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Abstract

Large-scale data sources, remote sensing technologies, and superior computing power

have tremendously benefitted to environmental health study. Recently, various machine-

learning algorithms were introduced to provide mechanistic insights about the heterogeneity

of clustered data pertaining to the symptoms of each asthma patient and potential environ-

mental risk factors. However, there is limited information on the performance of these

machine learning tools. In this study, we compared the performance of ten machine-learning

techniques. Using an advanced method of imbalanced sampling (IS), we improved the per-

formance of nine conventional machine learning techniques predicting the association

between exposure level to indoor air quality and change in patients’ peak expiratory flow rate

(PEFR). We then proposed a deep learning method of transfer learning (TL) for further

improvement in prediction accuracy. Our selected final prediction techniques (TL1_IS or

TL2-IS) achieved a balanced accuracy median (interquartile range) of 66(56~76) % for

TL1_IS and 68(63~78) % for TL2_IS. Precision levels for TL1_IS and TL2_IS were 68

(62~72) % and 66(62~69) % while sensitivity levels were 58(50~67) % and 59(51~80) %

from 25 patients which were approximately 1.08 (accuracy, precision) to 1.28 (sensitivity)

times increased in terms of performance outcomes, compared to NN_IS. Our results indicate

that the transfer machine learning technique with imbalanced sampling is a powerful tool to

predict the change in PEFR due to exposure to indoor air including the concentration of par-

ticulate matter of 2.5 μm and carbon dioxide. This modeling technique is even applicable

with small-sized or imbalanced dataset, which represents a personalized, real-world setting.
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1. Introduction

Asthma is a major public health problem for health care systems worldwide because of its high

prevalence and rising socioeconomic burden [1–3]. In addition, it is one of the primary care-

sensitive conditions whose symptoms can be controlled by effective care management and

prompt treatment [4].

Early intervention requires personalized patient-centered care in a service-oriented model.

Recently, emerging technologies and tools, such as early alerts and continuous monitoring,

have shown immense potential [5–10]. Avoidable exacerbations account for 63% of the total

annual asthma costs [11,12]; thus, patient-centered, preventive approaches that predicts

patients’ exposure to risk factors and evaluates corresponding likelihood of symptom change

could help the health care industry or individuals to achieve significant economical savings.

One study that evaluated the time activity pattern in asthma patients showed that they spent

almost 83% of their time indoors, mostly at home [13]. Because such a large amount of time is

spent indoors, a proper indoor air quality control with advance prediction techniques can con-

tribute to improving the symptoms of asthma patients [14–16]. Modeling the relationship

between indoor air quality and the risk of asthma exacerbation is critical for forecasting individual

patient’s risks. Machine learning algorithms are one promising approach to accomplish this task.

Although a large number of studies have reported the effect of exposure to ambient air on

the risk of asthma exacerbation, data of individual patient-level analysis with indoor air-quality

are inconclusive. A paradigm shift has occurred in the field of environmental epidemiological

study with the convergence of large digital data sources and improved remote sensing technol-

ogies for indoor air quality monitoring and air purification, especially with clustered personal-

ized individual patient data. Recently, various machine-learning algorithms have been

reported to provide mechanistic insights about the heterogeneity of clustered data of patient

symptoms to predict the occurrence of each patient’s symptom or for personalized treatment

and prevention strategies.

However, little is known about the relative strengths and weaknesses of the different

machine learning approaches or about the effectiveness of common techniques for the

improvement of model accuracy. We conducted this comparative study to evaluate the perfor-

mance of nine conventional machine learning techniques with the aim of improving the fore-

casting accuracy. The first improvement method applied was imbalanced sampling (IS). IS

promotes the minority class, while avoiding overfitting to the training data [17]. Hence this

method was used for improving classification models in the presence of imbalance distribution

in training data. A main challenge of machine learning is the limited size of training data. In

particular, deep learning requires a large amount of data to train models for generalization and

hence high-quality prediction. This problem is acute in individualized asthma risk prediction

where datasets for individual patients are frequently very small.

The second improvement method we proposed was a machine learning technique of trans-

fer learning (TL) which can help overcome this problem by focusing on fine tuning a pre-

trained model with a small amount of specialized training data. This technique has been

shown promise in cancer screening by improving the accuracy of models classifying medical

images [18]. Yet no such studies have been performed in the area of individualized asthma pre-

diction with limited training data for each patient. Our proposed TL method is a neural net-

work based learning technique where a model is trained through two phases, the first phase is

a training for source model using population data and it is further tuned for target model

using an individual patient’s data in the second phase.

To achieve our study objectives, we combined our database with a machine learning frame-

work that uses an inference engine to model the association between exposure levels of daily
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indoor air and the daily peak expository flow rate (PEFR) of individual, adult patients with

asthma.

2. Materials and methods

2.1 Study population and quantification of health symptoms

Twenty-five adult nonsmoking participants, aged 32–78 years living in Incheon, Bucheon or

Seoul, were recruited from among adult asthma patients who had enrolled in our environmen-

tal health smart study with connectivity and remote sensing technologies (ESCORT) [19]. We

used each participant’s daily PEFR records (n = 3,750) collected by doctors and medical practi-

tioners at the Soonchunhyang University Bucheon Hospital in South Korea. The original

study protocols related to our study were approved by the research ethics committee of the

Soonchunhyang University (IRB No. 202001-BR-001-01); written informed consent was

obtained from all participants. The patients’ PEFR values were collected twice per day from

November 1, 2017, to May 31, 2018. The participants were asked to maintain an indoor air

quality monitoring unit in their home and record their activities every 30 min in a diary.

2.2 Indoor air quality measurement

Our target indoor air quality variables were fine Particulate Matter of 2.5 μm (PM2.5), carbon

dioxide (CO2), temperature, and humidity. The PM2.5 concentrations were measured in par-

ticipants’ main living spaces by laser-light scattering sensors with 2 min interval. The perfor-

mance of the selected PM2.5 sensors were compared to the US EPA Federal Equivalent

Method and their outcomes have been described previously [20]. In South Korea, PM2.5 con-

centrations and CO2 are among the most important indoor risk factors. Monitoring of these

two variables have been recommended due to their potential health effects, including carcino-

genetic effect or ability to induce dizziness, respectively, and their high-temporal variability is

affected by patients’ activity pattern (indoor cooking, ventilation, etc.). Each patient’s real-time

indoor air quality level (every minute) was converted to a daily mean level to match with each

patient’s daily PEFR measurements; the data was stored on our database server for subsequent

exposure calculations.

2.3 Measurement of peak expository flow rate

One of the common indicators of asthma-related symptoms is PEFR. To interpret the severity

or exacerbation of PEFR levels, population-level data obtain using a peak flow meter is often

used [21] with the green, yellow, and red zones, as stated by the American Lung Association

[22]. However, because of the large variability of the baseline PEFR among patients, a stan-

dardized, patient-specific cluster data should be used to avoid false positives or false negatives

[22].

In this study, we applied our forecasts to a simplified version of individual-specific exacer-

bation zoning method proposed by Alkobaisi in 2019 [23] that classifies a patient’s exacerba-

tion level based on their own historical distribution of PEFR values.

We used two segmentations that included “safe zone” PEFR values in the upper 80% of the

patient’s personal historical PEFR distribution, and “red zone” PEFR values in the lower 20%.

Using machine learning-based inference engines, we attempted to predict the instances at

which the patient had a risk of entering the red zone, which would likely pose a medical emer-

gency. As described by Alkobaisi [23], it is important for doctors and patients to analyze each

patient’s PEFR distribution, as it relates to their personal health condition, and actively aim to

modify the 80/20 cutoff on an individual basis.
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The conventional machine learning techniques used in this study attempted to identify

when each patient was at risk, i.e., “red zone,” by forecasting when their PEFR value would be

below the established cutoff. Although the cutoff may have been established based on a lower

threshold of each patient’s historical PEFR values, the probability that this value would reduce

below the critical PEFR value, i.e., 20% of their daily mean PEFR, on any specific day depends

on many factors, and can differ by 20% on any given day. Accordingly, the model’s estimated

probability of a patient’s PEFR value reducing below the cutoff value can be used as a measure

of a patient’s daily health risk for that day.

2.4 Machine learning techniques to asthma risk prediction

The models we analyzed in this study applied a classification-based framework to forecast

patients’ PEFR severity levels. Each model attempted to classify the patients’ daily PEFR zone

based on their exposure to indoor air quality and its PEFR value on the previous day. The nine

classification techniques we included in our comparative study were as follows: (1) decision

tree gini (DT-G), (2) decision tree entropy (DT-E), (3) random forest (RF), (4) support vector

machine (SVM), (5) K-nearest neighbors (KNN), (6) gradient boosting (GB), (7) logistic

regression (LR), (8) naïve Bayesian (NB), and (9) neural network (NN).

2.5 Improvement in predictive techniques with imbalanced sampling

One of the most common challenges in machine learning-based classification occurs when the

case of interest (e.g., low PEFR values) is relatively rare [17]. This imbalance can make the clas-

sifier prone to a preferential focus on the majority class. Conventionally, imbalanced classes are

managed with up- and over-sampling [24]. Determining how much sampling to apply is one of

the challenges with sampling techniques. An over-sampling ratio must be chosen so as to pro-

mote the minority class, while avoiding overfitting to the training data. Similarly, an under-

sampling ratio must be chosen so as to retain as much information about the majority class as

possible, while promoting a balanced class distribution. Up-sampling can be used for avoiding

overfitting issues in over-sampling and for promoting a balanced class distribution [17].

In this study, we used both over-sampling and up-sampling methods together, in the so-

called imbalanced sampling (IS), to improve the performance of the nine classification tech-

niques. As shown in Algorithm 1, we first split each patient’s dataset into training and testing

data. Next, we up-sampled the training data by duplicating randomly selected instances of the

minority class with replacements until the size of the minority and majority classes matched.

We then over-sampled by doubling the total size of the resulting dataset.
Algorithm 1 imbalanced Classifier (Dtrain, A)
1: Input: Dtrain is a set of class-labeled training data tuples, A is a
classification scheme
2: Output: a classifier
3: Method:
4: D0  tuples labeled with class0, D1  data tuples labeled with
class1
{class0: tuples with PEFR value � 20th quantile, class1: tuples with
PEFR value > 20th quantile}
5: n0  |D0|, n1  |D1|
6: D0

0
 {} {D0

0
will contain up-sampled and over-sampled tuples of

class0}
7: D0

1
 {} {D0

1
will contain over-sampled of class1}

8: repeat
9: D0

0
 add a data tuple t selected from D0 using random sampling with

replacement
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10: m  |D0
0
|

11: until m � n1 is attained
12: D0

0
 update D0

0
with duplicates of each data tuple from D0

0

13: D0
1
 duplicates of each data tuple from D1

14: D0train  D0
0
[ D0

1
{D0train is an imbalanced training dataset}

15: classifier C  trainModel (D0train, A)

2.6 Neural network based Transfer Learning (TL)

With performance improvement using the IS method in conventional machine learning tech-

niques, this study further investigated neural networks as a deep learning framework. A neural

network (NN) is a model whose predictive formula is defined by a layered mathematical struc-

ture. Their power comes partially from the fact that this structure gives practitioners a straight-

forward way to create models that detect arbitrarily complex nonlinear relationships between

dependent and independent variables. However, their “black box" nature, susceptibility to

overfitting, and the empirical nature of model development in practice, limit their use in health

prediction modeling [25,26]. The overfitting problem is particularly acute in health-related

fields, in which the sizes of datasets are generally smaller than the average for NNs. Datasets

in individualized health risk prediction are relatively small in comparison to the datasets in

image processing. For example, a patient’s daily PEFR dataset collected for 6 months includes

less than 200 data points.

The paradigm of transfer learning (TL) attempts to solve the problem of insufficient data

[27]. Mathematically, the transfer occurs by creating a new model through small adjustments

to a model that performs well on one task with the aim of fine tuning it to perform well on the

present task of interest [28]. TL works best in situations similar to the present one in which

there is insufficient data to train a model on the task of interest but there is sufficient data avail-

able to train a good model on a related task.

In this study of individualized asthma risk prediction, there was sufficient data to train a

model to make good population-level predictions, but there was insufficient data to train an

individualized model for each patient. The source task and the target task are the same; classify

a patient’s next-day PEFR value as above or below their critical PEFR value. The source model

was trained with 24 patients’ data (full population excluding the target patient’s data). The tar-

get model was then trained using the target patient’s data, as illustrated in Fig 1. In both source

model and target model, we applied the imbalanced sampling method that was proposed for

improving the overall quality of the predictive models.

We present two architectures of transfer learning, TL1_IS for 1-hidden layer model and

TL2_IS for 2-hidden layer model, and both models are trained with imbalanced sampling. To

show the performance improvement through transfer learning, the two TL models were com-

pared to a neural network with imbalanced sampling (NN_IS) that was trained only using the

target patient data. In the TL modeling, we focus on the effect of freezing the weights of some

initial layers of the source model and retraining only the later layers on the target data. All

unfrozen layers for target models were initialized with the values from the source model. The

model architectures evaluated together with what layers were frozen for the target model and

other model information are given in Table 1. Fig 2 illustrates the two TL models’ network

topologies studied in this paper.

All of the networks studied are simple feed-forward neural networks with one or two hid-

den layers and an output layer returning a single value between 0 and 1 interpreted as the

model confidence as to whether or not the patient’s next-day PEFR value will in the “red

zone”. All model layers are fully connected with Rectified Linear Unit (ReLU) activation except

for the output layer, which has sigmoid activation. All models were trained using Adaptive
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learning rate optimization (Adam) with binary cross entropy loss. The input layer of each

model consists of 5 parameters, which are yesterday’s PEFR value and 4 indoor quality

variables.

We trained the transfer learning models defined in Table 1 with 1000 epochs for the source

model and 100 epochs for the target model. These values were taken from the optimal training

durations found in the authors’ previous work with similar networks. The models were devel-

oped in Python 3.7 and Keras framework. The hyperparameters in the results were selected

through extended training and validation processes to avoid over-fitting while increasing the

Fig 1. Outline of the methodology of transfer learning for risk prediction.

https://doi.org/10.1371/journal.pone.0244233.g001

Table 1. Neural network and transfer learning architectures.

model Architecture Unfrozen ratio Total unfrozen weights

Neural Network NN-IS 1 hidden layer 100% 321

32 units

Transfer Learning TL1-IS 1 hidden layer 10.3% 33

32 units (frozen)

TL2-IS 2 hidden layers 79.1% 1089

32 units (frozen)– 32 units (unfrozen)

� NN uses a target patient’s data only.

�� TL uses 24 patients’ data except a target patient for source model and uses the target patient data for target model.

https://doi.org/10.1371/journal.pone.0244233.t001
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accuracy. Each target model was evaluated through 3-fold cross validation giving 75 trained tar-

get models for each architecture. The process of the TL modeling is described in Algorithm 2.
Algorithm 2 Transfer Learning(X, Xj, HPlearn, HPtransfer)
1: Input: X is a set of class-labeled data tuples from n-1 patients,
{X1,.., Xi.., Xn-1}, where i 6¼ j, Xj is a set of class-labeled training
data tuples of the target patient j
HPlearn is a set of hyperparameters for learning
HPtransfer is a set of hyperparameters for transfer
2: Output: performance metrics of a classifier
3: Knowledge building process:
4: Divide X into k datasets {for k-fold cross-validation}
5: for i = 1 to k − 1 do
6: Xtrain  (k − 1) datasets
7: Xvalid  one remaining dataset
8: a classifier NNlearn  imbalancedClassifierforNN(Dtrain, HPlearn)
9: validateModel(NNlearn, Dvalid)
10: end for
11: Transfer learning process:
12: for i = 1 to 3 do {for 3-fold cross-validation}
13: Dtrain  2/3 of Xj
13: Dtest  1/3 of Xj
14: a classifier NNtransfer  imbalancedClassifierforNN(Dtrain,
HPtransfer)
16: performance metrics  validateModel(NNtransfer, Dtest)
17: Report the average of performance metrics of 3-fold cross-
validation

3. Results

We identified 25 patients who living within the study area and presented to the study hospital

within the study period. Our final data comprised 3750 PEFR records (Table 2). Among our

study patients, women were majority (60%); their median (interquartile range, IQR) age at the

baseline was 58.0 years (50.0~66.0 years) and they were approximately 10 years younger than

the men (68.5 years (59.0~74.0 years) but there was no statistical difference (p = 0.1067)

(Table 2). Median (IQR) BMI was 23.8 (21.2~26.9) kg/m2 for female patients and 23.6

Fig 2. Transfer learning network topology. � Dotted lines represent frozen weights.

https://doi.org/10.1371/journal.pone.0244233.g002
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(22.7~24.0) kg/m2 for male patients (p = 0.9557). The median (IQR) of the PEFR of women

was smaller than men (352 (310~400 L/min) and 470 (400~600 L/min), respectively) (p

<0.001) (Table 2 and Fig 3). Indoor PM2.5 and CO2 concentration were higher (p<0.001) in

women’s home than men’s one; (41.1 (28.5~54.7) μg/m3 vs. 31.8 (21.9~47.2) μg/m3; 1018.5

(847.8~1268.7) ppm vs. 926.2 (729.6~1178.4) ppm) (Table 2).

3.1. Performance metrics of the predictive techniques

The performance of the classification techniques was evaluated for four quantities: true posi-

tive (TP), the number of positive data points correctly classified as positive; false negative

(FN), the number of positive data points incorrectly classified as negative; false positive (FP),

the number of negative data points incorrectly classified as positive; and true negative (TN),

the number of negative data points correctly classified data as negative. Standard evaluation

metrics that are defined in terms of these quantities are [24]: balanced accuracy, sensitivity,

precision, and average F1-score. Given our focus on high-risk prediction, “positive” examples

were those in which a patient’s PEFR value was below their critical cutoff (“red zone”). In the

literature, this is often referred to as class0 and we adopted that convention herein. In the con-

text of risk prediction, it was important to emphasize the model’s performance on the target

class; therefore, balanced accuracy, sensitivity, and F1-score were good measures of a model’s

ability to correctly predict a high risk of asthma.

Balanced accuracy is the average of a model’s success rate at classifying positive examples or

negative examples as such. Sensitivity is the model’s success rate at classifying positive examples

as positive. Technically, F1-score is the harmonic mean of sensitivity and another measure called

“precision,” which measures the proportion of the times the model’s classification of a case as pos-

itive is actually correct. Therefore, F1-score is a complete measure of the model’s success at both

correctly identifying high-risk cases and avoiding the incorrect classification of low-risk situations

Table 2. Distribution of age, Body Mass Index (BMI), peak expiratory flow rate (PEFR) and indoor air quality (Temperature, Relative Humidity, PM2.5 and CO2)

of studied participants.

Overall (n = 25, 3750 episodes) Women (n = 15, 2226 episodes) Men (n = 10, 1524 episodes) p-value� (W vs M)

P50 P25 P75 P50 P25 P75 P50 P25 P75

Data size per patient

162 118 180 158 104 185.5 168.5 134.5 180 0.8675

Age (years)

60 57 70 58 53 66 68.5 59.3 73.7 0.1067

BMI (Kg/m2)

23.8 21.5 25.6 23.8 21.2 26.9 23.6 22.7 24.0 0.9557

PEFR (L/min)

390 340 455 352 310 400 470 400 600 <0.001

Temperature (oC)

22.6 21.5 23.8 22.6 21.4 23.6 22.7 21.6 24.6 <0.001

Relative Humidity (%)

39.7 32.5 47.6 40.6 33.1 47.9 38.3 31.9 46.9 <0.001

PM2.5 (μg/m3)

37.5 25.2 52.4 41.1 28.5 54.7 31.8 21.9 47.2 <0.001

CO2 (ppm)

984.9 803.1 1248.4 1018.5 847.8 1268.7 926.2 729.6 1178.4 <0.001

Data size (# of days) per each patient: Minimum: 51, maximum: 200.

�p-value from Wilcoxon Mann-Whiney test.

https://doi.org/10.1371/journal.pone.0244233.t002
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as high risk. We specifically described the models’ performance based on these three important

measures; however, aggregate results are shown in Figs 4 and 5 for all measures.

3.2. Analysis of classification models

For each of the nine conventional machine learning techniques analyzed, we built two classifi-

ers for each patient data—a model each with and without IS. The performance of these two

Fig 3. Distributions of participants’ daily peak expiratory flow rate (PEFR) levels, indoor PM2.5concentrations (μg/

m3), CO2 (ppm), temperature (˚C) and relative humidity (%) (The black dotted line in Fig 3 (top) represents the 20

percentile value (320 L/min) of overall 25 participants’ PEFR data).

https://doi.org/10.1371/journal.pone.0244233.g003
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approaches was estimated with data unseen to the models during training; the performances

were compared to each other by comparing the average results on a five-fold cross-validation

split. The aggregate results from these comparisons are presented in Fig 4.

Our selected final prediction techniques (TL1_IS or TL2-IS) achieved a balanced accuracy

median (interquartile range) of 66(56~76) % for TL1_IS and 68(63~78) % for TL2_IS. Preci-

sion levels for TL1_IS and TL2_IS were 68(62~72) % and 66(62~69) % while sensitivity levels

were 58(50~67) % and 59(51~80) % from 25 patients which were approximately 1.08

Fig 4. Performance results of nine predictive models (y-axis is generalized likelihood between 0.0 and 1.0; Gray

box—Without imbalance sampling, White box—With imbalance sampling technique).

https://doi.org/10.1371/journal.pone.0244233.g004
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(accuracy, precision) to 1.28 (sensitivity) times increased in terms of performance outcomes,

compared to NN_IS.

With regard to classification accuracy, our results established that with proper training and

management of class imbalance in data, the median value of balanced accuracy for each

machine learning model could reach approximately 60% or higher and K-NN showed median

increase level after applying imbalance sampling (IS) method, compared to no IS, median

(IQR) ratio (after/before) were highest [1.15 (1.08~1.32)] with KNN technique in the context

of asthma exacerbation risk prediction (Fig 4; white boxes). For sensitivity, our results strongly

demonstrated the importance of properly managing imbalanced data. The results showed that

median sensitivities for models with the IS method increased by approximately 30% or higher

for all models, compared to those values for models without IS technique (sensitivities of 10 to

40%. Similarly, we also found that the median values of Precision or F1-scores for each model

were comparable or higher with the IS method (Fig 4).

Fig 5. Comparison of performance results of a neural network model with imbalanced-sampling (NN-IS) and two

transfer learning models with imbalanced-sampling (TL1-IS and TL2-IS).

https://doi.org/10.1371/journal.pone.0244233.g005
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For all of the performance measures, the aggregate performance statistics show generally

increasing trends in the results of the conventional machine learning techniques. In particular,

support vector machines, logistic regression and neural network performed well and the gains

in weighted accuracy were 22.5%, 18.5%, and 8%, respectively. Their improvements in sensi-

tivity were significant ranged from 145% to 467%.

3.3. Analysis of transfer learning

We evaluated the performance of two transfer learning models (TL1_IS and TL2_IS) and

compared the results with those of a 1-layer neural network model with imbalanced sampling

(NN_IS). Fig 5 shows the overall gains achieved in the transfer learning architectures over the

neural network fully trained on only a target patient’s data.

For all of the performance measures, the aggregate performance statistics show generally

increasing trends in the performance of NN_IS and the two TL models. TL1_IS showed 5.8%

higher in weighted accuracy, 25.9% higher in sensitivity, and 11.4% in precision, compared to

NN_IS. The performance improvements were more significant in TL2_IS for weighted accu-

racy and sensitivity. TL2_IS showed 8.5% higher in weighted accuracy, 28.3% higher in sensi-

tivity, and 7.6% higher in precision, compared to NN_IS. It is worth mention that although

these increases are relatively modest compared to what is achieved by transfer learning in

other applications, such as image classification, they are achieved without the benefit of data

augmentation commonly used for model improvement.

4. Discussion

The primary objective of this study was to improve the performance of machine learning tech-

niques commonly applicable in public health or clinical researches to assess the impact of

indoor air quality on PEFR values using clustered data of asthma patients. Among the models

used, the highest performance, as evaluated by the median value of balanced accuracy, sensitiv-

ity, precision, and F1-score, was observed with the TL_IS models.

This study was conducted using daily data of indoor air quality and PEFR collected from

adult asthma patients and their home environments. We observed that the room temperature

was relatively stable at 20 to 22˚C and the relative humidity ranged between 37–50%, which

were relatively stable, unlike outdoor environment, thus our study results can be applicable to

other indoor study conducted at asthmatic’s home.

Some studies have previously used machine learning techniques approached for the predic-

tion of asthma exacerbation, including alarm systems, proposed by Lee et al. [29]; predictions

of control deterioration, by Luo et al. [30]; feature extraction for risk detection, by Jalali et al.

[31]; and machine learning frameworks for risk prediction, by Alkobaisi et al. [22]. Most of the

previous studies still exhibit unsatisfactory accuracy for predicting the risk of asthma exacerba-

tion in individual patients. A recent related work, proposed by Kim et al. [32], utilizes a deep

learning model to predict asthma exacerbations among pediatric asthma patients with 70%

precision for the prediction of the risk zone based on the EU asthma zoning scale [21]. Our

work differentiates itself by utilizing an individualized-level risk zoning which is more accurate

in comparison to public-level risk zoning as it is based on patients’ accumulated data. More-

over, our proposed transfer learning method has proven to further increase the prediction

accuracy through two phases of the modeling the first is a population-level of data model fol-

lowed by a second phase of model tuning to each individual.

To date, no study has systematically compared various models to assess their prediction

performance. Our study provided results of comparative evaluation of performance improve-

ment through an imbalanced sampling method for popular machine learning techniques in
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individualized asthma health risk prediction; our study was conducted using patients’ PEFR

data, IAQ data of temperature, relative humidity, CO2 and PM2.5.

Deep learning has shown a great success in image classification but requires a large amount

of data to train models for high quality of prediction. However, small sizes of individuals’

training data, make this a challenging task. Our proposed TL method shows promise in allevi-

ating the challenges of small datasets. TL improves a model’s learning of a target patient’s data

through the transfer of knowledge from a related task that has already been learned by source

model using a larger group of patients’ datasets. It provides better results although our data

size was just at the threshold of the level required to take full advantage of the power of the NN

model architecture for asthma risk prediction. Furthermore, of note, the proposed TL models

increased the weighted accuracy of the prediction techniques by approximately 5.5% to 11.8%,

and the sensitivity by 14.4% to 26.9%, compared to neural network, which shows great promise

in the prediction of individualized asthma exacerbation.

It is well established that personalized big data analysis and machine learning techniques

can accurately predict asthma exacerbation or risk reduction, but the effort is still minimal. In

this study, with the long-term PEFR data of 25 adult asthma patients matched with the real-

time indoor air quality, including PM2.5 concentrations, we found that the predictive perfor-

mance of each model can be different by model itself as well as duration of accumulation.

However, the following limitations of our study should be noted. The number of study par-

ticipants (n = 25) is small and the number of samples was different for each patient. However,

for each participant, the data were collected for a year, over 4 different seasons. This range

ensures that the indoor air quality and their symptom distributions would not be systemati-

cally biased.

In the prediction of asthma exacerbation, we used two zones, a “red zone” nominally taken

to be PEFR values in the lower 20% of the patient’s historical PEFR values and a “safe zone”

which we nominally take to be PEFR values in the upper 80% of the PEFR distribution. The

80/20 cutoff here is somewhat arbitrary but following the EU Normal scale [21]. In practice, it

would be important for doctors and patients together to analyze the patient’s PEFR distribu-

tion as it relates to his or her actual health condition and take care to modify the 80/20 cutoff

as necessary. Additionally, the population data for source model in TL was approximately

3,800 (24 patients’ data), which is still small for deep learning classifiers. As the population

size grows, TL may be the most promising models with regard for further improvements and

implications in the future.

Our indoor air quality concentrations might not be representative of each sampling season

or area as a result of spatial-temporal variations. Additional studies may be needed to under-

stand the stability of our results in other databases collected from patients of other hospitals

with a 1-year monitoring of indoor air quality.

Furthermore, in future studies, measurements of other risk factors of indoor air quality

including concentration of biological allergic agent or molds, are expected to provide

improved prediction performance. We used a real-time indoor air quality monitor, which

should be checked for measurement error. It is well-known that the response of such real-time

monitors with light scattering technique varies with aerosol size distribution, composition,

and optical properties, and need proper calibration. We used our own calibration method as

described previously [20]. In brief, before our field sampling in the homes of patients, we oper-

ated ESCORTAIRs and PAs simultaneously and checked measurement errors compared to

federal equivalent methods.

In this study, the evaluation of the performances of the machine learning technology con-

ducted with integrated data of daily indoor air quality collected through monitors from high

QC/QA program as well as daily PEFR value. This makes this study unique compared to the
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previous studies, which were mostly conducted without such high-level QC/QA of indoor air

quality monitors.

Transfer learning has been shown to significantly improve the accuracy of the target model

for general image classification neural networks [28]. However, to date no such studies have

been performed in the area of individualized asthma prediction with limited training data for

each patient. To the best of our knowledge, this research is the first to propose an individual-

based prediction method for asthma patients that is based on this deep learning technique of

transfer learning and runs on indoor exposure data of asthma patients.

With continued innovation of machine learning technologies, its application to various

database, especially clustered personal data, can flourish in the fields of clinical research and/

or environmental health sciences. Transfer learning with imbalance sampling technique was

best suitable for classification for adult asthmatics’ PEFR change according to the variation of

indoor air quality with its high predictive accuracy among most available techniques. This

study investigated only neural network-based transfer learning, and only one transfer learning

strategy, freezing network layers and re-training the other layers for the target model. There

are other strategies that could be tested for neural networks, including modifying the source

model’s architecture before re-training, adjusting the level of fitting of the source model with

regularization such as dropout or using the output of the middle layer of the source model to

initialize a smaller target model such as support vector machine.

Acknowledgments

The authors would like to thank the medical staff in the Division of Allergy and Respiratory

Medicine at the Soonchunhyang University Bucheon Hospital for the provision of the data.

Author Contributions

Conceptualization: Wan D. Bae, Sungroul Kim, Shayma Alkobaisi, Jongwon Lee.

Data curation: Sujung Park.

Formal analysis: Shayma Alkobaisi, Jongwon Lee.

Funding acquisition: Sungroul Kim.

Investigation: Wan D. Bae, Sungroul Kim, Choon-Sik Park, Jong Wook Lee.

Methodology: Wan D. Bae.

Project administration: Sujung Park, Sangwoon Lee.

Resources: Choon-Sik Park, Jong Sook Park, Sujung Park, Sangwoon Lee.

Software: Wan D. Bae.

Supervision: Sungroul Kim, Jong Wook Lee.

Validation: Wan D. Bae, Sungroul Kim.

Visualization: Wan D. Bae, Sungroul Kim.

Writing – original draft: Wan D. Bae, Sungroul Kim, Wonseok Seo, Sangwoon Lee, Jong

Wook Lee.

Writing – review & editing: Wan D. Bae, Sungroul Kim, Jong Sook Park.

PLOS ONE Comparison of performance of machine-learning techniques

PLOS ONE | https://doi.org/10.1371/journal.pone.0244233 January 7, 2021 14 / 16

https://doi.org/10.1371/journal.pone.0244233


References
1. Loftus PA, Wise SK. Epidemiology and economic burden of asthma. International forum of allergy & rhi-

nology. 2015; 5 Suppl 1:S7–10. Epub 2015/05/27. https://doi.org/10.1002/alr.21547 PMID: 26010063.

2. Johnson NB, Hayes LD, Brown K, Hoo EC, Ethier KA. CDC National Health Report: leading causes of

morbidity and mortality and associated behavioral risk and protective factors—United States, 2005–

2013. MMWR supplements. 2014; 63(4):3–27. Epub 2014/10/31. PMID: 25356673.

3. Nunes C, Pereira A, Morais-Almeida M. Asthma costs and social impact. Asthma Research and Prac-

tice. 2017; 3. https://doi.org/10.1186/s40733-016-0029-3 PMID: 28078100

4. Purdy S, Griffin T, Salisbury C, Sharp D. Ambulatory care sensitive conditions: terminology and disease

coding need to be more specific to aid policy makers and clinicians. Public health. 2009; 123(2):169–73.

Epub 2009/01/16. https://doi.org/10.1016/j.puhe.2008.11.001 PMID: 19144363.

5. Hermann M, Pentek T, Otto B. Design Principles for Industrie 4.0 Scenarios: A Literature Review.

Hawaii International Conference on System Sciences (HICSS) 2015. p. 3928–37.

6. Thuemmler C, Bai C. Health 4.0: How virtualization and big data are revolutionizing healthcare. Leipzig

2017. 1–254 p.

7. Levine S. Predicting the Financial Risks of Seriously Ill Patients. California: California health care foun-

dation, 2011.

8. Greineder DK, Loane KC, Parks P. A randomized controlled trial of a pediatric asthma outreach pro-

gram. The Journal of allergy and clinical immunology. 1999; 103(3 Pt 1):436–40. Epub 1999/03/09.

https://doi.org/10.1016/s0091-6749(99)70468-9 PMID: 10069877.

9. Dorr DA, Wilcox AB, Brunker CP, Burdon RE, Donnelly SM. The effect of technology-supported, multidi-

sease care management on the mortality and hospitalization of seniors. Journal of the American Geriat-

rics Society. 2008; 56(12):2195–202. Epub 2008/12/20. https://doi.org/10.1111/j.1532-5415.2008.

02005.x PMID: 19093919.

10. Axelrod R, Zimbro K, Chetney RR, Sabol J, Ainsworth VJ. A disease management program utilising life

coaches for children with asthma. J Clin Outcomes Manag. 2001; 8:38–42.

11. Kelly CS, Morrow AL, Shults J, Nakas N, Strope GL, Adelman RD. Outcomes evaluation of a compre-

hensive intervention program for asthmatic children enrolled in medicaid. Pediatrics. 2000; 105

(5):1029–35. Epub 2000/05/03. https://doi.org/10.1542/peds.105.5.1029 PMID: 10790458.

12. Forno E, Celedón JC. Predicting asthma exacerbations in children. Current opinion in pulmonary medi-

cine. 2012; 18(1):63–9. Epub 2011/11/15. https://doi.org/10.1097/MCP.0b013e32834db288 PMID:

22081091.

13. SuJung P, Choon-sik P, Dae-hyeon L, Sangwoon L, Soyoung J, Sol Y, et al. Impact of Indoor Pan-frying

cooking activity on Change of Indoor PM2.5 Concentration Level in Asthmatics’ Homes. Journal of Envi-

ronmental Science International. 2020; 29(1):109–17. https://doi.org/10.5322/JESI.2020.29.1.109.

14. Jie Y, Ismail NH, Jie X, Isa ZM. Do indoor environments influence asthma and asthma-related symp-

toms among adults in homes?: a review of the literature. Journal of the Formosan Medical Association =

Taiwan yi zhi. 2011; 110(9):555–63. Epub 2011/09/21. https://doi.org/10.1016/j.jfma.2011.07.003

PMID: 21930065.

15. Matsui EC, Abramson SL, Sandel MT. Indoor Environmental Control Practices and Asthma Manage-

ment. Pediatrics. 2016; 138(5). Epub 2016/12/13. https://doi.org/10.1542/peds.2016-2589 PMID:

27940791.

16. Richardson G, Eick S, Jones R. How is the indoor environment related to asthma?: Literature review.

Journal of Advance Nursing. 2005; 52:328–39. https://doi.org/10.1111/j.1365-2648.2005.03591.x

PMID: 16194186
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