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Abstract
The world is facing more energy crises due to extreme 
weather and the rapidly growing demand for electricity. 
Siting new substations and optimizing the location of ex-
isting ones are necessary to address the energy crisis. The 
current site selection lacks consideration of spatial and tem-
poral heterogeneity in urban power demand, which results 
in unreasonable energy transfer and waste, leading to power 
outages in some areas. Aiming to maximize the grid cover-
age and transformer utilization, we propose a multi- scene 
micro- scale urban substation siting framework (UrbanPS): 
(1) The framework uses multi- source big data and the ma-
chine learning model to estimate fine- scale power consump-
tion for different scenarios; (2) the region growing algorithm 
is used to divide the power supply area of substations; and 
the (3) location set coverage problem and genetic algorithm 
are introduced to optimize the substation location. The 
UrbanPS was used to perform siting optimization of 110 kV 
terminal substations in Pingxiang City, Jiangxi Province. 
Results show that the coverage and utilization rate of the 
optimization results under different power consumption 
scenarios are close to 99%. We also found that the power 
can be saved by dynamic regulation of substation operation.
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1  | INTRODUC TION

The increasing economic growth and urban expansion have led to rapid growth in power consumption, espe-
cially in developing countries (Liu et al., 2017; Taghizadeh- Hesary et al., 2021). However, the unreasonable 
spatial distribution of substations and their limited number lead to power shortages and low utilization of 
current power grid equipment, making the mismatch between power energy supply and demand increasingly 
prominent (Fan et al., 2021). Most peak loads occur in cold winter and hot summer, especially in extreme 
climates. During this period, electricity loads are constantly at high levels, power equipment operates under 
high stress, and substations may be overloaded (Sun et al., 2018). This can lead to power shortages in urban 
areas, thus posing a considerable challenge to the power supply (Uddin et al., 2018). Therefore, it is urgent 
to relieve the pressure on grid operation and optimize the power supply structure during peak periods (Zeng 
et al., 2019). Future grid planning should expand the electricity supply network considering the spatial and 
temporal variation of the grid electricity load in different seasons based on the urban electricity demand (Chen 
& Zhang, 2021). The substation is an important part of the power system (Xia et al., 2018). Its reasonable  
location selection is of great significance for the safety and stability of electricity resources and regional 
power distribution (Ximing et al., 2019; Zeng et al., 2019).

However, most of the current power optimization is aimed at minimizing the total cost of siting and construc-
tion, which is difficult to cope with the power shortage problem during peak periods (Li, Yang, et al., 2018; Qin 
et al., 2019). Therefore, we aimed to maximize grid coverage and transformer utilization and proposed a multi- 
scenario micro- scale urban substation site selection optimization framework based on a genetic algorithm. Firstly, 
the fine- scale power consumption estimation models for different scenarios were constructed using the random 
forest method. Then, the region growing algorithm was used to assign the power supply area of each substation. 
Finally, the coverage model and genetic algorithm were used to solve the optimal solution of the substation site. 
The results of multi- scenario optimization were compared with the spatial distribution of existing substations to 
evaluate the effectiveness of the UrbanPS.

2  | REL ATED WORKS

2.1 | Estimation of urban residential power demand

Knowing the detailed spatial distribution of power demand at the microscopic spatial (e.g., at every single house 
or 100 m grid level) and temporal (i.e., at tight time intervals) scales is essential, especially for power system plan-
ning and the construction of substations (Yi et al., 2016). Some studies used spatial load forecasting methods to 
reveal the characteristics of electricity demand (Heymann et al., 2018; Ye et al., 2019). But these methods have 
low simulation accuracy and mainly focus on estimating future load growth. The development of remote sensing 
technology has brought new opportunities in this field (Yin et al., 2021). Some scholars have used nighttime light 
data to estimate power consumption at the grid level. For example, He et al. (2012) established a power consump-
tion model using nighttime light data to map mainland China's spatial pattern of county- level power consumption. 
However, the method is vulnerable to data quality. Thus, the estimated result's accuracy and scale cannot meet 
the actual requirements.

In conclusion, the current research on predicting power consumption has low prediction accuracy and is only 
conducted on coarse spatial scales (1 km or 500 m). Actual substation sitting in cities requires data support at finer 
plot scales (Zheng et al., 2014). In recent years, location- based service (LBS) technology has provided reliable data 
support for urban planning, energy, and economics (Hu et al., 2022; Yang et al., 2022). LBS data include points 
of interest (POI), mobile phone data, public transportation trajectory data, etc. They can reveal cities' spatial 
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structure and population activity characteristics at the microscopic scale (Ding et al., 2018), thus providing an 
opportunity for fine- scale urban power load distribution mapping (Cheng et al., 2022).

2.2 | Site selection of substation and other public facilities

Early research used traditional mathematical models to solve the optimal location of substations (Anjos & Vieira, 2017). 
However, as the power systems continue to expand and the grid structure becomes increasingly complex, traditional 
methods can no longer meet the requirements of optimal substation planning. Subsequently, some studies have used 
heuristic optimization models for urban substation siting. For example, Li, Yin, et al. (2018) used a combination of bio-
geographic optimization and population competition algorithms for substation site selection. They demonstrated that 
the method can be effective for complex substation site selection but is more applicable to a small number of substa-
tion sites. Kaewmamuang et al. (2019) used a dynamic bacterial foraging algorithm (DBFA) to search for the best binary 
variables and the best integer variables to determine the optimal substation location, capacity, power supply range, 
and construction time. The optimization objective of these two methods is cost minimization.

Recently, spatial analysis technology and geographic information systems (GIS) have become popular in site se-
lection for many facilities, including hospitals, schools, and emergency shelters (Wang et al., 2020; Yu et al., 2020). 
Among them, the maximum coverage location problem (MCLP)- based models and location set coverage problem 
(LSCP) - based model have been widely used. For example, Yu et al. (2020) used the MCLP and the LSCP for macro 
and micro fire stations, respectively. Wang et al. (2020) used the MCLP - based model to maximize the network 
service coverage for the location optimization of base stations in 5G cellular networks. However, there is a lack of 
using the MCLP- based and LSCP- based models for the site selection of substations. Since electronic facilities are 
also essential public service facilities, this coverage model- based approach provides new opportunities to address 
the site selection of electric facilities.

To sum up, previous substation siting studies are rarely supported by the accurate fine- scale spatial distribu-
tion of residential electricity demand. Most of them have focused on the optimization objective of minimizing total 
cost. There is a lack of research that combines spatial analysis technology with the site selection of substations 
from the perspective of large- scale urban grid coverage. In response to the power supply shortage problems 
during peak periods in rapidly developing cities in China, the current site selection does not satisfy urban resi-
dents' primary production and daily power use, leading to low grid operation efficiency and even regional black-
outs (Li, Yang, et al., 2018; Qin et al., 2019).

3  | METHODOLOGY

The workflow of the proposed UrbanPS is shown in Figure 1, which includes three steps: (1) Estimate the urban 
power demand under different scenarios in 100 m spatial resolution. Based on multi- source spatial data and power 
data, the relationship between power load and spatial variable factors in four scenarios is constructed using a 
random forest model fitted to get the fine- scale spatial distribution of power load. Grids with power load are 
extracted and transformed to urban residential power demand points; (2) Assign the power supply area of each 
substation. Select the power supply index of the terminal substation, take the substation as the initial seed point, 
use the regional growing algorithm for neighborhood power diffusion, and gradually assign the surrounding power 
demand points to get the actual power supply area of each substation; (3) Substation site selection optimization. 
Based on the urban residential power demand and substation supply area of different scenarios obtained in the 
above two steps, the selection of the optimal substation location is abstracted as a LSCP according to the actual 
urban grid coverage characteristics, coupled with genetic algorithm to solve the optimal location and construct a 
substation location optimization model.
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3.1 | Multi- scenario fine- scale power mapping

Accurate power demand mapping is a key step for substation site selection optimization. Four scenarios of 
urban power consumption were considered in the UrbanPS, considering the urban production and living power 
load vary with the seasonal climate change (Li, Yin, et al., 2018; Senthil Kumar et al., 2018). They are extreme 
power consumption, winter peak power consumption, summer peak power consumption, and usually low 
power consumption. The extreme power consumption scenario is the sum of the maximum power consump-
tion of all distribution transformers in each township of the city at different times. The winter peak power 
consumption scenario is the maximum power value obtained during January– February. The summer peak 
power consumption scenario is the maximum power value obtained during June– August. And the usual low 
peak power consumption scenario is the maximum power values obtained during March and October each 
year. Considering the efficiency and applicability of the urban substation siting and referring to previous stud-
ies (Zheng et al., 2014), a 100 m land parcel was chosen as the basic analysis unit for the residential electricity 
demand estimation.

F I G U R E  1 UrbanPS framework: A micro- scale urban substation site selection optimization framework based 
on geospatial big data and spatial optimization strategies.
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In the UrbanPS framework, the random forest model was selected to characterize the complex relationship 
between the residential power load and explanatory variables. The random forest model was used for each power 
consumption scenario to characterize the nonlinear relationships and interactions between explanatory variables 
and the power load at the township level. Through the random forest model, we modeled the urban electricity 
load and multi- source spatial data- driven factors in four different scenarios, and constructed power fitting models 
for various electricity consumption scenarios. The R2, Pearson’ r, and root mean square error (RMSE) was used to 
evaluate the fitting accuracy of the model (Yao et al., 2019). After fitting models, the spatial distribution of power 
load at 100 m resolution in four scenarios was mapped using the explanatory variables. After mapping the power 
at the 100 m grid level, grids with non- zero power demands were selected. They were transformed into points and 
were regarded as the power demand points.

3.2 | Substation power supply area division based on region growing algorithm

Estimating the supply area of each substation is a crucial step in optimizing the substation location. The electrical 
energy is transmitted from the substations to the demand points stepwise from near to far (Shu et al., 2020), and 
different substations have their specific supply area. In this study, we assume that the transmission process can 
be described by region growing. Therefore, the region growing algorithm was used in the UrbanPS framework to 
assign each substation's power supply region based on the power mapping result. Region growing refers to the 
gradual addition of neighboring pixels from a specific pixel according to a certain criterion, and the region growing 
terminates when certain conditions are satisfied.

There are two region growing conditions considered in the UrbanPS: (1) the Euclidean distance between the 
power demand point and the substation is less than or equal to the power supply radius; (2) the load rate of the 
substation is less than the maximum load rate.

The steps of substation supply area division using the region growing method area are as follows: First, the 
demand point located in the substation was designated as the seed point. The nearest power demand point to the 
substation was judged by the growth condition and was assigned to this substation if the condition was satisfied. 
Second, we considered the growth conditions of the grid of 8 neighboring demand points around the seed point 
and assigned the demand point that satisfies the conditions. When judging the growth condition of the power 
demand point, the Euclidean distance from all substations to this demand point was calculated. If the nearest 
substation meets the condition of continued growth, the demand point is assigned to the substation closest to it. 
Otherwise, a step- by- step judgment from near to far assigns that demand point to other substations. The above 
steps are cycled until one of the termination conditions is reached, which means the area growth is terminated, 
and the substation power supply range division is completed. In UrbanPS, there are three termination conditions: 
the substation reaching its maximum load, all power demand points being allocated, or the power supply radius of 
that substation being exceeded.

3.3 | Substation location optimization for different scenarios

The load mapping results at different scenarios could provide important data support for optimizing the substa-
tion location. The substation location optimization process is based on four different scenarios: extreme power 
consumption, winter peak power consumption, summer peak power consumption, and low power consumption. 
After the power mapping and substation supply area division, the final step of the UrbanPS framework is location 
optimization based on LSCP and genetic algorithm, consisting of two parts: problem construction and the optimi-
zation of the solution. As for the problem construction, the LSCP was used in UrbanPS to cover all service demand 
points in a certain area with a minimum number of facilities (Yu et al., 2020). The LSCP- based model is often used 



    |  1667YAO et al.

for siting emergency facilities, such as fire stations and ambulances (Yu et al., 2020). The objective is to determine 
the minimum number of service facilities or construction costs while satisfying the need to cover all emergency 
points. Given that low coverage in the urban grid currently leads to local area shortage (Yadav et al., 2021), we 
consider that substations also have some emergency facility nature.

This study introduced the LSCP model based on the spatial distribution of power loads and characteristics of 
distribution networks (transformer capacity, transformer units, power factor, supply radius, maximum load factor). 
Considering the actual substation power supply range division, we aimed to maximize urban grid coverage and 
utilization of grid equipment (Honarparvar et al., 2021; Ye et al., 2018), thus establishing the LSCP- based urban 
substation site selection problem. The problem can be formulated as follows: within the urban area, the minimum 
number of terminal substations was used to cover all power demand points, and the objective was to maximize the 
grid coverage and equipment utilization.

In this study, the grid coverage is the percentage of demand points supplied with electricity (Wang et al., 2020). 
The utilization rate is defined as the ratio of the current load factor to the maximum load factor of the substation 
(Ye et al., 2018). At the same time, UrbanPS can also consider the optimization of the transformer's capacity by 
setting the capacity parameter Cj. The specific mathematical expression is as follows.

Objective function:

The constraints on the variables:

where constraint (2) ensures that the substation provides power to the demand point within the power supply's safety 
and that no overload occurs. Constraint (3) limits the Euclidean distance between the demand point and the substa-
tion to be less than or equal to the supply radius of the substation. Constraint (4) ensures that the coverage weight 
and utilization weight sum to 1. The symbols associated with the equations are shown in Table 1. Among them, Ti, Lj, 
R, W1, and W2 are constants. Cj can be optimized by the algorithm or assigned by a constant according to the practical 
application scenarios. Other symbols represent variables that are calculated by the optimization model.

The next step is the optimization of the solution. The problem of selecting P optimal substation locations 
from N candidate locations to maximize the grid coverage and distribution utilization is NP- hard. Previous studies 
have shown that the heuristic algorithm effectively solves the NP- hard problem (Seyhan et al., 2018). Commonly 
used heuristics in site- selection problems include genetic algorithms (Yu et al., 2020), greedy search algorithms 
(Vasko et al., 2016), forbidden search (Silva & Cunha, 2017), and Lagrangian relaxation methods (Zhang, Beltran- 
Royo, et al., 2019). Genetic algorithms have been proven to effectively solve combinatorial optimization problems 
(Comber et al., 2011).

This framework used a genetic algorithm to find the optimal substation location for different scenarios. We 
used a parameter tuning approach to determine the optimal parameters to ensure that the algorithm obtains the 
global optimal solution (Saif- Eddine et al., 2019; Zhang, Zhang, et al., 2019). The parameters to be determined for 
the genetic algorithm are the number of iterations, the population size, and the chromosome length. By setting 
different parameter values within a specific range, the optimal parameters are determined based on the accuracy 
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of the results. The other parameters were kept constant while solving the relationship between one parameter 
and the approximate optimal solution.

3.4 | Evaluation of power supply capacity of urban substations

In order to evaluate the effectiveness of our proposed UrbanPS for site selection, it is crucial to perform an evalu-
ation of substations before and after the optimizaiton. Based on the substations' location and the electricity load 
mapping results, a region growing algorithm was used to divide the power supply area of each substation. The 
demand points covered and not covered by the substation were revealed. Finally, the grid coverage Cexist and 
transformer utilization Dexist were calculated as follows:

where k denotes the index number of the existing substation, �k denotes the power demand points covered by the 
substation, D denotes all the power demand points, Wk denotes the actual active power output of the substation, and 
Mk denotes the maximum active power that can be output by the substation.

4  | C A SE STUDY

4.1 | Study area and data

Pingxiang is located in the western part of Jiangxi Province (Figure 2), with complex geomorphology. The total 
area of Pingxiang is 3823.99 km2, and there are 54 towns. The contribution of tourism to the economic growth of 
Pingxiang reached 48.6%, and the domestic tourism revenue in 2019 was 52.048 billion RMB (Pingxiang Bureau 

(5)Cexist =

∑
�k

D

(6)Dexist =

∑
Wk∑
Mk

TA B L E  1 Relevant symbols in mathematical expressions.

Symbols Definition

i Index of power demand point

j Index of substation

Ti Total number of power demand points

Tj Total number of selected substations

Xj If substation j is selected, Xj = 1; otherwise, Xj = 0

Yi If power demand point i is assigned, Yi = 1; otherwise, Yi = 0

Lj Maximum load factor of substation j

Cj The total capacity of the main transformer in substation j

Ej The actual active power output of substation j

dij Distance between demand point i and substation j

R Power supply radius of the substation

W1 Weight of coverage, 0 < W1 < 1

W2 Weight of utilization, 0 < W2 < 1
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of Statistics and Pingxiang General Survey Team of National Bureau of Statistics, n.d.). Tourism can indirectly 
affect the spatial pattern of power consumption in the city, thus impacting the planning layout of substations (Lai 
et al., 2008). Currently, there are 23,110 kV terminal substations distributed in these five districts and counties.

We collected electricity consumption data recorded every half hour at substations from June to October 
2017 and from January to March 2018. After cleaning and aggregating the data, the zonal statistics were used to 
obtain each township- level administrative district's average daily electric power. Such electric power was used as 
the power consumption data in our experiment. The power data collection information is shown in Table 1. The 
substation information contains transformer capacity, load factor, power supply radius, power factor, and other 
power data collection information is shown in Table 2.

A total of 18 spatial drivers (Figure 3) were used as the explanatory variables of power consumption in this 
study. They are derived from multi- source data, including POI, OSM road network, and nighttime light data. 
Among them, POI data and road network density strongly correlate with urbanization levels (Wu et al., 2021). 
Therefore, they are widely used for urban functional area identification (Yao et al., 2017; Yu et al., 2022). In this 
study, POI data in 2018 were obtained from the GAODE map (www.amap.com), including residential communi-
ties, living services, educational institutions, corporate enterprises, entertainment venues, financial institutions, 
medical institutions, accommodation services, dining venues, shopping districts, and transportation facilities. The 
kernel density analysis was conducted to obtain the spatial distribution of the POI density of each category.

We extracted five types of roads, highways, primary roads, secondary roads, tertiary roads, and railroads, from 
the OSM road network data in 2018. The accessibilities to five types of roads at the grid level were calculated 
according to Euclidean distance. They were regarded as the line driver of the power load. Nighttime light intensity 
is commonly used to estimate regional socio- economic parameters, which has potential applications in energy con-
sumption pattern analysis (He et al., 2012). The nighttime light data in 2018 were obtained from publicly available 

F I G U R E  2  (a) Spatial distribution of land use types and existing 110 kV substations in the study area, (b) 
Jiangxi Province, China.

http://www.amap.com
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data on the High- Resolution Earth Observation System of Systems website (www.hbeos.org.cn), with system- level 
geometric correction, radiometric correction, and resampling statistics to obtain the average light intensity in the 
region. The final acquired raster data were spatially interpolated to obtain a 100 m spatial resolution driver dataset.

4.2 | Spatial distribution of fine- scale power load

The multi- source spatial data was divided into a training set (80%) and a test set (20%) in this study. The con-
structed power consumption estimation model had high accuracy, with fitting accuracy R2 of 0.453, RMSE of 

TA B L E  2 Collection information table of distribution transformer power data.

Station ID
Start time of 
collection

End time of 
collection

Electrical 
power (W) Name

Longitude 
(°)

Latitude 
(°)

23**30 2018/1/1 0:00 2018/1/2 15:51 0.242 Liushi town 117.271 20.311

69**55 2018/1/1 0:00 2018/1/2 15:51 0.537 Paishang 
town

112.606 27.535

… … … … … … …

81**51 2018/1/1 0:00 2018/1/2 15:51 0.212 Shangbu 
town

114.058 27.575

F I G U R E  3 Explanatory variables for power demand: (a) Community density. (b) Density of amenities. (c) 
Distance to highway. (d) Distance to railroad. (e) Distance to main roads. (f) Distance to train station. (g) Density 
of educational institutions. (h) Density of companies. (i) Density of entertainment venues. (j) Density of financial 
institutions. (k) Density of medical institutions. (l) Density of hotels. (m) Light index at night. (n) Density of 
population. (o) Density of restaurant establishments. (p) Density of shopping areas. (q) Slope. (r) Density of 
transportation facilities.

http://www.hbeos.org.cn
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0.010, and Pearson's r of 0.694. The importance analysis of the random forest model shows that the slope factor 
has the most significant influence on the power consumption load in Pingxiang, followed by the hotel density and 
night light index (Figure S4).

Multi- scenarios fine- scale power was estimated, and the grids with power load value greater than 0 were con-
verted into power demand points (Figure 4). The total load of four power consumption scenarios shows a signifi-
cant seasonal difference in Pingxiang. In the extreme power consumption scenario, the power consumption load 
in each region was relatively large, especially in the central city, which reached 991.686 MW. This was followed 
by 665.377 MW in the satellite city (Lianhua County) and 642.611 MW in the industrial area. The overall demand 
for power during the winter peak period declined, and the power load in the central city was 752.045 MW. Central 
urban areas, satellite cities, and industrial areas had the most significant electrical loads. The summer peak power 
demand was relatively small compared with the usual low peak power demand except for four areas: central city, 
industrial area, tourist attractions, and satellite city (Shangli County), which was due to the increase in the use 
of cooling equipment in the hot summer (Lai et al., 2008). In contrast, the satellite city (Lianhua County) had a 
summer power load of 316.682 MW and a usual power load of 375.379 MW, which showed a special situation in 
that the usual power consumption is higher than the summer power consumption. The overall residential power 
consumption in Pingxiang obtained by micro- scale fitting matches the actual urban power consumption pattern 
(Guo et al., 2018), with only very few regions having differential patterns.

4.3 | Spatial distribution evaluation analysis of existing substations

The coverage and utilization rates of the existing 23 substations in Pingxiang were evaluated. The results show 
that power supply shortage and low utilization of grid equipment exist in all scenarios. The coverage rate range 
from 71 to 95%, and the utilization rates range from 75 to 99%. Figure 5 and Table 3 show that Pingxiang suffers 
from serious power shortages under extreme power consumption and winter peak power consumption. The grid 
coverage rate was only 71.39% during the extreme power consumption period, prone to large area blackouts, 
especially in central cities, satellite cities (Shangli County), and scenic tourist areas. In the winter peak period, the 
grid coverage was 89.66%, and there was a shortage of power supply in the southern part of the central city and 
the northeastern part of the tourist area. These two scenarios with relatively high power demand had very low 
grid coverage and had a high utilization rate of nearly 99%. In the summer peak and usual low peak scenarios, the 
grid coverage was close to 95% to meet most of the regional power supply. Only the satellite city (Lianhua County) 
had a power shortage. The utilization rate of substations in these two scenarios was relatively low, with 91.41% in 
the summer peak period and 75.51% in the usual low peak period.

Among all the regions, the power supply situation in the satellite city (Lianhua County) was the tensest, with 
a serious power shortage phenomenon in all four scenarios. The results show that 58.27% of the power demand 
area in the satellite city cannot be supplied under the extreme scenario, 42.07% during the winter peak period, and 
29.30 and 30.53% during the summer peak period and the usual low peak period, respectively.

4.4 | Multi- scenario optimization results

The substation location optimization was performed using the genetic algorithm with the optimal parameters 
set. We used Visual Studio software for the optimization, and the entire optimization process took 3039.952 s. 
We used parameter tuning to determine the optimal values of the sensitive parameters of the genetic algorithm 
(Zhang, Beltran- Royo, et al., 2019). The parameters used in this study were the initial number of iterations of 100, 
the population size of 20, and the chromosome length of 2839 (Figures S1 and Table S1). We set the same power 
capacity for all substations. Each substation was equipped with two transformers of 50 MVA capacity, that is, 
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F I G U R E  4 Fine- scale power consumption distribution for four different scenarios. (a) Extreme power 
consumption; (b) winter peak power consumption; (c) summer peak power consumption; (d) usual low peak 
power consumption.
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Cj is 100 MVA. We set a maximum load factor of 80%, that is, Lj = 0.8, a power factor of 100%, and a maximum 
power supply radius of 30 km from the substation (China Academy of Urban Planning and Design, 2014). In order 
to balance the grid coverage and utilization in the optimization objective (Ma et al., 2018), this study set equal 
weights for both, that is, W1 = 0.5 and W2 = 0.5.

As shown in Table 3 and Figure 6, optimization results' coverage and utilization rate under four scenarios 
could reach 99– 100%, which means the substation can cover all the power demand points and reduce trans-
former losses. Under the extreme scenario, the current coverage rate of the existing 23 substations was only 
71.39%, and it was increased by nearly 30% to 99.47% after the optimization. Results show that 19 new substa-
tions were needed to meet the power demand under this scenario. They were suggested to build in the north, 
northeast, and southwest of the satellite city (Lianhua County) and the southern industrial zone. Under the win-
ter peak power consumption scenario, the current coverage rate of the existing 23 substations was 89.66%, and 
it would increase nearly 10% to 99.46% after the optimization. To meet the power demand, five new substations 
were suggested to build in the satellite city and the southern part of the tourist attractions. In the summer peak 
power consumption scenario, the existing 23 substations cover 94.49 and 91.41% utilization rates, while after 
the optimization, they can cover nearly 100% for both indicators. Results show that adjusting the spatial location 
of substations can improve grid coverage and equipment utilization. In this scenario, two to three substations in 
the central city were suggested to move to the southern part of the industrial area and the southern part of the 
satellite city (Lianhua County). In the usual low peak scenario, the existing 23 substations had 94.49% coverage 

F I G U R E  5 Demand points are covered and not covered by existing 110 kV substations in different scenarios 
in Pingxiang. Demand points of the same color are supplied by the same substation. Demand points of the same 
color are supplied with electricity by a single substation.



1674  |    YAO et al.

and a 75.51% utilization rate. The optimization results show that only 20 substations were needed to achieve 
close to 100% coverage and utilization in this scenario. Additional substations were required to provide power 
in satellite cities (Lotus County) and tourist attractions, and some substations in other areas were suggested to 
close to save energy.

TA B L E  3 Comparison of the coverage and utilization rate of existing substations and optimized substations.

Scenario

Optimized result Current result

Substation 
number

Coverage 
rate (%)

Utilization 
rate (%)

Substation 
number

Coverage 
rate (%)

Utilization 
rate (%)

Extreme power consumption 42 99.47 99.69 23 71.39 99.98

Winter peak power consumption 28 99.46 99.95 23 89.66 98.37

Summer peak power consumption 23 99.83 99.97 23 94.49 91.41

Usual low peak power consumption 20 99.50 99.97 23 94.49 75.51

F I G U R E  6 Spatial distribution of substation sites and their covered and uncovered demand points in 
different scenarios in Pingxiang, with demand points of the same color supplied by the same substation. Demand 
points of the same color are supplied with electricity by a single substation.
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5  | DISCUSSION

5.1 | Interpretation of the findings

We proposed the UrbanPS framework from the perspective of grid coverage to optimize the location of large- 
scale substations in newly built urban areas. The framework can accurately simulate the spatial distribution of 
urban residential electricity demand and effectively improve cities' grid coverage and equipment utilization. The 
results show that the power consumption estimate model has high accuracy (R2 = 0.453, RMSE = 0.010, Pearson's 
r = 0.694). The weight analysis of driving factors of power load verified the feasibility and effectiveness of the 
model for urban residential power demand simulation. The optimized grid coverage and equipment utilization 
rate for different scenarios were close to 99%. The results demonstrate that the UrbanPS framework is a reliable 
method for parameter tuning and can effectively optimize the substation location.

The UrbanPS framework introduced multi- source spatio- temporal variables to reveal the drivers of electricity 
consumption. Population activity is the most significant factor affecting the distribution of electricity assumption. 
However, topographical conditions such as slopes can mainly limit electricity consumption in some areas. Previous 
studies on estimating electricity demand had insufficient fitting accuracy and large analysis units (1 km or 500 m) 
(Lu et al., 2019; Wang & Lu, 2021). The UrbanPS provides a new opportunity to explore the prevalent spatio- 
temporal heterogeneity of electricity consumption at a fine scale.

5.2 | Electricity consumption is influenced by urban spatial structure and seasons

The residential electricity load of fast- growing Chinese cities has spatial and temporal heterogeneity at the mi-
croscopic scale. The central city has a dense and uneven distribution of demand points (Figure 4). The value dif-
ference of neighboring demand points can be up to 330%. The high electricity loads are mainly located around 
hospitals, schools, and companies, indicating a high electricity consumption in areas with dense populations. The 
demand points in industrial areas show a regional aggregation, with high electricity consumption in various in-
dustrial parks, while residential electricity consumption is relatively low. In addition, the electricity load of tourist 
attractions and surrounding satellite cities is relatively high due to the influence of crowd gathering.

The residential electricity load also shows a strong seasonal effect. The seasonal effect is particularly pro-
nounced in the central city, where winter and summer electricity loads are twice and 1.5 times higher than usual. 
This phenomenon is related to spiking electricity loads due to temperature control equipment such as air con-
ditioners (Li, Yang, et al., 2018). The seasonal effect of electricity consumption in industrial areas is relatively 
weak, with load differences between seasons averaging 1.35 times. The differences between these two typical 
functional areas suggest that electricity loads have a strong seasonal pattern in population- dense areas. However, 
there are some exceptions. For example, the electricity load in tourist attractions during the tourist season (spring 
and autumn) is 1.05 times the summer electricity load, which is very close to both. This is due to the higher number 
of tourists in mountainous areas during the peak tourist season.

5.3 | Substation siting and refinement management

The proposed UrbanPS framework uses the LSCP model for substation siting optimization. The optimization re-
sults can alleviate the problems of power supply constraints and low utilization of electrical facilities and can be 
used to refine the management of grid resources. We found that the coverage and utilization rate of the optimiza-
tion results increased by 5– 30% compared to the existing distribution. Traditional substation siting studies are 
mainly limited to planning a minimal number of substations to achieve the optimization goal of minimizing the 
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total cost. Compared to the substation siting models proposed in recent years (Li, Yin, et al., 2018), the proposed 
UrbanPS framework considers the electricity consumption patterns of multiple urban scenarios and adopts a 
region growing algorithm to more finely delineate the power supply area of the substation. At the same time, 
UrbanPS innovatively uses grid coverage and utilization as the optimization objectives for substation siting. The 
model helps to optimize the location of future substations in new urban areas, relieving the pressure on the grid 
during peak periods and meeting the basic electricity needs of urban residents.

This study optimized the siting of substations under different scenarios by analyzing the residential electricity 
consumption patterns under multiple scenarios. The results might solve the power shortage problem during sea-
sonal peak consumption periods. For example, during the seasonal peak power consumption, substations in the 
central city, industrial areas, and satellite cities can be turned on, thus preventing power outages due to overload 
operation of the distribution network. In contrast, several substations can be turned off to reduce power losses 
during the low power consumption period of spring and autumn. The study suggests that the operation of different 
substations can be dynamically adjusted by evaluating the actual local power load to balance the electrical energy 
supply and consumption.

5.4 | Limitations and future works

The present framework still has some limitations. First, in future research, we will dynamically simulate the open-
ing and closing of substations in different city areas according to the seasonal power consumption pattern and 
conduct the dynamic dispatching distribution of electric energy among regions. Second, capacity planning is an-
other essential part of urban power grid planning, which is not addressed in this study. In the future, we will 
establish a multi- objective optimization model for substation siting and capacity by adjusting the capacity Cj in 
the model and optimizing the capacity and location of substations simultaneously. Third, the disadvantage of 
heuristic optimization algorithms for solving NP- hard problems is it is difficult to obtain a global optimal solution 
(Deng et al., 2019; Wang & Sobey, 2020). In the future, we will consider further introducing reinforcement learning 
methods to enhance the algorithm's optimization performance.

6  | CONCLUSION

Aiming at the spatial planning of substations in new urban areas and dealing with the power shortage problem 
during peak periods, we proposed the UrbanPS framework from the perspective of large- scale urban grid cover-
age. The maximum coverage and utilization rate were regarded as the optimization objective. The substation siting 
optimization was conducted in Pingxiang, China, and the results verify the proposed methods' theoretical and 
practical contributions. Results show that the UrbanPS helps allocate power resources and effectively alleviates 
the power shortage problem during peak hours in a fast- growing city. It is suggested that power resources can be 
reasonably distributed by dynamically adjusting the operation of different substations. Findings from this study 
can guide grid planning in new urban areas in China.
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