripe (C16) provides APIs for online payment processing58. Stripe makes different support
plans available to API consumers59. However, to the best of the authors’ knowledge, Stripe
does not assert uptimes or compliance with other non-functional metrics in their SLA60.

Twilio (C17) is an API provider for customer engagement using voice, messaging, video,
and email services61. Twilio presents predefined support plans, containing, e.g., different
guaranteed support response times or different communication channels to reach the sup-
port staff62. In addition, Twilio publishes an SLA that defines monthly uptime percentage
thresholds for different service levels and fines in case of breaches 63. Furthermore, the SLA
describes how API consumers can claim these fines.

Cross-case observations:

The cases span partner, group, or public API initiatives and are single API portals offering
only the organization’s APIs or API marketplaces. However, except for one initiative, all cases
are already in production. Additionally, all API initiatives focus on B2B settings. Furthermore,
we observed a significant difference between the group of cases spanning Twilio, Stripe,
and case C10 and the API initiatives C6, C12, and C13. The API initiatives of Twilio, Stripe,
and C10 are very mature, with APIs being their primary product distribution channel and
many API consumers using the APIs. In these cases, new API consumers have to accept
the predefined SLAs. The only exceptions are very big organizations that can negotiate new
conditions. On the other hand, the API initiatives C6, C12, and C13 have relatively small
amounts of API consumers and report that they negotiate new SLAs with most new partners.

58https://stripe.com/en-de/about (accessed 20.12.2023).
59https://stripe.com/de/support-and-services#compare-plans (accessed 20.12.2023).
60https://stripe.com/en-de/legal (accessed 20.12.2023).
61https://www.twilio.com/ (accessed 20.12.2023).
62https://www.twilio.com/support-plans (accessed 20.12.2023).
63https://www.twilio.com/legal/service-level-agreement (accessed 20.12.2023).

151

https://stripe.com/en-de/about
https://stripe.com/de/support-and-services##compare-plans
https://stripe.com/en-de/legal
https://www.twilio.com/
https://www.twilio.com/support-plans
https://www.twilio.com/legal/service-level-agreement

6. API Consumer-facing Patterns

This makes sense since new consumers can influence the API initiatives tremendously and
thus have more negotiation power.

152

CHAPTER 7

Pattern Candidates

All identified solution approaches derived from the case base are pattern candidates at first.
However, only if we observed the successful implementation of the solution approach in three
cases, thus fulfilling the rule of three (Coplien, 1996), a pattern candidate becomes a pattern.
Therefore, this section summarizes the API management pattern candidates we observed in
less than three cases.

This section presents summaries of the pattern candidates previously published in Landgraf
(2021) and of additional pattern candidates identified during the second data analysis. The
pattern candidates are categorized into Interface Type Pattern Candidates, API Provider Internal
Pattern Candidates, and API Consumer-facing Pattern Candidates.

7.1. Interface Type Pattern Candidates

Open-source SDK

The API provider publishes open-source software libraries and related documentation material
to enable API consumers to contribute to the design and maintenance of these resources.

Known uses: C11

Plug-ins

The API provider can implement plug-ins for popular software ecosystems, e.g., Wordpress1,
on top of the APIs. The plug-ins allow consumers to access the functionality and data
provided by the API.

Known uses: C4

1https://de.wordpress.org/plugins/ (accessed 20.12.2023).

153

https://de.wordpress.org/plugins/

7. Pattern Candidates

7.2. API Provider Internal Pattern Candidates

Service Feasibility Workshops

The API provider organizes workshops to evaluate the feasibility of APIs with backend
provider teams. These workshops increase trust and commitment between participants.

Known uses: C6

Service Creation Guideline

Sometimes it is not clear for an organization which services to offer as a public, partner, or
group API. Therefore, the API provider creates a service creation guideline that documents
the criteria that exclude services from being published as APIs.

Known uses: C6

Data Clearing Office

This pattern candidate specializes the pattern API Clearing Process. The data clearing
process ensures that all API endpoints comply with legal and strategic requirements before
they are published externally by involving different stakeholders who provide feedback and
need to sign off on a new API or a majot change to an existing API. In addition, the API
provider can implement a clearing office, i.e., an interdisciplinary committee that needs to
approve new or changed APIs, to centralize the data clearing effort.

Known uses: C3

Internal Tech Talks

The API provider organizes tech talks, roadmap presentations, or other internal events to
promote and increase awareness of APIs within the API provider organization.

Known uses: C4, C5

Intranet and Internal Social Media

The API provider uses the intranet and internal social media platforms to promote and
increase awareness of APIs.

Known uses: C6

Support Hero

The support hero is a role that is assigned to is API provider team members in a rotating
manner. The team member with the assigned support hero role is responsible for solving
incoming consumer requests during that time.

Known uses: C4, C5

154

7. Pattern Candidates

Quarterly Alignment Meetings

All members of the API provider team and the backend provider teams meet quarterly to
define goals for the next quarter. These meetings strengthen the commitment of all teams and
allow the API team to convince the backend providers to implement the required functionality.

Known uses: C4, C5

Penetration Testing

The API provider tests the API gateway for vulnerabilities that allow adversaries to exploit the
system. Penetration testing can be done in-house, or the API provider can employ third-party
security firms to provide these services.

Known uses: C6

Several Developer Portal Instances

In a group setting, an API provider can allow different organizational units to create separate
access configurations for their APIs by allowing these subsidiaries to instantiate their own
developer portals. Each subsidiary with an API developer portal instance can configure APIs’
access and visibility according to their needs, thus creating custom views on the APIs. At the
same time, the APIs run on the same infrastructure, i.e., API gateway, and can be managed
consistently.

Known uses: C6

Tenant Isolation

If the API consumers send data to the API for processing, the API provider needs to ensure
that the API does not mix up or expose data of different API consumers to each other. Hence,
the API provider uses tenant isolation management techniques to prevent such errors. This
pattern candidate is similar to the pattern Single Tenancy (Newman, n.d.).

Known uses: C7, C9

Data Anonymization

In some cases, the API provider has to ensure that members of the API provider organization
cannot view sensitive data that the API consumer sends to the API, e.g., for privacy or
antitrust reasons. Thus, the API provider makes an anonymization tool available to the API
consumer that allows the API consumer to anonymize the data before sending it to the API.

Known uses: C7

APItect

An APItect is a specialist who consults internal teams on API design.

155

7. Pattern Candidates

Known uses: C14

7.3. API Consumer-facing Pattern Candidates

Contact Form Automation

The API portal predefines ticket categories (e.g., "technical support," "request demo," or
"contact sales") which the consumer has to select when contacting the API provider. Based on
the ticket type selection, the ticket is automatically forwarded to the right contact within the
API provider organization.

Known uses: C3

Smart Contact Form

The API portal predefines ticket categories (e.g., "technical support," "request demo," or
"contact sales") which the consumer has to select when contacting the API provider. Based on
the choice of the ticket category, the contact form requests different information from the API
consumer. For example, a technical support request can ask the API consumer to provide log
files.

Known uses: C3

Account Management

The API provider can assign dedicated support teams to strategic partners, comprising
technical and business support experts.

Known uses: C6, C10

Procurement Integration

The API consumer might involves procurement in the process of buying access to an API. If
this is the case often, the API provider can offer functionality targeted at procurement, e.g.,
SAP integrations.

Known uses: C13

Keyword Marketing

The API provider can use keyword-based marketing to increase the discoverability of APIs.

Known uses: C4

156

7. Pattern Candidates

Pilot Workshops

API providers organize pilot workshops with API consumers to kick off new pilot projects.
These workshops aim to collect initial feedback and requirements from potential API con-
sumers and establish trust through personal relationships.

Known uses: C6, C12

Conferences Talks

API providers promote APIs at conferences to increase their discoverability.

Known uses: C4

Bar Camps

Bar camps are conferences the API provider organizes without scheduled talks to collect
consumer feedback and enable networking.

Known uses: C12

Support Community

The API provider operates an online forum enabling API consumers to exchange experiences
and support each other (De, 2017).

Known uses: C3

API Status Page

The API gateway team can use an API status page to automatically report issues and defects
of backend services and API platforms. The API status page should be displayed on the
developer portal to inform API consumers of current downtimes or issues. Automated
publishing of this information can reduce the volume of incoming redundant bug reports.

Known uses: C3, C13

Changelogs

API providers publish changelogs for their APIs on their API portal to enable API consumers
to understand the types of changes and change frequency.

Known uses: C4

Growing FAQ

The API provider continuously updates the externally published or internally used FAQ with
common questions and their answers.

Known uses: C4

157

7. Pattern Candidates

Sample Projects

The API provider publishes open-source integration examples, i.e., simple API clients imple-
menting common use cases of the API. Also, the API provider needs to publish documentation
for these sample projects.

Known uses: C11

API Test Cases

API providers offer test cases to allow API consumers to test their implementations in a
sandbox environment.

Known uses: C10, C11

Blogs

API providers should publish articles highlighting different aspects of their APIs, Customer
Success Stories, and other supporting and promotional information on a blog.

Known uses: C3, C11

Video Series

The API provider publishes videos demonstrating the implementation of common API use
cases as part of the API documentation (Jacobson et al., 2012).

Known uses: C11

Business Functionality Description

In some cases, the API provides functionality for complicated business processes, e.g., taxation
of business transactions. In such cases, the API provider should publish descriptions that
enable technical experts to understand the business functionality/domain.

Known uses: C4

Social Media

The API provider uses social media to promote APIs and communicate with API consumers.

Known uses: C3

Third-party API Quality Assurance

The API marketplace provider wants to ensure the quality of third-party APIs offered for
a platform. Hence, the API provider must define a selection and onboarding process that
assures third-party APIs meet specified quality criteria.

Known uses: C13

158

7. Pattern Candidates

Third-party API Quality Monitoring

An API marketplace provider should continuously monitor the quality of third-party APIs
provided for a platform by defining and monitoring KPIs. The API marketplace provider can
use an API gateway to automate the monitoring and notify the API marketplace provider
team in case of quality breaches.

Known uses: C13

White-label Marketplace

An API provider can generate profits from proprietary API marketplace software by selling
the marketplace software component to other organizations as a customizable product.

Known uses: C13

Role System in Developer Portal

The developer portal offers features and views tailored to different user roles, e.g., technical
vs. business stakeholders. Furthermore, the definition of different roles enables role-based
authorization.

Known uses: C13

Group Access

An API provider can allow API consumers to define different roles for accessing the same
consumer account.

Known uses: C9

159

CHAPTER 8

Summary

APIs are strategic resources (Yoo et al., 2010) at the interface between functionality providers
and consumers. Thus, this pattern catalog aims to identify and codify proven API man-
agement practices focusing on collaboration between stakeholders for different kinds of
organizations, including established organizations. We conducted 16 expert interviews and
enriched the data with information on public API initiatives, existing pattern languages and
catalogs, and practice-driven API management literature. As a result, we present 22 patterns
and their relations, as well as 37 pattern candidates.

Furthermore, we observed the following four general findings during the creation of the
API management pattern catalog (previously published in Bondel et al. (2022):

(1) "Most initial collaboration between the API provider and the API consumer happens
through software artifacts controlled by the API management team" (Bondel et al., 2022).

API consumers search and inform themselves about interesting APIs online, i.e., via the
API developer portal. Moreover, they use the features of the developer portal, e.g., contact
forms, to contact the API provider. Also, the consumers use the developer portals Onboarding
Self-service capabilities to test and use the API. Thus, the successful collaboration between
API management and API consumers depends heavily on resources the API management
team controls.

(2) "API consumers want personal contact with the API provider before and during integrating
an API" (Bondel et al., 2022).

Even if API consumers discover an API via its developer portal, personal contact with the
API provider is often a deciding factor for integration. Especially if the API provides domain-
specific functionality instead of commodity functionality, API consumers want to negotiate
individual contracts, including agreed-upon quality levels in the form of Service-Level

160

8. Summary

Agreement (SLA)s. Also, API consumers often expect the API provider to support them with
integration activities.

(3) "The API provider has to treat the API as a product with a lifecyle" (Bondel et al., 2022).

An API makes functionality or data accessible to API consumers. The backend systems
providing the functionality or data evolve and change continuously. On the other hand,
API consumers evolve their clients and expect the API to change accordingly. Hence, the
API between the backend systems and clients must change based on consumer wishes or
technology trends. As a result, the API provider needs to actively manage changes to the API
along a lifecycle in coordination with the backend provider and the API consumer.

(4) "The collaboration between the API provider team and all other stakeholders is challeng-
ing" (Bondel et al., 2022).

Collaboration between the API management team and internal stakeholders, e.g., the
backend teams, primarily focuses on quality, defect, and incident management across teams,
business units, or company boundaries. The interviewees repetitively stressed collaboration
challenges, e.g., due to different priorities and timelines between these stakeholders. While
some approaches exist to standardize the collaboration between these stakeholders, e.g., API
provider-wide ticketing management, most collaboration relies on ad-hoc communication
channels such as email.

In the future we plan on validating and extending this API management pattern catalog
based on further insights into API initiatives.

161

APPENDIX A

Expert Interviews

Overall, 16 interviews with 15 interview partners informed the research approach. An
overview of the interviews is presented in Tab. A.1 including information on the interviewees’
role, the classification of the interviewees’ employing organization, and the organizations’
size.

Industry / Classification Role # Employees Participants
1 Multi-banking startup Backend Developer 11 - 50 IV1
2 Industrial manufacturing Internal Consulting >100.000 IV2
3 Automotive Product Owner >100.000 IV3, IV4
4 Software & IT service provider Software Architect 1001 - 5000 IV5
5 IT service subsidiary Portfolio Manager 1001 - 5000 IV6
6 Insurance subsidiary Software Architect 51 - 250 IV7
7 Industrial manufacturing Product Owner >100.000 IV8
8 Industrial manufacturing Software Architect >100.000 IV9
9 Financial services Software Developer 10.001 - 50.000 IV10
10 Software & IT service provider Internal Consulting 5001 - 10.000 IV11
11 Software & IT service provider Integration Architect 51 - 250 IV12
12 Automotive Product Owner >100.000 IV3, IV4
13 Software & IT service provider Technical Lead, Product Owner 5001 - 10.000 IV13, IV14
14 Software & IT service provider Software Architect 1001 - 5000 IV5
15 IT service subsidiary Portfolio Manager 1001 - 5000 IV6
16 IT service subsidiary Internal Consulting 1001 - 5000 IV15

Table A.1.: Overview of the interviews.

162

APPENDIX B

Case Base

The case base is derived from the interviews at the API portal level. We excluded cases
representing strictly private API initiatives since they are out-of-scope of this pattern catalog.
Furthermore, we added the two public API initiatives Stripe1 and Twilio2. We reviewed these
public API initiatives to validate previously identified patterns and add more details to the
pattern descriptions, but we did not use them to mine new patterns. Tab. B.1 provides an
overview of the case base.

1https://stripe.com/ (accessed 20.12.2023).
2https://www.twilio.com/de/ (accessed 20.12.2023).

163

https://stripe.com/
https://www.twilio.com/de/

B. Case Base

Case
Number

#
Interview

Type of
Initiative

Maturity # of API
Consumers

Used to

C1
(excluded)

1 Private Development <20

C2 2 Partner Pilot <20 derive & validate
patterns

C3 3, 12
Public &
Partner

Production >20 derive & validate
patterns

C4 4, 14 Public Production >10000 derive & validate
patterns

C5 4, 14 Partner Production >20 derive & validate
patterns

C6 5, 15, 16 Group Production na derive & validate
patterns

C7 6 Group Development <20 derive & validate
patterns

C8
(excluded)

7 Private Development >20

C9 8
Public &
Partner

Production na derive & validate
patterns

C10 9 Partner Production na derive & validate
patterns

C11 9
Public &
Partner

Production >10000 derive & validate
patterns

C12 10 Partner Pilot <20 derive & validate
patterns

C13 11
Public &
Partner

Production <20 derive & validate
patterns

C14 13
Public &
Partner

Production >10000 derive & validate
patterns

C15
(excluded)

13 Private Development <20

C16
(Stripe)

Public Production >10,000 validate patterns

C17
(Twilio)

Public Production >10,000 validate patterns

Table B.1.: Reviewed and extended overview of the case base (Bondel et al., 2022) used to
mine API management patterns.

164

APPENDIX C

Related patterns and pattern languages/catalogs

We analyzed 15 software pattern collections and related them to our API management patterns
presented in this technical report. The relations are described in the section "Other Related
Patterns" of each pattern description. Fig. C.1 presents a visualization of all relations between
the patterns.

165

C. Related patterns and pattern languages/catalogs

Figure C.1.: Relation between patterns of this API management pattern catalog and patterns
of other software pattern languages and catalogs.

166

List of Figures

2.1. Conceptual overview of software artifacts and stakeholders involved in API
management (adapted from Bondel et al. (2022)). 9

3.1. Visualization Web API management pattern relations. 15

4.1. A Web API makes functionality and data accessible to API consumers via the
HTTP protocol. 20

4.2. A Client Library wraps a Web API so that API consumers can access the API
functionality and data using a specific programming language and framework. 26

4.3. A Frontend Venture makes data and functionality available to consumers
lacking the capabilities to use a Web API or Client Library. 34

5.1. When applying the pattern API-as-a-Product, an API provider has to take
technical, business, legal, and marketing aspects into consideration for each
Web API. 40

5.2. An API Product Owner connects knowledge about the API provider organiza-
tion’s internal processes with knowledge of API consumers’ needs. 49

5.3. The pattern Collaborative Pilot Project involves one or a selected number
of API consumers in all steps of the API design. This includes the API con-
sumer reviewing and providing feedback on the API’s specification and the
prototypical implementation before publication to all consumers. 54

5.4. If an API provider applies the Play-it-fast Approach pattern to design a new
API, API consumers are not involved in the API specification and implementation. 59

5.5. The API provider collects and aggregates consumers’ ideas for new APIs and
changes to existing APIs in an Idea Backlog. 64

5.6. The API provider enforces a centrally defined Testing Strategy for new APIs
or changes to existing APIs. 69

5.7. All new APIs or major changes need to pass the API Clearing Process. 74

167

List of Figures

5.8. The API Facade presents a unified interface to a set of backends (Gamma et al.,
1994). 79

5.9. According to the pattern API Quality Monitoring, the provider continuously
monitors the non-functional properties of an API in production. 85

6.1. According to the pattern Role-based Marketing, the API provider presents
information tailored to different roles on an API portal landing page. 93

6.2. An API provider presents Customer Success Stories on the API developer
portal. 98

6.3. The API provider creates a Newsletter to keep consumers up-to-date on changes.103
6.4. A Consumer-centric API Description lists the major use cases or user stories

of the APIs on the developer portal. 108
6.5. The Integration Guide provides step-by-step instructions to implement a

specific functionality. 113
6.6. If the API provider offers an Onboarding Self-service, the consumer does not

have to interact with the provider before starting to use an API. 120
6.7. The provider presents a list of integration partners on the API developer portal

according to the pattern Integration Partner Program. 128
6.8. The API consumers enter tickest into the API provider-wide ticketing management,

which the system routes to the responsible teams within the API provider or-
ganization. 134

6.9. The Dedicated Support Team forms the interface between the API consumer
and provider. The support team solves low- or medium-complexity tickets
and forwards more complex requests to the respective experts in the provider
organization. 139

6.10. An Service-Level Agreement (SLA) specifies the quality of services for an API.146

C.1. Relation between patterns of this API management pattern catalog and patterns
of other software pattern languages and catalogs. 166

168

List of Tables

1.1. Overview of pattern languages and catalogs reviewed and related to patterns
in this API management pattern catalog. 6

3.1. Summaries of the Interface Type Patterns. 16
3.2. Summaries of the API Provider Internal Patterns. 17
3.3. Summaries of the API Consumer-facing Patterns. 18

A.1. Overview of the interviews. 162

B.1. Reviewed and extended overview of the case base (Bondel et al., 2022) used to
mine API management patterns. 164

169

Bibliography

Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A pattern language: Towns, buildings,
construction. (1st ed.). Oxford University Press.

Bellido, J., Alarcón, R., & Pautasso, C. (2013). Control-flow patterns for decentralized restful
service composition. ACM Trans. Web, 8(1). https://doi.org/10.1145/2535911

Bermbach, D., & Wittern, E. (2016). Benchmarking web api quality. In A. Bozzon, P. Cudre-
Maroux, & C. Pautasso (Eds.), Web engineering (pp. 188–206). Springer International
Publishing. https://doi.org/10.1007/978-3-319-38791-8_11

Bondel, G., Landgraf, A., & Matthes, F. (2022). Api management patterns for public, partner,
and group web api initiatives with a focus on collaboration. 26th European Conference
on Pattern Languages of Programs. https://doi.org/10.1145/3489449.3490012

Bondel, G., Nägele, S., Koch, F., & Matthes, F. (2020). Barriers for the advancement of an api
economy in the german automotive industry and potential measures to overcome
these barriers. Proceedings of the 22nd International Conference on Enterprise Information
Systems, 727–734. https://doi.org/10.5220/0009353407270734

Brandolini, A. (2013). Introducing event storming [accessed 20.12.2023]. http://ziobrando.
blogspot.com/2013/11/introducing-event-storming.html

Buckl, S., Ernst, A. M., Lankes, J., & Matthes, F. (2008). Enterprise architecture management
pattern catalog version 1.0 (tech. rep. No. 1) [Technical Report TB 0801]. Software Engi-
neering for Business Information Systems (sebis), Chair for Informatics 19, Technische
Universität München. Boltzmannstraße 3, 85748 Garching b. Münnchen, Germany.

Buckl, S., Matthes, F., Schneider, A. W., & Schweda, C. M. (2013). Pattern-based design research
– an iterative research method balancing rigor and relevance. In J. vom Brocke, R.
Hekkala, S. Ram, & M. Rossi (Eds.), Design science at the intersection of physical and
virtual design (pp. 73–87). Springer Berlin Heidelberg.

Buschmann, F., Henney, K., & Schmidt, D. C. (2007a). Pattern-oriented software architecture: A
pattern language for distributed computing (1st ed., Vol. 4). John Wiley & Sons.

Buschmann, F., Henney, K., & Schmidt, D. C. (2007b). Pattern oriented software architecture: On
patterns and pattern languages (1st ed., Vol. 5). John Wiley & Sons.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-oriented
software architecture: A system of patterns (1st ed., Vol. 1). John Wiley & Sons.

170

https://doi.org/10.1145/2535911
https://doi.org/10.1007/978-3-319-38791-8_11
https://doi.org/10.1145/3489449.3490012
https://doi.org/10.5220/0009353407270734
http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html

Bibliography

Christensen, C., Hall, T., Dillon, K., & Duncan, D. S. (2016). Competing against luck: The story of
innovation and customer choice (1st ed.). Harper Business.

Cockburn, A. (2000). Writing effective use cases (1st ed.). Addison-Wesley Professional.
Cohn, M. (2004). User stories applied: For agile software development (1st ed.). Addison-Wesley

Professional.
Cooper, A. (2004). The inmates are running the asylum: Why high-tech products drive us crazy and

how to restore the sanity (Vol. 2). Sams Indianapolis.
Coplien, J. O. (1996). Software patterns. SIGS Books & Multimedia.
Daigneau, R. (2011). Service design patterns: Fundamental design solutions for soap/wsdl and restful

web services: Fundamental design solutions for soap/wsdl and restful web services. Addison
Wesley.

Dal Bianco, V., Myllärniemi, V., Komssi, M., & Raatikainen, M. (2014). The role of platform
boundary resources in software ecosystems: A case study. 2014 IEEE/IFIP Conference
on Software Architecture, 11–20. https://doi.org/10.1109/WICSA.2014.41

De, B. (2017). Api management: An architect’s guide to developing and managing apis for your
organization (1st ed.). Apress.

de Reuver, M., Sørensen, C., & Basole, R. C. (2018). The Digital Platform: A Research Agenda.
Journal of Information Technology, 33(2), 124–135. https://doi.org/10.1057/s41265-016-
0033-3

Dyson, P., & Longshaw, A. (2004). Architecting enterprise solutions - patterns for high-capability
internet-based systems (Vol. 1). John Wiley & Sons.

Eaton, B., Elaluf-Calderwood, S., Sørensen, C., & Yoo, Y. (2015). Distributed Tuning of
Boundary Resources: The Case of Apple’s iOS Service System. MIS Quarterly, 39(1),
217–243. https://doi.org/10.25300/MISQ/2015/39.1.10

Erl, T. (2008). Soa design patterns (1st ed.). Pearson.
Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architectures

(Doctoral dissertation).
Fowler, M. (2003). Patterns of enterprise application architecture (1st ed.). Addison Wesley.
Gamma, E., Helm, R., Johnson, R. E., & Vlissides, J. (1994). Design Patterns. Elements of Reusable

Object-Oriented Software. Prentice Hall.
Geewax, J. (2021). Api design patterns (1st ed.). Manning Publications.
Ghazawneh, A., & Henfridsson, O. (2010). Governing third-party development through

platform boundary resources [http://aisel.aisnet.org/icis2010_submissions/48]. ICIS
2010 Proceedings., 1–18.

Ghazawneh, A., & Henfridsson, O. (2013). Balancing platform control and external contribu-
tion in third-party development: The boundary resources model. Information Systems
Journal, 23. https://doi.org/10.1111/j.1365-2575.2012.00406.x

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H. F., Karmarkar, A., &
Lafon, Y. (2007). SOAP Version 1.2 Part 1: Messaging Framework (Second Edition) (W3C
Recommendation). World Wide Web Consortium (W3C). World Wide Web Consortium
(W3C). https://www.w3.org/TR/soap12-part1/

171

https://doi.org/10.1109/WICSA.2014.41
https://doi.org/10.1057/s41265-016-0033-3
https://doi.org/10.1057/s41265-016-0033-3
https://doi.org/10.25300/MISQ/2015/39.1.10
http://aisel.aisnet.org/icis2010_submissions/48
https://doi.org/10.1111/j.1365-2575.2012.00406.x
https://www.w3.org/TR/soap12-part1/

Bibliography

Henfridsson, O., Mathiassen, L., & Svahn, F. (2014). Managing technological change in the
digital age: The role of architectural frames. Journal of Information Technology, 29(1),
27–43.

Hevner, A. R. (2007). A three cycle view of design science research [https://aisel.aisnet.org/
sjis/vol19/iss2/4]. Scandinavian journal of information systems, 19(2), 4.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems
research. MIS quarterly, 75–105.

Higginbotham, J. (2016). Sdk patterns for accelerating api integration [accessed 20.12.2023].
https://dzone.com/articles/sdk-patterns-for-accelerating-api-integration

Hofer, S., & Schwentner, H. (2021). Domain storytelling: A collaborative, visual, and agile way to
build domain-driven software (1st ed.). Pearson International.

Hohpe, G. (n.d.). Enterprise integration patterns [accessed 20.12.2023]. %5Curl%7Bhttps:
//www.enterpriseintegrationpatterns.com/index.html%7D

Hohpe, G., & Woolf, B. (2003). Enterprise integration patterns: Designing, building, and deploying
messaging solutions (1st ed.). Addison Wesley.

IBM Cloud Education. (2021). Sdk vs. api: What’s the difference? [accessed 20.12.2023].
https://www.ibm.com/cloud/blog/sdk-vs-api

Islind, A. S., Lindroth, T., Snis, U. L., & Sørensen, C. (2016). Co-creation and Fine-Tuning of
Boundary Resources in Small-Scale Platformization. In U. Lundh Snis (Ed.), Nordic
Contributions in IS Research (pp. 149–162). Springer International Publishing. https:
//doi.org/10.1007/978-3-319-43597-8_11

ITIL 4. (2019). ITIL Foundation: ITIL 4 Edition (tech. rep. No. 4). AXELOS Global Best Practices.
Norwich, UK, TSO.

Jacobson, D., Brail, G., & Woods, D. (2012). Apis: A strategy guide. O’Reilly.
Karhu, K., Gustafsson, R., & Lyytinen, K. (2018). Exploiting and Defending Open Digital

Platforms with Boundary Resources: Android’s Five Platform Forks. Information
Systems Research, 29(2), 479–497. https://doi.org/10.1287/isre.2018.0786

Kendrick, T. (2015). Identifying and Managing Project Risk: Essential Tools for Failure-Proofing
Your Project (3rd ed.). AMACOM.

Khosroshahi, P. A., Hauder, M., Schneider, A. W., & Matthes, F. (2015). Enterprise archi-
tecture management pattern catalog version 2.0 (tech. rep. No. 1) [Technical Report].
Software Engineering for Business Information Systems (sebis), Chair for Informatics
19, Technische Universität München. Boltzmannstraße 3, 85748 Garching b. München,
Germany.

Kircher, M., & Jain, P. (2004). Pattern-oriented software architecture: Patterns for resource manage-
ment (1st ed., Vol. 3). John Wiley & Sons.

Landgraf, A. (2021). Identification of api management patterns from an api provider perspective
(Master’s thesis). Software Engineering for Business Information Systems (sebis),
Chair for Informatics 19, Technische Universität München. Boltzmannstraße 3, 85748
Garching b. Münnchen, Germany.

Lübke, D., Zimmermann, O., Pautasso, C., Zdun, U., & Stocker, M. (2019). Interface evolution
patterns: Balancing compatibility and extensibility across service life cycles. Proceedings

172

https://aisel.aisnet.org/sjis/vol19/iss2/4
https://aisel.aisnet.org/sjis/vol19/iss2/4
https://dzone.com/articles/sdk-patterns-for-accelerating-api-integration
%5Curl%7Bhttps://www.enterpriseintegrationpatterns.com/index.html%7D
%5Curl%7Bhttps://www.enterpriseintegrationpatterns.com/index.html%7D
https://www.ibm.com/cloud/blog/sdk-vs-api
https://doi.org/10.1007/978-3-319-43597-8_11
https://doi.org/10.1007/978-3-319-43597-8_11
https://doi.org/10.1287/isre.2018.0786

Bibliography

of the 24th European Conference on Pattern Languages of Programs. https://doi.org/10.
1145/3361149.3361164

Maleshkova, M., Pedrinaci, C., & Domingue, J. (2010). Investigating web apis on the world
wide web. 2010 Eighth IEEE European Conference on Web Services, 107–114. https :
//doi.org/10.1109/ECOWS.2010.9

Medjaoui, M., Wilde, E., Mitra, R., & Amundsen, M. (2018). Continuous API Management:
Making the Right Decisions in an Evolving Landscape. O’Reilly UK Ltd.

Meszaros, G., & Doble, J. (1997). A pattern language for pattern writing. Proceedings of
International Conference on Pattern languages of program design (1997), 131, 164.

MuleSoft. (2021). 2021 connectivity benchmark report (tech. rep.). MuleSoft. US, CA.
Newman, S. (n.d.). Sam newman & associates [accessed 20.12.2023]. https://samnewman.io/

index.html
Newman, S. (2019). Monolith to microservices - evolutionary patterns to transform your monolith

(1st ed.). O’Reilly Media.
OMG UML. (2017). Omg® unified modeling language® (omg uml®) - version 2.5.1 (tech. rep.).

Object Management Group.
Osterwalder, A., Pigneur, Y., Bernarda, G., & Smith, A. (2014). Value proposition design: How to

create products and services customers want (1st ed.). John Wiley & Sons.
Pautasso, C., Ivanchikj, A., & Schreier, S. (2016). A pattern language for RESTful conversations.

Proceedings of the 21st European Conference on Pattern Languages of Programs, 1–22. https:
//doi.org/10.1145/3011784.3011788

Pruitt, J., & Adlin, T. (2005). The persona lifecycle: Keeping people in mind throughout product
design (1st ed.). Morgan Kaufmann Publishers Inc.

Red Hat. (2020). Was ist ein sdk? [accessed 20.12.2023]. https://www.redhat.com/de/topics/
cloud-native-apps/what-is-SDK

Richardson, C. (n.d.). Microservices architecture: A pattern language for microservices [ac-
cessed: 20.12.2023]. %5Curl%7Bhttps://microservices.io/patterns/index.html%7D

Richardson, C. (2019). Microservices patterns (1st ed.). Manning Publications.
Rotem-Gal-Oz, A. (2012). SOA Patterns (1st ed.). Manning Publications.
Santoro, M., Vaccari, L., Mavridis, D., Smith, R., Posada, M., & Gattwinkel, D. (2019). Web

application programming interfaces (apis): General purpose standards, terms and european
commission initiatives (tech. rep. JRC118082). Publications Office of the European Union.
Luxembourg. https://doi.org/10.2760/675

Schmidt, D. C., Stal, M., Rohnert, H., & Buschmann, F. (2000). Pattern-oriented software ar-
chitecture: Patterns for concurrent and networked objects (1st ed., Vol. 2). John Wiley &
Sons.

Spichale, K. (2017). Api-design - praxishandbuch für java- und webservice-entwickler (1st ed.).
dpunkt.verlag.

Stocker, M., Zimmermann, O., Zdun, U., Lübke, D., & Pautasso, C. (2018). Interface quality
patterns: Communicating and improving the quality of microservices apis. Proceedings
of the 23rd European Conference on Pattern Languages of Programs. https://doi.org/10.
1145/3282308.3282319

173

https://doi.org/10.1145/3361149.3361164
https://doi.org/10.1145/3361149.3361164
https://doi.org/10.1109/ECOWS.2010.9
https://doi.org/10.1109/ECOWS.2010.9
https://samnewman.io/index.html
https://samnewman.io/index.html
https://doi.org/10.1145/3011784.3011788
https://doi.org/10.1145/3011784.3011788
https://www.redhat.com/de/topics/cloud-native-apps/what-is-SDK
https://www.redhat.com/de/topics/cloud-native-apps/what-is-SDK
%5Curl%7Bhttps://microservices.io/patterns/index.html%7D
https://doi.org/10.2760/675
https://doi.org/10.1145/3282308.3282319
https://doi.org/10.1145/3282308.3282319

Bibliography

Twilio. (2022). Twilio build program guide for consulting partners - 2022 program year (tech.
rep.) [online resource https://twilio-cms-prod.s3.amazonaws.com/documents/
BuildProgram-May2022Update-ConsultingGuide-r2_1.pdf]. Twilio.

Tynan, A. C., & Drayton, J. (1987). Market segmentation. Journal of marketing management, 2(3),
301–335. https://doi.org/10.1080/0267257X.1987.9964020

Uebernickel, F., & Brenner, W. (2016). Design thinking. In C. P. Hoffmann, S. Lennerts, C.
Schmitz, W. Stölzle, & F. Uebernickel (Eds.), Business innovation: Das st. galler modell
(pp. 243–265). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-
07167-7_15

Uludağ, Ö., Harders, N.-M., & Matthes, F. (2019). Documenting recurring concerns and
patterns in large-scale agile development. Proceedings of the 24th European Conference on
Pattern Languages of Programs. https://doi.org/10.1145/3361149.3361176

Vaccari, L., Posada, M., Body, M., Gattwinkel, D., Mavridis, D., Smith, R., Santoro, M., Nativi,
S., Medjaoui, M., Reusa, I., Switzer, S., & Friis-Christensen, A. (2020). Application
programming interfaces in governments: Why, what and how (tech. rep. JRC120429). Publi-
cations Office of the European Union. Luxembourg. https://doi.org/10.2760/58129

Völter, M., Kircher, M., & Zdun, U. (2004). Remoting patterns: Foundations of enterprise, internet
and realtime distributed object middleware (1st ed.). John Wiley Sons Ltd.

Walker, G. (2001). IT Problem Management (1. Edition). Prentice Hall.
Wiesche, M., Jurisch, M. C., Yetton, P. W., & Krcmar, H. (2017). Grounded theory methodology

in information systems research. MIS Q., 41(3), 685–701. https://doi.org/10.25300/
MISQ/2017/41.3.02

Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). Research Commentary —The New Organizing
Logic of Digital Innovation: An Agenda for Information Systems Research. Information
Systems Research, 21(4), 724–735. https://doi.org/10.1287/isre.1100.0322

Zdun, U., Stocker, M., Zimmermann, O., Pautasso, C., & Lübke, D. (2018). Guiding architectural
decision making on quality aspects in microservice apis. Springer International Publishing.
https://doi.org/10.1007/978-3-030-03596-9_5

Zimmermann, O., Lübke, D., Zdun, U., Pautasso, C., & Stocker, M. (2020). Interface responsi-
bility patterns: Processing resources and operation responsibilities. Proceedings of the
European Conference on Pattern Languages of Programs 2020. https://doi.org/10.1145/
3424771.3424822

Zimmermann, O., Pautasso, C., Lübke, D., Zdun, U., & Stocker, M. (2020). Data-oriented
interface responsibility patterns: Types of information holder resources. Proceedings
of the European Conference on Pattern Languages of Programs 2020. https://doi.org/10.
1145/3424771.3424821

Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C., & Zdun, U. (2019). Introduction to
microservice api patterns (map). Joint Post-proceedings of the First and Second International
Conference on Microservices (Microservices 2017/2019). https://doi.org/10.4230/OASICS.
MICROSERVICES.2017-2019.4

174

https://twilio-cms-prod.s3.amazonaws.com/documents/BuildProgram-May2022Update-ConsultingGuide-r2_1.pdf
https://twilio-cms-prod.s3.amazonaws.com/documents/BuildProgram-May2022Update-ConsultingGuide-r2_1.pdf
https://doi.org/10.1080/0267257X.1987.9964020
https://doi.org/10.1007/978-3-658-07167-7_15
https://doi.org/10.1007/978-3-658-07167-7_15
https://doi.org/10.1145/3361149.3361176
https://doi.org/10.2760/58129
https://doi.org/10.25300/MISQ/2017/41.3.02
https://doi.org/10.25300/MISQ/2017/41.3.02
https://doi.org/10.1287/isre.1100.0322
https://doi.org/10.1007/978-3-030-03596-9_5
https://doi.org/10.1145/3424771.3424822
https://doi.org/10.1145/3424771.3424822
https://doi.org/10.1145/3424771.3424821
https://doi.org/10.1145/3424771.3424821
https://doi.org/10.4230/OASICS.MICROSERVICES.2017-2019.4
https://doi.org/10.4230/OASICS.MICROSERVICES.2017-2019.4

Bibliography

Zimmermann, O., Stocker, M., Lübke, D., & Zdun, U. (2017). Interface representation patterns:
Crafting and consuming message-based remote apis. Proceedings of the 22nd European
Conference on Pattern Languages of Programs. https://doi.org/10.1145/3147704.3147734

Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., & Pautasso, C. (n.d.). Patterns for api
design - simplifying integration with loosely coupled message exchanges [accessed:
14.04.2023].

Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., & Pautasso, C. (2022). Patterns for api
design: Simplifying integration with loosely coupled message exchanges (1st ed.). Addison-
Wesley Professional.

175

https://doi.org/10.1145/3147704.3147734

	Acknowledgments
	Abstract
	Contents
	Introduction
	Pattern Catalog Objective
	Pattern Catalog Design Approach
	Data Collection and Analysis
	Iterative Improvements

	API Management Pattern Catalog Taxonomy
	Software Artifacts in Web API Management
	Stakeholders in Web API Management

	Structure of the API Management Pattern Catalog
	Elements of the API Management Pattern Catalog
	Visualization of the Pattern Catalog Structure
	API Management Pattern Summaries
	Interface Type Patterns Summaries
	API Provider Internal Patterns Summaries
	API Consumer-facing Patterns Summaries

	Interface Type Patterns
	Web API
	Client Library
	Frontend Venture

	API Provider Internal Patterns
	API-as-a-Product
	API Product Owner
	Collaborative Pilot Project
	Play-it-fast Approach
	Idea Backlog
	Testing Strategy
	API Clearing Process
	API Facade
	API Quality Monitoring

	API Consumer-facing Patterns
	Role-based Marketing
	Customer Success Stories
	Newsletter
	Consumer-centric API Description
	Integration Guide
	Onboarding Self-service
	Integration Partner Program
	API provider-wide ticketing management
	Dedicated Support Team
	Service-Level Agreement (SLA)

	Pattern Candidates
	Interface Type Pattern Candidates
	API Provider Internal Pattern Candidates
	API Consumer-facing Pattern Candidates

	Summary
	Expert Interviews
	Case Base
	Related patterns and pattern languages/catalogs
	List of Figures
	List of Tables
	Bibliography

