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Abstract

The complexity of our actions and thinking is likely reflected in functional brain

networks. Independent component analysis (ICA) is a popular data-driven method

to compute group differences between such networks. A common way to

investigate network differences is based on ICA maps which are generated from

study-specific samples. However, this approach limits the generalizability and

reproducibility of the results. Alternatively, network ICA templates can be used,

but up to date, few such templates exist and are limited in terms of the functional

systems they cover. Here, we propose a simple two-step procedure to obtain ICA-

templates corresponding to functional brain systems of the researcher's choice: In

step 1, the functional system of interest needs to be defined by means of a statis-

tical parameter map (input), which one can generate with open-source software

such as NeuroSynth or BrainMap. In step 2, that map is correlated to group-ICA

maps provided by the Human Connectome Project (HCP), which is based on a

large sample size and uses high quality and standardized acquisition procedures.

The HCP-provided ICA-map with the highest correlation to the input map is then

used as an ICA template representing the functional system of interest, for exam-

ple, for subsequent analyses such as dual regression. We provide a toolbox to

complete step 2 of the suggested procedure and demonstrate the usage of our

pipeline by producing an ICA templates that corresponds to “motor function” and

nine additional brain functional systems resulting in an ICA maps with excellent

alignment with the gray matter/white matter boundaries of the brain. Our toolbox

generates data in two different file formats: volumetric-based (NIFTI) and com-

bined surface/volumetric files (CIFTI). Compared to 10 existing templates, our pro-

cedure output component maps with systematically stronger contribution of gray

matter to the ICA z-values compared to white matter voxels in 9/10 cases by at

least a factor of 2. The toolbox allows users to investigate functional networks of

interest, which will enhance interpretability, reproducibility, and standardization of

research investigating functional brain networks.
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1 | INTRODUCTION

Functional magnetic resonance imaging at rest (resting-state fMRI or

rs-fMRI) has revealed consistent patterns of statistical associations,

so-called networks of functional connectivity (FC), between certain

sets of regions in the human brain (Biswal et al., 1995; M. D. Fox &

Raichle, 2007; Smith et al., 2009). In this context, (spatial) independent

component analysis (ICA) has become a widely adopted multivariate

data-driven analysis method, which attempts to identify spatially inde-

pendent components (i.e., statistical parameter maps). In brain imag-

ing, this allows to cluster brain regions with similar functional

response patterns into groups and can hence be regarded as a mea-

sure of FC (Calhoun et al., 2009; Hyvärinen, 1999). In the last two

decades, studies using rs-fMRI have reported a consistent set of

large-scale resting-state networks whose functions have become

research topics in cognitive and clinical neurosciences (Damoiseaux

et al., 2006; Raichle et al., 2001; Yeo et al., 2011).

In order to compare ICA components from rs-fMRI on the group

level (e.g., patients vs. controls) one needs to obtain subject-wise

component maps that represent corresponding networks. Performing

single-subject ICA and subsequently computing group statistics on

matched components seems impractical since, for example, due to

individual noise, some component one finds in some subjects can be

split into or across multiple components in other subjects. Instead, a

common practice is to use a template (a collection of spatial compo-

nents that one assumes to be common to the entire set of subjects)

and map the template back to individual subjects in order to compute

group comparisons on these subject-wise component maps.

There are two major strategies for choosing a template. The first

strategy is to derive the template from the data at hand (within-sample

template) or from an independent dataset (independent-sample tem-

plate) by performing an ICA on the concatenated data of all subjects

in that sample. The second strategy is to use an atlas-template avail-

able in the literature (e.g., Smith et al., 2009) or to create a customized

template.

The advantage of deriving a within-sample template is that since

the resulting template is optimized for the sample of subjects in the

study it provides optimal statistical sensitivity in group analyses. How-

ever, since the results of group-ICA decompositions can look different

in terms of dimensionality and topology of spatial components

depending on factors such as acquisition parameters, group size, and

preprocessing strategies, it may become difficult to compare the

results of different studies that follow this strategy.

Using an atlas-template may yield slightly less sensitive group

analyses compared to using a within-sample or an independent-

sample template, but atlas-templates have the great advantage of

referring to consistent spatial components across studies, for which

there may even exist commonly accepted labels in the task-domain.

To date, few such functionally labeled atlas templates exist. One of

the few exceptions was published by Smith et al. (2009). The authors

pointed out a striking similarity in the spatial structure between

group-ICA maps they identified in 36 healthy participants and task-

based statistical parameter maps drawn from meta-analyses of 1687

fMRI studies that investigated different perceptual, cognitive, and

motor-tasks in overall 29,671 subjects. The authors labeled the identi-

fied group-ICA maps pertinent to the task-based statistical parameter

maps of highest correspondence, yielding labeled components such as

the “sensorimotor,” the “lateral visual,” or the “executive control” net-
work. In total, their publicly available template1 contains 10 compo-

nents and has been widely used either for providing a standardized

visualization of results, or as the basis for group comparisons

(Castellazzi et al., 2018; Pflanz et al., 2015; Rane et al., 2014; Rubin

et al., 2017).

In terms of standardization, it is beneficial or even necessary for

the cognitive and clinical neurosciences to use common functionally

labeled templates to compute network differences as opposed to cal-

culating study-specific group-ICA maps. However, studies that investi-

gate different functional systems may require different network

templates targeting specific functional systems of interest, which may

not all be covered by the 10 functional systems put forth by (Smith

et al., 2009). Therefore, a pipeline which allows one to flexibly gener-

ate ICA-based templates that capture customizable task-related or

functional domains is highly desirable. Such maps should be as spa-

tially accurate (e.g., alignment with gray-matter/white-matter bound-

ary) as possible in order to yield high sensitivity and specificity

(Bodurka et al., 2007) and cover all relevant brain areas.

Here, we describe a standardized and automatized procedure to

obtain such high-quality ICA-templates that correspond to functional

systems of the researcher's choice. To this aim, we propose combining

information from fMRI meta-analyses with high-resolution ICA-maps

from the Human Connectome Project (HCP, www.

humanconnectome.org; Van Essen et al., 2013; Marcus et al., 2011),

which provides a large dataset with excellent spatial resolution and

high-quality alignment between whole-brain functional and structural

data. Creating customized HCP-templates follows a simple and fast

two-step procedure (Figure 1): In step 1, the user defines an “input”
statistical brain map, for example, identified from already available

meta-analyses databases (such as NeuroSynth or Brainmap, see

section “Pipeline” below), which in step 2 is correlated with the com-

plete set of the 690 ICA component maps from the HCP (https://

www.humanconnectome.org/storage/app/media/documentation/

s1200/HCP1200-DenseConnectome+PTN+Appendix-July2017.pdf)

to find the best matching HCP-component map for the functional

1The group-ICA maps are freely available for download at https://www.fmrib.ox.ac.uk/

datasets/brainmap+rsns.
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system of interest. Importantly, our pipeline allows one to generate

ICA templates in two different file formats: the volumetric and

commonly-used NIFTI file format (Neuroimaging Informatics Technol-

ogy Initiative, https://NIFTI.nimh.nih.gov/NIFTI-2), as well as the

emerging CIFTI file format (Connectivity Informatics Technology Ini-

tiative, https://www.nitrc.org/projects/CIFTI/). The latter combines

cortical data rendered on the surface with volumetric data of subcorti-

cal structures and the cerebellum (Marcus et al., 2011). To illustrate

the proposed methodology, we create a labeled template for the term

“motor function.” We compare that resulting ICA-component from

our pipeline to an existing ICA-template corresponding to motor func-

tion from Smith et al. (2009). Furthermore, we create an updated

template atlas based on the original atlas by Smith et al. (2009) and

discuss potential benefits of the updated atlas.

2 | METHODS

2.1 | Subjects and preprocessing by the Human
Connectome Project Consortium

Our pipeline is based on a subset of 1003 subjects (534 females, age

range of 22–35 years) from the Human Connectome Project's (HCP)

1200 Subjects Release (https://db.humanconnectome.org/data/

F IGURE 1 Overview of the proposed strategy to identify customized ICA-templates of maximal correspondence to user-specified functional
systems. In step 1 (left panel), the user defines a functional system of interest and provides a brain statistical map representing that functional
system as input. Such map can be generated with existing open-access software such as NeuroSynth and BrainMap. In step 2, that input map is
correlated to 690 group-ICA maps (independent component analysis) provided by the Human Connectome Project (HCP). The HCP provides ICA
maps for different target numbers of ICA components (“dimensionalities,” abbreviated with d in the figure), such that we consider all of these
dimensionalities within our pipeline (middle panel). That HCP-component with the highest correlation value to the input template is selected as
“best match” (output ICA-template). Within our pipeline, the output is provided in two different file formats: volumetric space (NIFTI), as well as a
combined surface/volumetric file format (CIFTI) (right panel), which is also provided by the HCP.
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projects/HCP_1200), who completed four resting-state fMRI runs

(14.4 min each, resulting in 4800 total timepoints per subject at a TR

of 0.72 s). All of the data were fully preprocessed by the HCP consor-

tium and the cleaned data has been made publicly available (for the

preprocessing procedure, see [Fischl, 2012; Glasser et al., 2013;

Jenkinson et al., 2002; Jenkinson et al., 2012; Smith et al., 2013],

including artifact removal with ICA-FIX [Griffanti et al., 2014; Salimi-

Khorshidi et al., 2014]). The preprocessed data were used for group-

ICA parcellation in CIFTI space based on FSL's MELODIC tool. Note

that the ICA-decomposition using different dimensionalities (including

15, 25, 50, 100, 200, and 300 dimensions, see below) was also per-

formed by the HCP consortium and the resulting maps have been

made publicly available. We have chosen to use the HCP maps to

enhance the standardization, reproducibility, and transparency of our

pipeline. In brief, ICA decomposition was performed by the HCP consor-

tium as follows (cf., also the HCP1200 documentation on higher level rs-

fMRI connectivity analyses at https://www.humanconnectome.org/

storage/app/media/documentation/s1200/HCP1200-DenseConnectome

+PTN+Appendix-July2017.pdf; the component maps are made available

within the HCP database under the name “HCP1200 Parcellation

+ Timeseries + Netmats (PTN)”).
Our pipeline is based on a subset of 1003 subjects (534 females,

age range of 22–35 years) from the Human Connectome Project's

(HCP) 1200 Subjects Release (https://db.humanconnectome.org/

data/projects/HCP_1200), who completed four resting-state fMRI

runs (14.4 min each, resulting in 4800 total timepoints per subject at a

TR of 0.72 s). All of the data were fully preprocessed by the HCP con-

sortium and the cleaned data has been made publicly available (for the

preprocessing procedure, see [Fischl, 2012; Glasser et al., 2013;

Jenkinson et al., 2002; Jenkinson et al., 2012; Smith et al., 2013],

including artifact removal with ICA-FIX [Griffanti et al., 2014; Salimi-

Khorshidi et al., 2014]). The preprocessed data were used for group-

ICA parcellation in CIFTI space based on FSL's MELODIC tool. Note

that the ICA-decomposition using different dimensionalities (including

15, 25, 50, 100, 200, and 300 dimensions, see below) was also per-

formed by the HCP consortium and the resulting maps have been

made publicly available. We have chosen to use the HCP maps to

enhance the standardization, reproducibility, and transparency of our

pipeline. In brief, ICA decomposition was performed by the HCP consor-

tium as follows (cf., also the HCP1200 documentation on higher level rs-

fMRI connectivity analyses at https://www.humanconnectome.org/

storage/app/media/documentation/s1200/HCP1200-DenseConnectome

+PTN+Appendix-July2017.pdf; the component maps are made available

within the HCP database under the name “HCP1200 Parcellation

+ Timeseries + Netmats (PTN)”).
First, inter-subject registration of the cortex was performed the

Multimodal Surface Matching algorithm (“MSMAll”; Glasser

et al., 2016; Robinson et al., 2014). Then, each data set was demeaned

and variance-normalized (Beckmann & Smith, 2004). Next, group prin-

cipal component analysis (PCA) was run using the tool MELODIC's

Incremental Group-PCA (MIGP). The MIGP output comprised the top

4500 weighted spatial eigenvectors, that is, eigenmaps, from a group-

averaged PCA, which is a close approximation to concatenating the

timeseries data from all subjects and subsequently performing PCA

(Smith et al., 2014). Each of the MIGP group-eigenmaps was then

input into FSL's MELODIC tool for spatial group-ICA. ICA was run for

six different numbers of output components (referred to as “dimen-

sionalities”), with 15, 25, 50, 100, 200, and 300 components, respec-

tively (Beckmann & Smith, 2004; Hyvärinen, 1999), whereby a higher

number of dimensions typically outputs component maps with fewer

significant areas. Those operations were performed in grayordinate,

that is, “CIFTI,” space (surface vertices plus subcortical grey matter

voxels, [Glasser et al., 2013]), but moreover, voxel-based NIFTI ver-

sions (normalized to volumetric MNI152 2 mm space) of each compo-

nent were generated and released. To note, as with any ICA, these

maps are not binary; rather they provide weight values of how

strongly each grayordinate (CIFTI)/voxel (NIFTI) belongs to a compo-

nent. Thus, every grayordinate/voxel is part of each component, but

to varying degrees, meaning that such ICA maps do overlap.

2.2 | Pipeline

The purpose of our pipeline is to find the best matching ICA compo-

nent map from the HCP- 1200-Subjects-Release to any spatial map in

MNI-space (statistical parameter map or mask) provided as input. Our

pipeline is designed to run in Matlab (The Mathworks, Natick, MA).

Input brain maps can be provided both in NIFTI or CIFTI file formats.

Likewise, the user can choose either of the two data formats as out-

put format of the best-matching ICA-template, independent of the

input format. In our code, we make use of other Matlab-based tools,

including parts of CoSMoMVPA (Oosterhof et al., 2016) to manipulate

NIFTI files and HCP's Workbench software (Marcus et al., 2011) to

manipulate CIFTI files. With these tools, data of either file format can

be read into Matlab. Within Matlab, the brain map is represented as a

vector of length n, where n is the respective number of brainvoxels

(in case NIFTI was chosen as the file format) or grayordinates (in case

CIFTI was chosen as the file format). These vectors are then Pearson-

correlated to all of the 690 HCP's ICA-templates, which we provide in

matrix representation within our toolbox (note that we provide six

sets of matrix representations, corresponding to the six ICA-

dimensionalities provided by the HCP, each in two versions NIFTI and

CIFTI). The input vector is Pearson-correlated to all rows of all six

HCP matrices, and the matrix and row indices of the highest correlate

are stored and used to extract the vector representing the “best-
matching” group ICA-template, with which we then generate the out-

put image in the desired output format (NIFTI/CIFTI).

To generate customized high-quality ICA-templates that corre-

spond to functional systems of interest, we propose a two-

step-procedure (Figure 1). First, the user provides a statistical brain

map that corresponds to the functional label of choice (“input”), for
example, generated from fMRI meta-analyses, as previously suggested

(Smith et al., 2009). Databases, such as NeuroSynth (Yarkoni

et al., 2011, www.neurosynth.org) or BrainMap (Fox &

Lancaster, 2002; Laird et al., 2005): www.brainmap.org), synthesize

results from thousands of fMRI studies and allow users to
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automatically conduct meta-analyses based on a search term of inter-

est. These tools provide statistical brain maps (in MNI152 2 mm

space, i.e., NIFTI files) which correspond to the user's query. For

example, searching for “fear” outputs a brain map in MNI space with

highest values in the amygdalae. The second step is to identify the

HCP-component which best matches such an input map as described

above, that is, for a given input statistical brain map, Pearson's correla-

tions to all of the 690 HCP-provided ICA templates are calculated and

the HCP map with the highest Pearson correlation is chosen as the

‘labeled HCP-component’.
While the user can generate the input for step 1 with already

available and validated software such as NeuroSynth, we provide a

Matlab toolbox to conduct step 2 (https://osf.io/mek47/). Our tool-

box provides the labeled HCP-component in NIFTI and CIFTI format

as well as the HCP-component number and dimensionality and its cor-

relation with the input-map.

2.3 | Demo 1: Generating an ICA-template
corresponding to “motor function”

Below, we demonstrate the results from our pipeline when applied

with the term “motor function,” as an example for a commonly inves-

tigated system in the neurosciences. We entered the search term

“motor function” into the meta-analysis tool from NeuroSynth

(https://neurosynth.org/analyses/terms/) and submitted the resulting

parameter map to our pipeline, which yielded the labeled HCP-

component template for motor function, which we subsequently com-

pare to one of the few existing labeled ICA-templates corresponding

to motor function (Smith et al., 2009). Spatial ICA component maps

contain a weight (z-value) for every voxel. We argue, that in functional

MRI a functional component should be located in gray-, but not in

white matter (WM). Hence, gray matter (GM) voxels should exhibit

higher z-values than WM voxels. We contrast the spatial alignment

with respect to GM and WM between the two “template versions” by
comparing their z-weighted GM/WM ratios (zwr) as,

zwr¼
P

z ið Þj jpGM ið Þ
P

z ið Þj jpWM ið Þ�
P

pWM ið Þ
P

pGM ið Þ ð1Þ

with, z(i) the ICA z-value of voxel I, pGM(i) the prior tissue probability

of voxel i belonging to GM, and pWM(i) the prior tissue probability of

voxel i belonging to WM.

The first term represents the sum of each voxels' absolute ICA z-

values multiplied with the voxel's probability to belong to GM divided

by the voxel's probability to belong to WM. The term on the right cor-

rects the expression by the ratio of the probabilities that voxels

belong to white or GM, and thereby centers zwr at 1 (GM and WM

have the same strength of ICA-z components). A zwr >1 indicates that

GM contains stronger ICA component loadings than WM, whereas a

zwr < 1 indicates that WM contains stronger ICA loadings than

GM. Thus, greater values indicate greater weighting of GM and higher

dissociation from WM, which is desirable for BOLD imaging (Bodurka

et al., 2007). Probabilities of voxels belonging to white or GM were

taken from tissue-prior maps provided with fsl (avg152T1_gray and

avg152T1_white). Computations were conducted within Matlab. To

illustrate that different file formats are compatible and can be

produced with our pipeline, we also show the corresponding CIFTI-

version of the “motor function” ICA-template created with our frame-

work. We display the results using FSLeyes for NIFTI-files (FMRIB

Software Library image viewer, https://zenodo.org/record/3403671)

and the Connectome Workbench Viewer for CIFTI-files (Marcus

et al., 2011, 2013).

2.4 | Demo 2: Generating ICA-templates
corresponding the “brain's functional architecture
during activation and rest”

To generalize the usage of our pipeline beyond motor function, we

compared all of the 10 ICA components published by Smith et al.

(2009) to the corresponding templates generated with our pipeline

(instead of contrasting only the “motor function” template as in the

previous section). To identify the best-matching IC from the HCP par-

cellation for each of the 10 Smith-templates, we proceeded as

described above (i.e., we ran a correlation analysis for each of the

10 Smith-templates with all of the 690 HCP's component maps in vol-

umetric MNI 2 mm space and chose that HCP component with the

highest Pearson correlation value to the original template as a new

version of that template, see Figure 3). To quantify the expected gain

of our method, we used Equation 1 to calculate for each component a

statistic that expresses a ratio of how high the ICA z-values in GM

voxels are with respect to those in WM voxels and compared that

metric between the 10 components published by Smith et al. (2009)

and our updated version of the templates (as shown in Figure 3): If z-

values in GM exceed those of WM this ratio becomes larger than one.

Although studies reporting functional networks within the WM are

becoming increasingly available (Huang et al., 2020; Peer et al., 2017),

the majority of coherent stable networks corresponding to distinct

functions including vision, language, and other cognitive and motor

functional domains were reported in the GM (Biswal et al., 1995;

Buckner et al., 2008; Fox & Greicius, 2010; Fox & Raichle, 2007;

Gonzalez-Castillo et al., 2014; Lee et al., 2013; Raichle et al., 2001;

Zhang & Raichle, 2010). We, therefore, conclude that an atlas whose

driving components are stronger represented in GM than in WM will

be more sensitive to actual cortical processes when used in dual

regression analyses.

3 | RESULTS

3.1 | Demo 1: Generating an ICA-template
corresponding to “motor function”

The meta-analysis ran on the term “motor function” in NeuroSynth

yielded a statistical brain map comprised of 74 studies investigating
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motor function in MNI152 2 mm space (Figure 2a). We used that map

as an input to our pipeline to generate a high-quality ICA-template

corresponding to “motor function” (Figure 2b). The side-by-side visual

comparison between the input and output maps demonstrates the

high spatial accuracy of our output ICA-template in terms of align-

ment with the gray and WM, while capturing the functionally relevant

anatomical brain regions defined by the input map. To further illus-

trate that high spatial accuracy, we show one of the few existing

labeled ICA-templates corresponding to motor function (Smith

et al., 2009) alongside our template, in Figure 2c. To compare the spa-

tial alignment of the input brain statistical map to each of the ICA

template versions with the cortical sheet, we calculated the respective

z-weighted GM/WM ratios (zwr) and found that the version created

using the current pipeline yielded a ratio of 1.2609, indicating that

ICA-z components in GM were about 25% stronger than in WM. The

existing template yielded a ratio of 0.8044 indicating that its ICA com-

ponents in WM were actually stronger than in GM. These numbers

are backed by visually inspecting the topography of the two templates

(see panels b and c in Figure 2). While the best matching component

found by our pipeline shows excellent alignment with the cortical

sheet, the component from the published template appears shifted in

the z-axis, actually missing the most dorsal aspect of motor cortex and

clearly leaking into WM.

3.2 | Demo 2: Generating ICA-templates
corresponding the “brain's functional architecture
during activation and rest”

Visual comparison between the original Smith-templates and the volu-

metric version of our identified components qualitatively shows good

spatial agreement between the two atlases (Figure 3; left columns

show the original templates, right columns our updated versions). In

Table 1, we provide the Pearson correlation values between each pair

of the template versions. This indicates that the general concept of

the Smith-templates is maintained within our templates. However, it

becomes evident in Figure 3 that spatial alignment with the borders

of the MNI152 template is superior in the updated compared to the

original version. Particularly strong examples are components

4 (default mode), 5 (cerebellum), 6 (sensorimotor), and 7 (auditory). In

F IGURE 2 Illustration of the results from our pipeline. To generate an ICA-template which corresponds to motor function, we started by
entering the search term “motor function” into the meta-analyses tool from NeuroSynth (neurosynth.org), which generated the statistical brain
map displayed in (a) from 74 studies investigating motor function. We used this map with our pipeline and obtained the ICA-template shown in
(b). Note the high spatial accuracy of our resulting ICA-template in terms of alignment with the gray matter/white matter boundaries, while
capturing the functionally relevant anatomical brain regions defined by the input map. To further illustrate that high spatial accuracy, we
additionally show one of the few existing labeled ICA-templates corresponding to motor function (Smith et al., 2009). Additionally, we show the
CIFTI-version of our resulting ICA-template (d), projected on the surface (left column in d) and volumetrically for the subcortex and cerebellum
(right column in d). Brain maps in a–c are displayed on the MNI152 2 mm template at voxel location 59, 51, 64 (color map range [4–10]). Brain
map in D is displayed on CIFTI Grayordinates standard space, projected on the surface (left column in d) and volumetrically in subcortex/
cerebellum at voxel location 0, �65, �27 (right column in d) (display ranges in d: [�0.15; 0.1]; color map range in absolute percent, positive, and
negative: [2; 98]).
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Figure 4, we display the z-weighted gray–white-matter ratio (see

Equation 1) for both the original 10 components published by Smith

et al. (blue) and our updated version of the templates (red) and com-

plement those findings with the exact values in Table 2: While the

original atlas of Smith et al does not exhibit systematically stronger

contribution of GM to the ICA-z values compared to WM voxels

(notice that the blue line oscillates around values of 1) our procedure

yields component maps that substantially outperform the original atlas

on 9 of the 10 components by at least a factor of 2.

4 | CONCLUSIONS

Here, we have proposed a standardized method to obtain labeled

ICA-templates from the high-quality HCP database which correspond

to research-specific brain functions. Within this framework, the user

provides a statistical brain map that represents a chosen functional

system, for example, by making use of already available software

which allows users to conduct automatized meta-analyses provided

by large databases such as NeuroSynth and BrainMap. Within our

framework, this map is subsequently correlated to 690 group-ICA

maps from the HCP, generated from more than 1000 subjects and

acquired with standardized resting-state fMRI data. We suggest using

that HCP group-ICA map with the highest correspondence to the

input statistical map as an ICA-template for the functional system of

interest for subsequent analyses such as dual regression.

Due to the high quality of the underlying HCP-data the templates,

which are generated using that strategy, exhibit excellent accurate

spatial alignment with the GM/WM boundaries of the MNI-template,

likely enhancing the sensitivity of BOLD-analyses within GM

(Bodurka et al., 2007) based on these templates. This aspect is

highlighted when comparing the statistical maps in Figure 2b,c that

contrast the HCP-based template for “motor function” with the exist-

ing “sensorimotor” component of Smith et al., 2009, with the latter

one showing a systematic deviation from the cortical sheet. We report

similar observations when extending the comparisons to the entire

set of 10 components of the original atlas by Smith et al. (2009)

(Figures 3 and 4 and Table 2). Thus, next to ease-of use of our pipeline

for creating customized templates as volumetric NIFTI-files as well as

combined surface/volumetric CIFTI files we consider high-quality

alignment and large sample size an important advantage of using

HCP-data when generating customized templates for the purpose of

F IGURE 3 Comparison between the original templates by Smith et al. (2009) (left panels) and the results from our proposed procedure that
selects the maximally correlated component map from the HCP dataset (right panels), displayed on the anatomical standard image by the
Montreal Neurological Institute (MNI152) in 2 mm voxel-resolution. We show z-scored maps of each version for comparability. The side-by-side
visual comparisons show that the maps generated with our template yield high alignment with the MNI-template as well as the distinction
between gray-/white matter boundaries. (Display range: z = 1.96–10, negative and positive).
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conducting group comparisons based on labeled ICA components. We

provide our toolbox for public download on OSF (https://osf.io/

mek47/).

5 | LIMITATIONS/OUTLOOK

One limitation of our method is that the ICA-templates which can be

generated within our framework are limited to the 690 components

provided by the HCP. Although the pipeline will identify a relative

best-matching ICA-template for many brain functions, there will be

brain functions our method cannot account for. Since our pipeline will

however always output the best-matching ICA-template of the input

map to the HCP data, users should be aware that better matching

algorithms than correlation may exist and that there is no commonly

agreed critical correlation-threshold that ensures that an ICA compo-

nent truthfully captures the functional system in question. Users

should at least visually inspect the results before deciding to accept a

functional label for an ICA template and use it with their analyses.

Note that in this work, we have suggested to generate the input

map for brain functional maps of interest. However, the input can be

any statistical brain map; for example, alternatively, gene expression

maps might be used, which are now available for the MRI research

community in MNI space thanks to the work from the Allen Brain

Institute (Hawrylycz et al., 2012). Thus, ICA templates corresponding

to the gene expression from a specific genetic might be investigated

rather than brain functions, which offers new exciting opportunities

for innovative research questions. However, such experimental

approaches are yet to be tested and validated.

Our project uses the HCP data as to create an atlas template for

ICA. However, while HCP is a valuable and widely used resource, it is

still limited in demographic range. Such sampling bias attenuates

out-of sample performance of brain-behavior prediction models, for

example when it comes to data from different ethnicities (Li

et al., 2022). The degree to which one may observe population-

dependent systematic differences in core resting-state networks is an

empirical question outside the scope of the current paper. Neverthe-

less, maps from our updated atlas may provide a high-quality refer-

ence to which future studies can compare data from other ethnicities

or age groups using comparable up-to date acquisition protocols in

terms of TR, resolution and scan-duration and using the published

processing pipelines from the HCP-consortium (Glasser et al., 2013).

To conclude, we have provided a framework to generate high-

quality ICA-templates that can be linked to statistical parameter maps,

TABLE 1 Overview of the best-matching ICA map from the HCP
parcellations to the original templates (from Smith et al., 2009).

Component label from

the Smith et al.
(2009) ICA

Best match of the HCP's

1200 subject's
release ICA

Correlation

value
(Pearson's r)

Medial visual areas 15-component

parcellation: IC 2

0.5927

Occipital pole 15-component

parcellation: IC 3

0.6982

Lateral visual areas 25-component

parcellation: IC 4

0.6262

Default mode network 25-component

parcellation: IC 2

0.5761

Cerebellum 25-component

parcellation: IC 22

0.3417

Sensorimotor network 25-component

parcellation: IC 13

0.3846

Auditory network 50-component

parcellation: IC 38

0.4798

Executive control

network

100-component

parcellation: IC 26

0.4234

Frontoparietal

network, right

15-component

parcellation: IC 7

0.6249

Frontoparietal

network, left

15-component

parcellation: IC 5

0.6192

F IGURE 4 To demonstrate the expected gain of our method, we
calculated a statistic that expresses per component a ratio of how
high the ICA z-values in gray matter voxels are with respect to those
in white matter voxels and compared that metric between the
10 components published by Smith et al., 2009 (blue line/dots) and
“our” version of the templates as shown in Figure 3 (here depicted as
red line/dots; “tahsch” refers to the authors' names, “Tahedl/
Schwarzbach”). The metric was calculated as follows: First, we added
all ICA-values within gray matter voxels and normalized that sum by
the probability of a voxel being in gray matter (based on the gray-/
white matter tissue priors provided by FSL). We repeated that
procedure for the white matter and calculated the ratio of
(normalized) gray vs. white matter sums. The dotted line denotes the
outcome of our procedure for a null-component map in which z-

values in gray and white matter have the same amplitude, that is, such
a map yield a ratio of 1. If z-values in gray matter exceed those of
white matter this ratio becomes larger than one. We argue that an
atlas whose driving components are stronger represented in gray
matter than in white matter will be more sensitive to actual cortical
processes. Note that the original template oscillates around ratios of
1 whereas our updated templates yield ratios of 1.51–2.93 (see
Table 1).
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which allows to address research questions investigating specific

functional systems. Such parameter maps that correspond to brain

functional systems can be retrieved from automatized meta-analyses

from existing external software, and our own toolbox can then be

used to identify the best matching ICA-component from the high-

quality and sizeable HCP data. We believe that this approach has the

potential to enhance power, sensitivity, reproducibility, and interpret-

ability of studies investigating coherence changes in functionally

defined brain networks.
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