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Abstract

Background

Personalized medicine requires finding relationships between variables that influence a

patient’s phenotype and predicting an outcome. Sparse generalized canonical correlation

analysis identifies relationships between different groups of variables. This method requires

establishing a model of the expected interaction between those variables. Describing these

interactions is challenging when the relationship is unknown or when there is no pre-estab-

lished hypothesis. Thus, our aim was to develop a method to find the relationships between

microbiome and host transcriptome data and the relevant clinical variables in a complex dis-

ease, such as Crohn’s disease.

Results

We present here a method to identify interactions based on canonical correlation analysis.

We show that the model is the most important factor to identify relationships between blocks

using a dataset of Crohn’s disease patients with longitudinal sampling. First the analysis

was tested in two previously published datasets: a glioma and a Crohn’s disease and ulcera-

tive colitis dataset where we describe how to select the optimum parameters. Using such

parameters, we analyzed our Crohn’s disease data set. We selected the model with the

highest inner average variance explained to identify relationships between transcriptome,

gut microbiome and clinically relevant variables. Adding the clinically relevant variables

improved the average variance explained by the model compared to multiple co-inertia

analysis.

Conclusions

The methodology described herein provides a general framework for identifying interactions

between sets of omic data and clinically relevant variables. Following this method, we found
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genes and microorganisms that were related to each other independently of the model,

while others were specific to the model used. Thus, model selection proved crucial to finding

the existing relationships in multi-omics datasets.

Introduction

The creation of datasets from different high-throughput sequencing technologies on the same

samples provides an opportunity to identify relationships between datasets and improve our

understanding of diseases. This approach has been used in several diseases, such as cancer,

inflammatory bowel disease (IBD) and pouchitis, among others [1–3].

IBD is comprised of Crohn’s disease (CD) and ulcerative colitis (UC). Around 4.2 million

individuals suffer from IBD in Europe and North America combined [4]. The chronic inflam-

matory response observed suggests an interaction between host genetic factors and the intesti-

nal microbiota. Several studies support the concept that CD arises from an exacerbated

immune response against commensal gut microorganisms in genetically predisposed individ-

uals. Nonetheless, the disease might result from imbalanced microbial composition, leading to

dysbiosis [5, 6].

Understanding the contribution of the gut microbiota to CD pathogenesis and mainte-

nance of the disease is an ongoing field of research [7–9]. These alterations could be shaped by

a genetic predisposition and environmental factors (i.e., bacterial or viral infection, diet, usage

of antibiotic, or the socioeconomic status) [10]. On the other hand, pouchitis refers to the

inflammation of the ileal pouch, an artificial rectum surgically created out of ileal gut tissue in

patients who have undergone a colectomy. One possible underlying cause of pouchitis might

also be the an imbalance in the gut microbiome [11]. However, the cause-effect relation

between dysbiosis and intestinal inflammatory disease remains unclear [12–14].

The most common method for analyzing the relationship between microorganisms and the

gut mucosa is to sequence both the 16S rRNA gene of the microbiome and the patient’s tran-

scriptome, respectively. Gut microbial DNA can be sequenced from feces or intestinal tissue,

while human RNA is isolated from endoscopic biopsies or surgical samples. In some cases,

patients are followed up for long periods and longitudinal samples can be obtained [15]. Multi-

variate methods are used to integrate DNA and RNA data, and therefore can identify relation-

ships between the intestinal microbiome and the gut epithelium [8, 14, 16, 17]. Correlations,

which are multivariate, are the predominant method used to find relationships between two

omics datasets [7, 17–19]. A recent study revealed more significant correlations between host

RNA and microbial DNA in samples from healthy controls than in patients with IBD, and sug-

gests an “uncoupling” or breakup of these “homeostatic” correlations in diseased subjects [7].

Although their analysis used correlations, as well as univariate methods, these method do not

consider confounders such as age, diet or sample localization in the gut, which could lead to

false conclusions [20, 21].

Other multivariate methods provide frameworks with an unlimited number of variables

involved [22, 23]. These methods summarize the variability of the datasets and select features

in order to obtain loading factors for a new coordinate system where samples are represented.

They summarize the largest amount of variability found among the samples’ variables [24].

Those multivariate methods are capable of summarizing several variables from the same sam-

ple. Some multivariate methods work when variables are grouped in in a block. Multi-block

methods allow to analyze variables obtained from different technical origins [25–29]. These
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multi-block methods assume the existence of relationships between variables of the different

blocks.

An example of a multi-block method is the regularized generalized canonical correlation

analysis (RGCCA) which enables reducing the dimensions of an arbitrary number of blocks

for data derived from the same sample [30–32]. RGCCA has already been used in the context

of IBD with RNA-seq and 16S rRNA data [16]. However, it was used to select human genes

and microorganism related to the inflammation predictors DUOX2 and APOA1. To our

knowledge, a concrete description of the relationship between the gut’s mucosal host tran-

scriptome and microbiome in CD using RGCCA has not been performed.

In this study, we evaluate the effect of the parameters of RGCCA on the canonical compo-

nents and we identify a strategy of analysis that better explains two previously published data-

sets. We then used this method, as well as multiple co-inertia analysis (MCIA), to compare two

datasets, our hematopoietic stem cell transplant CD dataset and an online available pouchitis

dataset in order to identify interactions between microorganisms and the host transcriptome

of the gut epithelium [33]. Overall, we believe that our approach constitutes an innovative

method for identifying multiple relationships present in multi-omics datasets and their most

relevant variables. Identifying those relevant variables will lead to discover the cross-talk

between microorganisms and the host and enhance our knowledge of the inflammatory bowel

disease.

Methods

Patients and biopsies processing

Samples from the CD dataset included in this study were from a cohort of patients with severe

refractory CD undergoing hematopoietic stem cell transplant (HSCT). Patients were treated in

the Department of Gastroenterology (Hospital Clı́nic de Barcelona–Spain–). The protocol was

approved by the Catalan Transplantation Organization and by the Institutional Ethics Com-

mittee of the Hospital Clinic de Barcelona (Study Number 2012/7244). All patients provided

written consent following extensive counselling. Colonic and ileal biopsies were obtained at

several time points during ileocolonoscopy. Patients were followed-up for 4 years and biopsies

were collected every six or twelve months after HSCT. Samples were obtained when possible

from both uninvolved and involved areas. In addition, biopsies were taken from the ileum and

colon regions of 19 non-IBD controls consisting of individuals with no history of IBD and

who presented no significant pathological findings following endoscopic examination for

colon cancer surveillance (Hospital Univesitari Mútua de Terrassa–Spain–). The protocol was

approved by the Institutional Ethics Committee of the Hospital Univesitari Mútua de Terrassa

(Study Number NA1651). At least one biopsy was collected and fresh-frozen at -80˚C for

microbial DNA extraction. The remaining biopsies were placed in RNAlater RNA Stabiliza-

tion Reagent (Qiagen, Hilde, Germany) and stored at -80˚C until total RNA extraction.

Mucosal transcriptome

Total RNA from mucosal samples (HSCT CD cohort) was isolated using the RNeasy kit (Qia-

gen, Hilde, Germany). RNA sequencing libraries were prepared for paired-end sequencing

using HighSeq-4000 platform. Later, cutadapt (version 1.7.1) was used for quality filtering and

the libraries were mapped against the human reference genome using the STAR aligner

(2.5.2a) with Ensembl annotation (release GRCh38.10). Read counts per gene were obtained

with RSEM (version 1.2.31) as previously described [15]. Analysis was performed using R (ver-

sion 3.6.1) and Bioconductor (Version 3.10) on Ubuntu 18.04. The host transcriptome was

visually inspected for batch effects in PCA. Outliers and the top 10% genes using the coefficient
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of variation were removed (20593, with remaining 37685 genes). Data was normalized using

the trimmed mean of M-values and log transformed into counts per millions using edgeR (ver-

sion 3.28).

Microbial DNA extraction from mucosal samples

Biopsies from the HSCT CD cohort were resuspended in 180 μl TET (TrisHCl 0.02M, EDTA

0.002M, Triton 1X) buffer and 20mg/ml lysozyme (Carl Roth, Quimivita, S.A.). Samples were

incubated for 1h at 37˚C and vortexed with 25 μl Proteinase K before incubating at 56˚C for

3h. Buffer B3 (NucleoSpin Tissue Kit–Macherey-Nagel) was added followed by a heat treat-

ment for 10 min at 70˚C. After adding 100% ethanol, samples were centrifuged at 11000 x g for

1 min. Two washing steps were performed before eluting DNA. Concentrations and purity

were checked using NanoDrop One (Thermo Fisher Scientific). Samples were immediately

used or placed at -20˚C for long-term storage.

High throughput 16S ribosomal RNA (rRNA) gene sequencing

Library preparation and sequencing were performed at the Technische Universität München.

Briefly, volumes of 600μL DNA stabilization solution (STRATEC biomedical) and 400μL Phe-

nol:choloform:isoamyl alcohol (25:24:1, Sigma-Aldrich) were added to the aliquots. Microbial

cells were disrupted by mechanical lysis using FastPrep-24.: Heat tratment and centrifugation

were conducted after adding a cooling adaptor. Supernatatnts were treated with RNase to

eliminate RNA. Total DNA was purified using gDNA columns as described in detail previ-

ously [34]. Briefly, the V3-V4 regions of 16S rRNA gene were amplified (15x15 cycles) follow-

ing a previously described two-step protocol [35] using forward and reverse primers 341F-

785R [36]. Purification of amplicons was performed by using the AMPure XP system (Beck-

mann). Next, sequencing was performed with pooled samples in paired-end modus (PE275)

using an MiSeq system (Illumina, Inc.) according to the manufacturer’s instructions and 25%

(v/v) PhiX standard library.

Microbial profiling

Data analysis was carried out as previously described [37]. Processing of raw-reads was per-

formed by using the IMNGS (version 1.0 Build 2007) pipeline based on the UPARSE approach

[38]. Sequences were demultiplexed, trimmed to the first base with a quality score <3 and then

paired. Sequences with less than 300 and more than 600 nucleotides and paired reads with an

expected error >3 were excluded from the analysis. Trimming of the remaining reads was

done by trimming 5 nucleotides from each end to avoid GC bias and non-random base com-

position. Operational taxonomic units (OTUs) were clustered at 97% sequence similarity. Tax-

onomy assignment was performed at 80% confidence level using the RDP classifier [39] and

the SILVA ribosomal RNA gene database project [34]. Later the data was normalized using the

same method as for RNA-seq described above. The microbiome was visually inspected for

batch effects in PCA; none were found. The resulting OTUs table was normalized using edgeR

(Version 3.28).

Datasets

Table 1 shows all datasets included in the study. The glioma dataset came from diffuse intrinsic

pontine glioma patients that included the host transcriptome analyzed with Agilent 44K

Whole Human Genome Array G4410B and G4112F, patients copy number variation pro-

cessed with the ADM-2 algorithm, and data from comparative genomic hybridization (CGH)
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analyzed using Mutation Surveyor software. In addition, this dataset contained information

on age, localization of the tumor, sex and a numerical grading of the severity of the tumor(see

Table 1) [40, 41].

An IBD-related dataset was obtained from Prof. Dr. Rosentiel and Prof. Dr. Robert Häsler.

It included samples from the terminal ileum and sigma from CD, UC, infectious disease-con-

trols and healthy controls (see Table 1) [7]. The provided data included location, gender, loca-

tion, age, and the status (inflamed or non-inflamed) of the region from which the biopsy was

taken. The HSCT CD cohort involved 158 samples (both host RNA and microbial DNA) from

18 CD patients undergoing HSCT in our center and 19 non-IBD controls (Table 1) [15]. In

addition to the samples, clinical information such as age, sex, treatment, years since disease

diagnosis, prior surgery, location of the biopsies, segmental simple endoscopic score for

Crohn’s disease (SES-CD), time of the HSCT and response to treatment were collected. A pre-

viously published dataset from a pouchitis study was also analyzed (Table 1) [33]. A total of

255 samples from 203 patients were used containing data for both host transcriptome and

microbiome. This dataset included identifiers for the patients, whether the sample was from

the pre-pouch ileum or from the pouch, the sex, the outcome of the procedure and an inflam-

matory severity score ISCORE. The pouch ileum might be inflamed or not.

Integration

Sparse regularized generalized canonical correlation analysis (SRGCCA), implemented in

RGCCA package (version 2.12), was used for this integration analysis [42]. This variation of

the RGCCA method is better suited for biological data with sparsity such as the results

obtained by RNA sequencing. The scheme used to add the different canonical components

was the centroid scheme, which allows one to determine the positive and negative related vari-

ables. The regularization parameters used were those suggested by the tau.estimate, which is a

compromise between correlation and covariance also known as Schäfer’s method [43]. When

looking for the covariance from phenotypic categorical variables in order to maximize the

covariance instead of the correlation 1 was used for regularization.

Numeric values from the same assay were set on the same block. Relevant clinical variables

were grouped in one block unless otherwise indicated. Categorical data was encoded as binary

(dummy) variables for each factor, where 0 indicates not present and 1 indicates present omit-

ting one level. Each block was standardized to zero mean and unit variances, and then divided

by the square root of the number of variables of the block with the function scale2.

Table 1. Summary of samples and characteristics of the datasets used.

Glioma CD/UC HSCT CD Pouchitis

Samples (non-disease/diseased) 0/53 33/26 51/107 0/255

Sex (female/male) 28/25 42/17 22/15 101/102

Location Cort: 20 Ileum:30 Ileum: 48 Pouch: 59

Dipg: 22 Colon:29 Colon: 108 PPI: 196

Midl: 11 Unknown: 2

SES-CD local (mean (min-max)) NA 2.15 (0–12) NA

CDAI mean (min-max) NA 120 (0–450) NA

Age at diagnostic (<16/16<x<40/x>40 years) 7/11/0

Years of disease: mean (min-max) 14 (8–28)

PPI: pre-pouch ileum. Cort: supratentorial, midl: central nuclei, dipg: brain stem. NA not applicable; an empty cell signifies unknown. Only the HSCT CD dataset was

generated by the authors, all the other datasets were previously made publicly available.

https://doi.org/10.1371/journal.pone.0246367.t001
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MCIA was also performed on the CD/UC, CD and pouchitis dataset using only the experi-

mental data [28]. RGCCA was compared to MCIA by examining the area under the curve

(AUC) of both methods when classifying localization on the first component of the shared

latent space of MCIA and the first component of the host transcriptome on the RGCCA

method.

Parameter testing

The sparse canonical correlation analysis involved three parameters besides the input data: the

regularization parameter (tau) the model and the scheme. To evaluate the effect of each param-

eter, the one being tested was changed while keeping constant all the others. This model

included weights indicating the relationship between the blocks. These parameters were tested

on the glioma dataset and on the CD/UC dataset.

All models were analyzed using weights from 0 to 1 by 0.1 intervals in the relationship

between blocks. These weights indicate the strength of the relationship between the variables

of two blocks, the higher it is, the stronger is the relationship between the variables. To test the

effect of the model, all combinations of weights were analyzed. The indicators of methods

quality consist of the inner average variance explained (AVE) the outer AVE and the AVE of

each block. The inner AVE is defined by how well the components of each block correlate with

one other [31]. The outer AVE is defined by how well the variables of a block correlate with

the component for all of the blocks. As we were interested in discovering the relationships

between blocks, the inner AVE was used to select the best model, the higher the inner AVE is,

the better the model.

The scheme controls how the different correlations of the canonical components are sum-

marized. The three schemes available (horst, centroid and factorial) are compared using a sim-

ple model regarding their inner AVE and the selected genes.

Tau was tested on the glioma and the CD/UC dataset between the minimum accepted value

and 1 for each block.

Models were validated using 1000 bootstraps with resampling to assess the stability of the

inner and outer AVE.

Models used

Different models were tested for the integration of the data from the CD or the pouchitis data-

set. The first model, model 0, used only two blocks, the microbiome and the host transcrip-

tome data with interaction between them, but with no within interactions (Model not shown).

The second family of models (models 1, 1.1 and 1.2), family 1, in addition to the micro-

biome and host transcriptome data, included those variables we considered clinically relevant

variables including some that were related to disease activity. This model was explored because

it takes into account already known information that could help reveal relevant relationships.

For instance, the HSCT CD dataset included the following variables: patient ID, sex, age, age at

diagnosis, previous surgery, current treatment, time after HSCT and location of the sample.

Including these variables could potentially help to reveal a relationship that changes with

patient’s characteristics, time and location.

The last family of models (models 2, 2.1, 2.2 and 2.3), family 2, used the same information

as that for family 1 models, but grouped the clinical variables into three blocks, one for demo-

graphics, one for time-related variables and one for variables related to localization of the sam-

ple. Although, this family of models is more complex than family 1 the relationships found can

potentially occur independently of time, clinical variables and location, thus revealing other

relationships that could not be identified using the family 1 models. All models can be found
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on S1 Data. Models 1 to 2.3 were modeled to utilize known, clinically relevant variables with

the host transcriptome and microbiome data available.

With the glioma dataset, the microbiome block was replaced by the CGH block. In addition

to the previously mentioned models, the glioma dataset was also analyzed considering all the

variables from the different blocks as a single entity, which is known as a superblock [44]. A

superblock is a block created with all the variables on the system usually connected with each

individual block of the system being analyzed.

Only the models in which all the blocks were part of a single connected network were ana-

lyzed, thus, 31 of all possible models were filtered out. For models 1 to 2.3, all the combinations

of different weights on the model matrix were analyzed. First weights 0, 0.5 and 1 were used to

select the model with the highest inner AVE. To further describe the interactions of models 1.1

and 2.1, different weights from 0 to 1 by 0.1 intervals were tested; the best model of each family

resulted from model 1.2 and 2.2, respectively. By taking into account a direct interaction

between the microbiome and the host transcriptome we could confirm whether the results of

model 2.2 had improved in model.

Results

Parameters on the glioma dataset

We first determine the best strategy to obtain the right values of the parameters on SRGCCA

using the glioma dataset. This was the dataset originally used to develop and test the SRGCCA

method [39]. By parameters we mean the scheme used, the regularization effect, and the mod-

els as constructed by weights, all of which can affect the final solution of the SRGCCA (See

Parameters testing in Methods).

Tau controls the number of variables selected from each block, regulating the stringency of

the model. Tau can be estimated using Schäfer’s method [43], which tries to balance both the

correlation and the covariance for selecting the variables of the block. When estimated by this

method, the tau provides a good intermediate solution for numeric variables. For those blocks

that encode categorical variables as numeric values, the covariance of the block with the other

block is the only relevant meaning; thus, a tau value of 1 is more appropriate although several

values were explored. The effect of tau on the inner AVE is shown in Fig 1A, where usually an

increase on tau increases the inner AVE as well, although Schäfer’s method provided result is

close to the optimum value.

All the weights between 0 and 1 (by 0.1 intervals) in the glioma dataset were analyzed using

all three schemes: horst, centroid and factorial. The horst and the centroid scheme were similar

while the factorial resulted in the most different AVE values (see S1 Data). The centroid

scheme takes into account all the relationship regardless of the canonical correlation sign.

This, together with its similarity to horst scheme, prompted its selection as the best scheme.

The three blocks with the best tau and the centroid scheme were analyzed by changing the

weights between 0 and 1 by 0.1 intervals. According to the inner AVE, the best model was the

one in which the weights (1) between the host transcriptome and location, (2) the host tran-

scriptome and the CGH, and (3) the CGH block were linked to variables related to the location

with weights of 1, 0.1 and 0.1, respectively.

When we added a superblock to the data, there was an increase of 0.01 on the inner AVE of

the model (See Methods section Models used and [44]). The model with the superblock that

explained most of the variance was that in which the weights of the interaction within (1) the

host transcriptome, (2) between the superblock and the CGH, (3) between the host transcrip-

tome and the localization, and (4) between CGH and the host transcriptome were 1, 1, 1 and

1/3, respectively. To see if the superblock could classify the sample by location, we plotted the
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first two components of the superblock (see Fig 1B). We can clearly see that they do not classify

the samples according to the location of the tumor, which is known to affect the tumor pheno-

type [40].

Adding one block containing the age of the patient and the severity of the tumor to the

model, decreased the inner AVE. The best model with these blocks, according to the inner

Fig 1. Analysis of the parameters on the glioma dataset. A1 and A2: A contour plot of the median of the inner

AVEresult of an SRGCCA with different tau values for each block (GE, gene expression of the host transcriptome,

CGH (comparative genomic hybridization) for the copy number variation and y for the location). Higher tau normally

increases the inner AVE, Schäfer’s approximation is marked with the red vertical line. B: First two dimensions of the

superblock on the glioma dataset. The first two components of the superblock within the best model, according to the

inner AVE from the glioma dataset. C: First dimensions of the host transcriptome and the CGH block of models on

the glioma dataset are represented. Comparison of the different models by visualizing the first components of the host

transcriptome gene expression (GE) and the copy number variation (CGH) blocks from the glioma dataset. Each point

represents a sample (colored by location). Cort: supratentorial, dipg: brain stem, midl: central nuclei.

https://doi.org/10.1371/journal.pone.0246367.g001
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AVE, was that in which the interactions (1) within the host transcriptome, (2) between the

host transcriptome and the localization, (3) between the host transcriptome and(4) the CGH

and between the CGH and the other variables were 1, 1, 1/3 and 1/3, respectively (see S2 Data,

Glioma sheet). The first components of each model can be seen in Fig 1C. We can observe on

the figure, the strong dependency between gene expression and location since the first model

while the weaker relationship with the CGH assay [40]. On the other hand, the major differ-

ence is the dispersion on the CGH component on each model.

As the model with a superblock did not help explain the relationships between blocks, we

decided not to apply it to the other datasets. The scheme selected was the centroid, which takes

the absolute value of the relation between components. These parameters were used for further

analysis on the CD/UC, the CD and pouchitis datasets.

Parameters on the CD/UC dataset

After an exploratory analysis of the parameters on the glioma dataset, we analyzed the CD/UC

dataset, which was similar to our CD dataset and include information on both the host tran-

scriptomics and bacterial genomics. These data were obtained using the same sequencing tech-

niques from endoscopic biopsies.

In this dataset, the parameter tau behaved slightly differently than with the previous dataset

but the value from the Schäfer’s method for tau was close to the best value (see S1 Fig).

In contrast to the glioma dataset, the model with the highest inner AVE was model 1.2 (S2

Data). Model 2.2 has a relationship of 0.1 between microbiome and the host transcriptome

and of 1 between the location and the host transcriptome. The microbiome block is also related

by a factor of 0.1 with the demographic block and of 1 with the time block. Lastly the time and

the demographic block are related by a factor of a 0.1. In either case the family 1 and family 2

models can correctly separate by sample location (colon or ileum) but not by disease type (see

Fig 2) or inflammation status (data not shown).

Analyzing the models on the HSCT CD and pouchitis datasets

Having established the best parameters for analyzing a related IBD dataset, we studied our

HSCT CD dataset using SRGCCA. Model 1.2 had the highest inner AVE of the family 1

model. A search for the highest inner AVE within the family 2 models resulted in model 2.2

(S2 Data). This model revealed a direct relationship between the host transcriptome and the

location-related variables, while the microbiome was associated with the demographic and

location-related variables (see Fig 3 and S2 Data). Overall, we see that the relationships in the

model affected the distribution of samples on the components of both the host transcriptome

and the microbiome.

Finally, we used another related cohort to confirm the applicability of SRGCCA to an inde-

pendent dataset (see Fig 4). Model 1.2 had the highest inner AVE. A search for the highest

inner AVE among the family 2 models resulted in model 2.2, although it did not have a higher

inner AVE than model 1.2. Moreover, no direct relationship between the host transcriptome

and the clinically relevant variables was apparent (S2 Data). Family 2 models better stratified

the samples by location (pouch vs pre-pouch) than did those of family 1. Nonetheless, they

were separated by location-related variables in some models, albeit not as clearly as with the

HSCT CD dataset. This might indicate that while sex does not affect the interaction, the loca-

tion-related variables do affect the pouchitis.

Of all these models, as described above, the best according to the inner AVE on the HSCT

CD dataset was model 2.2. This model explained known differences between the host
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transcriptome gut regions [15]. The microbiome separated the samples by disease status, indi-

cating that it was highly relevant for the relationship with the host transcriptome.

Using the HSCT CD dataset we also looked for the best model using a single block for the

clinically relevant variables, following the family model 1 structure. The model from family 1

models with the highest AVE was that in which the transcriptomics was related to the pheno-

type by 0.1, while the microbiome was related to the clinically relevant variables by 1. This

model revealed that the relationship between the microbiome and the clinically relevant

Fig 2. First dimensions of the host transcriptome and the microbiome block of models on the Crohn’s disease ulcerative colitis/ dataset.

Comparison of the models that better explained the interaction between the microbiome and the host transcriptome data on the CD/UC

dataset. Each point represents a sample colored according to a characteristic: A) samples are colored by disease type, CD Crohn’s disease, Ctrl,

control; DCtrl diseased control, inflamed but not from IBD patients, UC ulcerative Colitis; and B, by location, colon or ileum, on the first

components of the host transcriptome and the microbiome. Better models separate samples by tissue location using the host transcriptome

component.

https://doi.org/10.1371/journal.pone.0246367.g002
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variables carried more weight than that between the clinically relevant variables and the tran-

scriptomics on the HSCT CD dataset.

In addition, the host transcriptome was related to location-dependent variables by a weight

of 1, while the microbiome was related to demographic variables, and to location related vari-

ables, by a weight of 1 and 0.5, respectively. Demographic variables were also linked by 1 to the

time variables block (see S2 Data, HSCT_CD sheet).

Fig 3. First dimensions of the host transcriptome and the microbiome block of models on the hematopoietic stem

cell transplant Crohn’s disease dataset. Comparison of the models that better explained the interaction between the

microbiome and the host transcriptome data on the HSCT CD dataset. Each point represents a sample (colored by

disease status): A, non-CD (Control) or CD; and B, by location, colon or ileum, on the first components of the host

transcriptome and the microbiome. Better models separate samples by tissue location by the host transcriptome

component and the diseased and controls samples by the microbiome component.

https://doi.org/10.1371/journal.pone.0246367.g003

Fig 4. First dimensions of the host transcriptome and the microbiome block of models on the pouchitis dataset.

Comparison of the models vis-à-vis on the pouchitis dataset by the first component of the host transcriptome and the

microbiome from the HSCT CD dataset. Each point represents a sample colored by sex (A), where females are in red

and males in blue, and by location (B), where the pouch is the red, and PPI is the pre-pouch ileum. The samples do not

show a sex-specific pattern but on the best models the host transcriptome partially separates pouch and pre-pouch

ileum samples.

https://doi.org/10.1371/journal.pone.0246367.g004
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The interaction of genes within the host transcriptome was also analyzed on the HSCT CD

dataset. Adding this interaction increased the inner AVE score between 0.10 and 0.03 depend-

ing on the model. However, it was not deemed important to find the relationships between the

host transcriptome and the microbiome and thus was not compared between datasets.

Genes selected by SRGCCA as related to the microbiome in our HSCT CD dataset were dif-

ferent between the family 1 and 2 models (see Fig 5A), suggesting that the relationship between

microorganisms and genes is independently influenced by location, time and demographic-

related variables. The influence of the microbiome remained constant as indicated by the high

number of OTUs shared between family 1 and 2 models suggesting that previously observed

differences might have been due to covariates since the microorganisms identified by multiple

models remained unchanged (Fig 5B).

Comparison of models

As expected, when analyzing the same dataset with different models the output results in dif-

ferent relevant variables. In order to analyze the accuracy of the models, one thousand boot-

straps were used to integrate the data from the HSCT CD dataset (Fig 4 and Table 2). Each

model had its own dispersion on the same bootstrapped samples (Fig 6). The lower the disper-

sion, the more robust the model was to different conditions than in the initial testing.

Model 2.2 had both higher inner and outer AVE mean values and less standard deviation

(Fig 4 and Table 2). This indicates that it was more robust than the other models, regardless of

the input data.

The bootstrap analysis of the one thousand bootstraps on the pouchitis dataset showed that

model 1.2 had the highest mean inner AVE, while model 0 had the highest mean outer AVE

(Table 3). Overall, model 1.2 was considered the most robust.

The models with the highest inner AVE were more robust to different data, which indicates

that they can be applied more generally and not solely to these samples.

Comparison of methods

We have seen that this method provides robust models of the interactions on the datasets.

However, given the many methods available for integration multiple omics, we sought to

determine how these methods would perform compared to other existing approaches. In par-

ticular, we ran a comparison with MCIA, which is a newer method that requires less parame-

ters while still being conceptually similar to SRGCCA.

Applying MCIA to the CD/UC, HSCT CD and pouchitis datasets produced similar distri-

bution on the synthetic space compared to our method (Fig 7). This method was able to clas-

sify the samples by their location on the first component in a manner similar to our own

method with the first transcriptomic component. On the pouchitis dataset neither method

could separate the samples by location while MCIA did worse than our best model according

to the AUC. In all three datasets the best model outperformed MCIA when classifying the sam-

ples according to their location (Fig 7), with the greater difference involving the pouchitis data-

set (data not shown).

Discussion

This study provides a framework for identifying interactions between blocks of data, a step

towards understanding biological relationships between datasets or between datasets and

other particularly relevant variables. First, we studied the parameters’ influence on a glioma

and CD/UC dataset, adjusting their values and testing how generalizable they are. Then, we
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Fig 5. UpSet plot of the of the models on the hematopoietic stem cell transplant Crohn’s disease dataset. The heights of the bars represent the genes (A) or OTUs

(B) shared between the models selected by the points; 30 intersections are shown.

https://doi.org/10.1371/journal.pone.0246367.g005
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developed a method to find the best model for the relationships between blocks. Lastly, we vali-

dated the method in two independent datasets.

We explored the regularization of the blocks on two previously published datasets from gli-

oma and IBD patients. The regularization of a block modulates how many variables are

selected and whether correlation or covariance have to be used when looking for the canonical

correlation with other blocks [28, 30]. A tau value of 1 allowed us to select all variables, which

maximized their covariance. On blocks that included only clinically relevant categorical vari-

ables, regularization must be equal to 1, since correlations with categorical variables have a dif-

ferent meaning. As the host transcriptome and microbiome blocks contain many variables, a

shrinkage parameter closer to 0 was expected, as observed with the glioma and the CD/UC

datasets. In addition, estimating tau for the quantitative blocks resulted in higher inner AVE

scores since the quantitative variables that contributed most to the data variation were

selected.

Based on the regularization obtained, we explored different schemes of integration on the

glioma dataset. The resulting canonical components of the centroid and horst schemes did dif-

fer in some models. In fact, the canonical correlations between blocks were likely positive,

making the differences between these two schemes unobservable. The centroid scheme was

selected to analyze the CD and the pouchitis datasets, since canonical correlations are not

always positive.

Independently of the scheme involved, a superblock not only aids in interpretation, but also

helps account for the possibility of interactions between variables of the same block. The

increase observed in the inner AVE may have stemmed from the interaction between variables

of the same block. However, such an interpretation is not as clear as with blocks generated by a

single assay or from closely related variables [30]. The superblock, which is used for redun-

dancy analysis, did not help in terms of grouping different samples [44]. Moreover, if the goal

of the model is to accurately represent the system under study, the superblock is not necessary,

regardless of the assistance it provides in improving the inner AVE.

The superblock is usually related to all the other blocks. Typically, a weight of 1 is used to

indicate a direct relationship between two blocks. Modifying the weights of the model influ-

enced the result by changing AVE scores and the variables selected from each block. The high-

est inner AVE score was not defined by the highest weights on all the relationships.

The weights of the models represent how much one block interacts with another if the

interactions are linear, an assumption of any canonical correlation [31]. In such cases, the

weights are representative of the interactions between blocks.

The weights define the relationships between blocks in SRGCCA, which together determine

the model of the components. Other methods like MCIA and joint and individual variation-

explained (JIVE) assume a common relationship between all components, which results in a

Table 2. Bootstrapped mean and standard deviation of inner and outer AVE values on the HSCT CD dataset.

Model AVE Mean Sd

0 inner 0,550 0,0469

1.2 inner 0,768 0,0223

2.2 inner 0,785 0,0163

0 outer 0,104 0,0132

1.2 outer 0,088 0,0106

2.2 outer 0,105 0,0069

The best models according to the mean are shown in bold.

https://doi.org/10.1371/journal.pone.0246367.t002
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common space for the samples [27, 28]. This difference is crucial for exploring the role of the

components; for example, in our manuscript each model represents the same system with dif-

ferent interactions and assumptions. Comparing different models after the SRGCCA led to

explanations for different aspects of the same system. Here, we also show that compared to our

method, MCIA can results in similar samples’ classification on a latent space. However, it was

not always as good as was evident by the AUC when classifying the samples by location. In

addition, the interpretation of the MCIA was not as straight forward as with SRGCCA. Fur-

thermore, with our method the observed classification of the samples according to their

Fig 6. Bootstrap results of three models on the hematopoietic stem cell transplant Crohn’s disease dataset.

Variance of AVE using the same samples on three models with the HSCT CD dataset. Each point shows the AVE for

each analysis performed. The brighter colors reflect the result of this model on the original data (including all samples).

Dispersion on the bootstrapped samples is reduced as a model more accurately represents the relationships present on

the dataset.

https://doi.org/10.1371/journal.pone.0246367.g006

Table 3. Bootstrapped mean and standard deviation of inner and outer AVE values on the pouchitis dataset.

Model AVE Mean Sd

0 inner 0,448 0,0811

1.2 inner 0,820 0,0457

2.2 inner 0,767 0,0332

0 outer 0,140 0,0087

1.2 outer 0,120 0,0227

2.2 outer 0,134 0,0085

The models with the higher mean AVE values are shown in bold.

https://doi.org/10.1371/journal.pone.0246367.t003
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location can be directly attributed to the host transcriptome while with MCIA that effect could

result from either the host transcriptome or the microbiome.

Looking at the glioma data, the best model according to the inner AVE was that with the

superblock. As previously explained, this model might represent the hierarchical relationships

present in the data. However, the superblock did not provide more interpretable results in the

glioma dataset.

In the glioma dataset, the model lacking the superblock but with the highest inner AVE

indicated that the localization of a tumor influences the host transcriptome to a greater degree

than the copy number variations, if the relationships are linear. Adding supplementary infor-

mation on the samples’ localization did not increase the inner AVE, suggesting that there was

a high dependence between localization and the tumor host transcriptome.

Interactions within the host transcriptome usually increase the inner AVE of the models.

With the CD and the pouchitis datasets, self-interaction increased the inner AVE, as well as

the selected features, except in models 0 to 1.2 in the CD data set. This suggests that the inter-

actions within the same omic block become relevant if the model does not take into account

Fig 7. Multiple co-inertia analysis and area under the curve for the location of the Crohn’s disease/ulcerative

colitis, the hematopoietic stem cell transplant Crohn’s disease and pouchitis dataset. A, B, C plots are the results of

applying multiple co-inertia analysis (MCIA) where the horizontal and vertical axis represent the synthetic variable 1

and 2 respectively. D, E, F plots are the area under the curve (AUC) for all the methods applied on this dataset. The

first row (A, D) is the analysis of CD/UC dataset, the second one (B, E) the HSCT CD dataset, and the third one (C, F)

the pouchitis dataset.

https://doi.org/10.1371/journal.pone.0246367.g007
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the interaction between other clinically relevant variables. If other relevant variables are

included, then the effect of this interaction is significantly less.

Model 0 looked for direct relationships between the microbiome and the host transcrip-

tome. Confounders that influence both host transcriptome and microbiome, such as age or the

localization and inflammation status, were not taken into account in this model. This is due to

the fact that they can bias the relations found with this model [45]. Nonetheless, this model

was capable of grouping the samples of the CD dataset according to their disease status, though

this was not true of the pouchitis dataset.

Family 1 models use three blocks, including one for clinically important information about

the samples. This new block was added to avoid biasing the integration by known factors of

the samples such as sex, or location. In the best model of this family, the microbiome block

had a weak relationship with the host transcriptome. This weak relationship was possibly an

indicative of not lineal relations. If the relationships were not lineal, then they could not be

fully identified by RGCCA [31]. Another possibility is that the microbiome was related to

other variables not included on the dataset.

Finally, family 2 models, compared to those of family 1, were designed to explain the rela-

tionship between the microbiome and host transcriptome, allowing for the presence of inde-

pendent interactions with location, age and other demographic-related variables. In family 1

models all the relevant variables were mixed together. In order to allow for such interactions,

unrelated variables were separated in different blocks.

In the HSCT CD dataset, a cursory analysis confirmed that the genes selected by SRGCCA

with model 2.2 were related to the sample location [15]. The selected microorganisms previ-

ously linked to CD dysbiosis were Faecalibacterium sp. and Bacteroides sp. (see S3 Data) [46].

This suggests that the variables selected were relevant for their role in both the tissue and the

disease. Thus, the genes and microorganisms that have significant relationships were likely to

be present in this context.

There are several previously known interactions between the variables collected on the mul-

tiple datasets. For instance the butyrate produced by the microbiome affects the state of the

epithelial cells, implying a relationship between the microbiome and the host transcriptome

[47]. It is also known that the microbiome changes along the gastrointestinal tract; thus, the

microbiome and host transcriptome blocks must be connected [48]. Moreover, the micro-

biome is influenced by diet, which would imply a relationship between demographics and the

microbiome [49]. In addition, there are some studies that observe changes over time, with per-

haps additional links to changes in diet. With our method we could a connection between all

of these blocks.

In the pouchitis dataset, model 1.2 captured a greater degree of variance than model 2.2,

contrary to the results obtained with the HSCT CD dataset. This might be because potentially

important variables, such as age, were lacking and possibly because the model was con-

founded. In addition, we could not make direct comparisons with the HSCT CD dataset as it

did not include non-diseased samples although it did include non-inflamed samples. This is

due to the fact that the model differentiates by subgroups of patients instead of by a distinct

relationship between healthy and diseased samples.

The findings of this study have to be assessed in light of certain limitations. RGCCA cannot

describe a causal relationship or the mechanisms underlying the relationships between RNA

transcriptomics and the microbiome. However, models for RGCCA can be used to select vari-

ables for further studies and experiments in order to validate these relationships. This method

has been implemented in an R package, called inteRmodel, which can be found at https://

github.om/llrs/inteRmodel/. This package implements the methodology described in this

manuscript and also incorporate some help functions for the analysis.
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When examining an interaction within a block, we only assumed the existence of an inter-

action within the host transcriptome. However, it must be noted that microorganisms create

communities for which the interactions of several microorganisms is essential and we did not

consider interaction within the microbiome in the present study [50]. Knowing how microbial

communities rise and interact remains an open question that could affect any interpretation of

the results [50, 51]. In addition, the taxonomy imputation can be biased by the copy number

variation of the 16S rRNA present on the microbiome. This problem has not yet been solved,

and the workflow used could over-estimate the abundance of some taxonomies [52].

In the present study, as we did not use a simulated data set with known relationships

between blocks, we could not assess the specificity or sensitivity of our approach. In addition,

we could not confirm by further analysis and experiments whether the selected variables were

necessary to start or maintain CD or pouchitis.

Conclusions

RGCCA is a powerful integration tool. We have shown that the model is the most important

parameter when selecting variables. The weights of the model represent the strengths of the

relationships between blocks. Here we propose a robust methodology implemented with

inteRmodel, to identify the best models guided by the inner AVE when there is no prior

knowledge of the existing relationship.

This method can identify relationships in complex systems such as Crohn’s disease by tak-

ing into account the interactions between the microbiome, host transcriptome and the relevant

clinical variables. The resulting analysis can improve our understanding of the biological rela-

tionships between different omics datasets and other relevant (clinical) variables.
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22. Cavill R, Jennen D, Kleinjans J, Briedé JJ. Transcriptomic and metabolomic data integration. Brief Bioin-

form. 2016; 17: 891–901. https://doi.org/10.1093/bib/bbv090 PMID: 26467821

23. Chong J, Xia J. Computational Approaches for Integrative Analysis of the Metabolome and Microbiome.

Metabolites. 2017; 7: 62. https://doi.org/10.3390/metabo7040062 PMID: 29156542

24. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker dis-

covery and explanation. Genome Biol. 2011; 12: R60. https://doi.org/10.1186/gb-2011-12-6-r60 PMID:

21702898

25. Rohart F, Gautier B, Singh A, Cao K-AL. mixOmics: An R package for ‘omics feature selection and mul-

tiple data integration. PLOS Comput Biol. 2017; 13: e1005752. https://doi.org/10.1371/journal.pcbi.

1005752 PMID: 29099853

26. Deun KV, Mechelen IV, Thorrez L, Schouteden M, Moor BD, Werf MJ van der, et al. DISCO-SCA and

Properly Applied GSVD as Swinging Methods to Find Common and Distinctive Processes. PLOS ONE.

2012; 7: e37840. https://doi.org/10.1371/journal.pone.0037840 PMID: 22693578

27. Lock EF, Hoadley KA, Marron JS, Nobel AB. Joint and individual variation explained (JIVE) for inte-

grated analysis of multiple data types. Ann Appl Stat. 2013; 7: 523–542. https://doi.org/10.1214/12-

AOAS597 PMID: 23745156

28. Meng C, Kuster B, Culhane AC, Gholami AM. A multivariate approach to the integration of multi-omics

datasets. BMC Bioinformatics. 2014; 15: 162. https://doi.org/10.1186/1471-2105-15-162 PMID:

24884486

29. Witten DM, Tibshirani R, Hastie T. A penalized matrix decomposition, with applications to sparse princi-

pal components and canonical correlation analysis. Biostatistics. 2009; 10: 515–534. https://doi.org/10.

1093/biostatistics/kxp008 PMID: 19377034

30. Tenenhaus A, Tenenhaus M. Regularized generalized canonical correlation analysis for multiblock or

multigroup data analysis. Eur J Oper Res. 2014; 238: 391–403. https://doi.org/10.1093/biostatistics/

kxu001 PMID: 24550197

31. Tenenhaus A, Tenenhaus M. Regularized Generalized Canonical Correlation Analysis. Psychometrika.

2011; 76: 257–284. https://doi.org/10.1007/s11336-011-9206-8

PLOS ONE Multi-omic modelling of IBD with RGCCA

PLOS ONE | https://doi.org/10.1371/journal.pone.0246367 February 8, 2021 20 / 21

https://doi.org/10.1038/nrgastro.2017.110
http://www.ncbi.nlm.nih.gov/pubmed/28831186
https://doi.org/10.1136/gutjnl-2017-315494
http://www.ncbi.nlm.nih.gov/pubmed/29618496
https://doi.org/10.1016/j.imlet.2014.07.014
http://www.ncbi.nlm.nih.gov/pubmed/25131220
https://doi.org/10.1093/ecco-jcc/jjy203
http://www.ncbi.nlm.nih.gov/pubmed/30521002
https://doi.org/10.1097/MIB.0000000000001208
https://doi.org/10.1097/MIB.0000000000001208
http://www.ncbi.nlm.nih.gov/pubmed/28806280
https://doi.org/10.1016/j.chom.2014.02.005
https://doi.org/10.1016/j.chom.2014.02.005
http://www.ncbi.nlm.nih.gov/pubmed/24629344
https://doi.org/10.1002/ibd.21793
http://www.ncbi.nlm.nih.gov/pubmed/21698720
https://doi.org/10.3389/fcimb.2018.00281
https://doi.org/10.3389/fcimb.2018.00281
http://www.ncbi.nlm.nih.gov/pubmed/30245977
https://doi.org/10.1007/s11306-013-0598-6
https://doi.org/10.1007/s11306-013-0598-6
https://doi.org/10.1371/journal.pcbi.1004075
https://doi.org/10.1371/journal.pcbi.1004075
http://www.ncbi.nlm.nih.gov/pubmed/25775355
https://doi.org/10.1093/bib/bbv090
http://www.ncbi.nlm.nih.gov/pubmed/26467821
https://doi.org/10.3390/metabo7040062
http://www.ncbi.nlm.nih.gov/pubmed/29156542
https://doi.org/10.1186/gb-2011-12-6-r60
http://www.ncbi.nlm.nih.gov/pubmed/21702898
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.1371/journal.pcbi.1005752
http://www.ncbi.nlm.nih.gov/pubmed/29099853
https://doi.org/10.1371/journal.pone.0037840
http://www.ncbi.nlm.nih.gov/pubmed/22693578
https://doi.org/10.1214/12-AOAS597
https://doi.org/10.1214/12-AOAS597
http://www.ncbi.nlm.nih.gov/pubmed/23745156
https://doi.org/10.1186/1471-2105-15-162
http://www.ncbi.nlm.nih.gov/pubmed/24884486
https://doi.org/10.1093/biostatistics/kxp008
https://doi.org/10.1093/biostatistics/kxp008
http://www.ncbi.nlm.nih.gov/pubmed/19377034
https://doi.org/10.1093/biostatistics/kxu001
https://doi.org/10.1093/biostatistics/kxu001
http://www.ncbi.nlm.nih.gov/pubmed/24550197
https://doi.org/10.1007/s11336-011-9206-8
https://doi.org/10.1371/journal.pone.0246367
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