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Abstract

Intratumor heterogeneity is a main cause of the dismal prognosis of glioblastoma

(GBM). Yet, there remains a lack of a uniform assessment of the degree of

heterogeneity. With a multiscale approach, we addressed the hypothesis that intratu-

mor heterogeneity exists on different levels comprising traditional regional analyses,

but also innovative methods including computer-assisted analysis of tumor morphol-

ogy combined with epigenomic data. With this aim, 157 biopsies of 37 patients with

therapy-naive IDH-wildtype GBM were analyzed regarding the intratumor variance

of protein expression of glial marker GFAP, microglia marker Iba1 and proliferation

marker Mib1. Hematoxylin and eosin stained slides were evaluated for tumor

vascularization. For the estimation of pixel intensity and nuclear profiling, automated

analysis was used. Additionally, DNA methylation profiling was conducted separately

for the single biopsies. Scoring systems were established to integrate several parame-

ters into one score for the four examined modalities of heterogeneity (regional, cellu-

lar, pixel-level and epigenomic). As a result, we could show that heterogeneity was

detected in all four modalities. Furthermore, for the regional, cellular and epigenomic

level, we confirmed the results of earlier studies stating that a higher degree of hetero-

geneity is associated with poorer overall survival. To integrate all modalities into one

score, we designed a predictor of longer survival, which showed a highly significant

separation regarding the OS. In conclusion, multiscale intratumor heterogeneity exists

in glioblastoma and its degree has an impact on overall survival. In future studies, the

implementation of a broadly feasible heterogeneity index should be considered.
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[Correction added on 11 August 2023, after

first online publication: There were errors in

the order of author affiliations and have been

updated in this version.]

What's new?

Overall survival of glioblastoma patients may be influenced by intratumor heterogeneity,

although standard procedures to quantify heterogeneity in histological preparations are

lacking. In our study, the authors developed scoring systems for the assessment of heteroge-

neity in glioblastoma based on differences in regional protein expression, nuclear features in

cells, pixel intensity within tumors and epigenomic methylation. Heterogeneity was detected

at all levels, with an elevated degree of heterogeneity associated with reduced overall sur-

vival. Degree of heterogeneity was correlated with biopsy distance at regional and epige-

netic levels. The findings highlight the potential utility of a heterogeneity index for

prognostic evaluation in glioblastoma.

1 | INTRODUCTION

Intratumor heterogeneity is a hallmark of glioblastoma (GBM)1 and

possibly at the root of its dismal prognosis and therapy resistance.

Beside a pronounced morphological variety, the heterogeneity

includes genomic and epigenomic aberrations.2 Based on the work by

Verhaak et al,3 many efforts to define glioblastoma subtypes have

been made, especially after it was shown that different GBM subtypes

have diverse clinical outcomes.4 Most studies were based on analyses

of high-resolution data, including genomic and epigenomic tumor

information. These “omic”-approaches give detailed, comprehensive

insights into the tumor's molecular characteristics, but have the disad-

vantage to neglect the tumor's morphology, including intratumor het-

erogeneity. Cellular diversity is essential for malignant neoplasia as

GBM, though, because it allows the tumor to adapt and survive harsh

microenvironments or cytotoxic anticancer therapeutics including

radiation and temozolomide.5 This is why recent studies have focused

on spatial heterogeneity within one tumor using morphological or

molecular approaches including single-cell sequencing or methylation

analysis.6-9

In previous studies, our study group has focused on the morpho-

logical itemization of intratumor heterogeneity in GBM. After defining

areas of interest with respect to different morphology and protein

expression, methylation profiling confirmed that our spatial separation

was valid and is of relevance, since areas of the same tumor showed

varying methylation profiles.7 This result was corroborated by a pro-

spective study that analyzed the methylome of 238 biopsies of

56 GBM patients showing that 39% of the tumors were composed of

different subtypes.10 Other groups with a similar approach proved a

varying GBM subclass assignation between spatially distant samples

of individual tumors.9,11 Moreover, we proved that the degree of het-

erogeneity has prognostic impact.7

The samples generated through the prospective study of Gempt

et al10 are of high value regarding their exceptional spatial separation,

which offers the chance for comprehensive morphological characteri-

zation of intratumor heterogeneity. With a multiscale approach, we

analyzed these samples to address the hypothesis that intratumor het-

erogeneity exists on different levels (Figure 1A) comprising traditional

regional analyses based on hematoxylin and eosin (HE) and immuno-

histochemical (IHC) stains, but also innovative methods including

computer-assisted analysis of tumor cell nuclei shape and pixel

intensities combined with epigenomic data of the tumor areas. Het-

erogeneity on the regional and cellular level was quantified by utilizing

preexisting scoring systems and aided by the established CellProfiler

software.12 We characterized the methylation profile using the brain

tumor classifier based on the work by Capper et al.13 The Simpson

and Shannon Diversity Index, both originally used to describe ecologi-

cal diversity, served as markers for the variability of pixel intensities.

To prove the clinical relevance of our study, we designed a predictor

of longer survival which integrates all four defined levels.

2 | MATERIALS AND METHODS

2.1 | Material

The tissue samples of 197 biopsies of 49 patients with therapy-

naive IDH-wildtype glioblastoma which derived from a cohort of a

prospective study10 were included. For that study, 2 to 9 biopsies

of each tumor were retrieved prior to tumor resection. All surgeries

including biopsy retrieval were performed at the Department of

Neurosurgery of the Klinikum rechts der Isar, Technical University

of Munich (TUM) between February 2018 and March 2021. Inclu-

sion criterion for the present study was a minimum of three evalu-

able biopsies per patient (Figure 1B); 42/48 patients met this

inclusion criterion. During evaluation, several slides were excluded

for following reasons: not enough material of tumor core left for

histopathological analysis (exclusion of 17 slides) or predominantly

necrotic material (exclusion of 3 slides). Due to slide exclusion, all

samples of five patients were eliminated because the number of

evaluable biopsies dropped under 3.

The final cohort included 157 biopsies of 37 patients (median age

at diagnosis 69.1 years; 23 male; Table 1). All tumors were reevalu-

ated and classified according to the fifth version of the WHO classifi-

cation of brain tumors from 202114 for the present study. The

promotor of the O-6-methylguanin-DNA-methyltransferase (MGMT)

was methylated in 14 (38%) patients. The amount of biopsies per

patient ranged from 3 to 7 (median 4). For 28 patients, DNA methyla-

tion profiling was performed for a minimum of three biopsies, leading

to evaluable methylation data of 108 samples.
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2.2 | Methods

2.2.1 | Workflow

The project design is shown schematically in Figure 1C.

2.2.2 | Hematoxylin and eosin staining and
immunohistochemistry

HE staining was performed following standard protocol. For

immunohistochemistry, 2 μm thick slides were dried at room tem-

perature for 30 minutes. After epitope uncovering in pH 6.0

citrate buffer at 95�C for 30 minutes and H2O2 incubation, the

slides were charged with the primary antibodies (anti-GFAP:

monoclonal, mouse, dilution 1:400; Clone 6F2; DakoCytomation

Denmark A/S, Denmark; anti-Iba1: polyclonal, rabbit, dilution

1:500; Wako Pure Chemical Industries, Japan; anti-Ki-67 (Mib-1):

monoclonal, rabbit, dilution 1:200; Clone SP6; Thermo Fisher Sci-

entific, Waltham, MA) overnight at 4�C. Biotinylated secondary

anti-mouse for GFAP and Mib1 and anti-rabbit for Iba1 IgG

(Vector Laboratories, Burlingame, CA) all in a dilution of 1:400,

followed by ABC reagent (Vector Laboratories, Burlingame, CA)

were incubated for 30 minutes each. Subsequently, DAB reagent

was added. For all immunostainings, counterstaining with hema-

toxylin was conducted.

F IGURE 1 Study concept and workflow. (A) visualizes the principal concept of our study with the four levels of heterogeneity. In (B), a flow
chart gives information about initial and final study cohort, as well as the inclusion and exclusion criteria. The principal workflow is depicted in (C).
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2.2.3 | Manual staining evaluation

GFAP immunohistochemistry was evaluated using the established semi-

quantitative immunoreactive score (IRS) by Remmele and Stegner, which

is a product of scores for staining intensity (0 = no staining, 1 = weak,

2 = moderate, 3 = strong positivity) and percentage of immunoreactive

cells (0 = 0%, 1 = 1%-4%, 2 = 5%-50%, 3 = 51%-75%, 4 = 76%-

100%).15 For Iba1 and Mib1, a percentage of positive cells in all vital cells

was assigned for every biopsy. The manual staining evaluation was per-

formed by one experienced neuropathologist. The vasculature was

assessed by digitally measuring the size of the tumor tissue and the area

consisting of vessels within by outlining vessel structures. The propor-

tional area covered by vessels was used for further analysis.

2.2.4 | Histopathological image acquisition

For the automated image analysis, all slides were digitized using the

Aperio AT2 scanner (Leica biosystems, Wetzlar, Germany). To avoid con-

founding by varying tumor size and content, two different snapshots of

the core tumor region of each biopsy were taken, resulting in a total of

314 images. To ensure a fixed size, each image was cropped to 750 by

750 μm (1272 � 1272 pixels) during the following processing steps.

2.2.5 | CellProfiler analysis and clustering

The software CellProfiler12 was used to detect the nuclei and extract

nuclear features from the images. The detection was performed using

the 3-threshold Otsu filter. Exactly 154 features of the modules Mea-

sureObjectSizeShape, MeasureObjectIntensity, MeasureImageQuality,

MeasureTexture, MeasureImageAreaOcupied and MeasureImageIn-

tensity were extracted. To assess the nuclear heterogeneity, we nor-

malized the features according to the manufactures standards and

calculated the nuclear diversity score as described previously from the

features median radius, mean and median intensity per nucleus.16

For cluster analysis of nuclear features, we excluded five features

with nonchanging values (NucObj_Children_RelabeledNuclei_Count,

NucObj_AreaShape_EulerNumber, NucObj_Location_Center_Z, NucObj_

Location_MaxIntensity_Z_OrigGray, NucObj_Location_CenterMass

Intensity_Z_OrigGray) and two counting variables (NucObj_

Number_Object_Number, ObjectNumber). Afterwards, z-scale

normalization and feature selection based on pairwise correlation

resulting in four datasets (z-scaled and original dataset, with or

without feature selection [cut-off set at 0.95]) was performed as

suggested previously.17

2.2.6 | Quantification of pixel intensities

Custom made Python scripts (Python version 3.9.5) were used to quan-

tify the information content of pixel intensities in the aforementioned

snapshots (see Materials and Methods in Data S1). To do so, firstly, the

images were converted into greyscale images, followed by calculating

the distribution of pixel intensities as a histogram consisting of either

25, 50 or 256 bars. After filtering intensities with the frequency of 0, the

Simpson and Shannon Diversity index were calculated as follows18,19:

Simpson index:

D¼1�
XS

i¼1

p2i

Shannon-diversity index:

H0 ¼�
XS

i¼1

pi� lnpi

S is the total number of groups of pixel intensities and p the pro-

portion of the individual pixel intensity group.

2.2.7 | 850k methylation array

DNA was extracted from the formalin-fixed and paraffin-embedded

(FFPE) material of the total biopsies. After measuring the DNA concen-

tration using the Quibits dsDNA High sensitivity Assay kit (Invitrogen,

Waltham, MA) on a QuBit 4 system, the DNA was applied to an Illu-

mina EPIC BeadChip (Illumina, San Diego, CA) for methylation analysis

as previously described.20 For tumor classification, the brain tumor clas-

sifier based on the work by Capper et al21 and available at the platform

https://www.molecularneuropathology.org/ in version v12.3 was used.

For each sample, the prediction with the highest methylation

class score was regarded the “main methylation class.” Classes titled

“Glioblastoma …” were considered as GBM-related diagnosis.

TABLE 1 Patient data.

Complete
cohort

Cohort with DNA

methylation profiling
of ≥3 samples

Number of patients 37 28

Number of biopsies

Total 157 108

Per patient median 4 4

Per patient range 3-7 3-6

Age at diagnosis (years)

Median 69.1 67.9

Mean 66.7 66.9

Range 34-87 34-87

Sex

Male 23 (62%) 17 (61%)

Female 14 (38%) 11 (39%)

MGMT promotor status

Methylated 14 (38%) 12 (43%)

Nonmethylated 23 (62%) 16 (57%)

Registered cases of death 20 (53%) 16 (57%)

Registered cases with relapse 17 (46%) 12 (43%)
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2.2.8 | Scoring systems

During analysis, several scoring systems have been used to simplify

the concept of heterogeneity.

Histology score (HisScore)

The HisScore synergizes all regional parameters (IHC stains plus HE

assessment of the area of vasculature) into one single number devised

as following: For each parameter p was determined whether the SD

(SD) in tumor t is greater than the median SD across all tumors T.

A score of 1 for parameters above the median and a score of 0 for

parameters below or equal to the median SD was assigned. Summing

up these scoring points resulted in the HisScore (Figure 2A).

HisScoret ¼
X

Ptð Þ,whereP∶

¼ scoreIba,scoreGFAP,scoreMib,scoreVasc: Areað Þ

with scorex ¼1 if SD ptð Þ> SD pTð Þð Þ

and scorex ¼0 if SD ptð Þ≤ SD pTð Þð Þ:

2.2.9 | Nuclear diversity score (NucDivScore)

In the HE images, cell nuclei were detected and measured using the

CellProfiler software.12

For each nucleus, size (reproduced as mean radius) and staining

intensity (reproduced as median and mean intensity) was estimated

and the NucDivScore generated as described previously.16 For each

image I, nuclear diversity d was quantified from the variability of mor-

phological features f , measured for nuclei in that image.

dIf ¼MADNuclei fð Þ,where f∶
¼ mean radius,median intensity,mean intensityf g:

Nuclear diversity for each tumor t was then calculated as the

median normalized nuclear diversity across all images from that

tumor:

dtf ¼MedianI � t dIt

� �
:

Nuclear diversity ranks Rt
f were calculated for each tumor by sort-

ing tumor samples according to the corresponding diversity feature.

The final quantification of the nuclear diversity score (Dt) for each

tumor t was derived from the median diversity rank (Figure 2D):

Dt ¼ Medianf Rt
f

� �

max Medianf Rt
f

� �� �

2.2.10 | Entity ratio

The entity ratio is used to assess heterogeneity on the epigenetic

level. After excluding all biopsies with non-GBM methylation classes

as predicted by the brain tumor classifier based on the work by

Capper et al,21 the ratio is determined only for patients with a mini-

mum of three remaining biopsies. The ratio is then calculated by divid-

ing the number of different GBM-related methylation classes found in

one tumor by the number of included samples per tumor as following:

Entity ratiot ¼
number of differentGBMentitiesð Þt

number of analyzed samplesð Þt

2.2.11 | Unified prediction of heterogeneity
(UniPreHet)-Ratio

The UniPreHet-Ratio is used to incorporate all heterogeneity predic-

tions into a single score. It consists of the number of heterogenous

levels per tumor t divided by the number of contributing levels.

UniPreHet�Ratiot ¼Σ heterogenous levelsð Þt
Σ contributing levelsð Þt

A level is heterogenous, if parameter x of tumor t is greater than

the median of x across all tumors T.

xt >median xTð Þ

2.2.12 | Predictor of longer survival (ProLoS)

The ProLoS is a ratio that reflects the impact on survival for each level.

First, it is determined whether the tumor's induvial value v of HisScore,

NucDivScore and Entity Ratio is higher than the median of v across all

tumors T.

ScoreHisScore,NucDivScore,Entity Ratio ¼1 if vtð Þ>median vTð Þð Þ

ScoreHisScore,NucDivScore,Entity Ratio ¼0 if vtð Þ≤median vTð Þð Þ

For the pixel-level, a score of 1 is awarded when v is smaller than

the median.

Scorepictorial ¼1 if vtð Þ<median vTð Þð Þ

Scorepictorial ¼0 if tð Þ≥median vTð Þð Þ

The final ProLoS consists of the sum of all levels divided by the

number of levels.

ProLoSt ¼ Σ scoring pointsð Þt
Σ contributing levelsð Þt

:

2.2.13 | Statistical analysis

All statistical analyses were performed using R (version 4.0.2). Survival

analyses were performed using the survival22 and survminer package.

Kaplan-Meier curves were compared using the log-rank test. The

t-distributed stochastic neighbor embedding (t-SNE) clustering,23
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F IGURE 2 Legend on next page.
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k-means cluster analysis and principial component analysis (PCA) were

performed on the dataset of nucleus features. Correlations were

tested using Pearson's method or Spearman's method. Hazard ratios

were calculated using Cox proportional hazard regression model. For

all tests, statistical significance was defined as P < .05.

3 | RESULTS

3.1 | Heterogeneity is present in all modalities and
shows association with overall survival

In this part, it is shown that heterogeneity exists in all four modalities

and that each heterogeneity has an impact on the overall survival

(OS). For every modality, we have defined indices of heterogeneity

that mostly apply the standard deviations (SD) as values of variance.

For the histological/regional parameters and the nuclear profiling,

scores were used to integrate the different parameters into one value.

3.1.1 | Modality I: Regional (histological) level

Regional heterogeneity expressed as differences in expression levels

of proteins is ubiquitous. To quantify heterogeneity and to integrate

all parameters of the regional level, we used the HisScore (Figure 2A).

Groups of heterogenous and homogenous tumors were built by sepa-

rating them with regard to the median HisScore (above median [=2]

equates to heterogenous; below or equal to homogenous). By doing

so, 12 tumors were assigned to the heterogenous group, while

25 tumors were homogenous. Strikingly, a clear statement about the

association of heterogenous or homogenous phenotype with the OS

can be made. Although not significant, patients with heterogenous

tumors showed a poorer OS compared to patients with tumors of the

homogenous group (median survival of 9.36 months vs 15.67 months;

P = .108; Figure 2B).

The single parameters were also isolatedly examined. We

assessed range and SD as values of heterogeneity. The maximal values

observed are listed in Table S1. To visualize the intratumor heteroge-

neity, the values of all parameters and samples were normalized using

the z-transformation. Thus, it is depicted how many standard devia-

tions each value deviates from the overall mean value (a high z-score

value equals a high measured value). Figure 2C depicts the corre-

sponding false color image of the values of each biopsy sorted by

patient. Apparently, the values are not distributed equally and have a

rather high range from �1.975 to 4.068. As can be seen in patient

14, both high and low histological values can occur in one tumor indi-

cating high histological heterogeneity (range of z-score values for

patient 14: GFAP 1.982, Iba 3.858, Mib1 0.0830, Vasc_Area 3.121).

However, when considering patient 18, a clear visualization of a histo-

logical homogenous tumor with only low maximal ranges of the

z-score values can be observed (GFAP 0.330, Iba1 0.193, Mib1 0.415,

Vasc_Area 0.407).

Furthermore, the single parameters were correlated with each

other (Table 2). As to be expected, a significant negative correlation is

seen between Iba1-positive cells and Mib1 (r = �.233; P = .004). No

further significant correlation is observed. When examining an associ-

ation between OS and the single parameters, no clearly identifiable

separation between tumors with high parameter ranges and tumors

with homogenously distributed parameters is observed (data not

shown).

3.1.2 | Modality II: Cellular (nuclear) level

Heterogeneity on the cellular level includes differences in nuclear

form, size and staining intensity. In the HE images, cell nuclei were

detected and measured using the CellProfiler software.12 The differ-

ent parameters were then integrated into one NucDivScore

(Figure 2D). Afterwards, the tumors were divided into heterogenous

and homogenous tumors by separating them with regard to the

median NucDivScore (above median [=0.54285] equates to heteroge-

nous; below or equal to homogenous). Seventeen tumors were

assigned to the heterogenous group, while 20 tumors were

homogenous.

Also in this modality, a distinct, although not significant separa-

tion with shorter OS for heterogenous tumors (median survival of

9.63 months compared to 12.32 months; P = .170; data not shown) is

seen. When the cut-off is set to 0.7 instead of the median, a signifi-

cant separation can be seen (median survival of 7.75 months for het-

erogenous tumors compared to 15.67 months for homogenous

tumors; P = .0498; Figure 2E). In this case, 13 tumors were assigned

to the heterogenous group, 24 to the homogenous group.

To visualize the heterogeneity of the single parameters, the

values of all parameters and samples were again, translated into

z-score values (Figure 2F). The tumor of patient 16 is an example for a

heterogenous tumor regarding the diversity of the nuclear shape

(range of z-score values: mean radius 0.820, mean intensity 2.345,

median intensity 2.206). In contrast, the tumor of patient 6 is

F IGURE 2 Modalities I and II: Regional and cellular level. (A) demonstrates schematically the built-up of the HisScore. In (B), a distinct,

although not significant, separation with poorer OS of patients with tumors that are heterogenous regarding their HisScore is seen, when dividing
two groups by the median HisScore. Part figure (C) shows the z-scaled values (left) and the ranges of those z-scaled values of the single
histological parameters vascularization area, GFAP, Iba1 and Mib1 expression, as well as the integrating HisScores (right) for every patient. Part
figure (D) demonstrates schematically the built-up of the NucDivScore. In (E), a distinct separation with poorer OS of patients with tumors that are
heterogenous regarding their NucDivScore is seen, when dividing two groups by a cut-off of 0.7. Part figure (F) shows the z-scaled values (left) and
the ranges of those z-scaled values (middle) of the single cellular/nuclear parameters mean radius, mean intensity and median intensity, as well as
the integrating NucDivScore (right) for every patient.
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homogenous in the nuclear parameters (range of z-score values: mean

radius 0.390, mean intensity 0.221, median intensity 0.209).

Additionally, we investigated whether a separation of different

nuclei types based on shape, intensity and texture features of the

nuclei extracted by CellProfiler software could be achieved. For this,

we tested the original data, a z-scaled dataset both with and without

feature selection based on pairwise correlation. A principial compo-

nent, k-means- and t-SNE cluster analysis was performed on the four

resulting datasets. However, no meaningful separation could be

achieved in all (data not shown).

3.1.3 | Modality III: Pixel-level

GBM show diverging visual facets. To quantify heterogeneity on the

pixel-level, we measured the diversity of pixel intensities in

the 314 HE images (ranging from 6 to 14 images per patient depend-

ing on the number of biopsies) using the Shannon and Simpson Diver-

sity Indices. Figure 3A displays an example of a histogram of the pixel

distribution.

Overall, we observed rather high values in the calculated indi-

ces (Table S2) indicating high information content or rather high

diversity in pixel intensities. As to be expected, all the single param-

eters correlate strongly and significantly with each other (data not

shown).

To visualize the heterogeneity of the parameters of the pixel-

level, the values of all parameters and samples were, again, translated

into z-score values (Figure 3B). Patient 23 shows a heterogenous

tumor regarding the pixel diversity values (range of z-score values:

Simpson-256 3.757, Shannon-256 4.162). In contrast, the tumor of

patient 22 is more homogenous (range of z-score values: Simpson-

256 2.773, Shannon-256 2.569).

To integrate all samples into a single parameter, the median and

the SD of each index across all samples of a tumor was calculated.

Again, we divided the tumors into heterogenous and homogenous

tumors by separating them with regard to the median (above median

equating to heterogenous; below or equal to homogenous). When

observing the median of a patient's Simpson or Shannon Diversity

Index, no clear trend in the survival was observed (data not shown).

However, when quantifying the pixel information as the SD of the

Simpson Diversity Index of all sample images from a patient (with a

histogram with 256 bars), a significant shorter survival is seen for the

homogenous tumors (9.63 months compared to 37.62 months;

P = .016; cut-off median of 0.00246; Figure 3C) with 18 tumors

assigned to the heterogenous group and 19 tumors assigned to the

homogenous group. Thus, interestingly, the results of the pixel ana-

lyses show a diverging direction to the other levels.

3.1.4 | Modality IV: Epigenetic level

To assess epigenomic heterogeneity, we used a 850k methylation

array and classified the results using the brain tumor classifier based

on the work by Capper et al21 in version v12.3. In total, 140 samples

were classified resulting in 17 different main methylation classes

(“all_samples”), of which 137 were tumor-related diagnoses. Exactly

117 samples had a GBM-related diagnosis with seven different sub-

classes. Three biopsies were classified as control class. See Figure 3D

for complete classifier assignments.

For further analyses, non-GBM diagnoses were excluded to pre-

vent deceptive results due to sampling error or DNA quality defect.

To assess the heterogeneity, only patients with a minimum of 3 biop-

sies with GBM diagnosis were included (“GBM_3+”) resulting in a col-

lective of 108 biopsies of 28 tumors).

The biopsies of five tumors (17.9%) were assigned to three differ-

ent methylation classes. Nine tumors (32.1%) had samples with two

different classes, 14 tumors (50%) with one.

For association analysis between variation of methylation clas-

ses and survival, an entity ratio comprised of the number of differ-

ent methylation classes found in one tumor divided by the number

of analyzed samples per tumor was generated. By dividing two

groups by means of the median of 0.367 (above median equates to

heterogenous; below or equal to homogenous), an obvious,

although not significant shorter OS is observed for patients with

heterogenous tumors (15.67 months vs 7.95 months; P = .070;

data not shown). When separating by the number of different

methylation classes (ranging from 1 to 3), the shortest OS is seen

for tumors with three different methylation classes, whereas

tumors of which all samples were classified in the same class, have

the longest OS (5.78 vs 15.67 months; 10.97 months for tumor

with two different classes; Figure 3E). The survival difference of

tumors with only one methylation class and tumors with three

methylation classes is highly significant (P = .0046).

3.2 | The association of different levels of
heterogeneity among each other

After confirming that intratumor heterogeneity exists in our cohort,

the next step was to evaluate if the different modalities of heteroge-

neity coexist or if one modality dominates in the individual patients.

For this analysis, we chose the most comprehensive and representa-

tive parameter (complex) for each modality.

TABLE 2 Correlation of histological parameters.

Parameter Vasc_Area GFAP Iba1 Mib1

Vasc_Area r .126 .047 .096

P .281 .562 .237

GFAP r .126 .097 �.087

P .281 .228 .281

Iba1 r .047 .097 �.233

P .562 .228 .003

Mib1 r .096 �.087 �.233

P .237 .281 .003
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We used the HisScore for the regional, the NucDivScore for the

cellular (nuclear), the SD of the Simpson Index for the pixel-level

modality and the entity ratio for epigenetic heterogeneity.

For every patient, we determined whether each parameter was

above the median leading to the assignment of a heterogeneous type.

In case the parameter was below or equal to the median, a homoge-

nous type was assumed.

Regarding the epigenomic heterogeneity, only GBM_3+ tumors

were included. Three (8.1%) tumors were homogenous on all available

levels (for two tumor methylation profiling and therefore, entity ratio

was not available; Figure 3F). Exactly 14 (37.8%) tumors had one

parameter (4 tumors without methylation profiling), 13 (35.1%)

tumors had two parameters with heterogenous character (3 tumor

without methylation profiling). For 7 (18.9%) tumors, three parameters

were of heterogenous layout. No tumor was heterogenous in all four

modalities.

Correlation analyses between the parameters of the different

modalities revealed a significant correlation between the entity ratio

and NucDicScore (r = �.542, P = .003). Furthermore, the entity

ratio and SD of the Simpson Diversity Index were negatively associ-

ated, not significantly, though (r = �.345, P = .072).

The mesenchymal GBM subtype as determined by the brain

tumor classifier, was significantly positively correlated with the IHC

scores of Iba1 (r = .372, P = .00004) and GFAP (r = .226, P = .015).

There was a negative association with the amount of Mib1-positive

cells (r = �.234, P = .011). The receptor tyrosine kinase-I (RTK-I) sub-

type showed a significant positive correlation with Mib1 (r = .252,

P = .006) and a negative correlation with Iba1-positive cells

(r = �.201, P = .031). For these correlation analyses, all samples with

methylation class “glioblastoma” were included.

3.3 | Creation of a predictor of longer survival
integrating all levels of heterogeneity

For the analysis of the association between number of heterogenous

modalities and survival, we divided the number of heterogenous levels

by the number of available levels to avoid bias by missing data from

modalities resulting in the UniPreHet-Ratio. Once again, we used the

median of all UniPreHet-Ratios as cut-off. When considering all avail-

able data from all modalities, no clear trend was observed. However,

when only taking the regional, nuclear and epigenomic modalities into

account (thus, discarding the pixel-level modality), a trend toward

longer survival in homogenous patients was seen (median survival

12.32 month vs 9.36; P = .342). This trend is even more apparent,

when only samples with GBM as main classifier diagnosis served as

basis for the entity ratio. While the survival difference for all modali-

ties is not significant (median survival 12.32 vs 7.95 months;

P = .237), a significant survival difference can be seen in the reduced

UniPreHet-Ratio (without pixel-level; median survival 16.00 vs

7.95 months; P = .0496).

We further tested whether the four modalities could form a suffi-

cient predictor of longer survival (ProLoS). To this end, the HisScore,

the NucDivScore and the entity ratio were weighted analogously to the

UniPreHet-Ratio. For the pixel-level heterogeneity, however, a score

point was assigned when the value was below or equal to the median

reflecting its association with patient survival. Again, the scores of all

modalities were added and divided by the number of contributing

modalities to avoid bias by missing data. To test the survival, we split

the patients in two groups based on the median of the overall ProLoS.

While splitting by the median (median(ProLoS) = 0.5) results in a clear,

yet nonsignificant trend (median OS 12.32 vs 7.03 month; P = .117),

it splits the cohort unevenly (ProLoS > median is true for only

6 patients and false for 31). Therefore, we additionally tested the

mean (mean(ProLoS) = 0.421) as a cut-off resulting in a more even

separation (ProLoS > mean is true for 15 and false for 22 patients) and

a significant split regarding the OS (median OS 37.62 vs 9.36 month;

P = .002). This holds also true with a GBM_3+ precondition as basis

for the entity ratio (median survival 37.62 vs 9.36 month; P = .003;

Figure 3G).

Additionally, we built a cox hazard model to examine the different

impact of the parameters on the ProLoS. While all parameters of the

ProLoS seem to be associated with longer survival, only the regional

and the pixel-level show a significant association (regional P = .03,

pixel-level P = .016 j for gbm 3+: regional P = .023, pixel-level

P = .026, cellular: P = .05).

3.4 | Correlation analysis between tumor size and
biopsy distances with degree of heterogeneity

In a last step, we assessed a possible correlation between tumor size

and distances of the biopsies with the degree of heterogeneity. Infor-

mation on tumor size was available for 35 patients, biopsy distance

F IGURE 3 Modalities III and IV—Pixel-level and epigenetic level—and integration of all four modalities. Part figure (A) demonstrates an
example for the distribution of pixel values. In (B), a significant separation with poorer OS of patients with tumors that are homogenous regarding
their SD of the Simpson-Index is seen, when dividing two groups by the median. (C) shows the z-scaled values (left) and the ranges of those z-
scaled values (middle) of the single pixel-level parameters Simpson-Index (256 and 50) and Shannon-Index (256 and 50) as well SD od the

Simpson-Index (265, right) for every patient. In (D), the different methylation classes for all biopsy every biopsy of all patients is depicted. As can
be seen, in half of the cases, the classifier results of the different biopsies of one tumor showed diverging methylation classes. (E) shows a clear
separation when separating groups by the number of different methylation classes in one tumor. Tumors with three different classes and
therefore, epigenetically the most heterogenous tumors, show the poorest survival. Patients with tumors with non-diverging methylation classes
lived the longest. In (F), the homogenous or heterogenous character for all four levels for every patient is given. In the upper row, the total
heterogeneity score integrating all four levels can be seen. Part figure (G) shows the Kaplan-Meier curve for the separation by the mean ProLoS.
Patients with a ProLoS above the mean survived significantly longer.
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data for 33 patients. Tumor size was determined as contrast enhancing

tumor (CET) in MRI. No significant correlations were found when com-

paring tumor size and the degree of heterogeneity in all four modalities

(represented by HisScore, NicDivScore, SD of Simpson Diversity Index

and Entity Ratio) and a combined value represented by the UniPreHet-

Ratio (Table 3). As could be expected, there was a significant correlation

between the mean distances of the biopsies of the same patient and the

HisScore (r = .636, P = .038), as well the Entity ratio (r = .413, P = .019;

Table 3). There was also an association between the distances and the

integrating UniPreHet-Ratio, although not significant (r = .331, P = .060).

4 | DISCUSSION

Intratumor heterogeneity is a hallmark of GBM but remains difficult

to quantify. Moreover, morphological studies have mostly focused on

one level of heterogeneity, usually by assessing regional heterogene-

ity by immunohistochemistry in samples of resected GBM.6,7,24,25

For our study, 157 biopsies of 37 patients with therapy-naive

IDH-wildtype GBM were analyzed. By separate examination of the

single biopsies, an excellent spatial separation of different tumor areas

is warranted. Besides traditional morphological analysis, we included

novel scoring systems reflecting morphological intratumor heteroge-

neity and incorporated a new modality for heterogeneity by analyzing

the pixel intensities in the GBM biopsies.

We were able to confirm our hypothesis that heterogeneity exists

in different modalities. We observed a significant correlation between

the distances of the biopsies to each other and the degree of heteroge-

neity on the regional and the epigenetic level, which seems biologically

plausible and supports the validity of our analyses. Most interestingly,

we can show an association between all modalities and OS. This led us

to design a predictor of longer survival (ProLoS), which includes the four

examined modalities of heterogeneity (regional, nuclear, pixel-level and

epigenomic). By splitting the tumors into two groups with the mean

ProLoS as cut-off, a highly significant separation regarding the OS was

seen which underlines the clinical relevance of heterogeneity studies.

When considering the single modalities, interestingly, the pixel-level

showed inverted results compared to the other three levels. Whereas

the comprehensive scores HisScore for the regional level, the NucDiv-

Score for the cellular and the entity ratio for the epigenomic level all

showed the trend that patients with heterogenous tumors have a

shorter OS compared to tumors with lesser degree of heterogeneity, it

was the other way around for the SD of the Simpson and Shannon

Diversity Index. Both indices are usually used in ecology to describe

biological diversity26,27 and reflect the heterogeneity of pixel intensities

in our study. This is an interesting finding contradicting the results one

would expect. When reflecting the results, it makes sense, though, con-

sidering the fact that a high SD of the Simpson Diversity Index is equiv-

alent with a high range of content of image information. A high range

of information content could mean that the tumor features various

morphological aspects differ regarding their information content. For

instance, a tumor with biopsies that all include a high amount of necro-

sis would have, due to a high white content, generally low indices and

hence, a low SD. To continue this thought, one would not expect that a

GBM with globally high content of necrosis found in all biopsies has a

better OS compared to a tumor that varies regarding its content of

necrosis in the single biopsies. In general, GBM have an extremely high

image information density in higher resolutions. This is why we decided

to use SD as “zooming out” effect to capture differences at all.

For all other modalities, it was shown that higher degree of het-

erogeneity is associated with poorer survival, which is in line with pre-

vious studies.7,10 It has to be noted, though, that some of these

correlations are not significant, and their relevance has to be exam-

ined in further studies. Under the assumption that morphological het-

erogeneity is caused by genetic instability with the result of mutation

accumulation, natural selection is a feasible explanation for tumor cell

survival despite extensive therapy.28 Individual therapies that are

directed against specific genomic alterations, for instance, lose effec-

tiveness when only a subpopulation is attacked due to clonal varia-

tion. The most significant result was seen for the epigenomic level.

We were able to confirm our hypothesis that different GBM subtypes

can be found in one single tumor. Moreover, we showed that patients

with tumors that comprise three different methylation classes as

defined by Capper et al13 had a highly significantly shorter OS com-

pared to patients with tumors that consisted of only one detected

methylation class. Additionally to this interesting finding, it highlights

the limitation of comprehensive epigenomic diagnostics based on a

single biopsy. It also explains why therapies that are meant to treat

specific genomic alterations have not shown the expected positive

results in clinical practice. It should also be noted that we did not

TABLE 3 Correlation of tumor size and biopsy distances with degree of heterogeneity.

Parameter

Modality I

(HisScore)

Modality II

(NucDivScore)

Modality III

(SD of Simpson score)

Modality IV

(Entity ratio)

All modalities

(UniPreHet-Ratio)

Volume of CET r .092 .316 .088 .118 .287

P .598 .064 .615 .522 .094

Mean distance r .363 �.083 .012 .413 .331

P .038 .648 .947 .019 .060

Median distance r .368 �.043 .058 .332 .296

P .035 .813 .751 .064 .095

Note: Bold values indicate significant correlations.
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analyze the whole tumor but a varying number of small biopsies. The

assumption that all GBM show different subtypes to a certain degree

seems likely. This entails the question how much tissue needs to be

examined before a dimension of heterogeneity can be stated. Con-

trary to our results, Verburg et al stated that classification based on

methylations profiles is highly conserved in space when the samples

were adjusted for tumor purity.29 This statement is also based on a

study comprising spatially separated biopsies. Restrictively, the cohort

included beside 7 IDH-wildtype GBM 9 IDH-mutant gliomas. As het-

erogeneity is generally more pronounced in IDH-wildtype, we assess

our cohort of 37 patients with IDH-wildtype tumors more convincing.

But indeed, the strongly debated issue of the influence of included

non-neoplastic cells makes the matter even more difficult. We

observed a highly positive correlation between the mesenchymal

GBM subtype and the amount of Iba1-positive microglia. Even if this

is in line with previous studies,7,30,31 it raises the question how the

amount of microglial cells and other non-neoplastic cells influences

epigenetic and genetic analyses despite corrections for tumor purity.

Our results show a significant inverse correlation between

Iba1-positive cells and proliferating Mib1-positive cells. This is an

expected result which validates our evaluation methods as one would

anticipate that microglial cells do not proliferate as much as tumor

cells.

A main limitation of our study is the selection bias. For the ana-

lyses, only tumor with at least three biopsies were included. More-

over, for further analyses that included epigenomic data, tumors

with less than three biopsies with GBM methylation classes were

excluded. Samples with classifier results of non-GBM-methylation

classes were eliminated to avoid false results due to sampling error

or low DNA quality. Furthermore, we correlated the degree of het-

erogeneity with the biopsy distances, although distance measure-

ments can be inaccurate due to, for example, shifting during

opening of the dura. Another shortcoming is that several histologi-

cal parameters were manually scored, which might impede repro-

ducibility. On the other hand, it avoids interobserver variance in

the present study, as previously described.32-34 While the manual

selection of the snapshots introduces selection bias (toward images

with high cell count), it also ensures a high quality of the image

dataset. Due to the visual control, artifacts or regions with low or

no tumor content were excluded, resulting in an easy to process

dataset. Compared to the study by Andor et al,16 in which �15% of

images had to be excluded from the analysis, this purity may actu-

ally prove as advantage.

Despite the limitations, we are convinced that our study gives a

further confirmation that intratumor heterogeneity exists in GBM and

has an impact on OS. By designing a predictor of longer survival, a

way of possible clinical implementation of heterogeneity analysis

is prepared. Certainly, such heterogeneity assessment needs

thorough validation and simplification before it can be broadly

applied. Furthermore, arising technologies including spatial proteo-

mics/transcriptomics and multiplex immunohistochemistry should be

complemented to validate the results and give further insights into

the heterogenous constitution of GBM.

5 | CONCLUSION

Multiscale intratumor heterogeneity exists in glioblastoma and its

degree has an impact on overall survival. In future studies, the crea-

tion and implementation of a broadly feasible heterogeneity index

should be considered.
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