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Abstract: The efficient computation of viewpoints for solving vision tasks comprising multi-features
(regions of interest) represents a common challenge that any robot vision system (RVS) using range
sensors faces. The characterization of valid and robust viewpoints is even more complex within real
applications that require the consideration of various system constraints and model uncertainties.
Hence, to address some of the challenges, our previous work outlined the computation of valid
viewpoints as a geometrical problem and proposed feature-based constrained spaces (C-spaces) to
tackle this problem efficiently for acquiring one feature. The present paper extends the concept of
C-spaces to consider multi-feature problems using feature cluster constrained spaces (GC-spaces).
A GC-space represents a closed-form, geometrical solution that provides an infinite set of valid
viewpoints for acquiring a cluster of features satisfying diverse viewpoint constraints. Furthermore,
the current study outlines a generic viewpoint planning strategy based on GC-spaces for solving
vision tasks comprising multi-feature scenarios effectively and efficiently. The applicability of the
proposed framework is validated on two different industrial vision systems used for dimensional
metrology tasks.

Keywords: viewpoint planning problem; vision system automation; constraint planning; robot vision
system; range sensor

1. Introduction

The number of applications requiring machine vision capabilities (e.g., image-based
inspection, object digitization, scene exploration, object detection, visual servoing, robot
calibration, mobile navigation) has rapidly increased within the research and industry over
the last decade [1,2]. Depending on the vision task and system complexity, the automation
of such applications is necessary to provide effective and efficient solutions [3]. Over
the past decade, robot vision systems (RVS) equipped with a range sensor have proven
useful for automating these tasks. However, programming RVS to perform such tasks is
considered a tedious and complex challenge. Programmers face a common challenge: the
computation of necessary and valid viewpoints to perform the required vision task. This
challenge is well known as the view(point) planning problem (VPP).

In an attempt to propose an efficient and generic framework to tackle the VPP, this
publication extends the concept of feature-based constrained spaces (C-spaces), introduced
in our previous publication [4], and outlines a viewpoint planning strategy for multi-feature
scenarios using feature cluster constrained spaces (GC -spaces).

Sensors 2023, 23, 7964. https://doi.org/10.3390/s23187964 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187964
https://doi.org/10.3390/s23187964
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2302-5695
https://orcid.org/0000-0002-6043-8085
https://orcid.org/0000-0001-7955-875X
https://orcid.org/0000-0002-4844-3842
https://doi.org/10.3390/s23187964
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187964?type=check_update&version=3


Sensors 2023, 23, 7964 2 of 44

1.1. GC-spaces for Solving the Viewpoint Planning Problem

The VPP can be comprehended by considering the following simple and generic
formulation (F):

Problem 1. What is the minimum number of viewpoints to acquire a set of features considering
different viewpoint constraints?

Figure 1 provides a graphical representation of this problem for acquiring a set of four
features. Solving the VPP based on this formulation would require a monolithic strategy to
efficiently solve a high-dimensional problem where multiple viewpoint constraints must
be satisfied simultaneously. As a first step, we believe that a suitable reformulation and
modularization of the VPP is necessary to reduce its complexity and outline more efficient
solutions. In the present study, we propose first breaking the VPP into two subproblems,
i.e., the viewpoint generation problem (VGP) and the set cover problem (SCP). The detailed
reformulation of the VPP and its subproblems is handled within Section 3.

ps,2

ps,1

Sensor
poses

Frustum

f 3
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f2
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f4

G2CGC-spaces

Features (f) and Clusters (G):
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Figure 1. Simplified, graphical representation of the Viewpoint Planning Problem (VPP): how many
viewpoints (sensor poses) are needed to acquire all four features? The present study proposes a
viewpoint planning strategy based on feature cluster constrained spaces (GC -spaces) to answer this
question. A GC -space spans a topological space in the special Euclidean SE(3) with an infinite number
of sensor poses ∀ ps ∈ GC to acquire all features from a cluster G that satisfy a set of viewpoint
constraints C̃, e.g., imaging parameters of the sensor, feature geometry, and orientation. GC -spaces
are computed based on the intersection of C-spaces to acquire individual features. This example
shows that two sensor poses (ps,1, ps,2) are required to capture the four visualized features. The
selection of the sensor poses is performed straightforwardly by selecting any sensor pose within the
GC -spaces GC1 and GC2. The design of a strategy for selecting which features can be grouped and the
characterization of the GC -spaces are the focus of the present research.

Magaña et al. [4] focused on the first subproblem of the VPP, i.e., the VGP, which
addresses the generation of valid viewpoints to acquire a single feature. The VGP was
posed as a pure geometrical challenge that can be solved effectively using feature-based
constrained viewpoint spaces (C-spaces). A C-space represents the spatial solution space in
6D (translation and rotation) that a set of viewpoint constraints spans. Therefore, C-spaces
represent an analytical, geometric, and closed-form solution that provides infinite valid
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viewpoints to capture a feature. Especially within real applications, infinite solution spaces
are advantageous for choosing seamlessly alternative solutions to compensate for model
uncertainties or unknown constraints affecting the validity of a chosen viewpoint.

Although [4] delivered a sound solution for computing valid viewpoints and demon-
strated the potential of C-spaces for a simplified multi-feature acquisition, the authors did
not pose the VGP as a multiple-feature problem. Moreover, a strategy for finding potential
features that could be acquired together was not proposed. For example, it is generally not
obvious which features could be acquired together in more complex scenarios with several
features, such as the one depicted in Figure 1.

For these reasons, the present paper first extends the concept of C-spaces for acquiring
multiple features by introducing GC -spaces. GC -spaces can be analogously interpreted as
spatial, continuous solution spaces spanned by a set of C-spaces for acquiring a group of
features. Hence, any sensor pose within it fulfills all viewpoint constraints C̃ and can be
considered valid for capturing all regarded features. Figure 1 provides an exemplary and
simplified illustration of the VPP and the spanned GC -spaces for acquiring four features.
The VPP can be easily solved by selecting one sensor pose from each GC -space. Section 4.1
outlines the characterization of GC -spaces based on C-spaces.

In a second step, the present work addresses the second subproblem of the VPP, i.e.,
the SCP, and introduces a viewpoint plan strategy in Section 4.2 to identify the potential
features that can be clustered together. Having identified the minimum number of necessary
feature clusters, hence, viewpoints, the corresponding GC -spaces can then be computed to
solve these multi-viewpoint tasks.

In the last Section 5, the applicability and potential of the proposed approach are
evaluated in the context of dimensional metrology tasks using two industrial vision systems
with different range sensors.

1.2. Related Work

The VPP has been the focus of the research over the last three decades within a wide
range of vision tasks that demand the computation of generalized viewpoints. A broad
overview of the overall progress, challenges, and applications of the VPP is provided within
various surveys [2,5–9]. Depending on the a priori knowledge required, the approaches
for viewpoint planning can be roughly classified into model-based and non-model-based
approaches. Since our framework falls under the first category, this section provides a more
comprehensive overview of the related research following model-based approaches.

Model-based methods require minimal spatial information from the features, e.g.,
its position and orientation, can be categorized as synthesis or sampling-based approaches.
On the one hand, synthesis approaches consider first the characterization of a continuous
or discrete solution space. On the other hand, sampling-based techniques generate and
evaluate viewpoints based on objective functions without the need to span a search space.

1.2.1. Synthesis

The synthesis of solution spaces (related terms: C-spaces and GC -spaces, search space,
configuration space, viewpoint space, visibility map, visibility matrix, visibility volumes,
imaging space, scannability frustum, visual hull) was posed in the first studies addressing
the VPP and has the advantage of providing a straightforward comprehension and spatial
interpretation of the general problem.

The pioneering studies of [10,11] are considered among the first to consider the char-
acterization of a continuous viewing space in R3. Their works proposed analytical rela-
tionships to characterize multiple constraints geometrically for 2D sensors. However, their
research concentrated on generating single viewpoints and did not consider a strategy
for more complex applications requiring multiple viewpoints. Based on the analytical
findings provided by the previous work of [10,11], Tarabanis et al. [5,12] introduced a
model-based sensor planning system that characterizes a continuous search space taking
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into account the occlusion constraints. The rest of the constraints are formalized based on
objective functions.

The study of [13] extended and addressed some of the drawbacks of [5], such as the
non-linearity and convergence guarantee of the objective functions. In their work, they
opted to synthesize the 3D search spaces, as suggested by [10]. Since not all viewpoint con-
straints could be synthesized, the authors proposed a gradient-based approach to find valid
sensor poses within the search space and to evaluate the rest of the constraints. In parallel,
in a series of publications, Reed et al. [14,15] also followed an explicit characterization of
the viewpoint space in R3 for range sensors integrating imaging, occlusion, and workspace
constraints. However, the final selection of valid viewpoints required a discretization of the
search space for finding a proper sensor orientation.

Another significant line of research was introduced by [16], who proposed character-
izing a discretized viewpoint space. Analogously, ref. [17] introduced the measurability
matrix, which extended the visibility matrix of [16] to three dimensions under the considera-
tion of further constraints. Both publications [18,19] placed the final selection of viewpoints
in the context of the SCP and considered various heuristic algorithms for finding optimal
viewpoints. More recent works [20–22] followed and extended the work of [17], confirming
the usability of visibility matrices and modularization of the VPP.

Furthermore, a handful of works [23–29] also considered the explicit characterization
of search spaces for some specific constraints. Similar to others, the search for viable
viewpoint candidates was performed using different optimization algorithms to assess
the satisfiability of other constraints. Some of these studies, e.g., [24,27,28], also suggested
identifying potential groups of features or surfaces first based on their positions and
orientations before spanning a search space to increase the planning efficiency.

1.2.2. Sampling-Based

Unlike synthesis methods, sampling-based approaches do not rely on the explicit
characterization of a search space. They evaluate the validity of each candidate viewpoint
based on objective functions for each constraint on the viewpoint, which are solved by
metaheuristic optimization algorithms, e.g., simulated annealing or evolutionary algo-
rithms [30–34]. These approaches focus on the efficient formulation of objective functions
to satisfy the viewpoint constraints and find valid solutions. By neglecting the characteriza-
tion of a search space, which can be computationally expensive, sampling methods can be
especially efficient within simple scenarios considering only a few constraints and features.

1.3. Need for Action

Due to the heterogeneity of vision tasks and RVS confronted with the VPP, many
researchers (see Section 1.2) have presented tailor-made and sound solutions to address
this problem. To our knowledge, a standard approach for solving the VPP has not yet been
established within the research or the industry.

Our literature review revealed various ways of characterizing solution spaces to iden-
tify valid viewpoints that satisfy the VPP, either explicitly or implicitly. Implicit methods
incorporating sampling techniques can be highly advantageous and computationally effi-
cient, especially in straightforward scenarios with fewer constraints. However, modeling
uncertainties to compensate for robust solutions in complex applications that consider mul-
tiple features and constraints poses a more challenging task when using objective functions.
That is mainly because the validation of objective functions must be explicitly proofed for
each computed viewpoint, and no alternative viewpoints are initially proposed. This point
is particularly crucial in real-world applications, where modeling uncertainties cannot be
ignored, and robust approaches for compensating for these uncertainties are necessary. The
difficulties of handling the VPP by discretizing the valid viewpoint space can be mitigated
by using analytical modeling to establish the validity of constraints in special Euclidean
explicitly. Therefore, an approach that proposes modeling every constraint as a solution
space has the potential to address the VPP explicitly. However, addressing the problem
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this way requires an extensive analysis of the constraints and how they can be spatially
modeled. While our previous work [4] addresses this challenge for single features, the
current study extends the concept to multiple features and outlines a suitable strategy to
tackle the VPP holistically considering the following points:

• Multi-stage formulation: The complexity of the VPP can be subdivided into multiple
subproblems. Simple and more efficient solutions can then be individually formulated
for each subproblem.

• Model-based solution: Assuming that a priori information about viewpoint constraints
(vision system, object, and task) is available, this knowledge should be used in the most
effective and analytical manner. Furthermore, in this study, it is assumed that each
viewpoint constraint should be spatially modeled in the special Euclidean (6D) aligned
to a synthesis approach (see Section 1.2). This can be carried out by characterizing
each constraint as a topological space, i.e., C-space. If all viewpoint constraints can
then be modeled as topological spaces and integrated together into GC -spaces, the
search for viable candidates can be reduced to the selection of a sensor pose within
such spaces.

• Viewpoint planning strategy: Taking into account the modularization of the VPP
and the characterization of GC -spaces, a superordinated, holistic viewpoint planning
strategy must be outlined for delivering a final selection of valid viewpoint candidates.

To the best of our knowledge, no other works have utilized a feature-based approach
and combined multiple infinite spaces to compute valid viewpoints while considering
several constraints. Furthermore, no generic strategies can be employed in conjunction
with GC -spaces. For this reason, a tailor-made strategy must be outlined.

1.4. Outline

The outline of this research is shown in Figure 2. First, Section 2 introduces a generic
domain model for RVSs. Due to the heterogeneity of the definitions of RVSs in different
applications, this section limits the scope of the presented research and helps to evaluate
the transferability of the proposed models to other systems. Then, the core modules of the
framework presented in this report address all these points and are individually addressed
in Sections 3–4.2.

Section 3 revises the formulation of the VPP and its sub-problems. Then, a new generic
formulation of the VPP is introduced based on the concept of GC -spaces. Using the in-
troduced formulation of GC -spaces, their characterization is comprehensibly addressed
in Section 4.1. Based on the concept of GC -spaces, a holistic viewpoint planning strat-
egy to tackle the VPP is presented in Section 4.2. Based on an academic example, the
characterization of GC -spaces and the proposed strategy is verified.

Finally, Section 5 evaluates the validity of GC -spaces and the proposed strategy to
solve the VPP using two real RVS and a metrology application. Finally, Section 6 presents
a summary and the conclusions of this paper. In addition, a comprehensive data set
of multiple supporting files, e.g.,GC -space meshes, renders, frames, can be found in the
attachment of this paper.
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Figure 2. Outline.

2. Robot Vision System Domains

This section provides a brief overview of the most elementary components that build
an RVS. A more exhaustive description of the models of all components is given in [4].
Figure 3 provides an overview of these elements. The present study considers many vari-
ables to describe the domains of a vision system comprehensively. To ease the identification
and readability of variables, parameters, vectors, frames, and transformations, the index
notation given in Table A2 is used.

Bf1

Bf2

Robot: r

Object and FeaturesSensor: s

Bf3Bf4

Bs1
s Bs2

s Bo

Figure 3. Overview of the most relevant components of a robot vision system.

2.1. Sensor

A sensor (s) (synonym: range camera sensor, 3D sensor, imaging system) is defined
as a self-contained acquisition device comprising at least two imaging devices {s1, s2} ∈ S̃
(e.g., two cameras or one camera and one coded light source) capable of computing a range
image containing depth information. The present study does not explicitly distinguish
between the sensing principles of range sensors, e.g., structured light sensors or laser
scanners. To ensure the applicability of the outlined solutions with different sensors, a
generic and minimal imaging and kinematic model of a generic sensor is presented in this
section. Figure A1 illustrates a simplified representation of the sensor’s main components.

2.1.1. Frustum Space

The frustum space (I-space) (related terms: visibility frustum, measurement volume,
field-of-view space, sensor workspace) is characterized by a set of various sensor imaging
parameters Is, such as the horizontal and vertical field of view (FOV) angles θx

s and ψ
y
s , the

middle working distance ds, and the near hnear
s and far h f ar

s viewing planes. The sensor
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parameters Is describe only the topology of the I-space. The full characterization of the
I-space in the special Euclidean requires considering the sensor pose ps given by [4]. In the
present study, the pose p of any element is given by its translation t ∈ R3 and a rotation.
The rotation can be given by the Z-Y-X Euler angles r = (αz, β

y
, γx)T or as a rotation matrix

R ∈ R3x3. The pose p ∈ SE(3) is given in the special Euclidean SE(3) = R3 × SO(3),
where SO(3) ⊂ R3x3 denotes the special orthogonal group [35].

I s := (ps, Is) ={ps ∈ SE(3),

(ds, hnear
s , h f ar

s , θx
s , ψ

y
s ) ∈ Is}.

(1)

The resulting I s manifold spanned by the sensor imaging parameters for a given
sensor pose is characterized by its vertices V I s

k := V k(I s) = (Vx
k , Vy

k , Vz
k )

T with k = 1, . . . , l
and the corresponding joining edges and faces.

2.1.2. Kinematics

The sensor’s kinematic model considers the following frames: BTCP
s , Bs1

s , and Bs2
s . It is

assumed that the frame of the tool center point (TCP) is located at the geometric center of
the frustum space and that the frames Bs1

s and Bs2
s lie at the reference frame (e.g., the lenses

or the focal length) corresponding to the imaging parameters Is.

2.1.3. Sensor Orientation

A basic requirement for detecting a surface point is that the relative angle between a
sensor and a surface is within the limits of the specific maximum angle of a sensor. The
maximal incidence angle is normally provided by the sensor’s manufacturer. This incidence
angle, denoted as f ϕs, is expressed as the angle between the feature’s normal n f and the
sensor’s optical axis (z-axis) ez

s and can be calculated as follows:

f ϕmax
s > | f ϕs|, f ϕs = arccos

(
n f · ez

s

|n f | · |ez
s |

)
. (2)

Furthermore, the rotation of the sensor around the optical axis is given by the Eu-
ler angle αz

s (related terms: swing, twist). In many cases, this angle can be arbitrarily
chosen. Hence, most of the related works assume a fixed angle during the planning pro-
cess. However, if the shape of the frustum is asymmetrical, it is reasonable to consider
its optimization.

2.2. Object

The object (o) domain (related terms: object of interest, workpiece, object-, measurement-,
inspection-, test-, or probing-object) holds all features to be captured. Since the framework
introduced in this publication can be categorized as a feature-based approach, the object
may have an arbitrary surface topology. However, if occlusion constraints are taken into
account, then a surface model of the object must be considered if the object itself occludes
the features.

2.3. Features

A feature ( f ) (related terms: region, point or area of interest, inspection feature, key
point, entity, object) can be fully specified by its kinematic and geometric parameters,
i.e., frame B f and the set of surface points G f (L f ), which depend on a set of geometric
lengths L f :

f := (B f , G f (L f )). (3)

Magaña et al. [4] proposed the generalization of the feature’s topology using a square
with a unique side length {l f } ∈ LF to describe any 2D feature. This publication also
regards this simplification. Moreover, it is assumed that the translation ot f and orientation
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or f of the feature’s origin is given in the object’s coordinate system Bo (see Figure 3). Thus,
the feature’s frame is given as follows:

B f =
oT f (

ot f , or f ). (4)

2.4. Robot

In the context of multi-feature scenarios and automation of vision tasks, it is common
practice to use a robot (related terms: manipulator, industrial robot, positioning device) for
positioning the sensor at the selected viewpoint candidates. Since the viewpoint’s validity
may depend on the robot kinematic, [4] considered the robot workspace as a further
viewpoint constraint. The present study considers robots to be an optional element of a
vision system. Therefore, robot constraints are not further discussed within this publication.

2.5. Viewpoint and Viewpoint Constraints

In the literature, there seems to be no general definition of a viewpoint v. The present
report regards a feature-centered formulation and defines a viewpoint as a triple of the
following core elements: a 6D sensor pose ps ∈ SE(3) to acquire a group of features f ∈ G
considering a set of viewpoint constraints C̃:

v := (G, ps, C̃).

The set of viewpoint constraints ci ∈ C̃, i = 1, . . . , h includes all constraints ci affecting
the positioning of the sensor. Every constraint ci can be interpreted as a collection of
multiple variables of the vision system, e.g., the imaging parameters Is, the feature geometry
length l f , the maximal incidence angle f ϕmax

s . A description of the viewpoint constraints
considered in the scope of the current publication is given in Table A1.

2.6. Vision Task

A vision task is defined by the set of features F (synonyms: feature plan, inspection
plan, feature space)

fm ∈ F, m = 1, . . . , n

that must be acquired. A vision task is then fulfilled when there exists a viewpoint plan
denoted as P that holds a finite number of k viewpoints

(Gj, ps,j, C̃) ∈ P, j = 1, . . . , k,

which guarantees the acquisition of all n features from F satisfying all viewpoint constraints
C̃. Note that Gj denotes a subset of features Gj ⊆ F and that the union of all subsets
corresponds to

F =
k⋃

j=1

Gj.

3. Formulation of the Viewpoint Planning Problem Based on GC -spaces

We are convinced that a multi-stage formulation of the VPP can reduce its overall com-
plexity and enable more efficient solutions. Therefore, in our first study [4], we proposed to
split the VPP into the VGP and SCP and focused on the first one.

Magaña et al. [4] attributes to the VGP (related terms: camera planning, optical
camera placement) the calculation of a viewpoint to acquire a single feature considering
the fulfillment of a set of viewpoint constraints. Furthermore, when considering a multi-
feature application, the efficient selection of multiple viewpoints becomes necessary to
accomplish the vision task, which results in a new problem, namely, the SCP. A simplified
representation of the VPP and its subproblems are visualized in Figure 4.
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3.1. The Viewpoint Generation Problem

The generation of viewpoints for acquiring one or multiple features can be treated as an
isolated subproblem of the VPP. Hence, our previous study [4] focused on this subproblem,
i.e., the VGP, and proposed its consistent and exhaustive formulation. The publication
demonstrated that the VGP could be effectively handled as a purely geometrical problem
and introduced the concept of C-spaces as the backbone element to generate viewpoints
capable of acquiring one feature.

The present study first summarizes the formulation of the VGP in the context of
single-feature vision tasks [4]. Then, an extended reformulation of the VGP is placed to
consider more complex vision tasks regarding a multi-feature acquisition. In this context,
the formal definition of GC -spaces based on C-spaces is introduced as the core element to
enable the acquisition of feature clusters.

Viewpoint Planning Problem (VPP)

ps,1

Viewpoint Generation Problem (VGP) Set Cover Problem (SCP)

ps,2 ps,3

ps,4

ps,1 ps,2

Figure 4. Modularization of the VPP and simplified representation of its subproblems. On the
one hand, the VGP addresses the acquisition of a single feature by a viewpoint satisfying a set of
constraints. On the other hand, the SCP seeks to reduce the number of required viewpoints to acquire
all features.

3.1.1. VGP with C-spaces

The concept of C-spaces can be better understood considering a proper formulation of
the VGP [4]:

Problem 2. Which is the C-space f C to acquire a single feature f considering a set of viewpoint
constraints C̃?

The mathematical definition of the C-space denoted as f C := C ( f , C̃) can now be
introduced, considering that there exists a topological space in f C ⊆SE(3) that holds all
valid sensor poses ps to acquire a feature f , considering a set of viewpoint constraints C̃.
This topological space C is spanned by the Euclidean space R3 and the special orthogonal
group SO(3) [4]:

f C =R3 × SO(3)

={ps ∈ f C , ps ∈ SE(3)} (5)

={ps(ts, rs) ∈ f C
| ts ∈ R3, rs ∈ SO(3)}.
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Moreover, let the formulation of f C be further specified and assume that for each
viewpoint constraint ∀ci ∈ C̃ there exists an individual i C-space denoted as f C i := C i( f , ci),
which represents the topological space where any sensor pose ps ∈ f C i satisfies the
constraint ci. The intersection of all C-spaces conforms to the joint C-space f C that fulfills
all viewpoint constraints:

f C =
⋂

ci ∈ C̃

C i( f , ci), (6)

and f C can be considered a subset of any viewpoint constrained space, i.e., f C ⊆ f C i.
An abstract representation of the C-space f1C for acquiring f1, being constrained by

three viewpoint constraints and its corresponding C-spaces f1C1, f1C2, and f1C3, is depicted
in Figure 5. Respectively, f2C spans the topological space for acquiring feature f2, being
delimited by two C-spaces, f2C1 and f2C2 .

f1C3

f1C1

f1C2

f1C

f2C

GC

f2C1

f1

f2

f2C2

Figure 5. Abstract representation of the C-spaces f1C and f2C that represent the infinite solution
space for separately acquiring the features { f1, f2} ∈ G. f1C and f2C are characterized by different
viewpoint constraints and their respective C-spaces { f1C1, f1C2, f1C3} ⊇ f1C and { f2C1, f2C2} ⊇ f2C .
The intersection of the two C-spaces f1C and f2C yield the GC -space GC , which represents the infinite
solution space to simultaneously acquire all features of the feature cluster G, fulfilling all viewpoint
constraints.

3.1.2. VGP with GC-spaces

Although the concept of C-spaces provides a sound approach for characterizing an
infinite solution space to acquire one feature, [4] did not comprehensively address its
scalability in a multi-feature scenario. Hence, this subsection introduces the proper formu-
lation and characterization of GC -spaces to acquire a cluster of features based on C-spaces,
considering individual viewpoint constraints for each feature. The concept of C-spaces
can then be straightforwardly extended to a multi-feature problem, considering first the
reformulation of Problem 2:

Problem 3. Which is the GC -space GC to acquire a cluster of features G considering a set of
viewpoint constraints C̃?
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The GC -space represents the multi-dimensional and continuous topological space to
capture a feature cluster G. As its counterpart, i.e., f C , the GC holds all valid sensor poses
ps to acquire a subset of features G considering a set of viewpoint constraints C̃. The
present study defines the following terms to formulate GC :

1. The GC -space represents the intersection of all individual feature C-spaces as defined
by Equation (6):

GC =
⋂

fm ∈ G

 ⋂
ci ∈ C̃

C i( fm, ci)

. (7)

2. If aGC -space is a non-empty manifold, i.e., GC 6= ∅, there exists at least one sensor
pose ∃ pG

s ∈ GC that fulfills all viewpoint constraints to acquire all features G.

Figure 5 depicts an abstract representation of the GC -space GC being characterized
by the intersection of the individual constrained spaces f1C and f2C of the feature cluster
{ f1, f2} ∈ G.

3.2. The Set Cover Problem
GC -spaces provide closed solutions with an infinite set of viewpoints to acquire a

feature cluster. However, the main question regarding which features can be acquired from
the same viewpoint remains unanswered and is to be investigated within the second sub-
problem of the VPP, i.e., the SCP. Hence, this section first outlines an adequate formulation
of the SCP.

3.2.1. Problem Formulation

In general, the SCP may be formulated as an optimization problem or a decision
problem. On the one hand, the optimization definition strives to find the minimal number
of k viewpoints to capture all n features; this formulation was initially introduced in
Problem 1. On the other hand, the SCP can be posed as a decision problem:

Problem 4. Are k viewpoints sufficient to acquire a set of features F?

Although any approach addressing the VPP should prioritize the minimization of
viewpoints, in our view, an optimization formulation may appear impractical and even
ineffective in real applications regarding model uncertainties and feature-rich scenarios.
Hence, for the benefit of pragmatism and as other authors, e.g., [15,16,18], have considered,
we prefer to relax this requirement and strive for an acceptable number of viewpoints and
prioritize robust and computationally efficient solutions.

3.2.2. Solving the SCP

A simple solution for Problem 4 is given by finding k iteratively. In this case, a first
attempt is made to solve the problem considering an initial value, e.g., k = 1. If the k
viewpoints are not sufficient to acquire F, then k is increased by one until there are enough
viewpoints to acquire all features.

At this point, the challenge and motivation of the first subproblem of the VPP, i.e., the
VGP, arises: how the validity of viewpoints can be efficiently and effectively assessed. A
solution to this problem was comprehensively addressed using GC -spaces (cf. Section 3.1).
Hence, if the number of required viewpoints that fulfill a vision task can be previously
approximated, its validation can be efficiently assessed based on GC -spaces.
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3.3. Reformulation of the VPP

Having addressed the individual subproblems of the VPP, its reformulation can then
be posed aligned to a decision formulation of the SCP and the concept GC -spaces:

Problem 5. Are k GC -spaces sufficient to acquire a set of features F?

Aligning the VPP to a decision formulation, the search for finding k potential feature
clusters must be addressed in the first step. The number of k feature clusters can be
iteratively found following the ground idea proposed in Section 3.2.2. An adequate strategy
to efficiently find feature clusters is comprehensively introduced in Section 4.2.1.

Assuming that an adequate number of potential k feature clusters can be found,
then exactly k GC -spaces must be characterized to capture all features from F. Now, if
all GC -spaces exist, i.e., ∀{G1C , . . . , GkC} 6= ∅, it can be assumed there exists at least one
valid sensor pose within each GC -space. The viewpoint plan that fulfills the regarded
vision task can be straightforwardly given by selecting one sensor pose from each GC -space
{ps,1, . . . , ps,k} ∈ P.

4. Methods
4.1. Feature Cluster Constrained Spaces

This section describes the definition of GC -spaces based on the intersection of individ-
ual C-spaces. First, a strategy to characterize the most elementary C-space based on the
sensor’s imaging parameters, feature position, and sensor orientation is introduced. Then,
some general terms are established to compute GC -spaces and verify their usability based
on an academic example.

4.1.1. C-spaces

Aligned to the formulation of C-spaces and treating the VGP as a geometrical prob-
lem, [4] demonstrated that a handful of viewpoint constraints can be straightforwardly
characterized and integrated using linear algebra, geometric analysis, and CSG Boolean
operations.

For instance, the fundamental C-space denoted as C1 is characterized based on the
I-space (sensor imaging parameters), a feature of interest and a fixed sensor orientation.
Our past study introduced two strategies (extreme viewpoint and homeomorphism inter-
pretation) to characterize the manifold of C1. This paper outlines a simpler variation of
the homeomorphism formulation using an alternative reflecting pivot point. The detailed
steps to characterize C1 are described in Algorithm 1 and visualized in a simplified 2D
representation in Figure 6a–c. Moreover, Figure 6d demonstrates that any sensor pose
within C1 is valid to acquire the feature f .

The C-space C1 manifold represents the basis for characterizing further C-spaces con-
sidering other viewpoint constraints, e.g., the feature geometry, kinematic errors, occlusion,
and multi-sensors. The formulation, characterization, and integration of multiple viewpoint
constraints fall outside the scope of this publication, see [4] for further details.
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(d) Verification of the C1

Figure 6. Characterization and Verification of the core C-space C1 for capturing feature f considering
a fixed sensor orientation and the I-space. (a–c): Simplified visualization of the steps of Algorithm 1
to characterize the C-space C1, which considers the imaging parameters, the feature position, and a

fixed sensor orientation. (d): Any sensor pose with ps(rs = r f ix
s ) ∈ C1 is valid to capture feature f .

Algorithm 1 Characterization of the C-space C1 by reflection

1. Select a sensor orientation r f ix
s for acquiring a feature f .

2. Rotate the I-space manifold using the fixed rotation r f ix
s and let this space be denoted

as I∗s :
I∗s = rotate(I s, r f ix

s ).

3. Reflect I∗s over its origin BI
∗
s

s :

I∗s = re f lect(I∗s , BI
∗
s

s ).

4. Position the sensor’s TCP frame at the the feature’s frame considering the sensor

orientation r f ix
s , i.e., BTCP

s = B f . Let this sensor pose be denoted as

p0
s := ps(ts(BTCP

s = B f ), r f ix
s ).

5. Translate the I∗s to the sensor lens frame BI
∗
s

s = Bs1
s (p0

s ). The resulting manifold yields
the C-space

f C1 = translate(I∗s , Bs1
s (p0

s )).

4.1.2. GC-spaces
Fixed Sensor Orientation

Recalling that C-spaces only span a valid solution space for a fixed sensor orientation, it
must be assumed that the validity of a GC -space is also limited to a fixed sensor orientation.

Although an approach to characterize C-space regarding multiple orientations was
introduced in [4], we consider that in multi-feature scenarios, more efficient solutions
can be obtained if the optimization of the sensor is first considered. By doing so, the
problem complexity can be reduced for finding a valid sensor position in the Euclidean
space considering an optimal sensor orientation.

Although C-spaces and GC -spaces are exclusively valid for a defined sensor orienta-
tion, it can be assumed that a deviation of the sensor orientation can be implicitly com-
pensated to some extent within the spanned topological spaces. However, the magnitude
of the allowed deviation cannot be explicitly given, and it must be assumed that this is
inconsistent within the topological spaces and depends on the remaining constraints.
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Characterization

Assuming that the sensor orientation is known and the feature clusters are identified,
the characterization of the GC -space composed of individual C-spaces is performed in two
steps.

In the first step, all individual C-spaces of each feature f ∈ G are computed considering

an individual viewpoint constraint set
f
C̃ with a fixed sensor orientation r f ix

s . In the second
step, the C-spaces of all features belonging to a cluster are merged with each other using
a CSG Boolean intersection operation, as formulated in Equation (7). Figure 7 presents a
simplified initial situation, characterization, and validation of a GC -space G1C for capturing
a set of two features { f1, f2} ∈ G1.

In addition, Figure 8 considers a more complex scenario in R2 for capturing two
feature clusters { f1, f3} ∈ G1 and { f2, f4} ∈ G2. The feature clusters are acquired with
the sensor orientations r f ix

s,1 and r f ix
s,2 . The two required GC -spaces G1C (r f ix

s,1 ) and G2C (r f ix
s,2 )

are characterized by intersecting the corresponding individual C-spaces of the regarded
features.

A great deal of attention must be paid if the intersection of two C-spaces yields an
empty manifold; it can then be assumed that the corresponding features cannot be acquired
simultaneously considering the regarded viewpoint constraints and sensor orientation.

B f1

ps,2

ps,1

BTCP
s

BTCP
s

B f2 BTCP
s , B f2

BTCP
s , B f1

ps,1(r
f ix
s,1 )

ps,2(r
f ix
s,1 )

B f2

B f1

ps,1(r
f ix
s,1 )

G1C(r f ix
s,1 )

C f1

C f1
(r f ix

s,1 )
C f2

(r f ix
s,1 )

a) b) c)

ps,2(r
f ix
s,1 )

Figure 7. Overview for characterizing GC -spaces. (a) Initial situation: Two features f1 and f2 with two
corresponding sensor poses ps,1 and ps,2 to capture them. (b) Step 1 for GC -space characterization:

Select a sensor orientation r f ix
s,1 for capturing both features and estimate their corresponding C-spaces

C f1
and C f2

. (c) Step 2 for GC -space characterization and verification: Intersect both C-spaces to

characterize the resulting GC -space: G1C = C f1

⋂ C f2
. Any sensor pose within ∀ ps ∈ G1C is valid for

capturing both features.
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f1C(r f ix
s,1 )

f4C(r f ix
s,2 )

f2C(r f ix
s,2 )f3C(r f ix

s,1 )

B f 3

B f1

Bf2
Bf4

G1C(r f ix
s,1 )

G2C(r f ix
s,2 )

Figure 8. Simplified representation of two GC -spaces G1C (r f ix
s,1 ) and G2C (r f ix

s,2 ) to acquire the feature
clusters { f1, f3} ∈ G1 and { f2, f4} ∈ G2.

Verification

To verify the characterization of GC -spaces for acquiring multiple features, an object
comprising four features { f1, f2, f3, f4} ∈ F was designed (see object in the top right of
Figure 3). The features are initially grouped into two clusters: { f1, f2} ∈ G1 and { f3, f4} ∈ G2.
The dimensions and frames of all features are given in Table A3. The features are acquired
regarding the following orientation in the object’s coordinate system for the first cluster
ors,1 and for the second cluster ors,2:

ors,1(α
z
s = β

y
s = 0◦, γx

s = −150.0◦)
ors,2(α

z
s = 90◦, γx

s = −160◦, β
y
s = 0◦).

In the first step, the individual C-spaces for each feature were computed according to
Algorithm 1 considering the imaging parameters of the sensor s1 (see Table A4) and the
selected sensor orientations. Moreover, the feature geometry was integrated as a further
viewpoint constraint to ensure the acquisition of the entire geometry (see [4]). In the
second step, the resulting GC -spaces G1C and G2C were synthesized by intersecting the
corresponding C-spaces; details on the implementation are given in Section 5.1.4.

Figure 9 shows the described scene and visualizes the characterized manifolds of
the individual C-spaces and GC -spaces. To verify the validity of the approach outlined
within this section, two extreme sensor poses at each GC -space, {ps,1, ps,2} ∈ G1C and
{ps,3, ps,4} ∈ G2C , were chosen and rendered, as well as the corresponding depth images
and range images at each sensor pose. The results visualized in Figure 10 demonstrate that
all features belonging to the same cluster can be simultaneously acquired at the exemplary
extreme viewpoints within their corresponding GC -spaces. The academic example com-
prising the object’s surface model, C-space, GC -spaces, and depth images can be found in
the digital appendix of this study.

4.1.3. Summary

A C-space represents an analytical, geometric solution offering infinite valid sensor po-
sitions to acquire a single feature satisfying a defined set of viewpoint constraints. Moreover,
the experiments demonstrated that the intersection of individual C-spaces characterizes
a topological space, the GC -space, which provides infinite solutions to acquire a group
of features and satisfies all constraints of their C-spaces simultaneously. Due to these
characteristics, the present study regards GC -spaces as the backbone element for tackling
the VPP.

However, GC -spaces have some limitations, e.g., it must be a priori known which
individual C-spaces can be clustered together, their validity is limited to a fixed sensor
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orientation, and their characterization relies on CSG Boolean operations, which are gen-
erally considered an expensive computational technique. Therefore, solving the VPP
based on GC -spaces requires a well-thought-out strategy to address these challenges. The
formulation of such a strategy is given in Section 4.2.

G1C = f1C(rs,1)
⋂ f2C(rs,1)

B f1

B f2

B f4

B f3

G2C = f3C(rs,2)
⋂ f4C(rs,2)

Figure 9. Manifolds of the GC -spaces G1C and G2C in SE(3) for two feature clusters { f1, f2} ∈ G1 and
{ f3, f4} ∈ G2 being characterized by the intersection of the corresponding C-spaces f1C , f2C , f3C and
f4C .

G1C
G2C

TCP ps,1

s1
ps,1

s1
ps,2

s1
ps,4

s1
ps,3

ps,1

ps,4ps,3

ps,2

Figure 10. Verification of GC -spaces considering two sensor poses {ps,1, ps,2} ∈ G1C and
{ps,3, ps,4} ∈ G2C at the vertices of each manifold. Rendered scene and range images of ps,1 and ps,3
of (left image) and depth images of all sensor poses (right images).

4.2. Viewpoint Planning Strategy

The present publication poses the VPP in the framework of decision formulation
problems and suggests the use of GC -spaces as the key element for its solution. This section
outlines a holistic viewpoint plan strategy based on GC -spaces to solve generic vision tasks
that are confronted with the VPP. Figure 11 provides a simplified overview of the four
subordinated modules of the strategy, i.e., the search for potential feature clusters, the
optimization of sensor orientation, the characterization of GC -spaces, and the final selection
of sensor poses.
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Compute feature clusters based on
a k-Means algoritm: {G1, . . . , Gk}.

Compute the optimal sensor
orientation for each feature cluster:

{ropt
s,1 , . . . , ropt

s,k }.

Compute all k GC -spaces:
{G1C (ropt

s,1 ), . . . , GkC (ropt
s,k )}.

Select one pose within each j
GC -space ps,j ∈

GjC : ps,j, . . . , ps,k}.

Start

End

Figure 11. Overview of the viewpoint planning strategy main modules.

4.2.1. Feature Clusters

Addressing the SCP as a decision problem requires identifying feature clusters in the
first step, i.e., groups of features that can potentially be acquired together based on their
spatial vicinity and orientation similarity. Identifying such feature clusters can be efficiently
performed using a clustering algorithm such as a centroid-based k-Means algorithm. This
subsection presents a practical and efficient clustering strategy for identifying potential
feature clusters. Figure 12 depicts a flow chart of the proposed algorithm.

Data Preparation

First, the strategy proposed within this subsection regards a data-enhancing prepro-
cessing step for combining feature positions and their normal vectors to simplify the search
for more effective clusters. In addition to the features’ position, we assume that features hav-
ing similar normal directions are more likely to be clustered together. Hence, a new observa-
tion variable is introduced for each feature fm, denoted as t∗fm

∈ T∗, t∗fm
∈ R3, m = 1, . . . , n,

that comprises information about the feature position and orientation. The observation
variable is obtained by shifting the features’ frames along their normal (z-axis) considering
a defined distance e∗. This trick has the advantage of spatially separating features based on
their orientation without increasing the problem’s complexity, see Figure 13. The observa-
tion variable t∗fm

is formally defined as the translation component (trans) of the following
transformation:

t∗f = trans

oT f (
ot f , or f ) ·

 I
0
0
e∗

0 1


,

where I denotes a 3× 3 square identity matrix.
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Create an observation set
{t∗f1

, . . . , t∗fn
} ∈ T∗ by shifting all n

features { f1, . . . , fn} ∈ F in their
normal direction.

Assign each feature ∀ fm ∈ F to
their corresponding feature cluster:

{G1, . . . , Gk}.

Start

End

Compute the k cluster centroids
{t∗1 , . . . , t∗k} ∈ K∗ for T∗ using a

k-Means algorithm.

Assign ∀ t∗fm
∈ T∗ to the nearest

cluster based on the minimal
Euclidean distance: dmin(t∗fm

, K∗).

∀ t∗fm
∈ T∗:

dmin(t∗fm
, K∗) < dmax

k
=

k
+

1

false

Figure 12. Algorithm for computing feature clusters based on a k-Means algorithm.

Figure 13 depicts a simplified representation of the enhanced variables. The distance
e∗ can be arbitrarily chosen. However, e∗ should not be larger than the sensor’s far plane
e∗ ≤ h f ar

s . The empirical experiments in Section 5.1 showed that the sensor’s middle
working distance (e∗ = ds) is a good compromise for generating an adequate number
of clusters.

Iteratively Clustering

Finally, using the set of observations t∗fm
∈ T∗, all k cluster centroids t∗j ∈ K∗,

j = 1, . . . , k can be computed using a centroid-based k-Means algorithm. The k-Means
aims to choose centroids that minimize the Euclidean distances between a selected cluster
centroid and the set of observations T∗:

k

∑
j=1

min(‖ t∗fm
− t∗j ‖2)

Recalling the approach proposed in Section 3.2.2 for iteratively finding a viable number
of clusters, a break condition must be first defined to determine when it is necessary to
increase the number of feature clusters. Such a condition can be applied for each observation
∀ t∗fm

∈ T∗ considering the minimal Euclidean distance dmin(t∗fm
, K∗) that an observation

has to the closest cluster centroid from K∗. This distance then has to be smaller than a
threshold dmax:

dmin(t∗fm
, K∗) < dmax. (8)
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Taking into account the imaging capabilities of the sensor, dmax can be defined using
the shortest length of the frustum, e.g., half of the sensor width at the nearest view plane
(see Figure A1).

If any element of T∗ does not fulfill condition (8), then k is increased by 1. If a minimal
number of clusters can be estimated beforehand, this can be given as an initial value to
optimize the search process; otherwise, k = 1 should be assumed. This process is repeated
until Equation (8) is satisfied by all observations ∀ t∗fm

∈ T∗. Figure 13 illustrates the two

resulting clusters for a simple scenario in R2.

4.2.2. Sensor Orientation Optimization

Recalling the requirements to compute GC -spaces, the present strategy considers a
two-step approach for selecting an optimized sensor orientation for each feature cluster.

Formulation

The sensor orientation in SO(3) can be fully represented by a normal vector and an
optimized swing angle:

ropt
s = (nopt

s , α
z,opt
s ).

While the normal vector represents the incidence angle, i.e., the rotation around the
x-axis and y-axis of the sensor, the swing angle provides the rotation around the z-axis.

Incidence Angle

The optimized incidence angle for a cluster can be calculated using the arithmetic
mean of the normal vectors of all features of a cluster ∀ f ∈ G, as follows:

nG,opt
s = ‖∑

f∈G
n f ‖, nG,opt

s < f ϕmax
s . (9)

In the case that the incidence angle between the optimized orientation and a feature is
greater than the maximum f ϕmax

s (see Equation (2)), then the feature must be assigned to a
new cluster.

dmax

t∗2
t∗1

t∗f1

t∗f3

t∗f2
t∗f4

B f 3

B f1

Bf2
Bf4

e∗

Figure 13. Exemplary characterization of two feature clusters (centroids: t∗1 , t∗2) considering the
observation set t∗f1

, . . . , t∗f5
using a k-Means algorithm.
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Swing Angle

Optimizing the rotation angle around the optical axis can be particularly advantageous
when the sensor frustum is asymmetrical. Hence, this subsection suggests finding the
optimal swing angle using an oriented minimum bounding box (OBB) algorithm. The
direction of the longest side of such a bounding box corresponds to the optimized sensor
around its z-axis.

First, the 2D projection of all features t2D
f ∈ R2 for ∀ f ∈ G is calculated using a

perspective projection matrix denoted as M2D(nG,opt
s ) and the direction vector nG,opt

s :

t2D
f = M2D(nG,opt

s ) · t f .

Next, using all projected points, an OBB algorithm [36] can be applied to compute the
four corner points of the bounding box

{gbb
0 , . . . , gbb

3 } ← OBB(t2D
f1

, . . . , t2D
fn
).

The swing angle corresponds to the principal axis vector ex
OBB of the bounding box

along the longest side of the bounding box, e.g., α
z,opt
s is given in the object’s coordinate

system (o) as follows:

oα
z,opt
s = arccos

(
ex

OBB · oex

|ex
OBB| · |oex

o |

)
,

with ex
OBB = gbb

0 − gbb
1 . Figure 14 presents an illustrative representation of the identification

of bounding boxes and estimation of their orientation used to determine the optimal swing
angle for two feature clusters.

α
z,opt
s,1 z

y

x

α
z,opt
s,2

Figure 14. Exemplary optimization of the swing angles α
z,opt
s,1 and α

z,opt
s,2 for two feature clusters using

an OBB algorithm.

Orientation of further imaging devices

In the context of range sensors consisting of more than one imaging device (see Section 2.1),
note that if the imagingdevices are differently oriented to each other, the orientation for
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other imaging devices results from the rigid transformation between the devices, e.g., for a
second imaging device:

s2
ropt

s = s2
s1 Rs · s1

ropt
s .

The C-spaces for the second device must be characterized using the sensor orientation

s2
ropt

s (see Algorithm 1).

4.2.3. Computation of GC-spaces
Integration Strategy of C-spaces

Having identified the number of necessary feature clusters and corresponding opti-
mized sensor orientations, the necessary GC -spaces can be finally computed. Although
the integration of GC -spaces and C-spaces can generally be considered commutative, an
adequate computation order of the individual steps can considerably improve the overall
computational efficiency of the viewpoint planning strategy.

This study extends the strategy from [4] to consider a more efficient characterization of
GC -spaces. Algorithm 2 provides a formal description of these steps. The resulting C-space
and GC -spaces manifolds of some of these steps are visualized in Figure 15, considering
the academic example introduced in Section 4.1.2. Moreover, it is assumed there exists a
kinematic error of 50 mm in all directions and that two cubes partly occlude the visibility
of the features. The imaging parameters of the second imaging device s2 are given in
Table A4. We refer to our previous publication, which covered the characterization of
kinematic errors, occlusion-free spaces, and integration of viewpoint constraints from
multiple imaging devices. The manifolds of all C-space and GC -spaces are found in the
digital appendix of this publication.

Moreover, the present strategy considers the decimation of the resulting C-spaces and
GC -spaces manifolds by merging adjacent vertices after each CSG Boolean operation to
reduce the overall computational effort. Note, that this simplification step may affect the
validity of the GC -spaces. Therefore, the threshold value for merging adjacent vertices
should be carefully chosen. Some particularities of the overall strategy are addressed in the
following subsections.

Occlusion-Free GC -spaces

According to [4], C-spaces that integrate occlusion constraints can be characterized us-
ing ray-casting and CSG Boolean operations. Therefore, their computation can be regarded
as one of the most expensive steps within a viewpoint planning strategy. To optimize
the computation of such spaces, the same study showed that the computational efficiency
could be considerably improved by limiting the validity of the occlusion-free C-space using
the topological space limited by other viewpoint constraints, e.g., imaging parameters,
feature geometry, kinematic tolerances.

Based on this insight and taking into account that this step must be repeated multiple
times for all C-spaces, the present publication follows a similar approach by exploiting
the concept of GC -spaces. Hence, in the first step, the required GC -spaces are computed
neglecting any occlusion constraints; let this space be denoted as GjCst ,∗. In the second
step, the individual occlusion-free C-space for each feature can then be more efficiently
computed by limiting the occlusion-free visibility to the space spanned by GjCst ,∗ (see Step 6
of Algorithm 2). Note that the same result could have been more inefficiently achieved by
first computing the occlusion-free C-space for each feature and then by intersecting all of
them. Figure 15 visualizes the resulting occlusion-free GC -spaces following this approach.
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G1Cs1,∗ = f1Cs1,∗⋂ f2Cs1,∗

G2Cs1,∗ = f3Cs1,∗⋂ f4Cs1,∗

(b)
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f1Cs1 = f1Cs1,∗\ f1Os1
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f1Os1(G1Cs1,∗, κ1, κ2)

(c)

B f1

B f2 B f4
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G1Cs2

(d)
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G2C S̃,1

G2C S̃,2

G1C S̃,1

G1C S̃,2

κ1

(e)

Figure 15. (a–e): Exemplary visualization of some steps of Algorithm 2 to characterize the GC -space
based on three individual C-spaces corresponding to three features. (a) Step 4: Compute the C-spaces
for s1 of all features considering the optimized sensor orientations ropt

s,1 for { f1, f2} ∈ G1 and ropt
s,2 for

{ f3, f4} ∈ G2. (b) Step 5: Compute the GC -spaces G1C and G2C by intersecting the corresponding
C-spaces. (c) Step 6: The occlusion-free C-space for f1 is characterized by computing the Boolean
difference between the occluding space f1Ost (red wireframe manifold) and the C-space f1Cs1,∗ from
Step 4. (d) Step 7: Compute the occlusion-free GC -spaces for the first imaging device G1Cs1 and G2Cs1 .
The GC -spaces of the second imaging device s2 (G1Cs2 , G2Cs2 ) are computed analogously following
Steps 3–7. (e) Step 9: Compute the GC -spaces for s1

G1C S̃,1 and G2C S̃,1 to consider the viewpoint
constraints of the second imaging device.

Strategy against invalid GC -spaces

Finally, it should be noted that the feature clusters and optimized sensor orientations
should be considered as an initial and plausible solution to capture all features. However,
the validity of a GC -space can be first assessed until the individual C-spaces are intersected
and all viewpoint constraints are integrated. Therefore, the existence of the GC -space must
be continuously assessed after intersecting two consecutive C-spaces. If the intersection
yields an empty manifold or the C-space manifold volume is below a defined threshold, a
strategy to overcome this issue must be considered. For instance, in the simplest scenario,
the last intersecting C-space can be assigned to a new cluster, and the rest of the process
can be continued with the rest of the features.

The intersection of two consecutive C-spaces yielding an empty manifold can be
caused by the inconvenient combination of diverse viewpoint constraints. Hence, an
efficient strategy to address this issue requires an individual analysis of the particular
viewpoint constraint. The comprehensive analysis and formulation of such strategies fall
outside the scope of this paper.
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Algorithm 2 Characterization of GC -spaces based on C-spaces

1. Select the j feature cluster Gj ∈ F, j = 1, . . . , k.
2. Select the t imaging device of the sensor st ∈ S̃, t = 1, . . . , u.
3. Consider the sensor orientation st r

opt
s,j for the reference imaging device st.

4. Compute all nj C-spaces of all features from the cluster ∀ fmj ∈ Gj, mj = 1, . . . , nj

considering the sensor orientation of the first device st r
opt
s,j and a subset of viewpoint

constraints C̃∗ ⊆ C̃ that do not require any Boolean operations.

fmj Cst ,∗ := C ( fmj , C̃∗, st r
opt
s,j ).

5. Compute the j GC -space by intersecting all nj C-spaces iteratively

GjCst ,∗ =
nj⋂ fmj Cst ,∗.

6. Compute all nj occlusion spaces fmjOst for each feature ∀ fmj ∈ Gj based on the

previously corresponding GC -space and the surface models κ ∈ K of all occluding
bodies. The occlusion-free C-space corresponds to the following Boolean difference:

fmj Cst =
fmj Cst ,∗\ fmjOst(GjCst ,∗, K).

7. Recompute the j GC -space iteratively by intersecting all nj occlusion-free C-spaces:

GjCst =

nj⋂ fmj Cst .

8. Repeat Steps 3–7 for all imaging devices ∀st ∈ S̃.
9. Compute the GC -space that integrates the viewpoint constraints of all imaging devices,

e.g., for s1, as follows:

GjC S̃,1 = GjCs1
⋂

st∈S̃

GjCs1,st(GjCs1 , GjCst).

10. Steps 2–11 are repeated for each cluster ∀Gj ∈ F, j = 1, . . . , k.

4.2.4. Sensor Pose Selection

Having computed all required GC -spaces, the last step considers selecting a sensor
pose within each GC -space. Since the present framework does not explicitly consider the
existence of a global optimum within a GC -space, any sensor pose within it fulfills all
defined constraints and is equally valid to any other; see the depth images in Figure 16.

In the simplest case, any vertex of the GC -space manifold could be used as a valid
sensor pose. Alternatively, the geometrical center of the manifold can be considered a
local optimum of the GC -space for some cases. However, it cannot be guaranteed that
the geometrical center of the GC -space manifold lies within it. For this reason, an explicit
evaluation is always required. Such scenarios are not rare when considering occlusion
constraints.
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Figure 16. (a) Verification scene comprising two GC -spaces for acquiring two feature clusters G1

and G2 and three potential sensor poses within each GC -space. The images on the right depict the
rendered depth images of the imaging devices s1 and s2 corresponding to the three different sensor
poses within the GC -spaces at (b) a vertex, (c) the geometric center, and (d) one random point.

4.3. Summary

This section outlined a generic viewpoint planning strategy to solve the VPP based
on the formulation of the SCP as a decision problem and GC -spaces. First, the strategy
uses a k-Means clustering algorithm to identify potential feature clusters. In the second
step, a sub-strategy was proposed to consider an optimized sensor orientation in SO(3) for
each feature cluster. Having identified potential feature clusters and an adequate sensor
orientation, a further generic sub-strategy was introduced to efficiently integrate C-spaces
and compute the required GC -spaces manifolds. Finally, some generic approaches were
introduced in the last step to select a valid sensor pose within the characterized GC -spaces.

5. Results

This section comprehensively analyzes the usability of GC -spaces and the overall
viewpoint planning strategy to solve the VPP in the context of real industrial metrological
applications considering two different vision systems. The results confirm that the frame-
work outlined within this publication can be effectively and efficiently used for solving
complex vision tasks by providing robust solutions.

5.1. Robot Vision System with Structured Light Sensor
5.1.1. System Description

The framework presented within this publication was utilized for automating the
dimensional metrology inspection of a car door comprising up to 670 features using the
industrial robot vision system AIBox from ZEISS. The AIBox is an integrated industrial
RVS manufactured by ZEISS, equipped with a structured light sensor (ZEISS Comet PRO
AE), a six-axis industrial robot (Fanuc M20ia), and a rotary table for mounting an inspection
object. The imaging parameters of the imaging sensor and structured light projector are
given in Table A4. Figure 17 provides an overview of the AIBox and its core elements.
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Figure 17. Overview of the core components of the AIBox.

5.1.2. Vision Task Description

To thoroughly evaluate the strategy and algorithms presented in this publication,
15 different inspection tasks were considered. The tasks comprise combinations of different
features from both door sides and viewpoint constraints. The left columns of Table A5
provide an overview of the vision tasks.

Door Side: To evaluate the usability of the present framework in an industrial context,
a car door was used as the probing object. Due to their topological complexity,
feature density, and variability, car doors are well-known benchmark workpieces for
evaluating metrology tasks and their automation.

Number and Type of Features: The scalability was evaluated using inspection tasks with
different numbers and types (points and circles) of features.

Viewpoint Constraints: To analyze the efficacy and efficiency of the overall strategy, vision
tasks with different viewpoint constraints were designed. All vision tasks regarded at
least the most elementary viewpoint constraints c1–c3 (i.e., the imaging characteristics
of the sensor, feature geometry, and the consideration of kinematic errors). Moreover,
for some vision tasks, a fourth viewpoint constraint c4 was considered to ensure the
satisfiability of the viewpoint constraints of the projector. Finally, for the vision tasks
that included the viewpoint constraint c5, it was assumed that all features must have
an occlusion-free visibility to the sensor and projector. Table 1 provides an overview
of the considered viewpoint constraints.

5.1.3. Evaluation Metrics

Two metrics were designed to properly evaluate the computed viewpoint plans and
to compare and benchmark the obtained results.
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Measurability Index
To properly quantify the validity of the computed GC -spaces and selected sensor poses

for each viewpoint plan, we introduced a measurability index C(P). This metric represents
the ratio between the total number of successfully acquired features and the total number
of features per view plan n. The measurability index is given as follows:

M =
∑ g( fm)

n
.

To assess the measurability of a single feature, we considered a qualitative Mqual and
a quantitative Mquant metric.

Mqual : The qualitative function assesses the following two conditions.

1. A feature fm, including its entire geometry, must lie within the calculated frus-
tum space I s(ps,j) of the corresponding sensor pose ps,j ∈ GjC

2. Both sensor and projector have free sight to the feature.

If both conditions are fulfilled, the feature is considered to be successfully acquired.

Mquant: The validity of each feature was further qualified based on the resulting 3D mea-
surement, i.e., the point cloud. This metric counts the number of acquired points
within a defined search radius around a feature. If there exist more points than a
specified threshold, the feature can be considered to be valid.
It needs to be noted that the proper evaluation of this condition requires that the mea-
surements are perfectly aligned in the same coordinate system as the features and that
the successful acquisition of surface points is guaranteed if all regarded constraints
c1–c5 are satisfied. Since our work neglects nonspatial constraints that may affect the
quality of the measurement (e.g., exposure times or lighting conditions), the validity
of the view plans was mainly assessed based on simulated measurements. The simu-
lated measurements are generated by the proprietary software colin3D (Version 3.12)
from ZEISS, which considers occlusion and maximal incidence angle constraints.
Moreover, the measurements are perfectly aligned to the car door surface model.

Computational Efficiency
To provide a comprehensive analysis of the computational efficiency of the viewpoint

planning strategy, the computation times of the most relevant steps were estimated:

tk,opt: computation time for computing the necessary k feature clusters and corresponding
optimized sensor orientations,

tC : computation time to characterize all individual C-spaces (one for each feature) consid-
ering the regarded viewpoint constraints,

tGC : computation time to characterize all k GC -spaces,

ttotal : total computation time of the vision task, corresponds to the sum of the times
mentioned above.

The evaluation tests were developed using the trimesh library [37] and open3D li-
brary [38]. All operations were performed on a portable workstation Lenovo W530 running
Ubuntu 20.04 with the following specifications: Processor Intel Core i7-3740QM @2.70 GHz,
Nvidia Quadro K1000 M, and 24 GB Ram.
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Table 1. Overview of viewpoint constraints

Viewpoint
Constraints Description

c1
The imaging parameters of the structured light sensor comprising the
camera and projector must be considered (see Table A4).

c2
The feature dimensions must be regarded so the whole feature geometry is
acquired within the same measurement.

c3
Due to modeling uncertainties, a kinematic error of 50 mm in all Cartesian
directions is assumed.

c4
The imaging parameters of the structured-light projector must be consid-
ered.

c5
The door fixture may occlude some features. However, a self-occlusion
with the car door is neglected.

5.1.4. Implementation

The viewpoint planning framework was developed based on the Robot Operating
System (ROS) [39], which was primarily used for the frame transformation operations.
The framework was built upon a knowledge-based, service-oriented architecture. A more
detailed overview of the general conceptualization of the architecture and knowledge-base
is provided in our previous works [40,41].

Moreover, the clustering was performed using the k-Means algorithm of the Sci-Kit
library, using the Lloyd implementation [42]. Due to its high efficiency for performing CSG
Boolean operations, the PyMesh library from Zhou et al. [43] was utilized for characterizing
the C-spaces and GC -spaces. The ray-casting operations for computing the occlusion space
were performed using the trimesh library [37].

5.1.5. Results

In the first step, the required GC -spaces for each vision task of Table A5 were computed
using the viewpoint strategy proposed in Section 4.2. An overview of the GC -spaces for the
fourth and seventh inspection tasks is displayed in Figure 18. For the feature clustering,
we considered a maximal Euclidean distance of emax = 200 mm (see Equation (8)), which
approximately represents the frustum’s half width-length at its middle plane (see Table A4).
Furthermore, the maximal incidence angle was defined as nmax

s = 30◦. The sensor poses
used for the evaluation represented the geometric center of the corresponding GC -space
manifolds. The qualitative and quantitative measurability indexes of all viewpoint plans
and an overview of the computation times of all vision tasks are shown in the right-handed
columns of Table A5. A detailed discussion of the evaluation metrics is discussed as follows.

Figure 18. GC -spaces of inspection tasks 4 (left) and 7 (right).
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Measurability

In the first step, the qualitative evaluation of all viewpoint plans was performed based
on the previously introduced metrics. As expected, the qualitative evaluation shows very
encouraging results, with an average measurability index above 95% for the viewpoint
plans that considered the most constraints for each inspection task. The high efficacy of
some selected viewpoint plans could be further assessed using the quantitative evaluation
of simulated and real measurements. Furthermore, it could also be demonstrated that
for some single vision tasks (3–5 and 13–15), the measurability index was improved by
considering occlusion constraints for the sensor and projector.

On the one hand, these encouraging results confirm the validity and applicability of
the viewpoint planning strategy using GC -spaces. In particular, the real measurements
for vision tasks 5 and 7 demonstrated that the selected sensor poses were robust enough
to compensate for kinematic uncertainties in the real measurements. In contrast, the
measurability of some individual features could not be guaranteed in some cases. The
failed evaluation of these cases, as well as the discrepancies between the qualitative and
quantitative evaluations, can be attributed to two leading causes, which require a further
discussion:

• Occlusion: All failed qualitative evaluations and the decrease in the measurability
score if occlusion constraints were regarded can be attributed to the nonexistence
of an occlusion-free space for the computed GC -spaces with the chosen sensor ori-
entation. The strategy proposed in Section 4.2.3 did not explicitly contemplate such
cases. However, this problem could be straightforwardly solved by considering an
alternative sensor orientation in the 7th step of Algorithm 2 when the intersection
of consecutive C-spaces yields a non-empty manifold. Formulating such a strategy
requires a more comprehensive analysis of the occlusion space, which falls outside the
scope of this work.
Furthermore, the failed evaluation of most features lying on the inside of the door
was occasioned by occlusion with the door itself, which was initially neglected as an
occluding object. However, an empirical analysis of some failed viewpoints showed
that a positive evaluation could be achieved by recomputing the GC -spaces of the
affected features considering the car door as an occluding object, as seen in Figure 19.

• Missing points and misalignment: The quantitative evaluation of some individual
viewpoints showed discrepancies between the simulation and the real measurements.
These differences can be easily explained considering the requirements of the quanti-
tative evaluation strategy proposed in Section 5.1.3 based on the acquisition of surface
points. Due to the high reflectivity of the car door material and the fact that the opti-
mization of the exposure time was neglected during the experiments, the acquisition of
enough surface points in some areas could not be achieved, see Figure 20. On the other
hand, a detailed evaluation of some failed viewpoints showed that the measurements
could not be aligned correctly in other cases, causing a false-positive evaluation of
some features. By manually optimizing the number of exposure times and individual
values, more dense and better-aligned measurements could be obtained, mitigating
most of the mentioned errors.
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Figure 19. Recomputation of GC -space regarding the door as an occlusion object, the red manifold
represents the occlusion space generated by the door’s surface model.

Figure 20. Comparison of the quantitative evaluation of the measurability of three exemplary features
using a simulated measurement (left) and a real measurement (right): the quantitative assessment
with real measurements fails due to a lack of surface points.

Computational Efficiency

The computational efficiency overview from Table A5 demonstrates that all viewpoint
plans neglecting occlusion were computed in linear times. Furthermore, the general time
distribution for the vision tasks omitting occlusion constraints shows that, on average, 80%
of the total time was required for the characterization of the C-spaces manifolds, 15% for
the GC -spaces, and only 5% for the clustering and orientation optimization tasks. A more
comprehensive analysis of each computed step is discussed below.

tG: It can be observed that the feature clustering and optimization of the sensor orientation
can be regarded as the most efficient step of the strategy and represent, on average,
less than 10% of the whole planning process. The experiments show the efficiency of
the k-Means algorithm for such tasks, agreeing with the previous findings from [28].

tC : The vision tasks that only incorporate the fundamental constraints c1–c3 showed a
high computational efficiency. These results were to be expected, taking into account
that the C-space characterization of these viewpoint constraints consists mainly of
linear operations. This trend can be observed in Figure A2, showing the proportional
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increase between the computation time for the required C-spaces tC and the total
number of features. This behavior can be further observed when the fourth constraint
is considered. In this case, each C-space must be spanned for each imaging device
(sensor and projector), increasing the computation by a factor of two. On the other
hand, taking into account the occlusion constraint c5 considerably increased the
computational complexity of the task. This behavior is also comprehensible, recalling
that the characterization of occlusion-free C-spaces relies on ray-casting, which is well
known to be a computationally expensive process.
Moreover, neglecting occlusion constraints, the average computation time for the
characterization of one C-space was estimated at 60 ms. It needs to be noted that this
time estimation includes a non-negligible computational overhead of all required
operations, such as frame transformation operations using ROS-Services. In [4] the
computation of a single C-space was estimated, on average, at 4 ms.

tGC : The computation of the GC -spaces using intersecting CSG Boolean operations proved
to be highly efficient, requiring 10–15% of the total planning time. The experiments
also confirm that the time effort increases with the number of intersecting spaces.
However, by applying manifold decimation techniques after each Boolean intersection
(cf. Section 4.2.3), the time effort could be considerably reduced. For instance, within
the first vision task, the characterization of a GC -space with six C-spaces required
0.6 s, while the intersection of a GC -space with 44 C-spaces took 2.4 s. Furthermore,
the computation times of the GC -spaces considering occlusion constraints visualized
in Figure A2 confirm that the intersection of more complex manifolds was, on average,
more time-consuming.

Determinism

Finally, we selected three inspection tasks (4, 6, and 15, marked with * in Table A5)
and computed the corresponding viewpoint plan ten times to assess the robustness and
determinism of the viewpoint planning strategy. Within these experiments, the heuristic
characteristic of the k-Means algorithm can be observed. In particular, within vision task 6,
which considers a higher number of features, the number of computed clusters differed
between computations with a standard deviation of σ = 0.89 clusters. However, the
necessary GC -spaces could always be computed, and the computation times showed an
acceptable standard deviation.

5.2. CMM with Laser Line Scanner
5.2.1. System Description

To assess the transferability of the viewpoint planning strategy and the usability
of GC -spaces with an alternative kinematic vision system commonly used in industrial
metrology applications, we considered a coordinate measuring machine (CMM) model
LK Altera 15.7.6 and a laser line scanner (LLS) LC60Dx from Nikon Metrology. A compre-
hensive system description, including the synthesis of a digital twin and an exhaustive
accuracy analysis, can be found in [44,45]. The CMM can be analogously modeled as a
serial robot considering three translational and one rotational degrees of freedom. The
imaging parameters of the LLS are found in Table A4.

5.2.2. Vision Task Description

A simple inspection task comprising the dimensional inspection of a self-designed
academic probing object consisting of three cylindrical features was regarded to evaluate
our framework. The object was coated with a matte white spray to facilitate the acquisition
of the cylinders’ surfaces. The measurement system and object are depicted in Figure 21.
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5.2.3. Assumptions and Adaptation of the Domain Models and Viewpoint
Planning Strategy

Since [4] did not explicitly address the application of C-spaces with LLSs, some addi-
tional assumptions regarding the modeling of features, sensors, and viewpoint constraints
must be first considered.

Features: The measuring object comprises three cylinders with different positions (see
Table A6). The feature frame of the cylinders is placed at the bottom. Taking into ac-
count the feature model from Section 2.3, which only considers one frame per feature
and assumes that the whole cylinder can be acquired with a single measurement, the
definition of the feature model must be extended to guarantee the acquisition of the
cylinder’s surface area. Thus, two further features for each cylinder ( f+y, f−y) were
introduced. The new feature frames are located at the half-height of the cylinder and
their normal vectors (z-axis) are perpendicular to the x-axis of the feature’s origin. The
geometrical length of these extra features corresponds to the height of the cylinders.
An overview of the frames of all features corresponding to one cylinder are shown in
Figure 22.

Sensors and Acquisition of Surface Points: It is assumed that the LLS only moves in a
straight line in the CMM’s workspace with a fixed sensor orientation. For this reason,
we assume that all feature surface points can be acquired with a single scanning
trajectory as long as the incidence angle constraint between the surface points and
the sensor holds.

I-space and C-space: Recalling that C-spaces are built based on the 3D sensor’s I-space,
we first considered a modification of the LLS’s 2D frustum. Recalling the previous
assumption regarding the acquisition of surface points, let the LLS span a 3D I-space
composed of the 2D I-space and a width corresponding to the distance of the scan-
ning trajectory. The resulting I-space of one scanning direction and the resulting
C-spaces for one cylinder and its three features are visualized in Figure 22. Having
characterized a 3D frustum, the approach presented in Algorithm 1 can be directly
applied to span the required C-space for one feature. The successful acquisition of
one feature results from moving the sensor from an arbitrary viewpoint from one
end of the C-space to another arbitrary viewpoint at its other end. This study only
considers the characterization of one C-space for the sensor’s laser.

C-space and Multi-features: Within multi-feature scenarios, it is desirable to acquire
as many features as possible during one linear motion. Therefore, in the simplest
scenario, the length of all scanning trajectories corresponds to the size of the object’s
longest dimension. Under this premise, we assume that the width of the I-space,
hence, of each single C-space, corresponds to this exact length.

Viewpoint Constraints: Equally to other vision systems, the successful acquisition of
surface points depends on the compliance of some geometric viewpoint constraints,
such as the imaging capabilities of the LLS (c1) and the consideration of the features’
geometrical dimensions (c2). Since the scope of this study prioritizes the transferability
of the viewpoint strategy, only these constraints were considered to guarantee the
successful acquisition of the regarded features. The adaptation and validation of
further viewpoint constraints lie outside the scope of this publication and remain to
be further investigated.



Sensors 2023, 23, 7964 32 of 44

Figure 21. A CMM vision system consisting of two main hardware components: a CMM and the LLS.
The probing object composed of three cylinders is positioned within the workspace of the CMM.

5.2.4. Results

Under consideration of the previously mentioned assumptions and modification of
the domain models, the necessary GC -spaces were computed to inspect the nine features
of the three cylinders aligned to the viewpoint plan strategy proposed in Section 4.2. The
clustering and optimization of the sensor orientation can be performed analogously to the
presented methods from Section 4.2. However, unlike what is suggested in Section 2.1.3
and assuming that multiple features could be acquired within the same scanning trajectory,
a less conservative condition regarding the maximal Euclidean distance of the clustering
algorithm was regarded using the maximal length of the workpiece, i.e., emax = 120 mm.
Furthermore, the optimization of the swing angle (rotation around the optical z-axis, see
Section 4.2.2) was particularly useful for estimating the optimized scanning direction of
the sensor.

Considering the minimal established viewpoint constraints, the viewpoint planning
strategy yielded three GC -spaces to acquire all nine features of the three cylinders of the
object. Figure 22 illustrates the resulting GC -spaces manifolds. Each GC -space corresponds
to the acquisition of three features for three different acquisition directions (z, +y, −y): one
at the top (G1Cz) and two at both lateral sides (G2C+y, G3C−y) of the object.

The computation time of the whole strategy corresponded to ttotal ≈ 610 ms, confirm-
ing the efficiency of the framework. To validate the computed GC -spaces, four scanning
trajectories were selected. Each scanning trajectory’s start and end position corresponds
to two extreme GC -spaces vertices, see Table A5. Figure 23 visualizes the corresponding
scanning trajectories of all GC -spaces.

Furthermore, an exemplary representation of the sensor placement of the resulting
scanning trajectories of the third GC -space G3C−y, the corresponding 2D frustum, and
the acquired surface points are shown in Figure A3. These extreme scanning trajectories
demonstrate the validity of the computed GC -space, which guarantees that the height of
all three cylinders and the outer radii always lie inside the I-space for all four scans. It
can also be assumed that any arbitrary combination of start and end positions within the
outer planes of the GC -spaces will also be valid. The qualitative measurability function
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from Section 5.1.3 could be straightforwardly applied to all scanning trajectories and
corresponded to the complete acquisition of all features for at least one trajectory.

B f1
B f+y

1

B f−y
1

f1C

I s

f+y
1 C

Figure 22. Cylinder with three features, extended model of the sensor I-space (I s) for an LLS, and
two exemplary C-spaces for each feature f1 and f+y

1 .

It should be noted that some surface points could not be successfully acquired for
some single extreme scanning trajectories, e.g., the scans 1 and 2 from Figure A3. This
failed acquisition can be attributed to the manufacturing tolerances of the self-designed
object. However, such tolerances can be seamlessly compensated by selecting alternative
sensor positions within the GC -spaces or considering tolerances implicitly in the synthesis
of the C-spaces, as in the first evaluation case (cf. c3 from Table 1).

Furthermore, the measurements of all scanning trajectories are depicted in Figure 24,
confirming the validity of the viewpoint plan and computed GC -spaces. The surface model
of the object, manifolds of the computed GC -spaces, and the performed measurements can
be found in the digital appendix of this paper. From these experimental results, it can be
concluded that the proposed viewpoint planning strategy based on C-spaces and GC -spaces
could be satisfactorily applied for vision systems comprising LLSs under consideration of
certain assumptions.
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Figure 23. Overview of the three GC -spaces (G1Cz, G2C+y, G3C−y) and visualization of the four
scanning tracks (black lines).

Figure 24. The combined point cloud of the three view directions for all four scan tracks.

5.3. Discussion

A more comprehensive evaluation of the strengths and limitations of the viewpoint
planning strategy is discussed in the context of the main goals of this publication:
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5.3.1. Efficacy

On the one hand, the effectiveness of the computed viewpoint plans and chosen
sensor poses showed an encouraging average measurability satisfiability of over 95% for all
regarded vision tasks. It was demonstrated that by considering more viewpoint constraints,
the efficacy of the viewpoint plans could be increased towards full measurability. On
the other hand, in some cases, a complete measurability could not be achieved due to
the occlusion limitations of the planning strategy. Although the present work considered
occlusion constraints and the validity of occlusion-free C-spaces could be verified for
individual cases, a proper strategy to consider more complex scenarios remains a stimulus
for further research.

Moreover, although the GC -spaces are valid only for a fixed sensor orientation, the
experiments showed that the selected sensor poses were also effective and robust for com-
pensating for minor orientation deviations. In case an orientation range must be explicitly
considered, the future works should then extend the strategy to consider GC -spaces for
multiple sensor orientations, as suggested in [4].

Furthermore, most of the selected viewpoints within the GC -spaces were shown to be
valid and sufficient for passing the considered evaluation metrics. However, within the
evaluation, we also observed that some real measurements differed from the simulated
evaluations due to modeling uncertainties or manufacturing tolerances. An individual
analysis of some of these measurements demonstrated that these uncertainties could
be compensated for by selecting an alternative sensor pose within the corresponding
GC -space. This characteristic of GC -spaces embodies the intrinsic benefits of C-spaces
for compensating for uncertainties without compromising the validity of the viewpoint
plan. However, these findings also suggest that the further research should be devoted to
designing optimization strategies for finding alternative viewpoints within GC -spaces to
compensate for target-oriented uncertainties and neglected constraints.

5.3.2. Computational Efficiency

The comprehensive analysis of the computational complexity demonstrated that most
view plans could be computed in near linear time. Due to the complexity of the developed
software framework and dependency on external libraries, a more detailed computational
analysis is needed to verify the complexity of the strategy and C-space. However, our
experiments confirmed the strength and simplicity of GC -spaces, showing that effective
viewpoint plans could be computed within feasible times despite the complexity of the
vision tasks and vision systems.

Moreover, the estimated computational times also showed that if occlusion constraints
are regarded, the complexity of the overall strategy increases considerably and depends
strongly on the complexity of the considered surface models. Hence, the future research
should be devoted to a more efficient characterization and computation of the occlusion
spaces.

Furthermore, in terms of overall planning efficiency, the further studies should con-
centrate on the extension of the present viewpoint planning strategy for considering the
proper combination of GC -spaces in case of overlapping (e.g., see right-handed image of
Figure 18) to reduce the number of required viewpoints.

5.3.3. Transferability

This study demonstrated that the usability of C-spaces, GC -spaces, and the overall
viewpoint planning strategy could be satisfactorily evaluated with different vision systems.
In the context of a simplified inspection scenario and considering an adaption of the models
introduced in the current study, the applicability of the suggested strategy and potential of
GC -spaces for LLSs was demonstrated.

However, further work remains to be carried out to properly evaluate the use of
GC -spaces for LLS and to consider more complex vision tasks comprising further viewpoint
constraints, e.g., occlusion constraints.
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6. Conclusions
6.1. Summary

The VPP is a multi-dimensional and challenging problem that any vision task de-
manding the computation of multiple and valid viewpoints must consider. Based on our
literature review, the VPP is still regarded as a complex and unsolved challenge, lacking a
generic and efficient framework for computing multiple viewpoints within feature-based
applications.

Towards tackling the VPP, the present work proposes its modularization and addresses
its subproblems separately, i.e., the VGP and the SCP. First, based on our previous work [4],
the present study poses the VGP for multi-feature applications, addressing it as a purely
geometric problem that can be solved based on GC -spaces. GC -spaces span continuous
solution spaces in 6D, providing an infinite number of valid viewpoints that guarantee the
successful acquisition of feature clusters, taking into account various viewpoint constraints.
The experiments undertaken within this publication demonstrate that spanning an infinite
solution space is a powerful technique for implicitly considering model uncertainties
within real applications and delivering alternative solutions. Moreover, to address the
SCP, we proposed a holistic viewpoint planning strategy based on a heuristic clustering
method to identify the sufficient number of GC -spaces required to fulfill a vision task. The
validity, efficiency, and transferability of the viewpoint planning strategy proposed in this
study were evaluated using two different industrial vision systems within dimensional
metrology tasks. Our evaluation showed that valid viewpoints could be computed for
diverse inspection tasks and sensors in linear times, guaranteeing an acquisition of up to
90% of all features.

The key contributions and advantages of a viewpoint planning strategy based on
GC -spaces are summarized as follows:

• Mathematical and generic formulation of the VPP to ease the transferability and
promote the extensibility of the framework for diverse vision systems and tasks.

• Synthesis of GC -spaces built upon C-spaces, inheriting some of their intrinsic advantages:

– analytical, model-based, and closed-form solutions,
– simple characterization based on constructive solid geometry (CSG) Boolean

techniques,
– infinite solutions for the seamless compensation of model uncertainties.

• Generic and modular viewpoint planning strategy, which can be adapted to diverse
vision tasks, systems, and constraints.

6.2. Limitations and Future Work

The outlined viewpoint strategy can be categorized as a model-based approach requir-
ing minimal a priori knowledge about the sensor’s frustum model and the location and
geometry of the features to be acquired. However, the present framework does not consider
a stringent definition of features. Hence, the future work should evaluate its usability and
adaptability for diverse vision tasks.

Our previous work [4] introduced the core concepts required for synthesizing GC -spaces
and demonstrated that several viewpoint constraints could be modeled geometrically. How-
ever, in the context of applications demanding multiple viewpoints, we observed that the
potential of GC -space remains to be further exploited for considering further constraints.
On the one hand, based on our ongoing research and preliminary results, we still see the
potential for explicitly characterizing registration constraints for maximizing and ensuring
the overlapping area between adjacent measurements [46]. On the other hand, we can
also imagine that GC -spaces could be used for considering further robot constraints such
as sensor lighting parameters, robot collisions, cycle times, and energy-efficiency con-
straints. Concretely, our current research concentrates on exploiting the use of GC -spaces
for simultaneously optimizing the sensor exposure time and sensor pose.
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Although our experimental results demonstrated encouraging results regarding the
efficacy and efficiency of the present framework, further studies should concentrate on
the definition of a benchmark scenario and standardized evaluation metrics that facilitate
a direct and more comprehensive evaluation between diverse approaches. Due to the
nature of the approach presented, which suggests an explicit characterization of the domain
models and constraints, a non-negligible effort to implement and parameterize the models
as proposed in this research should be considered.

Despite the mentioned limitations, we are convinced that the outlined viewpoint
planning strategy based on GC -spaces provides a springboard for a novel and efficient
approach for tackling the VPP, comprising closed and deterministic solutions. We hope that
our findings aid researchers and industry in enabling the automation of diverse vision tasks.
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Appendix A. Tables and Figures

Table A1. Overview and description of the viewpoint constraints from [4].

Viewpoint
Constraint

Brief Description

1. Frustum Space The most restrictive and fundamental constraint is given by the imaging
capabilities of the sensor. This constraint is fulfilled in its most elementary
formulation if at least the feature’s origin lies within the frustum space
(cf. Section 2.1.1).

2. Feature Orientation
and Incidence Angle

The maximal permitted incidence angle between the optical axis and the
feature normal is not allowed to exceed a maximal angle determined by
the sensor manufacturer. (2).

3. Feature Geometry This constraint can be considered an extension of the first viewpoint
constraint and is fulfilled if all surface points of a feature can be acquired
by a single viewpoint, hence, lying within the image space.

4. Kinematic Error Within the context of real applications, model uncertainties affecting the
nominal sensor pose compromise a viewpoint’s validity. Hence, any
factor, e.g., kinematic alignment, robot’s pose accuracy, affecting the
overall kinematic chain of the RVS must be considered.

5. Sensor Accuracy It is assumed that the sensor accuracy may vary within the sensor image
space.

6. Feature Occlusion A viewpoint can be considered valid if a free line of sight exists from the
sensor to the feature.

7. Bistatic Sensor and
Multisensor

Recalling the bistatic nature of range sensors, all viewpoint constraints
must be valid for all lenses or active sources.

Table A2. Overview of index notations for variables.

Notation Index Description

x :=variable, parameter, vector, frame or transformation
d :=RVS domain, i.e., sensor, robot, feature, object, environment or d element of
a list or set

r
bxn

d n :=related domain, additional notation or depending variable
r :=base frame of the coordinate system Br or space of feature f
b :=origin frame of the coordinate system Bb

Notes The indexes r and b only apply for pose vectors, frames, and transformations.

Example
• d: Let a sensor (s) pose be denoted as follows ps ∈ R3

• d: The sensor pose with the index 5 is given as follows ps,5.
• n: The coordinate system of the of the sensor lens of the first imaging device

is denoted by Bs1
s .

• b: To specify the origin frame of the sensor pose, e.g., in Bs1
s , then the

following notation applies: s1
ps,5.

• r: Assuming that the sensor pose is given in the coordinate system of the

feature, B f , then it follows that f ps,5 or f
s1 ps,5.



Sensors 2023, 23, 7964 39 of 44

Table A3. Overview of features and occlusion objects used for academic example.

Feature f1 f2 f3 f4 κ1 κ2

Topology Circle Slot Circle Slot Octahedron Cube

Dimensions in
mm

radius = 20 length = 150 radius = 20 length = 50 edge length
≈ 28.3 length = 50.0

Translation
vector in
object’s
frame to =
(xo, yo, zo)T in
mm

 225.0
100.0
25.0

  100.0
85.0
0.0

  250.0
200.0

0.0

  150.0
225.0
20.0

  200.0
200.0
400.0

  245.0
115.0
200.0



Rotation in Eu-
ler Angles in
object’s frame
ro(γ

x
s , β

y
s , αz

s)
in ◦

(20, 0, 0) (0, 0, 0) (0, 0, 0) (0, 30, 0) (0, 0, 0) (0, 0, 0)

Table A4. Imaging parameters of the two used sensors.

Range Sensor 1 2

Manufacturer Carl Zeiss Optotechnik GmbH Nikon

Model COMET Pro AE LC60Dx

3D Acquisition
Method

Digital Fringe Projection Laser Scanner

Imaging Devices Monochrome Camera (s1) Blue Light LED-Fringe Projector (s2) Laser Diode and Optical Sensor

FOV angles θx
s =51.5 ◦, ψ

y
s =35.5 ◦ θx

s =70.8 ◦, ψ
y
s =43.6 ◦ θx

s =35.05 ◦

Working distances
and corresponding
near, middle, and far
planes.

@400 mm :(396× 266)mm

@600 mm :(588× 392)mm

@800 mm :(780× 520)mm

@200 mm :(284× 160)mm

@600 mm :(853× 480)mm

@1000 mm :(1422× 800)mm

@95 mm :60 mm

@125 mm :60 mm

@155 mm :60 mm

Table A5. Overview of viewpoint planning results considering diverse inspection tasks.

Vision Tasks Configuration Results

Vision
Task

Door
Side

Feature
Type Constraints

Nr. of
Fea-

tures

Nr. of
Clus-
ters

Measurability Index in %, Computation Time in s

Mqual Mquant
sim Mquant

real tk,opt tC tGC ttotal

1 All All 1–3 673 75 97.77 8.35 140.94 19.11 168.41

2 All All 1–4 673 77 97.47 9.28 265.99 43.59 318.86

3 All Circles 1–3 50 12 92.00 1.53 2.76 0.66 4.94

4 * All Circles 1–4 50 10,
σ = 0 92.00

0.98,
σ =
0.10

6.32,
σ =
0.66

1.74,
σ =
0.03

9.04,
σ =
0.73

5 All Circles 1–5 50 10 96.00 96.00 82.00 1.26 77.27 2.83 81.36

6 * Inside All 1–3 157
14,

σ =
0.89

100.00
2.73,
σ =
0.27

8.75,
σ =
0.39

1.78,
σ =
0.18

13.26,
σ =
0.66
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Table A5. Cont.

Vision Tasks Configuration Results

Vision
Task

Door
Side

Feature
Type Constraints

Nr. of
Fea-

tures

Nr. of
Clus-
ters

Measurability Index in %, Computation Time in s

Mqual Mquant
sim Mquant

real tk,opt tC tGC ttotal

7 Inside All 1–4 157 14 100.00 96.82 88.54 2.38 18.33 4.12 24.83

8 Inside Circles 1–3 34 4 100.00 1.04 1.81 0.38 3.24

9 Inside Circles 1–4 34 4 100.00 1.08 3.64 0.89 5.62

10 Outside All 1–3 267 26 97.75 3.71 16.72 3.80 24.23

11 Outside All 1–4 267 26 97.75 4.00 39.02 10.38 53.40

12 Outside All 1–5 267 26 94.01 88.76 3.68 961.84 50.46 1015.98

13 Outside Circles 1–3 11 5 63.64 1.16 0.70 0.13 1.99

14 Outside Circles 1–4 11 5 63.64 1.09 1.28 0.46 2.83

15 * Outside Circles 1–5 11 5,
σ = 0 81.82

0.68,
σ =
0.10

15.12,
σ =
0.60

2.50,
σ =
0.15

18.78,
σ =
0.81

* The results consider the mean and standard deviation (σ) of a ten-times repeated computation.

Table A6. The overview of the cylinders used for CMM.

Feature f1 f2 f3

Topology Cylinder Cylinder Cylinder

Dimensions in mm radius = 16, height = 25

Translation vector in object’s frame to =
(xo, yo, zo)T in mm

 30.0
40.0

6

  60.0
20.0
12

  100.0
30.0

3


Rotation in Euler Angles in object’s frame
ro(γ

x
s , β

y
s , αz

s) in ◦ (0, 0, 0) (0, 0, 0) (0, 0, 0)

Table A7. Coordinates of the start- and end-position of each scanning trajectory.

Start Coordinate in mm Start Coordinate in mm
X Y Z X Y Z

−y
view
direction

1 −35 34 4 164 34 4
2 −35 10 4 164 10 4
3 −35 10 33 164 10 33
4 −35 34 33 164 34 33

+y
view
direction

1 −35 26 4 164 26 4
2 −35 50 4 164 50 4
3 −35 50 33 164 50 33
4 −35 26 33 164 26 33

z view
direction

1 −35 26 4 164 26 4
2 −35 26 33 164 26 33
3 −35 34 33 164 34 33
4 −35 34 4 164 34 4
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s
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s
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Figure A1. 2D simplified visualization of the kinematic and imaging model of the sensor in the
x–z plane. The imaging parameters of the sensor (ds, hnear

s , h f ar
s , θx

s , ψ
y
s ) ∈ Is for a given sensor pose

ps span the frustum space I s . A minimum of eight vertices V I s
1−8 are required to characterize the

I-space manifold. (image from Magaña et al. [4]).

Number of features →

t C
,t

G
C

in
s
→

(l
og

sc
al

e)

tC(Cc1−c3) tC(Cc1−c4) tC(Cc1−c5)

tGC(
GC c1−c3

) tGC(
GC c1−c4

) tGC(
GC c1−c5

)

Figure A2. Overview of the computation times for the characterization of C-spaces (tC ) and GC -spaces
(tGC ), depending on the number of features considering different viewpoint constraints.
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Figure A3. 2D Visualization in the z–y plane of the four scanning trajectories on the boundaries
(vertices) of G3C−y, frustum (red square), and measured points (blue surface).
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