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Abstract: Racemic 3-substituted oxindoles were success-
fully converted into enantiomerically pure or enriched
material (up to 99% ee) upon irradiation at λ=366 nm
in the presence of a chiral benzophenone catalyst
(10 mol%). The photochemical deracemization process
allows predictable editing of the stereogenic center at
carbon atom C3. Light energy compensates for the
associated loss of entropy and enables the decoupling of
potentially reversible reactions, i.e. a hydrogen atom
transfer to (photochemical) and from (thermal) the
carbonyl group of the catalyst. The major enantiomer is
continuously enriched in several catalytic cycles. The
obtained oxindoles were shown to be valuable inter-
mediates for further transformations, which proceeded
with complete retention at the stereogenic center.

2-Indolinones (oxindoles) represent one of the most
important classes of condensed heterocyclic compounds.
They have attracted considerable attention, mainly due to
their wide range of biological activities.[1] Extensive efforts
have been undertaken towards their synthesis and their
consecutive use as synthetic building blocks.[2] The existence
of a stereogenic center at position C3 renders many
oxindoles chiral and there is a wide array of 3,3-disubstituted
oxindoles known, which can be prepared
enantioselectively.[3] In contrast to the latter compound class
which is configurationally stable, 3-(mono)substituted oxin-
doles 1 (Scheme 1) display a more fragile stereogenic center.
Their enantioselective synthesis is hampered by possible
racemization which in turn has impeded an access to the
compounds in enantiomerically pure form.[4] Since catalytic
photochemical deracemization occurs under very mild
conditions, we envisioned this new technique[5–7] to be a
suitable tool to prepare 3-substituted oxindoles in enantio-
merically pure or enriched form from a racemic mixture rac-
1. Photochemical deracemization reactions can be per-
formed by a single chiral catalyst that distinguishes between

enantiomers,[8] or by multi-catalytic systems, in which the
chiral catalyst is responsible for the enantioselective trans-
formation of a transient intermediate,[9] or by combinations
thereof.[10] Our group has taken the first approach and we
have recently shown that a chiral benzophenone catalyst 2
enables the deracemization of hydantoins by a reversible
hydrogen atom transfer (HAT).[11] When applied to oxin-
doles, we expected the chiral catalyst 2 to selectively induce
a HAT from oxindole enantiomer ent-1 in the hydrogen-
bonded complex 2·ent-1. Upon excitation and intersystem
crossing to the triplet state T1, the carbonyl group of the
benzophenone would abstract the hydrogen atom at carbon
atom C3, forming two carbon-centered radicals associated
within complex 3. While it was shown for hydantoins that
the hydrogen atom is transferred from the protonated ketyl
radical to an oxygen atom not involved in the hydrogen
bonding event,[11b] it is required for the oxindoles that the
hydrogen atom is returned unselectively to the carbon atom
or—more likely—to the hydrogen-bonded lactam oxygen
atom. The latter process would form intermediate 4, which
was expected to tautomerize statistically to oxindoles ent-1
and 1. Since the C3 hydrogen atom of enantiomer 1 is not
accessible in a putative complex 2·1, this enantiomer would
be enriched, while enantiomer ent-1 would re-enter the
photocatalytic cycle.
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Scheme 1. Enantiomerically pure oxindoles 1 by stereochemical editing
of the respective racemates rac-1 with catalyst 2 (top). Possible reaction
course of a deracemization with enantiomer ent-1 being continuously
processed by catalyst 2 and enantiomer 1 being enriched due to the
inaccessibility of its hydrogen atom in position C3. Enantiomer 1 is not
processed by catalyst 2 while enantiomer ent-1 re-enters the catalytic
cycle (bottom).
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Based on the described hypothesis, we have now studied
3-substituted oxindoles in a photochemical deracemization
reaction. We found the process to be extremely efficient and
we were able to prepare a wide range of chiral oxindoles
enantioselectively. Our preliminary results, which include
consecutive reactions of chiral oxindoles, are presented in
this communication.

Optimization experiments (Table 1) were performed
with 3-benzyl-2-indolinone (rac-1a) as the substrate. Excita-
tion of benzophenone 2 was achieved with fluorescent lamps
displaying an emission maximum at λ=366 nm. Following
irradiation, the products were isolated by removing the
solvent and subjecting the resulting slurry to reverse phase
column chromatography. The initial irradiation time was
chosen to be 13 hours (t=13 h) and the study commenced
with a screening of possible solvents (entries 1–3), from
which trifluorotoluene emerged as clearly superior. Low-
ering the catalyst concentration from 10 mol% to 5 mol%
led to a decrease in enantioselectivity (entries 4 and 7). The
substrate concentration could be increased to 5 mM without
a change in performance (entry 5). At a higher concentra-
tion (entry 6), the yield and enantioselectivity dropped, even
if the irradiation time was shortened (entry 8). A reaction
time of nine hours was found to be optimal (entries 9, 10),
and it was shown that the reactions can be run on larger
scale (entry 11).

Under the optimized conditions of Table 1 (entry 9), a
large variety of oxindoles was subjected to a photochemical
deracemization (Figure 1). 3-Arylmethyl substituted oxin-
doles rac-1b–1 l reacted consistently in high yield and
delivered the desired products with high ee. Functional

groups were compatible (ether, ester, halogen substituents)
with the deracemization protocol as was the heterocyclic
pyridine ring (1k, 1 l). In the aliphatic series (1m–1x), a size
effect of the alkyl group was not notable and even 3-ethyl-2-
indolinone (1u) was obtained with excellent ee (97% ee).
Oxindole 1m contains the side chain of the lipid lowering
agent clofibrate, which was fully compatible with the
reaction conditions, as was the ester group in strained
bicyclo[1.1.1]pentane 1n and in 1v. Several other branched
aliphatic substrates were used successfully (1o–1u) and a
substitution of the aromatic core was also tolerated (1w,
1x). A full list of all oxindoles subjected to the deracemiza-
tion protocol can be found in the Supporting Information.
An issue with deracemization by HAT is the stability of the
catalyst. If back HAT from the protonated ketyl radical is
delayed and the two radicals of complex 3 (Scheme 1)
diffuse in solution, decomposition products will be formed.
In cases where a very high ee is required, another 10 mol%
of catalyst can be added, and the irradiation can be
continued for another nine hours. As an example, the ee of

Table 1: Reaction optimization of the photochemical deracemization
rac-1a!1a catalyzed by chiral benzophenone 2.

Entry[a] c
[mm]

Solvent
[equiv.]

2
[mol%]

t
[h]

Yield[b]

[%]
ee[c]

[%]

1 2.5 CH2Cl2 10 13 45 12
2 2.5 MeCN 10 13 81 51
3 2.5 PhCF3 10 13 79 90
4 2.5 PhCF3 5 13 81 80
5 5 PhCF3 10 13 78 90
6 10 PhCF3 10 13 75 86
7 5 PhCF3 5 13 78 83
8 10 PhCF3 10 8 84 86
9 5 PhCF3 10 9 91 90
10 5 PhCF3 10 11 86 90
11[d] 5 PhCF3 10 11 85 90

[a] Reactions were carried out on a scale of 25 μmol in the given
solvent at room temperature. Irradiation was performed at λexc=
366 nm with a set of 16 fluorescent lamps[12] (maximum of emission).
[b] Yield of isolated product after column chromatography. [c] The
enantiomeric excess was calculated from the enantiomeric ratio (1a/
ent–1a) as determined by chiral HPLC analysis. [d] The reaction was
performed on a scale of 1.0 mmol.

Figure 1. Representative products 1b–1x obtained by photochemical
deracemization of oxindoles rac-1 under optimized conditions
(λ=366 nm, 10 mol% 2, t=9 h, c=5 mM in PhCF3).
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product 1a increased to 99% (82% yield) when employing
the latter protocol.

Apart from the stability issue, two other factors limit the
scope. (a) With very bulky groups, e.g. adamantyl, in
proximity to carbon atom C3, a HAT seems to be
completely impossible. (b) If oxindole substitution leads to a
decrease in triplet energy ET, energy transfer (sensitization)
might occur, thus also prohibiting HAT. Benzophenone 2
has a triplet energy of ET=291 kJmol� 1 (77 K, pentane/
isopentane)[13] which is much lower than that of typical
oxindoles, such as compound 1s (ET=321 kJmol� 1, 77 K,
EtOH). Substitution at the indole lowers the value as seen
for the 5-bromo analogue of 1s with ET=309 kJmol� 1 (77 K,
EtOH). The latter compound cannot be involved in a
photochemical deracemization reaction with catalyst 2 (see
the Supporting Information for details).

The enantiomerically pure or enriched oxindoles serve
as versatile starting materials for consecutive reactions. It
was shown for some selected transformations that they
proceed without compromising the optical purity of the
material. 3-Benzyl-2-indolinone (1a, 99% ee) was reduced
to the respective amine, 3-benzylindoline (5), upon treat-
ment with borane-THF complex under reflux (Scheme 2).[14]

The compound (99% ee) was levorotatory which is in line
with the expected (R)-configuration of the compound.[4b] To
obtain further evidence for the absolute configuration,
indoline 5 was tosylated (Ts=para-toluenesulfonyl, py=

pyridine) and the resulting product 6 (99% ee) was
subjected to single crystal X-ray crystallography. Anomalous
diffraction confirmed the compound to be (R)-configured at

the stereogenic center[15] and supported our mechanistic
hypothesis regarding the deracemization (Scheme 1).

Attempts to completely hydrogenate the benzo ring of
oxindoles resulted in low diastereoselectivities when Rh/C[16]

was employed as catalyst. The known carbene complex
Cy(CAAC)Rh(cod)Cl[17] gave better results and enabled the
conversion[18] of oxindoles 1r and 1p with a notable
diastereoselectivity (Scheme 3). In the former case, molec-
ular sieves (4 Å MS) were used as solid support, in the latter
case titanium dioxide. Although it is remarkable that the
larger substituents at C3 produced a lower d.r. than the
small methyl group,[18b] it was beyond the scope of the
present study to investigate the diastereoselectivity in great-
er detail. The more relevant observation is that the
enantiopurity of the material was consistently retained.

It was possible to perform the deracemization and arene
hydrogenation in two consecutive steps without purification.
Compound 7r was thereby obtained in 76% yield (90% ee).
In order to allow for its ring opening, the lactam was N-tert-
butyloxycarbonyl(Boc)-protected [DMAP=4-(dimeth-
ylamino)pyridine]. The resulting product 8 was subsequently
treated with phenyl magnesium bromide[19] furnishing the
desired ketone 9 with three contiguous stereogenic centers
(Scheme 4). An alternative reaction sequence included
reduction[20] of the lactam to amine 10, which was difficult to
isolate and was therefore benzyloxycarbonyl(Cbz)-pro-
tected. Product 11 was obtained in 43% yield over two
steps. All transformations proceeded without notable epime-
rization at any stereogenic center and the ee values remained
unchanged.

As depicted in Scheme 1, the hypothetical reaction
mechanism involves the intermediacy of an enol 4, which
undergoes tautomerization by intermolecular proton
transfer.[21] This process typically leads to deuterium
scrambling.[11b] When deuterated substrate rac-1r-d1 and
non-deuterated substrate rac-1a were subjected to the
standard reaction conditions of the photochemical deracem-
ization (Scheme 5), it was found that ca. 25% of deuterium
was incorporated into 1a while ca. 25% of hydrogen was

Scheme 2. Reduction of oxindole 1a to 3-benzylindoline (5) and
subsequent tosylation. The reactions occurred with complete retention
of configuration.

Scheme 3. The configurational integrity of the stereogenic center at
position C3 during hydrogenation was proven by subjecting oxindoles
1r and 1p to typical reaction conditions. Cy(CAAC)=cyclic (alkyl)-
(amino)carbene; cod=1,5-cyclooctadiene; TFE= trifluoroethanol.

Scheme 4. Further transformations of product 7 r, which was obtained
in a telescoped deracemization-hydrogenation reaction (76% yield
overall). After nitrogen protection the lactam ring was opened to
provide ketone 9. Reduction to octahydro-1H-indole 10 was followed by
N-protection to provide product 11. In all reactions, the absolute and
relative configuration was retained.
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found in 1r-d1. The result is in line with the expectation that
only one enantiomer (ent-1) is processed, corresponding to
50% of the racemate, and that the subsequent tautomeriza-
tion causes statistical 1 : 1 scrambling.

In summary, our study has revealed that 3-substituted
oxindoles are amenable to a catalytic photochemical
deracemization which enables a general enantioselective
access to this compound class for the first time. The reaction
occurs likely by a reversible HAT within the substrate–
catalyst complex. The efficiency of the process is surprising
given that oxindoles require both the N� H bond and the
carbonyl group of the lactam for hydrogen bonding to the
catalyst. The forward HAT is easy to visualize for enantiom-
er ent-1 of the oxindole, but the back HAT requires the
hydrogen-bonded carbonyl group to serve as hydrogen atom
acceptor and to leave its binding partner. This intriguing
process warrants further studies with oxindoles or related
substrates. Work along these lines is ongoing in our
laboratories.
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