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Abstract: Lithium–ion batteries play a crucial role in clean transportation systems including EVs,
aircraft, and electric micromobilities. The design of battery cells and their production process
are as important as their characterisation, monitoring, and control techniques for improved en-
ergy delivery and sustainability of the industry. In recent decades, the data-driven approaches
for addressing all mentioned aspects have developed massively with promising outcomes, espe-
cially through artificial intelligence and machine learning. This paper addresses the latest develop-
ments in explainable machine learning known as XML and its application to lithium–ion batteries.
It includes a critical review of the XML in the manufacturing and production phase, and then later,
when the battery is in use, for its state estimation and control. The former focuses on the XML
for optimising the battery structure, characteristics, and manufacturing processes, while the latter
considers the monitoring aspect related to the states of health, charge, and energy. This paper, through
a comprehensive review of theoretical aspects of available techniques and discussing various case
studies, is an attempt to inform the stack-holders of the area about the state-of-the-art XML methods
and encourage those to move from the ML to XML in transition to a NetZero future. This work has
also highlighted the research gaps and potential future research directions for the battery community.

Keywords: lithium–ion battery; machine learning; explainability; XML; interpretability; manufacturing
processes; state of health; state of charge

1. Introduction

Lithium–ion batteries (LiBs) have become the dominant technology for powering
electric vehicles (EVs) and large-scale energy storage systems due to their high energy
density, long cycle life, and relatively low cost. However, the complex nature of these
batteries and the lack of understanding of their underlying electrochemical processes have
made it difficult to predict and control their behaviour.

As the demand for electric transportation solutions and stationary energy storage sys-
tems [1] continues to grow, there is a critical need for a more efficient and reliable battery
technology than what is currently available. In the current situation, a huge volume of data
is produced on a daily basis throughout the manufacturing, system design, performance
control, and maintenance of cells, only the Badische Anilin-und Sodafabrik (BASF) [2], which
is one of the largest manufacturers of battery material, are producing more than 70 million
data points per year. With this volume of data available, data-driven methods could provide
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affordable and efficient solutions for battery representation, monitoring, and control. The
particular category of data-driven methods, which are machine learning (ML) techniques now
emerged as a powerful tool for design, modelling and managing lithium–ion batteries, with
the potential to significantly improve their performance and safety.

Machine learning algorithms are a collection of statistical methods for analysing
sample data, extracting patterns, trends, and dependencies, and generalising those to other
data in the same context. ML methods such as artificial neural networks (ANNs), decision
trees (DTs), and support vector machines (SVMs) are examples of techniques that have
proven to be very successful in correlating the various control factors that affect battery
quality after manufacturing [3], or relate the performance of cells, such as temperature,
current, and state of charge, to its lifetime, safety, and durability [4]. Such relations can be
used to optimise battery design and management, leading to more efficient and reliable
battery systems.

When it comes to ML and artificial intelligence (AI) for any application, there are
usually levels of considerations about how reliable and trustable they are in real life. In this
context, the European Union has recently published its Ethics guidelines for trustworthy
AI [5]. According to this guideline, any AI models need to be (1) lawful, which means being
compliant with all the rules and regulations, (2) ethical, meaning respecting ethical princi-
pals and values, and (3) robust, which is being considerate of how it performs at slightly
alternative conditions and under perturbations. This guideline suggests consideration of
seven key aspects as the trustworthiness requirements. In brief, those include:

• Human agency and oversight: In order for the AI models to support humans, a proper
oversight and supervision mechanism for their performance is necessary. This is
attainable by human-in-the-loop concepts.

• Privacy and data governance: This aspect is focused on data protection, integrity, and
discretion. It is necessary to be considerate of the requirements and the consequences
of illegitimate access to the data.

• Robustness and safety: This is one of the most technical aspects of AI models’ trust-
worthiness. It is about models and methods to be resilient and robust to reasonable
perturbations. Reliability and reproducibility under non-planned scenarios is the main
concern of this aspect.

• Transparency: Models and methods integrated with AI algorithms are required to
be transparent and traceable. This means they are needed to be more of white boxes
than the black boxes of decision-making algorithms. Transparency is necessary to be
adapted to each stakeholder’s specific terminology and concerns.

• Fairness and diversity: This is to make sure the algorithms are not biased toward a spe-
cific population or group of data. This could lead to discrimination in human-related
applications or in poor performance and generalisation in technical applications.

• Social and environmental well-being: While it is expected that all AI systems benefit
humans, it is not always clear how this is realised. This aspect is to make sure the
implications and advantages on human lives and also on the environment are clarified.

• Accountability: This aspect tries to raise awareness regarding the reproducibility and
traceability of the performed works by AI. Performing regular audits and assessments
of the algorithms is an important method to make sure they perform well in critical
applications.

Having the seven aspects of trustworthy AI (including ML) algorithms makes it worth
noting that not all of these items are applicable to (lithium–ion) battery research to equal
levels. This is due to the nature of battery data, which are mainly from non-human sources
and they are heavily technical. In fact, battery-related data do not face all the challenges that
life or social sciences data face. Still, many of the aspects of the EU regulations meaningfully
apply to the battery research field. A summary of the example techniques to address these
for the battery studies is given in Figure 1.
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Figure 1. Trustworthy AI aspects according to EU regulations and example techniques for lithium–ion
battery studies to be fulfilled.

Addressing the example techniques in Figure 1 is out of the scope of this work and
readers are invited to review the relevant resources such as [6,7] for further information.

The particular aspect of transparency indicated in Figure 1 is the main topic of the
current paper. ML algorithms are essentially complex with little information available
regarding their working mechanism and the flow behind the specific decision or prediction.
Although the ML models may not be directly explainable [8], there are solutions that
address this missing transparency called explainable or interpretable machine learning
(XML/IML). Explainable machine learning is particularly important in the context of
lithium-ion batteries, as it allows for a better understanding of the underlying processes
and the ability to make informed decisions and predictions. This can be especially useful
for identifying and preventing battery failures and for developing control strategies to
ensure safety. Explainable ML is more about answering the “WHY” questions when it
comes to decision-making or predictions, and this can lead to extra investment in those
reasons for quality improvements.

In line with the given motivation, this paper is intended to provide a review of the
state-of-art XML and IML techniques for the lithium–ion battery field of research. To the
best of the authors’ knowledge, despite the large number of review papers dedicated to
various aspects of lithium–ion batteries and ML (such as [3,4,9]), the XML for batteries has
not yet been reviewed in any previous works. In summary, this paper will contribute the
following:

• A review of the explainability techniques that are been utilised in the battery domain.
• The advantages and challenges of the explainability techniques.
• A categorisation and comparison of the XML methods applied for battery design and

manufacturing.
• A review and summary the role of XML in the design and delivery of intelligent

battery management systems.
• An identification of the challenges and research gaps in each category.
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• A summary of key insights and the future research directions in the area of batteries
and XML.

1.1. Materials and Methods

This review has been conducted using several terms in the literature, including lithium–
ion battery, battery energy storage, rechargeable battery, machine learning, deep learning
(DL), and artificial intelligence. These terms have been combined with the keywords of
explainable machine learning, XML, explainable artificial intelligence (XAI), interpretable
machine learning, interpretable artificial intelligence (IAI), explainability, interpretabil-
ity, Shapley, SHAP, dependency, correlation, accumulated local effects (ALEs), partial
dependency plot (PDP), feature importance, permutation importance, manufacturing, for-
mulation, design, battery management systems (BMSs), state of health (SoH) estimation,
state of charge (SoS) estimation, state of energy (SoE) estimation, and fault detection.

While the battery, lithium–ion, and machine learning key terms individually led to
a large number of papers, the combination of those with the explainability, and inter-
pretability and the rest of the above-mentioned keywords narrowed them down to about
100 papers. Among those, the papers that directly included a reference to one of the explain-
ability/interpretability techniques were selected. This selection was managed manually
based on not only the title but also the abstract of the papers. This process was followed
to filter out the papers that have explainability/explainable terms besides the battery and
machine learning keywords, but they only mean generic explanations of the results rather
than the application of formal XML/IML techniques.

The particular databases that were searched for papers included IEEEXplore, Science
Direct, Nature, MDPI, Wiley Online Library, IOP Science, and Springer. The rest of the
papers were hand-picked directly from the Google Scholar web engine. The focus of the
search has been on the journal papers, but on some occasions highly cited and credible
conference papers were also selected for review purposes. The approach of this paper has
been simple search, manual selection, and expert judgment on relevance. The search has
included all the papers from all times, up until April 2023. This review assumes that the
reader is already familiar with lithium–ion concepts and also has enough background with
machine learning techniques.

1.2. Structure of the Paper

This paper has six sections. Section 1 justifies the need and motivation for this review
from the battery research community point of view. Section 2 offers the fundamentals,
preliminaries, definitions, and main concepts of explainable and interpretable machine
learning. The audiences of this section are the researchers with knowledge of ML but less
information regarding the explainable and its techniques. This section summarises the key
questions raised during the practical use of ML that could be elevated by XML. Section 3
lists and sufficiently explains the key explainability techniques; this is mostly focused on
techniques identified to be popular in the lithium–ion research community as well as the
methods that heave the potential to be used there. Readers interested in more details on ML
and in wider concepts related to AI could refer to the many excellent resources published
by the community such as [10–12].

Section 4 is focused on the role of XML and IML for the design, manufacturing, and
production of battery cells. This section starts with a brief overview of the design and cell
manufacturing, and due to the focus of the reviewed articles on lithium-based chemistry,
mainly addresses this type of cells. This section and onward have audiences who are
expected to be relatively familiar with the challenges of battery design, production, and
testing as well as their implementation and usage in real applications. Further details
regarding the battery production chain and processes could be found in comprehensive
studies such as [13,14].

The aim of Section 5 is to address the applications and impacts of the XML for
lithium–ion batteries when in use. It addresses the main battery performance monitoring
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concepts, including its state of charge, state of health, and state of energy. This is followed
by Section 6, which reviews the battery management system aspects combined with XML.
Finally, Section 7 summarises the paper and provides discussion, recommendations, and
future overviews of this field.

2. Explainable Machine Learning

In this section, the fundamentals, theories, formulae, and definitions of explainable
machine learning are addressed to provide a better understanding of its terminologies,
variations, and applications.

2.1. Explainable vs. Interpretable ML

In the field of ML concepts, sometimes both words Explainable and Interpretable are
mentioned in the literature, and it is usually the case of those being mistakenly considered
to have the same meaning. Although explainable machine learning and interpretable
machine learning are both closely related and their purpose is to make ML models more
transparent, they are different in their specific focus and approach [15].

Interpretability in ML can be defined as the ability to explain a machine learning model
by defining it with meaningful terms to a human [15]. Thus, interpretable machine learning
focuses on making the model itself more interpretable, typically by using simpler or more
transparent model architectures, such as decision trees or linear models. On the other hand,
explainable machine learning focuses on providing explanations for the predictions of a
machine learning model, regardless of the underlying architecture [16].

In safety-critical applications that include lithium–ion battery design, modelling, and
management, it is vital and applicable to include XML for understanding the processes
and making informed decisions based on the predictions. Unlike XML, IML may not be
applicable to battery research easily. IML is meant to be used to make the model more
interpretable and understandable; however, due to the complex nature of the battery-
related problems, it is not always possible to have a simple and interpretable model that
has an acceptable level of performance or accuracy at the same time. In fact, interpretable
but poor is not sufficient to ensure the safety and reliability of the application [17].

2.2. The Need for Explainability

Addressing explainability, the first question that needs to be answered is why explain-
ability is necessary for ML techniques? Generally, the need for XML can be addressed
during two main phases of ML techniques, namely (1) their development and then (2) their
operation.

During the development phase of ML approaches as solutions, XML is necessary due
to the following reasons as described by [18–21]:

• Data Management—Having XML enables developers to find vague points, missed
information, and gaps in our training data.

• Model Selection—XML performs as a criterion for model selection to eliminate the
models with vague or non-transparent reasoning from the list of options.

• Model Training—Having an appropriate model selected, XML helps to improve the
hyper-parameter optimisation and polishing the model to gain better performance.
XML simplifies hyper-parameter tuning, facilitating easy experimentation to find opti-
mal settings. Moreover, XML helps in polishing the model, refining its performance
and reliability. Thus, XML is instrumental in streamlining model training, yielding
improved performance and more reliable outcomes.

• Model Verification—In model validation and verification, the goal is to define key
performance indices and evaluate the trained model. In model verification, XML can
be used as a metric to evaluate model behaviour in terms of weaknesses and model
flaws as well as finding their main causes.

Similar to the development phase, XML is required for the operation phase [18–21] for:
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• Model monitoring—XML can be used as a diagnostics tool to link back the model
results to the data and identify the sources of imperfect behaviour.

• Investigation of accident or incident—Having an issue with the ML on operation, local
explainability can help us to understand why the decision is made in the wrong way.

• Run-time improvement—XML can help us to improve the models when new data and
different situations are faced.

2.3. Role of Explainability among Key Stakeholders

In the lithium–ion battery industry, the development and application of machine
learning models is a multi-stakeholder effort. Each stakeholder, whether a data scientist,
business owner, regulator, or consumer, has unique perspectives, interests, and require-
ments, and all play a critical role in the overall success of the model’s deployment. One of
the key considerations for all stakeholders is the model’s explainability, or its ability to make
its processes and predictions understandable and interpretable to humans. Explainability is
essential, as it enables the validation and verification of the model’s results, the correction
and improvement of its processes, and the alignment of its functionality with business
objectives and regulatory standards. It also allows stakeholders to assess the impact of the
model on business, industry, and consumers [22].

Figure 2 provides a structured overview of the key stakeholders involved in the
development, evaluation, and application of machine learning models in the context of
lithium–ion battery technology. It divides the stakeholders into five categories: Data
Scientists, Business Owners, Model Risk Stakeholders, Regulators, and Consumers.

Figure 2. Different explainability levels and requirements for various stakeholders.
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For each category, the figure provides concrete examples of the roles involved.
For instance, within the “Data Scientist” category, roles like Modelling Scientist and Data
Processing Engineer are listed. Similarly, the “Business Owner” category includes roles
such as Battery Manufacturer and Battery Maintenance Professional. The “Model Risk”
stakeholder group is represented by insurance companies. Regulators are usually gov-
ernmental entities while the “Consumer” category encompasses broad industry segments
that rely on lithium–ion batteries, like the transportation and stationary energy storage
industries.

The figure also details how each stakeholder group may interact with the machine
learning model in their work. For instance, data scientists are involved in understanding,
debugging, and improving the model. Business owners need to understand the model,
evaluate its fitness for purpose, and agree to its use. Model Risk stakeholders are involved
in challenging the model and ensuring its robustness. Regulators have the responsibility to
verify the model’s impact on consumers and verify safety and reliability, while consumers
are interested in understanding the impact of the model on their business and determining
necessary actions.

In what follows, major explainability techniques applied to ML models in lithium–ion
battery studies, which are listed and summarised.

3. XML Categories and Methods

XML approaches, as illustrated in Figure 3, can be broadly categorised into several
key dimensions.

Figure 3. Categorisation of explainable machine learning (XML) approaches.

Local versus Global: Local explanations aim to clarify the behaviour of a model at a
particular instance. In a tabular dataset, this pertains to the explanation of a single row of
data. For image datasets, it is about deciphering a specific image’s interpretation. On the
other hand, global explanations seek to illustrate the model’s general behaviour across an
entire dataset or dataset. An averaged-out explanation from multiple local instances can
also give a generalised, global understanding.

Model-specific versus Model-agnostic: Model-specific explanations are tightly tied to
the structure of the particular model they are explaining. They take advantage of the unique
features of that model for interpretability. On the contrary, model-agnostic explanations
can be used regardless of the model’s internal workings, making them broadly applicable
across different model types.
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Intrinsic versus post hoc: Intrinsic explainability refers to models that are inherently
interpretable, meaning the model’s structure and functionality can be easily understood.
Post hoc explanations, however, are generated after the model has been trained. They seek
to explain a black-box model that may not be intrinsically interpretable.

Explanation Format: This category details the various ways the explainability can be
presented. This could be in the form of arguments (logical reasoning behind a decision),
visualisations (graphs or charts depicting the model’s functioning), text (written explana-
tions), models (simpler models that can approximate a more complex one), and graphs
(networks that represent relationships between elements).

These categories provide diverse perspectives on XML’s applicability in the lithium–ion
industry, capturing nuances in explainability, usability, and format preferences.

XML recently has received considerable attention following the newly introduced Eu-
ropean General Data Protection Regulation [23], which necessitates accessible justifications
for automated decisions. For model developers the explainable means moving from the
trial-and-error-based production, [24] and for the users, it means more trust by looking at
the rationale behind the decisions and having justifications [25,26].

3.1. Partial Dependence Plot and Accumulated Local Effects

One of the most intuitive and historical approaches to explainability is considering the
effects of features on the average predictions, which can be easily visualised considering
one or two features (in 2D and 3D). Such approaches reduce the complexity of a prediction
function by keeping other features constant and observing the changes in predictions when
changing one or two features. Different approaches lie in this category; however, as of this
paper, we focus on two more popular approaches that were addressed in the reviewed
papers, namely Partial Dependence Plots and Accumulated Local Effects.

Partial Dependence Plots (PDPs or PD Plots) [27] show the marginal effect of one or
two features on the outcome of the predictive model to better describe the relationship
between the target and these features. PD Plots work based on marginal distributions. For
a regression task, the partial dependence function is defined as Equation (1) [28]

f̂S(xS) = EXC

[
f̂ (xS, XC)

]
=

∫
f̂ (xS, XC)dP(XC) (1)

In the above equation, the machine learning model is denoted with f̂ , xS refers to the
features that PDPs represent, and XC are other remaining features. S refers to the feature
set (which includes a maximum of two features as discussed earlier) that PDPs are depicted
for and represents their effects on the predictions.

Although this approach is very intuitive, it suffers from some issues: correlated
features, heterogenous effects, and extrapolations. Hence, in reality, these plots alone are not
sufficient for addressing interactions among the features. In the face of correlated variables,
where a change in one variable also changes the other, it is not always straightforward
to infer whether the change in the response is due to the change in a specific variable
or if it could be because the other correlated variable is also changing. Another pitfall
of PDPs is having heterogeneous features where their effect cancels out each other on
average; this may be misleading and interpreted as not having any effect on predictions.
Additionally, PDPs do not work well when out-of-distribution data are fed to the model
(extrapolation). To address some of the mentioned challenges, the Accumulated Local
Effects offer a solution.

The ALE [29] plot is a way to analyse the average influence of features on the pre-
dictions made by a machine learning model. This technique is faster and unbiased in
comparison to Partial Dependence Plots.

To compute the ALEs for a specific feature, the feature space is divided into intervals,
denoted as Nj(k). The number of intervals is determined by the machine learning expert
based on numerous considerations, such as computational complexity and data limits.
For data within each interval, the ALE is calculated by taking the difference between the
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predictions made by the model f̃ when the feature value is replaced with the upper and
lower limits of that interval. These differences are then accumulated and averaged as
formulated by Equation (3) [28]:

ˆ̃f j,ALE(x) =
kj(x)

∑
k=1

1
nj(k)

∑
i:x(i)j ∈Nj(k)

[
f̂ (zk,j, x(i)−j)− f̂ (zk−1,j, x(i)−j)

]
(2)

In the above equation, f̂ represents the machine learning model. Nj(k) refers to the
neighborhood defined by the intervals. z or grid values are replaced with the features
of interest. Also, nj(k) represents the number of instances in this interval. The ALE
obtained from Equation (2) is then centered as follows (Equation (3)) to ensure a mean effect
of zero [28].

f̂ j,ALE(x) = ˆ̃f j,ALE(x)− 1
n

n

∑
i=1

ˆ̃f j,ALE(x(i)j ) (3)

By doing so, as the name suggests, “local” areas are defined for the features.
Then, within each local area, data samples that fall within the area are selected within the
designated ranges. Then, the values are changed while other features are kept fixed across
the samples. Finally, the prediction difference is calculated from the start to the end of this
area. This process is repeated for all defined areas and then, by accumulating these local
effects, the overall influence of the input on the output is determined.

In summary, both ALE and PDP approaches describe the influence of features on
the average predictions. The main difference between these two approaches is that PDP
considers the average predictions for a specific value while ALE calculates the difference
between predictions in a small window around the specific value. Furthermore, PDP is
performed over marginal distribution while ALE is based on the conditional distribution of
features. ALE is faster and more reliable as it is not biased when having correlated features.
Additionally, ALE is easier to interpret as the relative conditional effect is visualised as
opposed to PDP which depicts the average prediction. To overcome the PDP and ALE
challenges, a fairly newer approach called Differential Accumulated Local Effects (DALEs)
is introduced. DALEs being out of the scope of this paper can be followed in [30].

3.2. Feature Importance

This subsection explores various methods to ascertain the significance of features
within a model. The Permutation Feature Importance technique shuffles a feature’s values
to measure the resulting decrease in model performance. The Gini Importance method,
applied to tree-based models, considers the total decrease in node impurity. LASSO em-
ploys variable selection and regularisation to identify important features. Saabas calculates
feature importance based on average prediction change from feature splits across all trees.
The Gain method measures the reduction in the loss function by all splits over a feature,
and Split Count quantifies the frequency a feature splits data across trees.

3.2.1. Permutation Feature Importance

This method involves shuffling the values of a feature and measuring the decrease
in the model’s performance. The idea is that an important feature, when shuffled, will
drastically reduce the model’s performance. The permutation feature importance of a
feature i is defined as [31,32]

PI(i) =
1
n

n

∑
j=1

[L(y, f (X))− L(y, f (X(i,j)))] (4)

where PI(i) is the permutation importance value, the n is the number of permutations, L
is the loss function, y is the true output, f (X) is the model’s prediction with the original
dataset, and f (X(i,j)) is the model’s prediction with the j-th permutation of feature i [11].
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There are different variations for permutation-based feature importance that can be found
in the literature [33–37].

3.2.2. Gini Importance

This method also known as Mean Decrease impurity is often used in tree-based
models. The Gini Importance of a feature is calculated as the total decrease in node
impurity, weighted by the probability of reaching that node, averaged over all trees in the
ensemble [38]. The Gini Importance of a feature i can be formally defined as

GI(i) =
1
T

T

∑
t=1

∑
j∈Nt(i)

p(j)∆Gini(j) (5)

where T is the total number of trees, Nt(i) is the set of nodes j in tree t that split on feature
i, p(j) is the proportion of samples that reach node j, and ∆Gini(j) is the decrease in Gini
Impurity due to the split at node j [39].

3.2.3. LASSO

LASSO (Least Absolute Shrinkage and Selection Operator) is a regression analysis
method that performs both variable selection and regularisation. The features with non-zero
coefficients are considered important. The LASSO optimisation problem can be defined
as [40,41]

min
β

1
2n
||y− Xβ||22 + λ||β||1 (6)

where y is the output vector, X is the input matrix, β is the coefficient vector, n is the number
of samples, and λ is the regularisation parameter.

3.2.4. Saabas

Saabas, introduced by Ando Saabas in [42], is an individualised heuristic feature
attribution method that is often used with tree-based models. It computes feature impor-
tance by considering the average change in the prediction caused by a split over a feature,
averaged over all trees. Unlike the previous methods based on performance loss, Saabas
measures the change in the model’s expected output directly for comparisons. The Saabas
importance of a feature i can be defined as Equation (7), fully traceable in [42,43].

Saabas(i) =
1
T

T

∑
t=1

∑
j∈Nt(i)

p(j)∆pred(j) (7)

Here, T is the total number of trees, Nt(i) is the set of nodes j in tree t that split on
feature i, p(j) is the proportion of samples that reach node j, and ∆pred(j) is the change in
the prediction due to the split at node j.

3.2.5. Gain

The Gain method, introduced by Breiman et al. in 1984 [39], quantifies feature impor-
tance based on the total reduction in the loss function or impurity achieved by all splits
over a given feature. Despite its heuristic nature [44], Gain is widely adopted for feature
selection [45–47]. The Gain importance of a feature i is described by Equation (8),

Gain(i) =
1
T

T

∑
t=1

∑
j∈Nt(i)

∆Loss(j) (8)

where T is the total number of trees, Nt(i) is the set of nodes j in tree t that split on feature i,
and ∆Loss(j) is the decrease in the loss or impurity due to the split at node j. This measure
offers a comprehensive view of a feature’s contribution to the model.
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3.2.6. Split Count

Split count is a measure of the number of times a feature is used to split the data across
all trees. The Split Count importance of a feature i can be defined as [48]

SplitCount(i) =
1
T

T

∑
t=1
|Nt(i)| (9)

where T is the total number of trees and Nt(i) is the set of nodes j in tree t that split
on feature i. This represents both the closely related “weight” and “cover” methods in
XGBoost, but is computed using the “weight” method.

3.3. SHAP

SHapley Additive exPlanations (SHAPs) indicate how each feature is contributing to
the overall prediction of the response variables. SHAP assigns each feature an importance
value for a particular prediction [49]. The SHAP framework includes Tree SHAP for
decision tree-based models, Kernel SHAP for kernel-based models, and Deep SHAP for
deep learning models. Each variant has its unique strengths and weaknesses, and the
choice should be guided by the model architecture and the data characteristics.

SHAP values are calculated based on Shapley values from cooperative game theory.
Each feature’s contribution to the prediction is fairly attributed, considering all possible
combinations of features. The SHAP value for a feature i in a model f is given by

φi( f ) = ∑
S⊆N\i

|S|!(|N| − |S| − 1)!
|N|! [ f (S ∪ i)− f (S)] (10)

where N is the set of all features, and S is a subset of N that does not include feature i. This
equation sums over all possible subsets of features, attributing the difference in the model’s
output with and without feature i to the SHAP value of feature i.

One of the unique advantages of the SHAP is the offer of visualised dependencies
such as dependence plots, and force plots for model interpretability [50] that allow users to
understand the contribution of each feature to the model prediction.

3.4. Pearson Correlation

SHAP not only is used for contribution analysis but is also a way to quantify the
correlations between the input and responses. A more traditional way of correlation
analysis is also Pearson correlation, which quantifies the linear relationship between two
datasets [51] and can be described as (11)

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2 ∑n

i=1(yi − ȳ)2
(11)

where r is the Pearson correlation coefficient, n represents the number of data points, xi
and yi are the individual data points for the two variables in consideration, x̄ and ȳ denote
the means of the x and y datasets, respectively.

Compared to SHAP, Pearson is less advantageous when dealing with correlated input
variables in relation to the responses, and is not able to deal with categorical features either.

3.5. Explainability Considerations

Having the main techniques of XML reviewed in the previous section will full detail,
this subsection is dedicated to the common and still existing challenges of XML in real
applications including the lithium–ion battery field of research.
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3.5.1. Data Importance

According to research, even capturing data points from a mere 18 experiments
in battery cell manufacturing can take up to six months in a pilot-line manufacturing
assembly [52]. These experiments can involve various stages of testing and trials, each
generating its own unique data which must be processed and interpreted. The slow accu-
mulation of relevant data can significantly delay advancements in battery technologies and
their subsequent implementation into marketable products.

Given these challenges, the concepts of data importance and data valuation are par-
ticularly pertinent to machine learning and explainability in the lithium–ion industry.
Essentially, the goal is to determine which data are most valuable and crucial to the mod-
elling activities and to prioritise the collection and analysis of these data. Data Shapley is
a method in which the importance of each data instance is evaluated using the Shapley
value from cooperative game theory, within the context of supervised learning [53]. By this
method, through attributing a Shapley value to each data point, a measure of data impor-
tance that considers both the individual contribution of a data point and its interaction
with other data points in the dataset is obtained.

3.5.2. Counterfactual Explanations

Counterfactual explanations, distinct from other forms of explainability, extend the
understanding of Machine Learning/Deep Learning (ML/DL) models beyond the “why?”
to include hypothetical scenarios, often phrased as “what if?” queries [28,54]. These
explanations enable us to delve deeper into an alternative reality wherein input variables
could take on different values, helping to elucidate potential changes in model predictions.
In any application, including the lithium–ion battery industry, these explanations provide
insights into cause-and-effect relationships between input variables and predictions [55].

Considering the lithium–ion battery industry, counterfactual explainability can help
ML designers to predict the effect of each variable on the prediction as well as the points
for which the variable can toggle the predictions.Counterfactual explanations allow ML
designers to answer questions such as “What would have happened if a certain input
variable had a different value?” or “For a classification task, how a change in a certain
input variable can change the prediction to the other class?” [22,56–58].

This information can be used to create a better picture of ML/DL behaviour as well
as identification of areas for improvement in the battery design and to optimise battery
performance based on its ML/DL model [59–61].

For instance, if an ML model predicts high capacity for a specific battery configuration,
counterfactual explanations can guide engineers to discern why this is the case, thus
enabling them to devise modifications to the design to further enhance capacity [62].
Hence, counterfactual explanations offer additional layers of understanding, allowing
practitioners to explore potential outcomes and improvements beyond the immediate
model predictions.

3.5.3. Explainability Weaknesses

The idea behind the explainability is to provide a clear explanation of the model
behaviour, and this is a vital step towards trustworthy machine learning algorithms imple-
mentation. However, there are some cases in which even XML techniques fail to provide a
correct explanation for the models’ behaviour. As an example, [63] has focused on deep
neural networks and their explainability using gradient-based methods. The author de-
picted a case in which the input sample is close to the decision boundary and shows how a
small change in its value can make the gradient-based explainability incorrect. In another
case, Slack D. et al. [64] have used adversarial attacks on post hoc explainability methods
such as SHAP and have illustrated examples in which they failed to provide a correct
explanation. For instance, for a tabular dataset, it has created an unrelated feature, and with
an adversarial attack, the explainer is shown to be fooled. Another example is dedicated to
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pushing the explainer and making it biased towards a particular feature to show that this
could be a common case in many datasets.

Wrapping up the XML techniques in this section, the upcoming sections are focused
on the application and the role of XML in lithium–ion battery technology. Based on the
review, almost all of the references follow a similar pipeline for modelling and explanation
which is summarised in Figure 4. The sections while separated during the various phases
of the technology development, production, and implementation within an application,
all follow the order of problem definition, the modelling technology, the explainability
methodology, and finally the results and conclusions from that.

Figure 4. The pipeline for the explainable machine learning models in lithium–ion battery area.

4. XML in LiB Electrode Manufacturing and Cell Production

In recent years, artificial intelligence has found its way into the optimisation, control,
and analysis of lithium–ion battery cell production. The LiB cell production is a long and
consecutive process chain consisting of three main phases: electrode manufacturing, cell
assembly, and cell finalisation. The slurry’s formulation is an additional aspect that can
be considered as part of the battery cell production, which has been investigated in recent
years. Figure 5 provides an overview of the common process steps along the LiB production
chain. The details of the production processes can be found in [65,66].

When it comes to the LiB process control and optimisation, there is a large number
of control and response variables that need to be analysed and addressed appropriately.
This large number of control variables, as well as the equipment settings, pose a major
challenge when it comes to optimising them for a desired characteristic of LiBs. Also, the
complexity and the multi-physics-based nature of the individual processes, as well as the
interaction between one process and another, add to the difficulty of developing analytical,
numerical, or finite element models which can be universally applicable across a broad
spectrum of control variables and desired responses. The nature of this problem makes
the AI and ML models very well suited for modelling the inter-dependencies between
the control and response variables in battery cell production. The following subsections
provide an overview of the existing research on battery cell production that benefit XML.
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Figure 5. Exemplary process chain of LiB cell production.

4.1. Formulation and Mixing

The physical and electrochemical characteristics of LiBs heavily rely on the com-
bination of materials in their components, including positive and negative electrodes.
Understanding the impact of the various materials and their ratios, the formulation is
the key to optimising cell performance. Such optimisation is often very challenging to
be handled due to a large number of inter-connected factors. ML techniques based on
carefully designed experiments could offer a solution and when enhanced by explainable
techniques could be taken one step forward to realisation in scale manufacturing.

In this context, a recent XML study on a particular class of batteries with doped lithium
nickel–cobalt–manganese cathodes has adopted SHAP to understand the governing dopant
feature of the electrode on the discharge capacity of cell’s material [67]. The study develops
six machine learning models of Gradient Boosted Trees (GBT), Random Forest (RF), SVM,
K-Nearest Neighbour (KNN), ANN, and kernel ridge regression (KRR), to investigate the
correlation between the structural characteristics identified by domain expert related to
168 cells with their discharge capacity during the first and 50th cycle. Among all models, the
GBT provides the best prediction accuracy. The feature importance and feature correlation
were analysed through Shapley values, which were believed to be more desirable than
the permutation-based analysis. Shapley values were calculated for the best-performing
model on the test data for each response variable and the calculations were performed
via TreeSHAP. Based on the feature importance analysis, the minimum and maximum
cut-off voltage, as well as the current density, were identified as the most significant factors
determining the discharging performance of the material as a cathode at the cell’s initial
and 50th cycle. These features were followed by the dopant content and the lithium content
ratios. The Shapley values here also have shown that, with higher contents of lithium,
smaller amounts of dopant, and atoms with lower electro-negativity, the cells become more
likely to have a higher first and 50th cycle discharge capacity.

Liu et al. in [68] has analysed the impact of formulation on the electrode thickness,
electronic conductivity, and half-cell capacity, specifically for LFP and LTO chemistry.
The study is based on the dataset published in [69], which consists of 138 data points
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for LFP and 108 for LTO electrodes. The existing data were divided into three categories
for classification and exhibited a significant class imbalance. In order to address this
imbalance issue of the data, [68] proposed a framework based on Random Under-sampling
Boosting (RUBoost). Here, for the case of explainability, the relevance of the parameters was
analysed using the Gini index and linear correlation. For both thickness and capacity, all
the formulation variables except the binder type were identified as relevant with high Gini
importance values. For the case of electronic conductivity, the carbon conductive additive
(C65) showed the highest impact, followed by the amount of active material. To validate the
outcomes of the proposed framework, four additional tree-based models were employed
and compared to the developed RUBoost model. The proposed approach showed the best
performance in comparison with the other developed models with an F1-score of above
80% for both LFP and LTO electrode thickness.

For a commercial LiB cell chemistry, a cathode to anode ration study via XML is
reported in [70]. Here, the researchers have investigated the impact of the ratio between
the negative and positive electrode capacity (N:P ratio) during cell manufacturing on the
final cell’s characteristics in terms of its energy capacity. The study is based on input factors
determined by domain experts and the data related to 48 cells with the control factors of
N:P ratio cathode and anode areal capacity, cathode and anode active material weight, and
their thicknesses. Based on the data obtained via a design of experiment, a random forest
model has been developed and validated via a five–fold cross-validation approach. The
models show an acceptable level of accuracy, which is an R2 of 0.905 for capacity at low
crate of C/20, 0.779 for capacity at high crate of 5C, and 0.885 for the capacity ratio (5C to
C/5). The study includes the explainability of the models via methods of SHAP average
values for feature importance analysis and ALEs.The feature importance analysis showed
that the cathode active material and its thickness are the most important features for the
cell capacity up to 5C, while the anode active material also plays a pretty important role in
the 5C capacity of cells. At all crate values, the N:P ratio is the relatively least important
factor compared to the other inputs, which revealed that, for a comprehensive study, a
well-designed experiment is required, ensuring that the N:P ratio is not overshadowed or
masked by other features. The ALEs also highlighted the nature of dependency between
N:P ratio and cell capacity, which was shown to be linear and inverse for C/20, including a
local maximum for the 5C capacity.

In a comprehensive analysis, [71] investigates the impact of slurry mixing and coating
variables on the physical characteristics of the electrodes and the quality of the half coin-
cells. The adopted algorithms are RF and GBTs in the configuration of Figure 6 with nine
control factors related to six response variables selected by the domain expert.

Figure 6. Overview of input and output variables and the algorithms in Ref. [71].

This study shows that, while the model is able to predict the responses with R2

values between 0.746 for coating density and 0.942 for wet thickness of the electrode,



Energies 2023, 16, 6360 16 of 38

the explainability methods of ALEs and feature importance can successfully describe the
relations between the input and output variables. The feature importance analysis based
on the mean decrease in impurity index [72,73] has been carried out and revealed that
the coating gap is the dominant feature at all responses with a considerable share on the
predicted response. It massively masks the impact of other factors, especially for the
thickness of the coating and the cell capacity. Based on this explanation, the authors have
suggested a revised design of experiments and a new study to be carried out after removing
this factor, so the impact of other features becomes more vivid. This study is almost the first
that has managed to quantify the impact of features on the responses and explain the trend
of variables via first- and second-order ALEs. It has been shown that, while the coating
gap contributes linearly and directly to coat weight, the viscosity has a direct but saturated
impact curve.

4.2. Coating and Calendaring

In data-driven studies dedicated to electrode manufacturing, the coating process
stands out as one of the most extensively analysed process steps [9]. Several studies have
utilised different methods, such as feature importance and feature ranking or SHAP to
increase the interpretability of the developed coating process models. In the following
section, a brief review of these studies is provided.

Benefiting from the dataset in [74], the authors of [75] have adopted RF to classify
the mass loading and porosity of electrodes as two important intermediate product prop-
erties during manufacturing. For this purpose, the mass content of active material, the
solid-to-liquid ratio of slurry, viscosity, as well as the comma gap during the coating pro-
cess, are considered as input variables. The dataset consists of 656 samples in total for
82 configurations, where five classes were defined based on both mass loading and porosity
levels as output variables. The significance of input variables was quantified using feature
importance, particularly the unbiased FI and gain improvement-based techniques. In the
case of mass loading classification, despite the notable discrepancies in the results obtained
from the two adopted methods, the overall trends were observed to be similar. The comma
gap was identified as the most significant variable via XML analysis, while the viscosity of
the slurry demonstrated the least contribution to the classification results. Using a similar
approach, the significance of the input variables in combination with the electrode porosity
was analysed. As a result, the solid-to-liquid ratio of slurry and its viscosity were identified
as the most contributing features, with the mass content of active material being the least
important feature. Based on the obtained insights, the performance of the developed
models was evaluated using different sets of features. While the results could confirm
the feature importance evaluation, a relatively poor performance was reported for the
model classifying porosity, suggesting that additional quality-relevant parameters should
be considered in the dataset.

The same data available by [74] were once again incorporated into a Gaussian Process
Regression (GPR) framework for continuous prediction of the electrodes’ mass loading
in Ref. [76]. The study investigates different Automatic Relevance Determination (ARD)
kernel structures of GPR to determine the weights of individual features and assess their
influence on the prediction of mass loading. Across the four different kernel structures,
almost the same trends were observed for the feature with different weights. The comma
gap feature was demonstrated to have the highest impact, while viscosity was exhibited to
have the lowest influence on the prediction of mass loading. Among the four ARD kernel
functions, the ARDMatern5/2 exhibited the best performance in predicting mass loading,
with a root mean square error (RMSE) of 1.204 mg/cm2. Among the four different models,
the ARDEX kernel-based model stands out with the shortest training time; however, the
model exhibits the poorest performance in terms of RMSE, with a value of 1.177 mg/cm2.
Coating gap has been identified as the most important feature to predict mass loading,
while the viscosity has the least contribution in all four different models.
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Keeping the focus on mass loading and porosity as major electrode properties, [77]
has adopted tree-boosting-based models for the dataset of [74]. In this case, to evaluate
the importance of each input variable, the Gini index, as a measure of impurity, was
adopted. Additionally, the Predictive Measure of Association (PMOA) was used to carry
out a correlation analysis. The developed models were evaluated using a five-fold cross-
validation. The sensitivity analysis results for both porosity and mass loading were in
line with the findings from the previous study, [75]. In the case of mass loading, the
coating gap demonstrates the highest Gini index, while the viscosity has the lowest value.
Concerning the electrode porosity, the viscosity along with the solid-to-liquid ratio has been
identified as the most influential feature. Furthermore, the study included a comparison of
the developed RF models with three other common classification algorithms, including
decision tree, k-NN, and SVM. The RF has shown the best performance, followed by SVM
for both mass loading and porosity.

To address both cathode and anode, unlike many of the previously mentioned works
that only focus on the cathode, [78] has conducted a systematic design of experiments
to explore the predictability of properties. Following a correlation analysis, the comma
bar gap, web speed, and coating ratio were identified as relevant input parameters to be
considered in the modelling for the cathode. In the case of the anode, only the comma bar
gap and the coating ratio were determined. The final dataset included 32 configurations
for the cathode and 25 configurations for the anode. In the first step, the input variables
from the coating process were used to predict the electrode characteristics, particularly
the mass loading and electrode thickness. Additionally, the capacity of the half-cell at
C/20 was considered as an output variable. The inter-dependencies were modeled using
GBT and RF algorithms. The relevance and contribution of each feature were quantified
using Mean Decrease in Impurity (MDI) and SHAP values to increase the explainability.
Among the analysed output variables, mass loading has been highlighted as the one with
the highest accuracy. In general, the GBT models exhibited slightly better performance than
RF, regardless of the output variables. Compared to the cathode, the predictability of anode
mass loading, thickness, and capacity was slightly lower. Here, the feature importance
analysis revealed that, among the input parameters, the comma bar gap and the coating
ratio are the primary factors influencing both the mass loading and thickness, with the
comma bar gap having the greatest impact. The same trend was observed for the cell
capacity.

The inter-dependencies between product parameters in the coating process and the
resulting cell capacity have been investigated in a comprehensive study by [79]. A similar
study is conduced by [80,81] with neural networks, SVMs, and GBTs boosted with feature
importance analysis of the data reported in [79]. The study primarily focused on the
cathode; hence, a half-cell coin format was used for the cell characteristics. With the
mass loading, electrode thickness, and porosity defined as input variables, an RF-based
regression model was developed using the data from 115 coin cells. The cell capacity, as
well as gravimetric and volumetric capacity, were defined as output variables. To gain
insights into the dynamic impact of variations in the analysed coating parameters on battery
capacities, the authors employed the ALE explanation methodology. This included the
analysis of single features as well as feature pairs such as mass loading and thickness.
Among the analysed coating parameters, it was observed that the electrode thickness had
the greatest impact on the cell capacity, followed by the mass loading. In the case of the
gravimetric capacity, the mass loading had the highest interaction value. The electrode
thickness was identified as the primary contributing factor to the volumetric capacity.
The study included the importance ranking of the analysed coating parameters using the
aggregated Gini index. The main trends observed in the ALE analysis were also confirmed
using the Gini index.

Addressing the calendering process of electrode manufacturing, in [82] the authors
proposed a hybrid framework to combine experimental data with in silicomodels, calcu-
lating the electrode mesoscale properties. The models are boosted with ML algorithms
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to analyse the inter-dependencies. The experimental data consisted of the active material
content, the electrode thickness before calendering, and the calendering pressure. The
electrode mesoscale properties included the tortuosity and the electrolyte effective conduc-
tivity. The Sure Independent Screening and Sparsifying Operator (SISSO) was chosen as
the ML algorithm. The Pearson Correlation analysis, [51], was also used to demonstrate the
impact of different features. For instance, the calendering pressure, compared to the initial
electrode thickness, has been shown to have a higher impact on the electrode tortuosity.
The results emphasise that achieving optimisation in the manufacturing process is heavily
dependent on a complex interplay of trade-offs.

In another calendaring process study, ref. [52] has investigated the impact of pro-
cess parameters, machine settings, and a combination of electrode properties on the cell’s
characteristics. The input variables included the roll temperature, the calendering gap,
the mass loading of the electrode, and the target porosity. The dataset comprised a to-
tal of 18 different configurations. For the electrochemical characterisation of the pro-
duced electrodes, the impedance and the stress test for half cells with 50 cycles were
adopted. For the modelling, the Extra Trees as an extremely randomised decision tree
model was used in combination with XAI methods such as SHAP and ALE. Regarding ca-
pacity, the model exhibited strong performance, with R2 values consistently exceeding 0.95.
However, the performance tended to diminish at higher cycles with an R2 of 0.75 at 50 cy-
cles. The model predicting the impedance achieved an average R2 value ranging from 0.75
to 0.85, indicating reasonably good predictive performance. Via XML, the electrode density
and porosity were identified as the key features with the highest SHAP value to predict the
impedance, while the mass loading and the thickness were highlighted as major features to
predict the cell capacity.

4.3. Cell Assembly and Finalisation

In a holistic explainable analysis, ref. [83] has presented a data-driven approach to
investigate and improve battery cell production. The proposed approach includes an
overview of relevant data sources and possible acquisition strategies. A case study for the
application of data-driven models in battery cell production is presented, which is based on
the data collected from a pilot line. The dataset includes 772 intermediate product features
in combination with the cell characteristics of 167 pouch cells. Due to the high number of
features compared to the available data points, only 15 features have been picked to be
used in the model development. DT and RF were adopted to model the inter-dependencies
between the selected features and the maximum cell capacity. R2 values of 0.723 and 0.748
were reported for the developed models. The study includes normalised feature importance
values for features selected from dispersing, calendering, cell assembly, and laser cutting
processes. The most important features were reported to be the yield point and the mass of
the battery cell prior to electrolyte filling.

Based on the proposed approach in a similar study to the previous one, ref. [84] has
presented a use case for predicting the cell capacity using RF and ANN. Using a five-fold
cross-validation, all the developed models exhibited a predictive performance with R2

values ranging from approximately 0.66 to 0.79, with the linear Lasso–Lars regression show-
ing the best performance. The study includes the features’ importance for the developed
regression model. Table 1 summarises the reviewed articles in battery cell production and
the aspects analysed and reported in those.
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Table 1. Overview of the articles using XML methods in battery cell production and the analysed
process steps.
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Duquesnoy
et al., 2020 [82] x x

Faraji Niri
et al., 2022 [52] x

Faraji Niri
et al., 2022 [78] x

Faraji Niri
et al., 2022 [70] x x

Faraji Niri
et al., 2022 [71] x x

Liu et al.,
2021 [76] x x

Liu et al.,
2021 [75] x x

Liu et al.,
2022 [77] x x

Liu et al.,
2022 [79] x

Liu et al.,
2022 [68] x

Turetskyy
et al., 2020 [84] x x x x x

Turetskyy
et al., 2020 [83] x x x x

Wang et al.,
2021 [67] x

5. Application of XML in Battery Modelling and State Estimation

Regardless of the application, ensuring the battery’s long life, desirable performance,
and safety is necessary during its charge, discharge, and even when not in use. For this
purpose, an accurate estimation of the battery’s internal states is critical but challenging.
This challenge is due to the complex interconnection between the cell’s internal and external
variables that affect its behaviour. In this concept, three main variables that require to be
accurately estimated via affordable techniques are its state of charge (SoC), state of health
(SoH), or what is called the remaining useful life (RUL) and state of energy (SoE). There exist
various methods for state estimation of batteries, starting from experimental approaches
for direct measurement, [85], such as open circuit voltage measurement, terminal voltage
measurement, impedance-based and impedance spectroscopy methods, to the simple
calculation methods such as Coulomb counting for SoC, to the full benefit of model-based
methods such as Kalman filters [86], AI techniques including a variety of ML models and
DL prediction [87], as well as fuzzy logics [88].

In this section, first a brief definition and overview of the battery state variables is
given; then, the role, application, and benefits of XML for their estimation are summarised.

5.1. State of Health Estimation

Lithium–ion batteries in any application face a capacity loss over time. Even when the
cells are not in use, they exhibit a degradation which is called calendar aging [89]. It has
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been verified that this capacity loss could be due to a variety of failure mechanisms such
as a reduction in electrodes porosity [90], growth in the solid electrolyte interface [91], or
active material particle cracks [92].

The state of health for a cell is usually defined as the ratio of its available capacity to
the initial capacity at the start of the usage [93]. In some occasions, it could also be defined
as the battery’s internal resistance in relation to its initial resistance [94]. The threshold
after which the battery is considered at its end of life (EoL) depends on the application;
in the automotive industry this threshold is usually 80% [95]. Accurate estimation of the
battery health status is critical in order to guarantee a safe usage of cells, determining the
right time to end their life, or transferring and reusing them for a second life application.
This concept is usually referred to as the state of health or remaining useful life estimation.

According to the literature review process followed by authors for battery health
estimation, it was observed that the studies related to battery health estimation are mainly
using either SHAP or feature importance as their explainability measures. Therefore, in
what follows the works are reviewed starting from SHAP and versions, to the feature im-
portance and correlation analysis. Table 2 summarises the list of papers with explainability
addressed in there which are covered in this section.

Table 2. Summary of the studies with XML for SoH/life estimation.

Publication Ref. Correlation Feature Importance Dependency

Lee et al., 2022 [96] x
SHAP

Mawonou et al., 2021 [97] x
Jiang et al., 2021 [98] x

SHAP
Li et al., 2023 [99] x x

SHAP
Granado et al., 2022 [100] x

Pearson
Zhang et al., 2022 [101] x x

PDP
He et al., 2022 [102] x
Ibraheem et al., 2023 [103] x x

Pearson
Ardeshiri & Ma, 2021 [104] x x

Pearson
Kim et al., 2022 [105] x
Wang et al., 2023 [106] x
Rieger et al., 2023 [107] x

In the context of XML for SoH estimation, one of the distinctive studies is [96], which
proposes an estimation method for 379 LiBs at their early phase of qualification tests
at a constant temperature. This study addresses one of the largest datasets in the field
where the tests were designed for accelerated aging by stress for 5 months. This is men-
tioned to be equal to 2–4 years of normal use conditions. The method uses a moving
window approach for extracting the features of the cell capacity fade curves over 900 cycles.
The extracted features include moving averages, moving first-order differences, and mov-
ing variances. Here, the features are used for training and validating a variety of machine
learning models such as random forest, gradient boosted trees, support vector machines,
and Multi-Layer Perceptron (MLP) models. The models have been evaluated based on
different lengths of cycles such as 100, 150, to 250 for a target of predicting the next 300 to
700 cycles. The mean absolute percentage error for models is shown to be variable between
0.88% for RF with 150 cycles of training and then a prediction for 300 cycles, it goes up to
13.16% for MLP for 100 initial cycles and an estimation of the 700 cycles. For explaining
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the ML models, the SHAP is used here. SHAP values are calculated in relation to the
three above-mentioned features for the different lengths of training data of the RF model.
To reduce the computational cost, the TreeSHAP version is preferred [108]. The local level
(a specific target of prediction) and global level (across all experimental conditions) SHAP
values have shown that the contribution of the statistical features is very different from
one scenario to another. The global analysis has revealed that estimated values of SoH are
higher for smaller values of first-order difference features across the moving window, while
the predictions are smaller than average for a larger moving average value. The SHAP
related to the moving average in relative comparison to the first-order difference values
shows that the change in SoH is much more important for the model than the SoH value
itself. This explanation is also confirmed via the average SHAP across every 10 cycles for
all features. It also shows that the features of the cycles between 60 and 100 are the most
contributing ones to the SoH estimation at cycle 700. Such analysis successfully quantifies
the importance of early life tests on the estimation of life at a later cycle.

Almost the same objectives and approaches reported by [96] have also been given
in [99] but instead use a stacking ensemble model for estimating the cell SoH via Shapley
values and feature importance metrics. The dataset here includes 300 voltage profiles from
which aging features are extracted via predefined lengths of windows from the battery
voltage profile. The study calls them the short-term aging profile and addresses those
via the variance, root mean squared values, skewness, kurt value, and the variance of
the short-term profile differences. The stacking ensemble model here is trained via five
base models of light gradient boosted trees, the random forest, support vector regressors
(SVR), XGboost, and the GPR. It is shown that the stacking model has only an RMSE of
1.489% compared to that of 1.751 in lightGBM, and 1.539 in GPR. For explainability, SHAP
is obtained for clarifying the direction of correlation besides the feature importance. SHAP
reveals that the root mean squared value of the voltage and its difference are the most
significant features for the SoH prediction and they both are negatively correlated with the
LiB health, which means an increase in those values would result in SoH drop.

Another application of Shapley values for interpreting the ML models of the battery
life is showcased in [98]. Here, the battery life has been predicted via a dataset collected
during 1000 cycles of 124 commercial cells. The prediction is performed via five key
features that are extracted only from the first 100 cycles of the battery under specific
charge and discharge protocols. The features include discharge capacity at the second
cycle, the difference between the maximum discharge capacity of the first 100 cycles, and
cycle number 2. The minimum, variance, and skewness of the voltage versus the capacity
difference at 100 and 10 are the features of interest in this work. Based on the features of
the battery in its early life, a machine learning model of the extreme gradient boosted tree
is built and validated. The model shows an accuracy of 129 for root mean square error
of cycle capacity for the test data (which is lower than the support vector machine and
elastic net models equal to 151 and 188) which is reported after a five-fold cross-validation
method [109]. Here, the shapely values are obtained via Tree Explainer, which show that
the variance in capacity followed by the minimum and second cycle discharge capacity
features are the most significant factors for the model. The visualisation also clarifies that
both factors contribute inversely to health as was expected imperially.

Unlike previously mentioned research which are based on laboratory data collected
during specific discharge tests, [97] takes advantage of XML to evaluate a dataset collected
during charging events as well as the driving of an EV over time. The dataset is related to
more than 180,000 vehicles from different drives in various countries and is related to the
pack-level LiBs. It includes features such as distance, speed, temperature, and the charging
power and trains a machine learning model of random forest type. This is among the rare
studies that factor in the behaviours of the driver as well as the ambient condition when
estimating the SoH via XML. SoH estimation is attempted in two separate case studies of
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Driving-based and Charging-based events. The SoH at the first case is defined as (12) while
(13) and (14) describe the second case.

SoHc, dr ' 100× ∆SoCBOL
∆SoC

× d
dBOL

(12)

SoHe '
∆Ech
∆SoC

× ∆SoCBOL
∆Ech, BOL

(13)

∆Ech =
∫ t f

ti

I(t)×V(t)dt (14)

Here, d is the covered distance, dBOL is the nominal covered distance at the beginning
of life, ∆SoC is the state of charge variation, and ∆SoCBOL is the SoC variation at the
beginning of life. I(t) and Vt(t) refer to the current and terminal voltage of the LiB. ∆Ech is
the charged energy and ∆Ech,BOL is the energy at the beginning of the life. ti and t f refer to
the start and end of the event. The random forest model here shows an error below 1.27%
and is used for a factor importance analysis for the model explanation. This study shows
that, among all features, the battery age, the parking state of charge and temperature, the
global mileage, and the global discharged energy are the most significant factors for the SoH
prediction model. The feature importance helps to articulate the three major conclusions:
(1) Driving at high SoC is the most ageing accelerating factor, (2) Average driving speed
has a considerable impact on ageing, and (3) Charging rate is a significant factor with a
negative impact on LiB life.

Many machine learning models in the context of SoH estimation for batteries rely
on their feature definition and extraction methods, and this could potentially limit the
information that can be used by models from the data. As an attempt to directly feed
the capacity cycle life data to models, SoH estimation based on the capacity data in their
original form of time series is given by [102]. Here, first a wavelet transform is used
to de-noise the data; then, an RF is trained to only pick relatively important features
automatically. In fact, the RF performs a feature ranking and selection based on a threshold
for the maximum number of affordable features. The feature importance by RF is handled
via the Gini index and the approximate entropy theory is used to construct the multi-time
scale sliding windows for a predictive Long Short Term Memory (LSTM) model. This
explanation achieved by feature importance helps decide the length of the sliding window
for LSTM and eliminates the need for trial and error or empirical and traditional ways of
window size selection. In fact, this study utilises the LSTM as the base model for capacity
prediction via the features and takes advantage of the quantum genetic algorithm for
optimising the hyperparameters. This model is a combination of Mogrifier LSTM [110],
attention mechanism, and similarity judgments. The approach when applied to two public
datasets by NASA [111,112] has shown promising results. While this work claims to be in
the category of IML models, the only utilised technique is the feature importance.

The listed works above mainly use XML methods for the post modelling stage to
explain the findings via visualisations, unlike those [106] which feed the XML-based
findings back to the model for improvements. The model is made up of an encoder and
a predictor. In fact, the feature importance analysis is performed to weigh the factors
so the model can enhance relevant features and suppress the irrelevant ones for better
performance. The encoder here is a LSTM and Convolutional Neural Network (CNN)
while the predictor is an NN for three different ageing datasets in [113–115] with a total of
16 cells in the test. In all cases, the importance-aware model is having a better performance
than the solo versions.

Referring to feature importance analysis as a way of explanation, most works are
dedicated to batteries for EV applications. However, ref. [100] in particular addresses
XML for Electric Vertical Take-off and Landing vehicles (eVTOLs) with features such as
temperature, internal resistance of cells, charge uptake, charge energy, and discharge energy.
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Here, the feature importance is performed via linear regression (LR) analysis and the
Pearson correlation coefficients rather than what is performed in other works via a mean
decrease in prediction or the permutation-based feature elimination. For the data of
22 batteries at controlled conditions [116], five ML models including LR, SVM, RF, KNN,
and GBT are developed based on the feature importance analysis, and among all KNN has
shown the best performance with a R2 of 0.98.

A more formal element of explainability via feature importance, permutation, and
linear correlation is utilised in [103] on 158 cells cycled at various conditions from [113,117].
The study is a case of SoH estimation via minimal information from the battery through
ML. Taking advantage of the first 50 cycles of the battery use data, the model is able
to predict capacity fade and internal resistance of the cells by only the constant current
discharge curves. This model is not dependent on the charge phase and utilises the features
extracted from the voltage curves such as the minimum and maximum voltage curve, its
time derivative, the mean, variance, and skewness, as well as the kurtosis of it. A variety
of ML models including RF, SVM, and extremely randomised trees are trained via grid
search and cross-validation. The target of prediction is the end of life at 80% SoH, the
knee onset, the knee point itself, and the elbows. While the analysis shows generally high
correlations between the targets and the mentioned features, the relative importance of
those is slightly different from one response to another. The results show that one specific
feature, the difference between the variance of the constant current discharge voltage at the
first and the 50th cycle, is always among the most important features in all responses as it
captures the dynamics of the voltage profile at the key points.

A deep learning model of gated recurrent unit-recurrent neural network (GRU-RNN)
explained by feature importance and Pearson correlation analysis is reported in [104] for
RUL prediction of cells. The model is capable of self-learning the network parameters
using the gradient descent algorithm and is shown to be advantageous to LSTMs as it does
not require any memory cells when tracking the dependencies in between the degraded
capacities. Explanation via RF-based feature importance is performed on mean, standard
deviation, root mean square, peak, shape factor, crest factor, impulse factor, skewness,
kurtosis, and clearance factor. The approach has been tested on cycling datasets of four
lithium–ion battery cells, [111] with promising results. However, the paper has not precisely
described the features to be picked up as important via the Pearson correlation or the tree-
based method.

Unlike the previous ML models that are explained via averaged feature importance
after the prediction of the responses, [105,107] quantify the importance of the features
during the training phase of the model as well. In [105], a continuous evolution of the
relative feature importance with respect to the training epochs of an empirical knowledge-
infused neural network on 124 cells shows a considerable fluctuation across the range
until the final epoch block. However, all feature importance values converge to a steady
value at the final epochs of training. The model uses the health indicators of battery life
cycle numbers 7, 8, and 10, maximum temperature, and internal resistance as predictors.
The analysis shows that, while the health indicator of cycle 7 has the highest importance at
the final epochs, maximum temperature has a relatively smaller contribution. The relative
importance of other features was shown to be increasing after a certain epoch and between
the two features mentioned earlier. The evolution of feature importance values shows how
this visualisation can provide a better understanding of the model’s performance, especially
when the training settings are to be determined by the modelling expert. Similarly, ref. [107]
calculates the feature importance during the training process and utilises that to explain
why the EoL is being predicted to a particular value. This also shows that, up until the last
40 cycles to the end of life, there is a change in the importance values but the ranks remain
mainly unchanged. The application of a variety of models such as LSTM, NNs, and LR on
a relatively large dataset of [117] proves the role of explainability techniques in this regard.

Data-driven ML models based on the cycle life information of cells can provide a good
prediction of the battery RUL; however, they are not always able to provide an estimation of
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the prediction uncertainty. In fact, the number of studies that have managed to address this
issue and successfully incorporate the interpretability and explainability techniques in it are
very few. In this regard, ref. [101] has proposed a quantile regression forest (QRF) model
based on early cell degradation data to predict its cycle life. This model not only takes into
account the deliberate information coming from the physics-based representation of the
ageing process but is also capable of a prediction with quantified uncertainty. The model
performs based on prediction intervals constructed by a quantile regression [118] approach
which estimated the quantiles of the SoH value directly. The model has the advantage of
dealing with any distribution of the SoH as a response variable than necessary following a
Gaussian one. To interpret this model, two explainability techniques are addressed on a
dataset publicly reported in [117], namely feature importance via permutation and partial
dependency plots. Both methods are to investigate the relationships in the data between
the features and the SoH value. The feature importance analysis reveals that the variance
of the difference of the discharge voltage curve between cycle 10 and 100 followed by the
minimum value of the same feature have the greatest impact on the predicted cycle life.
Considering these two important features, the PDPs further highlight how the variance
and minimum of the charge–voltage difference curve affect the battery life quantitatively.
The PDPs show a step-like drop in life as the value of both features decreases.

5.2. State of Charge and Energy Estimation

Predicting and estimating the SoC or SoE of a LiBs is critical to ensure the safe de-
livery of energy in applications such as in EVs, electric buses, or eVTOLs. Various meth-
ods are now available for accurate and reliable estimation of SoC. Simpler techniques
such as Coulomb counting and open-circuit voltage [119], or model-based approaches
via a pseudo-two-dimensional (P2D) [120], single particle models [121], and Kalman
estimators [122] are only a few of the existing examples. Due to the complexity and
limitations of the model-based or purely experimental methods, data-driven SoC estima-
tion has been attempted in various studies in recent decades. A wide range of models such
as NNs [123], GPRs [124], SVRs [125], and Markov models [126–128] are developed for this
purpose. However, unlike the fair number of research studies that utilise the explainability
and interpretability techniques for the SoH or RUL prediction of batteries as listed in
the previous section, the state of charge or energy estimation problems have been less
focused on the XML. This is believed to be due to the tendency of researchers to approach
the problem via battery models rather than its experimental data and a relatively new
concept of explainability in ML models compared to ML for prediction only. Furthermore,
battery health is interesting both from the estimation and also factor analysis aspects, as
it is dependent on a large number of factors and conditions, but for the state of charge or
energy, the target is usually the estimation or prediction only. Having this consideration,
the authors in the present work have tried to review the limited number of works that have
taken advantage of the explainability methods to shed some light on the data-oriented state
of charge and energy estimation of cells in this section.

Ref. [129] is among the few studies that have utilised the explainability technique
of SHAP for SoC estimation. The study proposes a data pre-processing method for im-
proving the accuracy of a LSTM in predictions. Here, first a Pearson correlation analysis
is performed to identify the features that have a stronger correlation with the predicted
SoC. The features belong to a pool including but not limited to the mileage of the ride, the
mean value of the speed, the total energy consumed, and the cruise ratio. The method
suggests this feature extraction via a fixed-point and dynamic sliding window. SHAP is
then used to map the relationship between the highly correlated features identified during
the correlation analysis and the SoC values. Tree-based models of RF and LightGBT beside
the KNN are preferred for this purpose. With the support of SHAP, the most contributing
features are then selected to train and validate an LSTM and it has been shown that the total
energy consumption, the mileage, and the mean value of the maximum temperature, are
the most significant features of all. All the mentioned features are inversely related to SoC
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values. The method is tested on five datasets collected from real-world driving scenarios
in EVs with an accuracy of about 98%. A fairly similar work by [130] designs a state of
charge estimator based on a hybrid convolutional neural network and gated recurrent unit
long short-term memory (CNN-GRU-LSTM) while taking advantage of the mean SHAP
for its explanation. The model takes the battery voltage, current, and temperature as input
under dynamic use conditions in an EV and utilises the information directly rather than
feature extraction explained in the previous study. The method is tested on commercial
LG battery cells at various ambient temperatures between −10 ◦C and 25 ◦C. The model
shows an accuracy of about 99.6% to 98.87% depending on the ambient conditions and
shows to be advantageous compared to five similar models of solo LSTM, a model with
the one-dimensional convolutional layer before LSTM, a bi-directional LSTM, solo GRU,
and a model including a one-dimensional convolutional layer before GRU. In this work,
SHAP helps perform the relative feature importance analysis. Accordingly, the average
voltage, the voltage itself, the average current, the battery temperature, and the battery cur-
rent are the most to least important features for such a state of charge estimation problem.
This order has shown to remain unchanged from one temperature to another but has a slight
growth in the contribution of the cell’s temperature in SoC value in lower temperatures.

While the previously mentioned papers focus on the SoC estimation problem, ref. [131]
addresses the SoE estimation problem using explainability techniques. SoE estimation
essentially has a different approach to it: unlike the SoC which is mainly based on Coulomb
counting and affected by the electric current measurement and its accuracy, the SoE is both
dependent on current and voltage values. A rather weak or inaccurate model of the battery
directly affects the voltage response predictions and therefore the accuracy of the predicted
energy remains a useful energy [126]. Ref. [131] designs a GPR model considering various
duty cycles and shows an acceptable accuracy for any depth of discharge above 70 percent.
The model takes the input variables of the cell temperature, average charge, discharge
current, depth of discharge, and the energy throughput or the number of full equivalent
cycles as a representation of the cells’ state of health to estimate its SoE. The features are
extracted to reflect the mean values, the first and last percentile values, the variance, and
the medians. The element of explainability in this work is the feature importance analysis
to rank the contribution of the features on the predicted SoE as well as the ALEs. The study
shows that the SoH indicator characterised by full cycles is the most significant factor and is
followed by the discharge current average values and the cell temperature. The ALEs show
that, while the impact of the discharge current and the average charge value are linear on
the RUE, the temperature has a fairly non-linear relationship with the remaining useful
energy (RUE) values. The RUE is lowest at below 30 degrees, gradually increases between
30 and 44, reaches its maximum at 44, and then drops after that.

With the focus on the particular use case of electric buses with an example dataset
worth 350 km of trips, [132] suggests a model for predicting energy consumption.
The work involves taking the driving data, road characteristics, traffic load, and mete-
orological features, such as temperature, into an LSTM and predicting the trip variables
such as speed, acceleration, and the gas pedal position. An extreme gradient boosted
tree model (XGBoost) is then connected to the predicted responses to estimate the energy
consumption. This work follows a rather standard approach for modelling with an accu-
racy of R2 of 0.814, it has taken advantage of SHAP for feature rank identification. It has
shown that, for the second part of the model for energy consumption estimation, the gas
pedal position is the most contributing factor followed by the acceleration and the speed
of the vehicle. The relation between the gas pedal position and speed with the energy
consumption, while shown to be direct, implies that the acceleration is having an inverse
relation.

6. Application of XML in Battery Management Systems (BMS)

The ML models used for the battery state estimation including SoC, SoE, or SoH have
a great potential to be integrated into the battery management system for various purposes;
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among those is the charging management and optimisation [113], energy consumption
optimisation in hybrid vehicles [133], and fault detection of cells or modules in the battery
pack [134]. However, the explorations throughout this review study have shown that the
application of XML in this area is still very new and limited to only a few numbers of cases
given below. All cases are only focused on feature importance as the explanation technique
for their models.

A precise and fast classification of the safety risks of lithium–ion battery cells is pro-
vided by [135]. This work is focused on categorising two of the most critical faults in
lithium–ion cells, which includes the internal short circuit and thermal runaway. These are
SVM, DT, RF, KNN, as well as logistic regression (Log-R) and the If/else roles. They
take in portions (up to 5 min) of cycling data for fast classification with up to 95%
accuracy. Here, a physics-based model with a wide spectrum of state of charge, the
short circuit resistance, and charge or discharge Crates is used to generate circa 3× 105.
The explainability via permutation and the Gini criterion is used to investigate the rank of
features through the decision-making process. For the SVM classifier, it is shown that the
initial and end voltage derivative, the end voltage value, and the voltage integration are
the most significant features.

Ref. [136] proposes a method for identifying the failed cells in an on-board manner.
The failure here means insufficient capacity. The model is an elastic net which is based
on a shrinkage method. This means that it first starts with fitting a linear regression
model to the data considering all the existing variables, then narrows down the most
relevant features through a regularised regression [137]. Although this study performed a
feature importance analysis, it did not use a regular feature importance or SHAP technique.
The model first decides the two most relevant variables related to the incremental capacity
of the cells and then performs a classification task to separate healthy or faded cells.
The features include six variations of the voltage and incremental capacity values at their
peaks during the test, along with the minimum incremental capacity value. Utilising a
dataset of 95 cells under various conditions, the method is shown to have a precision of
0.75 with an F-score equal to 0.8.

A feature importance analysis for battery fault detection is also carried out in [138].
The algorithm is performing a classification task to distinguish multiple faults via decision
trees. The faults in this study include short circuit, resistance faults, as well as capacity
faults. The model takes the charge and discharge information from 534 cells, 42 under
normal conditions, 90 with abnormal resistance faults, 66 with abnormal capacity faults,
and 336 with internal short-circuit faults. Based on a collection of 18 features including
various statistical features of the time, voltage, and current, a decision tree identifies the
most important features for fault detection as mean values of the open-circuit voltage
difference, and mean values of the internal resistance difference with the contributions of
64 and 13 percent.

7. Conclusions

This article has been an attempt to bring together the XML fundamentals as well as the
findings from studies that have addressed rechargeable batteries, and mainly lithium–ion
technology. The major XML techniques and their statistical fundamentals are given in a
concise form and this is hoped to serve the community as a reference to the formula, its
advantages and disadvantages. This review is the first that covers XML in battery area and
one of the few ones that collects and summarises the methods and then interprets that to
the battery community by investigation, as seen in Figure 2.

Based on the reviews conducted during this research, the total number of articles that
made their way into the final draft was 32 (untill May 2023), with Table 3 summarising
all in terms of reference, the method used for explainability, the machine learning or deep
learning model used for prediction or classification purposes, the type of data that refers
to intermediate product properties (IPPs) or final product properties (FPPs) in battery
cell manufacturing, battery cell (BC) or drive cycle (DC) in battery state estimation and
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management systems, and the size of the data utilised in each study. Figure 7 visualises
the results based on the research domain along the battery value chain, the adopted XML
methods, and the algorithms. Among the four analysed domains, the application of
XML has been most prevalent so far in SoH/RUL estimation, followed by cell production.
The utilisation of XML methods has been found to be least common in the BMS domain.
In total, six different XML methods were identified, among which FI accounted for the
largest proportion. Following FI, SHAP is the second most frequently employed method
within the battery research domain. From the modelling perspective, the XML methods
have been adopted the most in combination with RF and SVM. It is noteworthy that
more complex models, such as NN and CNN, do not represent a significant portion in
combination with XML methods.

Figure 7. Sankey diagram illustrating from left to right: the battery domains, the adopted XML
methods, and algorithms.

Table 3. The summary of the papers with XML/IML techniques in battery research.

Ref. Tech Model Data Size Data Type

C
el

lP
ro

du
ct

io
n

[70] SHAP, ALEs RF 48 IPP
[67] SHAP, FI RF, GBT, SVM, KNN, ANN, KRR 168 FPP
[68] FI RUBoost 138 IPP
[71] ALEs, FI RF, GBT 67 IP, FPP
[75] FI RF 656 IPP
[77] FI RF, DT, KNN, SVM 656 IPP
[76] ARD GPR 656 IPP
[79] FI, ALEs RF 115 FPP
[78] FI, SHAP RF, GBT 96/75 IPP, FPP
[82] Pearson SISSO 54 IPP
[52] SHAP, ALEs ET 54 FPP
[83] FI DT, RF 167 FPP
[84] FI ANN, RF 167 FPP
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Table 3. Cont.

Ref Tech Model Data Size Data Type

So
H

/R
U

L
Es

t.

[96] SHAP RF, GBT, SVM, MLP 379 BC
[99] SHAP, FI LGBT, RF, SVM, XGB, GPR 300 BC
[98] SHAP XGB, Elastic Net, SVM 124 BC
[97] FI RF, GBT, SVM, MLP 180 K DC
[102] FI RF, LSTM 6 BC
[106] FI LSTM, CNN, NN 16 BC
[100] FI LR, SVM, KNN, RF, GBT 22 BC
[103] FI RF, SVM, RDT 158 BC
[104] FI GRU-RNN, LSTM 4 BC
[105] FI NN 124 BC
[107] FI LR, LSTM, NNs 135 BC
[101] FI, PDP QRF 135 BC

So
C

/S
oE

Es
t. [129] SHAP LSTM, LGBT, RF, KNN 5 DC

[130] SHAP CNN, LSTM 4 BC

[131] ALEs GPR 29 BC

[132] SHAP LSTM, XGB, RF, LR 187.7K DC

B
M

S

[135] FI SVM, DT, RF, KNN, Log-R 300K BC
[136] FI LR, Elastic Net 95 BC
[138] FI DT 534 BC

IPP: Intermediate Product Property, FPP: Final Product Property, BC: Battery Cell, DC: Drive Cycle.

7.1. Remarks and Challenges

Below is the key summary of the work as well as the conclusions of the review.

- Compared to the large number of studies in the domain of lithium–ion batteries that
take advantage of data-driven approaches and mainly machine learning techniques for
modelling, characterisation, fault detection and diagnosis, control, and management
of those in manufacturing or applications, the number of the research studies that
take it to the next step and focus on the explanation and interpretation is critically low.
Dividing the research subjects of battery and electrification applications into three
main sections of battery cell production, battery state estimation, and modelling, and
battery management systems and control, the largest number of works can be found
on battery cell production and battery health estimation or life prediction. This leaves
the SoC and SoE estimation and the control algorithms via XML in the last place.

- Focusing on the cell production research and based on the summary given by Table 1,
it is evident that not all process steps have received the same level of attention in
the literature. At this area, formation and coating processes are most often described
by XML techniques (61.5% and 53%, respectively). This is followed by calendering
and mixing processes with 30% and 23% of the total papers, respectively. Specifically,
the drying process in electrode manufacturing has not been addressed so far in the
XML battery research field. Additionally, the utilisation of XML methods through-
out the entire process chain, including cell assembly and finalisation, has received
limited attention.

- One of the major advantages of XML techniques is to provide transparency and in-
sights into the model. Given the intricate nature of the battery cell production chain,
particularly in electrode manufacturing, where a high number of interrelated param-
eters are involved [139], this advantage is invaluable in terms of gaining profound
process understanding and accelerating decision-making for process optimisation.
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Figure 8 shows the number of input variables in combination with the size of the
dataset for studies in electrode manufacturing using XML methods. The majority of
the studies are based on four to five input variables. However, the range varies from a
minimum of three to a maximum of nine input variables. As the number of variables
rises, the use of XML methods becomes increasingly valuable for overarching process
optimisations. The majority of studies with a high number of variables revolve around
variables from formulations. The current literature still lacks a comprehensive explo-
ration of variations in production processes. However, it is essential to acknowledge
that conducting a comprehensive analysis of battery cell production can be costly and
require significant effort. To tackle this challenge, a combination of optimal DoE [140]
and XML methods can be adopted, enabling a comprehensive cross-process analysis
and optimisation.

- Among the reviewed articles, and as summarised in Table 3, feature importance is the
most common method used for explainability, having 62% of the articles dedicated to
it. This leaves a smaller percentage of 30% and 15% to Shapley-based analysis and
dependencies such as ALE and PDP. A total of 25% of the works address more than
one explainability technique. It is worth mentioning that some of the other explain-
ability techniques are not used at all in this content, for example, local interpretable
model-agnostic explanations (LIMEs). This is also the case for the techniques of data
importance analysis such as Data Shapely and Counterfactual explainability that were
introduced in Section 3. Data Shapley is in particular very important to evaluate the
value of the data; it helps to identify the most significant and contribution data points
to the decisions/prediction and helps reduce the data size as a large dataset does not
necessarily mean a more efficient one.

- Through the review process of this work, it was identified that some studies refer to
linera correlation analysis (mainly Pearson method) as a form of explanation for the
models. While this is conceptually correct and the strength of the correlations between
the variables can be used as a form of feature importance, the novel definition of XML
would not categorise this type of analysis as an explanation [28].

- In general, the small ratio of works that tend to address the explainable ML is believed
to be due to a number of reasons. First, while the trustworthy AI concepts, and a major
technical part of it, e.g., explainability and interpretability, are rather well defined and
introduced to other research communities such as health care, social sciences, and
finance, it is not yet defined or put into notice in the energy or battery domain. This is
a major challenge because one of the main concerns of the users and the ML models in
the battery field is still struggling with confidence and trust, and part of this is due to
the black-box nature of the ML techniques. Providing information about how the ML
framework is making decisions or performing predictions could add to the confidence
of the users when attempting using those for new datasets.

7.2. Future Prospects

Figure 9 provides an overview of articles published over the years in different battery
research domains, adopting XML techniques. The figure confirms that XML is an emerging
trend in different fields of battery research, with the number of publications growing from
four articles before 2021 to 16 in 2022. This figure does not include the articles from 2023,
as the inspection was conducted in May 2023, and the numbers have been limited for this
period of time. It is also worth noting that, as of 2022, all five different research fields in
the battery value chain are represented in the XML literature. Despite these advancements,
there are still various aspects that need to be addressed for increasing the explainability of
ML techniques in the battery field.
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Figure 8. Overview of different XML methods applied in electrode manufacturing articles in com-
bination with the number of input variables and the size of the dataset. The circles’ dimensions
correspond to the dataset size, and the exact size is additionally provided.

Figure 9. Overview of reviewed articles in different battery research domains adopting XML tech-
niques published by the end of the year 2022.

• All of the existing works on the XML are dedicated to lithium–ion batteries, and there
are no studies that focus on the explainability of ML models for what is called “beyond
lithium–ion” [141]. This is a serious challenge as the growing demand for the energy
capacity and safety of rechargeable cells for electrification of transportation systems
and e-mobility have made it clear that other types of cells (e.g., all-solid-state batteries,
sodium–ion batteries) need to find their way into the market.

• What is investigated and proposed in the explainable ML for the battery field up to
now has mainly been aimed to provide recommendations and analysis regarding the
results. This means that XML has not yet been used for optimisation and improvement
purposes in any of the mentioned categories of production, state estimation, or control.
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Taking the explanation results into account in the form of a feedback control scheme is
something that is missing in the battery field and needs further investments.

• Explainability and interpretability are only one of the aspects of the trustworthy
AI methods, as described in Section 1. This work has made an attempt to address
this particular aspect, specifically for LiB research. However, other dimensions of
trustworthiness have yet to be explored by the LiB research community. It is essential
to investigate, address, and provide clarity on these aspects to enhance the trust and
applicability of such models.

• As the summary of the findings in the Table 3 shows, there is a shortage of the research
resources dedicated to the explanations of the NNs for modelling and prediction
of lithium–ion batteries. Although the NNs has been widely adopted, especially in
performance prediction of batteries [142,143], they are not yet equipped with the
explainability techniques and this is definitely a clear area for improvement.

• One particular area of modelling and optimisation in the lithium–ion batteries is
based on image data of its microstructure. Example studies are [144] for micro-
structure reconstruction and [145] for capturing the impact of the cells’ mesostructure
on its performance. There is also research that addresses the challenge of image
segmentation (to separate/classify the active material particles, the binder, and the
pores) before any modelling activities are performed [146,147]. While image-based
studies are approached via various techniques of ML or deep learning (DL), the
models’ or algorithms’ explainability has not yet been addressed. Such studies are
crucial to understanding why a particular section of the images is identified to belong
to a specific class or why a particular connection has been identified between the
micro-structures’ characteristics and the cells’ performance.

• The previous point mentioned regarding the image data and explainability is also
a missing area for the time series data in the battery field. This review has already
listed a number of studies that have performed predictions of the state of health
based on the cycling data of the cells at various conditions; however, they mainly use
feature importance as explainability techniques and none of the particular techniques
specific to the time series have been reported there [148]. Techniques based on back-
propagation [149] and perturbation [150], which are tailored to the data type, are much
more efficient in this case and could reveal interesting relations between factors and
responses.

• As machine learning and artificial intelligent techniques are under continuous update
and progress to make them adaptable to various datasets, the creation and devel-
opment of novel explainability methods is critical. The basic requirement of testing
such methods is the availability of a benchmark dataset that the methods can be
tested against so the investigations show their advantages and weaknesses. Unfor-
tunately, the lithium–ion battery community has not yet presented such benchmark
dataset for this purpose. In fact, although there exist various open data resources
such as [151–153], none of those have the ground truth explanation results reported in
them, so there exists no case to compare the performance of the methods against that.
Planning and creating such datasets is one future aspect that could be approached by
the battery community in the future.
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ALE Accumulated Local Effect
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ANN Artificial Neural Network
BASF Badische Anilin-und Sodafabrik
BMSs Battery Management Systems
CNN Convolutional Neural Network
DALE s Differential Accumulated Local Effects
DoE Design of Experiments
DL Deep Learning
DTs Decision Trees
EoL End of Life
EV Electric Vehicle
eVTOL Electric Vertical Take off and Landing
FP Final Products
GBT Gradient-Boosted Decision Tree
GPR Gaussian Process Regressors
GRU Gated Recurrent Unit
IAI Interpretable artificial intelligent
IML Interpretable Machine Learning
IP Intermediate Products
KNNs K-Nearest Neighbors
KRR Kernel Ridge Regression
LASSO Least Absolute Shrinkage and Selection Operator
LiB Lithium–Ion Batteries
LightGBM Light Gradient Boosted Trees
LIME s Local Interpretable Model-Agnostic Explanations
Log-R Logistic Regression
LR Linear Regression
LSTM Long Short Term Memory
MDI Mean Decrease in Impurity
MLP Multi-Layer Perceptron
NNs Neural Networks
P2D Pseudo-Two-Dimensional
PDP Partial Dependency Plot
PMOA Predictive Measure of Association
RF Random forest
RMSE Root Mean Square Error
RNN Recursive Neural Network
RUBoost Random Undersampling Boosting
RUE Remaining Useful Energy
RUL Remaining Useful Life
SHAP SHapley Additive exPlanation
SISSO Sure Independent Screening and Sparsifying Operator
SoC State of Charge
SoH State of Health
SoE State of Energy
SVM Support Vector Machine
SVRs Support vector Regressors
XML Explainable Machine Learning
XAI Explainable Artificial Intelligence
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