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Simple Summary: Even today, we do not know from which point the chicken embryo is able to
process and feel pain. This is of special interest as worldwide, millions of male embryos are killed
before hatching. This work aimed to examine when during the development of the embryo the brain
shows normal activity, based on EEG recordings. The data strongly suggest developmental day 13
as the earliest embryonal stage being able to process pain. These results may support legislative
processes establishing updated laws on animal welfare.

Abstract: Chicken culling has been forbidden in Germany since 2022; male/female selection and
male elimination must be brought to an embryonic status prior to the onset of nociception. The
present study evaluated the ontogenetic point at which noxious stimuli could potentially be per-
ceived/processed in the brain in ovo. EEG recordings from randomized hyperpallial brain sites were
recorded in ovo and noxious stimuli were applied. Temporal and spectral analyses of the EEG were
performed. The onset of physiological neuronal signals could be determined at developmental day 13.
ERP/ERSP/ITC analysis did not reveal phase-locked nociceptive responses. Although no central
nociceptive responses were documented, adequate EEG responses to noxious stimuli from other
brain areas cannot be excluded. The extreme stress impact on the embryo during the recording may
overwrite the perception of noniceptive stimuli. The results suggest developmental day 13 as the
earliest embryonal stage being able to receive and process nociceptive stimuli.

Keywords: EEG; nociception; pain; embryo; development; Gallus gallus domesticus

1. Introduction

Chicken culling has been forbidden in Germany since January 2022. Until this date,
around 45 million male birds were killed every year directly after hatching, as raising
male layer-type chickens is not profitable for the industry [1]. In recent years, our society
gained a clear understanding that sex selection must be brought forward to the embryo
status, leaving hatched birds untouched. During in ovo sex determination, the sex can
be identified early before hatching for example using endocrinological or spectroscopic
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procedures, so that the incubation of eggs containing male chickens can be prevented [2] as
early as possible. Animal welfare and our ethical conscience admonish our society to make
sure that sex selection and reasonable killing at this developmental stage must exclude
nociceptive perception.

Several studies have indicated that birds can perceive pain in the same way as mam-
mals [3]. This is not limited to behavioural and physiological responses to various nocicep-
tive stimuli, which elicit similar responses as observed in mammals [4,5]. More importantly,
it also includes the fact that in birds, cutaneous mechanical, thermal, chemical and poly-
modal nociceptors have been identified [4,6,7]. As pain includes a subjective component, it
is virtually impossible to quantify pain perception deriving from the neuronal activity of no-
ciceptors, especially without communicating through speech. To overcome this limitation,
pain research distinguishes between automatic, unconscious recognition of stimuli and
thereby induced transmissions of neuronal signals (nociception) and conscious perception
of pain. While nociception is the peripheral recognition of potentially tissue-damaging
(noxious) stimuli by nociceptors and their transmission through the nociceptive nervous
system towards the central nervous system [8], pain is characterized by a subjective, con-
scious and central sensation, usually triggered by nociception. Pain only arises through
the subjective, conscious perception of nociception, which requires a functional brain and
its centralized interpretation of nociception [9,10]. In animal research, the most reliable
and accepted method to record nociceptive stimuli together with their adequate neuronal
answer is the electroencephalogram [6,11–13].

The development of the chicken embryo and its nervous system is a gradual process,
e.g., from the fifth day of incubation, spontaneous movements of the embryo are possi-
ble [14]. However, as the nervous system of the chicken embryo is still less developed
at this time of embryogenesis, nociception is highly unlikely [15,16]. Previous studies
investigating the onset of the first spontaneous EEG activity were inconsistent in their
results; thus, developmental day 11 [17], day 12 [18] and day 13 [19] have been identified
as the EEG onset.

Summarized, due to a lack of consistent data on the development of the neuronal
system of chicken embryos including peripheral receptors together with sensory/motor
pathways and central processing, the currently very limited knowledge does not allow a
precise statement on the physiological onset of nociception. This is even more true for the
potential capability of pain perception at the central level. The main focus of the present
study was to determine the onset of the EEG signal in chicken embryos as a physiological
prerequisite for nociception. The second goal was to evaluate whether standardized painful
stimuli may trigger subtle changes in epidural EEG signals.

2. Materials and Methods
2.1. Animals

A total of 361 Lohman Selected Leghorn chicken embryos (TUM Animal ResearchCen-
ter, Versuchsstation Thalhausen, Technical University of Munich) between developmental
days 7–19 (ED7–ED19) were used in the experiments (see Table 1 for details). Sexing was
performed macroscopically in 280 embryos (♂ = 144 (51.43%), ♀ = 136 (48.58%)) between
ED12–ED19.

The fertilized eggs were disinfected (Röhnfried Desinfektion Pro), labeled and stored
at 15 ◦C (embryogenesis put on hold) for further treatment. Within a week, the experimen-
tal animals were moved to an incubator (Favorit Olymp 192 Spezial, HEKA—Brutgeräte,
Rietberg, Germany, temperature 37.8 ◦C, air humidity 55%) and assigned to the devel-
opmental day ED0. After three days the eggs were windowed, treated with 0.5 mL
Penicillin-Streptomycin (10,000 units penicillin, 10 mg streptomycin/mL, P4333—100 mL
Sigma-Aldrich, Darmstadt, Germany) and kept in the incubator until starting the first
EEG recordings at day ED07. After termination of the experiments, a lethal anaesthesia
was applied via intravenous injection of Pentobarbital-Sodium (Narcoren: ED07–ED19:
16 g/100 mL in 0.1–0.2 mL), followed by decapitation. Developmentally critical stages
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(ED12, ED13, ED19, see results for details) were additionally defined by a more detailed
staging method [20].

Table 1. Summarized number of animals used for the different experimental approaches.

Stage (ED) ED7 ED8 ED9 ED10 ED11 ED12 ED13 ED14 ED15 ED16 ED17 ED18 ED19 TOTAL

Animals total 36 9 8 9 18 56 57 14 13 17 18 40 66 361
Discarded 5 - - - 5 12 9 1 2 3 1 16 22 76
Evaluated 10 9 8 9 13 21 32 13 9 14 17 21 29 205 1

Random EEG - - - - - - - - - - - 2 13 15
Onset EEG - - - - - - 12 14 - - - - - 26
Electrical

stimulation 8 6 4 5 9 6 15 6 4 7 11 12 10 103

Thermal
stimulation 2 3 4 4 4 3 3 7 5 7 6 7 6 61

Histology 21 - - - - 23 16 - 2 - - 3 15 80

Discarded: From 361 embryos initially prepared, 76 were used for the establishment of the recording routines
or discarded due to a low online signal/noise ratio. Evaluated: A total of 229 recording sessions deriving from
ED07–ED19 were pre-analyzed for further analysis. Pre-analysis resulted in 15 animals for Random EEG (random
hyperpallial EEG placements), 26 animals for Onset EEG (additional recording to evaluate ED12 and ED13),
103 animals for Electrical Stimulation, 61 animals for Thermal stimulation (1 24 recordings from the initially
evaluated animals were rejected after re-evaluation of the EEG quality). For histology, 80 embryos were used,
partly originating from animals used for EEG recordings, partly especially prepared for histology.

2.2. EEG Hardware and EEG Recordings

During experiments the chicken embryos were transferred from the incubator to the
experimental setup and kept at a mean temperature of 37.5 ◦C (±2 ◦C) and a room humidity
of 42%. The embryos were given 5 min before preparation to adapt to the environmental
changes in light and humidity. The head of the embryo was gently grabbed and brought to
the edge of the egg and then fixed for EEG recordings in a way that kept the head and body
on the same horizontal level to minimize additional strain on the vascular system [21,22].

After fixation of the head, the EEG electrodes were placed epidurally at the cerebellum
(electrode EEG1), rostrally at multiple hyperpallial sites (electrode EEG2) and above the
optic lobe (reference electrode REF). Additional recordings were performed with EEG1 on
the optic lobe [18]. Custom-made gold electrodes were applied, for details refer to [23–28].
Each EEG recording consisted of 2 min of basal EEG recordings, followed by 8 min stimula-
tion and another 2 min of basal EEG (Figure 1). The raw EEG data were processed through
a pre-amplifier (custom-made, amplification: 1×, npi electronics, Tamm, Germany), am-
plified (DPA-2FL, npi electronics, Tamm, Germany) with an amplification rate of 1000×
(hardware bandpass filter: 0.1 Hz–100 Hz, notch filter @50 Hz) and digitalized @500 Hz
(Power1401, CED, Cambridge Electronic Design Limited, Milton/Cambridge, UK) for of-
fline analysis. The recording software (Spike2, CED, Cambridge Electronic Design Limited,
Milton/Cambridge, UK) was TTL-synchronized with the stimulation hardware.

Room temperature and room humidity, egg temperature and moisture of the embry-
onal brain surface was monitored very closely, as dehydration of the brain surface and
electrodes may lead to artifacts and changes in electrical activity [19,29].

2.3. Standardized Thermal and Electrical Stimulation

For thermal stimulation, 40 subsequent thermal stimuli were applied with an inter-
stimulus interval of 10 s, using a Peltier-element-based thermal stimulation device (TCS,
QST.Lab, Strasbourg, France). The stimulation device had 0.25 cm2 at the tip of the probe, a
heating speed of 41 ◦C/s (see Figure 1) and a final temperature of 51 ◦C. Peak temperature
during contact heat stimulation was chosen from the literature for nociceptive thermal
thresholds [6,30,31]. For electrical stimulation, an electrically isolated constant current
stimulator (ISO-STIM 01B, npi electronics, Tamm, Germany), with a constant stimulation
current of 1 mA [32,33] (pulse duration: 150 µs, inter-pulse interval: 5 ms, pulse train
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duration: 40 ms, inter-stimulus interval: 5 s) was used. The composition of the pulse train
derived from previous studies applying electrical microstimulations [34–36].
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Figure 1. Experimental timeline for EEG recordings in chicken embryos. (A) The total duration of
a single recording was 12 min, starting and ending with 2 min of baseline EEG recordings. The
stimulation duration was 8 min. (B) Electrical stimulation was administered at 1 mA, pulse duration:
150 µs, inter-pulse interval: 5 ms, pulse train: 40 ms at 5 s, 90 repetitions/stimulus. (C) Thermal
stimuli were given at 51 ◦C with a heating rate of 41 ◦C/s for 1 s and repeated every 10 s for 40 times.
Basal temperature was kept at 32 ◦C.

2.4. EEG Data Processing

Raw EEG recordings below 25 µV during a minimum of 90% individual recording
time and EEG recordings with amplitudes exceeding 500 µV were rejected.

Selected EEG text files were transferred into a vector file (MatLab, MathWorks, Natick,
MA, USA), and subsequently imported to the MATLAB toolbox EEGLAB [37] for analysis.
As most automated artifact rejection routines such as artifact subspace reconstruction (ASR)
are only validated for human data [38], datasets that exceeded ±500 µV in amplitude
for more than 10% of the recording time were manually rejected for analysis. From all
manually selected datasets, the EEG signal from −1 s to +2 s around the onset of each
stimulus was epoched. Event-related spectral perturbation (ERSP) and inter-trial coherence
(ITC) were calculated [39,40] using EEGLAB’s newtimef -function. A divisive baseline from
−1 s to 0 s, a resolution in time of 400 points from −1 s to +2 s and a frequency resolution
of 200 points between the frequencies of 3 Hz and 100 Hz [41,42] were chosen. EEG signals
from EEG1 were analyzed with a wavelet transform portion of the newtimef -function with
3 cycles at the lowest frequency of 3 Hz and 20 cycles at the highest frequency of 100 Hz.
In the ERSP results, any deactivation or activation below a threshold of −2 dB or above a
threshold of +2 dB was considered as a response to the stimulus [39,40,43]. For the analysis
of all baseline EEG recordings and stimuli-locked EEGs, 6 randomly selected datasets from
each development stage (ED07–ED19) were selected for further analysis. Spectral EEG
parameter were analyzed as power spectral density (PSD) with the pwelch function from
the MATLAB Signal Processing Toolbox and plotted as density spectral arrays (DSA) in a
logarithmic (log10) average across all embryos of a particular developmental day.

2.5. Physiological Anticipations

The median ERSP and ITC data are only shown for d19 embryos, as any EEG response
on external stimuli was anticipated at the latest development stage, shortly before hatching.
The phase-locked response in the EEG after electrical stimulation was expected rather
immediately after the onset of the stimulus (below 100 ms). The EEG response after
thermal stimulation was expected well after the onset of the stimuli due to ∆Theating of the
Peltier-element (between 100 ms and 800 ms) [39,40,43].

2.6. Statistics

Only the minimum/maximum ERSP and ITC values and their respective 25% and
75% quartiles, as well as the time and frequency at which they occurred, are presented,
as this does not depend on the chosen window size when extracting ERSP data. For the
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evaluation of differences in the spectral power features, calculation of the area under the
curve (AUC) of the receiver-operating characteristic (ROC) for each bin with a frequency
resolution [(125/512) Hz] of PSD and 10 k-fold bootstrapped 95% confidence intervals (CI)
were performed using the MATLAB-based MES toolbox. A difference between the two
distributions was considered significant if the 95% CI did not contain levels above 0.5. The
significance level was set to p < 0.05. For the statistical comparison of the PSD averages
from the small sample size (n = 6), the non-parametrical Mann–Whitney U test [44] with
its suitability for the analysis of EEG data [45] was applied. Some relevant data may have
been missed but the influence of the testing procedure and its statistical results did not
have any influence on the general EEG findings and spectral analyses.

2.7. Histological Procedures

Following termination of the EEG recordings, brains from ED7, ED12, ED13 and ED19
were removed from the skull and transferred to paraformaldehyde (4% PFA @1x PBS,
Sigma-Aldrich) for at least 24 h. After transferring the brains to sucrose solution (30%), the
brains were kept at 4 ◦C. Before slicing (cryotome @100 µm), the brains were mounted in
gelatine (60 g gelatine, 50 g sucrose, 0.25 mL Triton X100, 500 mL mQ H20) and transferred
again to the PFA and sucrose bath. For anatomical analysis, a standard Nissl-staining
protocol (cresyl violet staining) was applied to the anatomical slices.

3. Results
3.1. Basal EEG Activity

In Figure 2, representative 15 s sections of raw EEG data from three randomly selected
datasets (3 × 13 embryos) are shown for D7–D19. The onset of prominent EEG activity can
be clearly attributed to ED13.
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Figure 2. Raw EEG data: An overview of 15 s of raw EEG from three randomly chosen embryo
datasets at development stages ED07-ED19. An onset of physiological EEG signatures is prominently
visible from ED13 and onwards. The raw EEG amplitudes from ED07 until ED12 partly exceeded
±50 µV, but never exceeded ±100 µV, randomly fluctuating around baseline (0 µV). A strong increase
in the EEG signal can be seen from ED13-ED19, with an amplitude regularly exceeding ±200 µV. The
plots do not represent longitudinal recordings from ED07-ED19 within one embryo. For each day an
individual embryo was recorded and added to a longitudinal graphical presentation representing the
global findings.
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Table 2 lists the median and the percentiles (25%; 75%) of the delta band (1–4 Hz)
for each development stage from all 6 embryos included in Figure 3. Between ED12 and
ED13, the average power of the delta band increased by more than 20 dB in absolute terms
(p = 0.0022). An additional significant increase of approximately 6 dB (p = 0.0043) in the
delta band was found between ED10 and ED11.

Table 2. Medians and percentiles [25%, 75%] of the PSD delta band (1–4 Hz) from the 6 randomly
chosen embryos at each developmental stage, as shown in Figure 3.

STAGE (ED) ED07 ED08 ED09 ED10 ED11 ED12 ED13 ED14 ED15 ED16 ED17 ED18 ED19

MEDIAN
DELTA POWER 4.970 1.194 1.532 1.322 7.427 10.555 30.032 28.602 28.988 28.846 32.167 30.848 28.796

[25%]
PERCENTILE

[75%]
PERCENTILE

3.231
5.972

0.338
1.968

0.181
2.141

0.788
3.377

4.582
10.873

6.274
12.567

28.906
30.656

26.767
28.842

26.640
30.442

28.003
30.497

28.551
32.530

30.564
31.861

27.526
33.304
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3.2. Electrical and Thermal Stimulation 
Figure 4 represents the median event-related spectral perturbation and inter-trial co-

herence for thermal and electrical stimulation. After applying a threshold of ±2 dB to un-
mask stimulus-related EEG activities, a single local maximum of 2.79 dB [−2.15 dB/5.16 
dB] at 6.41 Hz and 1052 ms was measured after thermal stimulation. After electrical stim-
ulation, a local maximum of 2.23 dB [0.68 dB/2.23 dB] at 13.24 Hz and 543 ms was detected. 
No further ERSP responses were found. 

Figure 3. Top. Spectral power density: ED07-ED12 revealed no prominent power in all relevant
frequency bands, apart from some minor but consistent oscillations in the low delta regions around
1–2 Hz and an isolated signal at 16.33 Hz. The onset of slow delta oscillations is visible from
ED13 onwards. For each developmental day, data from 6 representative EEGs were processed.
Bottom: Boxplots illustrating the median (red line), the 25% and 75% percentiles (lower and upper
box end) and the minimum/maximum values (lower and upper whisker) for the delta band power.
Red crosses indicate outliers. AUCED10/ED11: 0.97 [0.83, 1], AUCED12/ED13: 1 [1, 1], only
significant AUCs reported (refer to Table 2 for other data).

3.2. Electrical and Thermal Stimulation

Figure 4 represents the median event-related spectral perturbation and inter-trial coher-
ence for thermal and electrical stimulation. After applying a threshold of ±2 dB to unmask
stimulus-related EEG activities, a single local maximum of 2.79 dB [−2.15 dB/5.16 dB] at
6.41 Hz and 1052 ms was measured after thermal stimulation. After electrical stimulation,
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a local maximum of 2.23 dB [0.68 dB/2.23 dB] at 13.24 Hz and 543 ms was detected. No
further ERSP responses were found.
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was present at 28.35 Hz and 0.33 Hz. Both local ITC maxima did not correspond to an 
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ITC analysis revealed a low degree of phase locking in the analyzed range of time and 
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Figure 4. Median oscillatory responses as event-related spectral perturbation (ERSP, (A,B)), indicating
the phase response, i.e., the oscillatory changes at a given time and frequency as a response to the
stimulus. Inter-trial coherence (ITC, (C,D)), indicating the degree of phase-locking, i.e., the phase
distribution of the stimulus across all trials. Blue arrow: local spectral maximum of 2.79 dB [−2.15
dB/5.16 dB] at 6.41 Hz and 1052 ms. White arrow: local spectral maximum of 2.23 dB [0.68 dB/2.23
dB] at 13.24 Hz and 543 ms. Black arrow: local ITC maximum of 0.38 [0.27/0.42] occurred at 6.41 Hz
and 797 ms.

A local ITC maximum for an thermal stimulation of 0.38 [0.27/0.42] was detected at
6.41 Hz and 797 ms; the local ITC maximum for an electrical stimulation of 0.23 [0.11/0.29]
was present at 28.35 Hz and 0.33 Hz. Both local ITC maxima did not correspond to an ERSP
response, i.e., a deactivation or activation that exceeds −2 dB or 2 dB, respectively. ITC
analysis revealed a low degree of phase locking in the analyzed range of time and frequency.
The barely visible local ITC maximum deriving from thermal stimulation indicates that the
phase of the oscillation following our stimulus is not completely random.

3.3. Histological Verification

The onset of meaningful EEG activity seems to correspond roughly with the histo-
logical data. At ED13, the embryonal development of central neuronal structures is well
advanced, anticipating the expression of all neuronal structures within the embryonal brain
at ED19 (see Figure 5).
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Figure 5. Anatomical differences of the embryonal brain: The two frontal sections (100 µm) from
the central brain area represent the neuronal development of the embryonal brain from ED13 (right)
and ED19 (left). Abbreviations: CO: Chiasma opticum, CP: Commissura posterior [caudalis] (Poste-
rior commissure), CT: Commissura tectalis, D: Nucleus of Darkschewitsch; Nucleus paragrisealis
centralis mesencephali (ICAAN), IS: Nucleus interstitialis (Cajal), ME: Eminentia mediana (Median
eminence), PVO: Organum paraventriculare (Paraventricular organ), SAC: Stratum album centrale,
SCE: Stratum cellulare externum, SCO: Organum subcommissurale (Subcommissural organ), SGC:
Stratum granimalsiseum centrale, SGFS: Stratum griseum et fibrosum superficiale, SGP: Stratum
griseum periventriculare, SO: Stratum opticum, SpL: Nucleus spiriformis lateralis, SpM: Nucleus
spiriformis medialis, VT: Ventriculus tecti mesencephalic. The anatomical nomenclature was referred
to anatomical atlases [15,46].

4. Discussion

The present study evaluated the neuronal development of an embryonal chicken brain
at the level of the EEG. A relatively clear onset of a physiologically meaningful EEG activity
could be attributed to ED13. The manifestation of this neuronal activity was shown in the
present study until ED19. Electrical and thermal stimuli did not elicit any notable temporal
and spectral changes in the corresponding EEGs.

4.1. Basal EEG

The onset of physiologically relevant brain activity in the present study could be
reliably demonstrated in various anatomical areas of the hyperpallium from ED13 onwards.
Compared to raw EEG signals recorded 2 days after hatching [47], the EEG amplitudes
in the embryo show similar temporal and spectral features. In 2-dayold chickens as well
as in embryonal stages ED13–ED19, the EEG reach amplitudes of ±100 µV to ±200 µV,
although the highest amplitudes were present prior to hatching and not during the first
few days after hatching. Interestingly, such decreasing EEG amplitudes were also docu-
mented between 2-day-old chickens and 8-week-old chickens with an average amplitude
below ±100 µV [47]. Averaged frequency spectra from 2-day-old chickens show a low
power maximum around 5–10 Hz with decreasing power towards 40 Hz [47] at frontal
recording sites. The embryonal spectral maxima at ED19 were slightly lower within a
range from 0.1 Hz to 6 Hz with a maximum at the delta band. A shift from the embryonal
delta band towards a dominant but blurry theta/alpha band immediately after hatching
may be due to the potential role of the alpha band to act as an attentional suppression
mechanism during the selection or elimination of objects or features during cognitive
tasks [48]. Whether the embryonal dominant delta band resembles sleep-likes states such
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as slow-wave sleep [24,49–51] remains a functional enigma. Early findings from embryonal
EEG recordings demonstrated spontaneous neuronal activity between ED13 and ED16 [52].
In contrast, the dominant frequency band at developmental day 15 was around 4 Hz to
7 Hz [52], shifting towards higher frequencies close to hatching, which is in line with our
findings and may resemble post-embryonal findings from others [47]. Why we found the
earliest spontaneous EEG activity already around ED13, whereas Peters and co-workers
did not report any electrical discharges of the cerebral lobes before day 14, is not clear. One
reason could be that we applied EEG recordings continuously on every developmental
day from ED7 to ED19. Peters and co-workers only reported data from day 6, day 8, day
10, day 13, day 16 and the first post-embryonal day. Important but minor developments
may have been missed. In our studies, we used consecutive numbering starting with
ED0 at the first embryonal breeding day. Whether this numbering and the corresponding
staging was applied, or numbering began at ED1 was not documented in other studies [52].
Another reason for these differences may be due to the breeding lines used in different
experiments and its potential subtle temporal aberrancy in their embryogenesis of the
brain. For example, it is known from adult mice that temporal and spectral features of
the EEG differ significantly between closely related breeding lines (Huber, 2000 #6179).
It is conceivable that neuronal embryogenesis may also differ between different chicken
breeding lines in ovo.

Apart from such differences, the global features of the late embryonal EEG are similar
to basal EEGs derived from adult chickens. Interestingly, amplitudes above ±200 µv as
recorded from our ED17–ED19 embryos were reported in resting adult chickens (Ookawa T.,
1965 #8834). At this behavioral state, the dominant frequencies in adult chickens were
3–4 Hz and 6 Hz–12 Hz, respectively. Similar data were reported from newly hatched
chickens [19]. Nevertheless, even at ED19, the individual EEGs were highly variable, which
is consistent with earlier publications and observations in adolescent chickens [17,21,53,54].

The neuronal development, as expressed in the global embryonal EEG activity re-
ported in the present study, seems to correlate with the development of various brain
structures. From developmental day 8 onwards, a mass migration of neuroblasts takes
place, which is completed around day 11 with segregation along the dorsolateral walls of
the cerebrum [55]. By developmental day 12, the diencephalon has undergone a complete
differentiation of nuclei [52,56], potentially setting the stage for physiological neuronal
activities as presented for ED13.

From ED07 to ED12, a consistent signal at 162⁄3 Hz was frequently recorded, which was
covered by more dominant domains from ED13 onwards. Although the literature is very
sparse [57] and partly not-peer-reviewed [58], one external source for this very particular
frequency recorded may have been subway tracks run by 15 kV AC at 162⁄3 Hz in close
vicinity to our laboratory.

4.2. Electrical and Thermal Stimulation

Although the EEG maturates during the last week in ovo, variations in the electrical pat-
terns are not always correlated with spontaneous motor activity [59] and motility patterns
persisted unchanged in total absence of the cerebral EEG [21], raising the principal question
in how far an embryonal EEG also does not mirror peripheral sensory input. The situation
is much clearer in the adult bird. Physiological responses including spectral changes in
the EEG to nociceptive stimuli have been described for awake birds [4,5,60], which are
consistent with those observed in awake mammals [13,39,40,43,60]. The neuroanatomical
prerequisites such as cutaneous mechanical, thermal, chemical and polymodal nociceptors
are present and respond to external stimulation similar to mammalian nociceptors [3,60,61].

Stimuli-related electrical potentials in the mammalian brain are typically found in
the somatosensory, insular, cingulate, frontal and parietal cortical network [62]. The avian
hyperpallium, nidopallium and mesopallium have been proposed to be homologous to the
mammalian somatosensory cortex [60,63–65].
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In mammals and birds, somatosensory information is processed from the deeper layers
of the thalamus [63,65] with its various nuclei based on their location, pattern of sensory
inputs and its embryological derivation [66–68] towards the pallium (hyperpallium in
birds). The hyperpallium apicale (and the caudomedial nidopallium) seem to be promising
areas for avian stimulus and nociceptive processing [64,69–71], assumingly representing
mammalian sensomotoric functionality.

Even so, the hyperpallial and nidopallial recording sites seem appropriate, no global
EEG responses to the noxious stimuli could be recorded from others [30,31] and in the
present study. The requirements to record in ovo EEG signal may create their own limitations.
Assuming that the embryo is capable of processing nociceptive sensations and stimuli from
ED13, the preparation of the embryo itself to record a clear EEG may drive the perceptive
capacity already to its limits. Experimentally applied nociceptive stimuli may then have
a perceptive threshold below the impact of the preparation of the embryo itself. These
nociceptive stimuli could as well be above a given threshold, but the EEG may already be
enhanced with nociceptive sensations from the preparation. Either way, subtle changes
in the EEG according to an experimental stimulus may be uncovered. At present, no
stereotaxic atlas of the chicken embryo is available to record along the spinothalamic tract
and its thalamic and striatal projections to overcome this dilemma.

4.3. Conscious Pain Perception

Assuming that changes in the cortical activity due to nociceptive stimulation are based
on the cognitive perception of pain [60,72], experiments applying a minimal anesthesia
protocol were performed in several species [60,73–77]. To our knowledge, only one study
used this anesthetic protocol in birds and found no consistent evidence of nociception after
thermal, electrical, or mechanical stimulation [60]. These results demonstrate either the
absence of nociceptive-driven spectral changes in birds or, more likely, a conscious percep-
tion of noxious stimuli [60]. This may raise the question of how far embryos and fetuses
possess consciousness. The present literature widely spreads from consciousness being only
present immediately after birth [78] across the morality of embryo usage in research [79]
towards the general and unsolved question what consciousness really means [80–84]. This
question by far goes beyond the scope of the present study, especially when we ask about
potential consciousness in ovo.

4.4. Selection of the Embryonal Timeframe for EEG Recordings

In birds, C and Aδ axons along the spinothalamic tract terminate at peripheral no-
ciceptive receptors connecting the peripheral nervous system with central regions of the
avian brain [85]. These afferent fibers start developing around day 4 in the embryo, in-
cluding functional multisynaptic reflex arcs and sensomotoric coupling in ovo around day
7 [16,78,86], excluding EEG recording before this stage. This neuroanatomical gestation is
in line with the selective start of EEG recordings at ED7.

4.5. Histological Verification

Assuming that at developmental day 19 the neuronal prerequisites to detect, transmit
and process nociceptive stimuli are fully established, a simple anatomical comparison as
shown in Figure 5 indicates a general ability for nociception already around day 13. All
major structures of the hyperpallium [15] are clearly visible, suggesting also a physiologi-
cally similar EEG at day 13 and day 19. The anatomical part of the study was not designed
to focus on the morphological development of the brain, but rather being anatomically
supportive for a functional EEG. The anatomical development per se would be very in-
teresting, but this would have been out of the focus of a functional EEG study. Further
acute slice recording and neuroanatomical verification is needed in the future to support
this assumption.



Animals 2023, 13, 2839 11 of 14

5. Conclusions

The present work suggests the onset of a meaningful EEG at the developmental ED13
in the chicken embryo. Is this an adequate indicator for the processing of nociceptive stimuli
or even the perception of pain? The literature suggests a central processing of nociceptive
information to establish the sensation of acute pain. Based on the present data, this seems
unlikely to be before ED13. A direct EEG-based documentation of central nociceptive
processing or the perception of pain was not possible in the chicken embryo in ovo. To
overcome this limitation, we suggest establishing in vivo recordings of neuronal activity
upon nociceptive stimuli starting at the level of the peripheral receptors, proceed along the
ascending projections towards the developing central nervous system. The establishment
of a stereotactic embryonal atlas and acute slice electrophysiology along the embryogenesis
together with the present findings have the potential to overcome this limitation.
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