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6D pose recognition has been a crucial factor in the success of robotic
grasping, and recent deep learning based approaches have achieved remarkable
results on benchmarks. However, their generalization capabilities in real-world
applications remain unclear. To overcome this gap, we introduce 6IMPOSE,
a novel framework for sim-to-real data generation and 6D pose estimation.
6IMPOSE consists of four modules: First, a data generation pipeline that employs
the 3D software suite Blender to create synthetic RGBD image datasets with
6D pose annotations. Second, an annotated RGBD dataset of five household
objects was generated using the proposed pipeline. Third, a real-time two-
stage 6D pose estimation approach that integrates the object detector YOLO-
V4 and a streamlined, real-time version of the 6D pose estimation algorithm
PVN3D optimized for time-sensitive robotics applications. Fourth, a codebase
designed to facilitate the integration of the vision system into a robotic
grasping experiment. Our approach demonstrates the efficient generation of
large amounts of photo-realistic RGBD images and the successful transfer
of the trained inference model to robotic grasping experiments, achieving
an overall success rate of 87% in grasping five different household objects
from cluttered backgrounds under varying lighting conditions. This is made
possible by fine-tuning data generation and domain randomization techniques
and optimizing the inference pipeline, overcoming the generalization and
performance shortcomings of the original PVN3D algorithm. Finally, we make
the code, synthetic dataset, and all the pre-trained models available on
GitHub.
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1 Introduction

Reliable robotic grasping remains a challenge in many precision-demanding robotic
applications, such as autonomous assembly (Li andQiao, 2019) and palletizing (Lamon et al.,
2020). To overcome this challenge, one approach is to accurately recognize the translation
and orientation of objects, known as 6D pose, to minimize grasping uncertainty
(Kleeberger et al., 2020). Recent learning-based approaches leverage deep neural networks
(DNNs) to predict the 6D object pose from RGB images, achieving promising performance.
Nonetheless, estimating 6D poses from RGB images is challenging. Perspective ambiguities,
where the appearances of the objects are similar under different viewpoints, hamper
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effective learning.This problem is further exacerbated by occlusions
in cluttered scenarios (Zakharov et al., 2019). Additionally, as in
many computer vision tasks, the performance of the algorithms
is vulnerable to environmental factors, such as lighting changes
and cluttered backgrounds (Peng et al., 2019). Furthermore, using
learning-based methods requires a substantial amount of annotated
training data, making it a limiting factor in practical applications as
data labeling is time-consuming and costly.

To address the challenges faced by RGB-based approaches,
RGBD-based 6D pose estimation algorithms leverage the additional
modality from depth images, where the lighting and color-
independent geometric information is presented. One way to
leverage depth images is to use the depth for fine pose refinement
based on the coarse pose predicted from RGB images (Kehl et al.,
2017; Sundermeyer et al., 2018). In this case, the initial poses
are estimated from the RGB images using DNNs, and the depth
information is used to optimize the pose with the Iterative Closest
Point algorithm (ICP) to increase the accuracy. Another approach is
to convert the depth image into point clouds, from which the 6D
Pose is predicted (Chen et al., 2020; Hagelskjær and Buch, 2021).
Due to the unstructured nature of the data, working directly on
the point cloud is computationally expensive. Chen et al. (2020);
Hagelskjær and Buch (2021) first use an instance detection network
to segment the target from the RGB images and crop the point
cloud correspondingly. After that, point cloud networks work on the
cropped point cloud to predict the 6D pose.

As an alternative, the geometric features can be directly extracted
from the point cloud usingDNNs andmergedwith the RGB features
(Li C. et al., 2018; Xu et al., 2018; Wang C. et al., 2019; He et al.,
2020a; 2021; Lin et al., 2022). Typically, the extracted features of
both modalities are matched geometrically and concatenated before
further processing (Li C. et al., 2018; Xu et al., 2018; Wang C. et al.,
2019; He et al., 2020a). This approach is simple to implement and
simplifies training as the feature extraction networks can be pre-
trained in isolation on the available image and point cloud data
sets. However, the feature extraction on both modalities could not
benefit from each other to enhance representation learning, as the
feature extraction DNNs do not communicate. On the other hand,
FFB6D (He et al., 2021) achieves better performance by exploring
bidirectional feature fusion at different stages of feature extraction.
In this way, the local and global complementary information
from both modalities can be used to learn better representations.
Moreover, by primarily localizing the target object and excluding
the irrelevant background, the feature extraction could be more
concentrated on the region of interest, thus the performance can be
further improved (Lin et al., 2022).

After feature extraction, different approaches exist to derive
the object pose. Direct regression uses dense neural networks to
regress to the object’s pose directly (Zhou et al., 2019). While this
approach allows end-to-end learning and does not require decoding
the inferred pose, the optimization of the DNNs is usually difficult
due to the limitation of the mathematical representation for the
orientation (Zhou et al., 2019). Another common approach is the
prediction of orientation-less keypoints and retrieving the pose by
their geometric correspondence. He et al. (2020a, 2021); Lin et al.
(2022) use DNNs to predict the keypoints in 3D space, and then
compute the 6D pose via geometry matching on paired predicted
keypoints and ground-truth keypoints.

State-of-the-art 6D pose estimation algorithms have achieved
excellent performance as evaluated on benchmarks (Xu et al.,
2018; Wang C. et al., 2019; He et al., 2020a; 2021; Chen et al.,
2020; Lin et al., 2022). However, these benchmarks’ training and
validation data are often correlated, as they are commonly sourced
from video frames. Additionally, they may contain environmental
features that can bias the learning process and simplify the
inference. These factors raise concerns about the generalization of
these algorithms and their ability to perform well in real-world
scenarios.

Applying the state-of-the-art algorithms to practical robotic
applications is non-trivial as the training of 6D pose estimation
algorithms has a high demand for annotated data (Kaskman et al.,
2019). 6D pose labeling of images is time and labor intensive,
which limits the availability of datasets. On the other hand,
using modern simulations to generate synthetic data for training
DNNs shows great potential with low cost and high efficiency. For
RGB-based approaches, Sundermeyer et al. (2018) and Kehl et al.
(2017) render 3D meshes in OpenGL to generate synthetic RGB
images with random backgrounds from commonly used computer
vision datasets, for example, Pascal VOC (Everingham and Winn,
2012) or MS COCO (Lin et al., 2014). Some RGBD approaches
(Wang C. et al., 2019; He et al., 2020a; He et al., 2021; Lin et al.,
2022) use image composition in RGB and only render depth for
the labeled objects. Recently, modern simulations, such as Unity or
Blender, enable realistic rendering for full RGBD images, making
these engines popular for generating high-quality training datasets
(Hagelskjær and Buch, 2021).

Unfortunately, the performance of models solely trained on
synthetic data often deteriorates when tested on real images due
to the so-called reality-gap (Sundermeyer et al., 2018; Xiang et al.,
2018). To mitigate the reality-gap, domain randomization
techniques are often applied to the synthetic data (Tobin et al.,
2017). Domain randomization can be applied to different aspects of
image generation. Before rendering, the scene can be randomized
by varying the pose of objects, backgrounds, lighting, and the
environment to cover as many scenarios as possible (Liu et al.,
2016; Sundermeyer et al., 2018; Hagelskjær and Buch, 2021). After
rendering, the RGB and depth images can be directly altered, for
example, changing image contrast, saturation or adding Gaussian
blur, and color distortion (Kehl et al., 2017; Sundermeyer et al.,
2018). The depth images can be randomized by injecting Gaussian
and Perlin Noise (Thalhammer et al., 2019b) to approximate the
noise presented on a real camera.

An alternative that recent works have explored is style
transfer techniques. Rojtberg et al. (2020) introduced Style-transfer
Generative Adversarial Networks (GANs) to bridge the domain
gap in synthetic pose estimator training. Similarly, Ikeda et al.
(2022) employed instance-level style transfer. Notably, while these
style transfer techniques offer a promising direction in addressing
domain adaptation challenges for 6D pose estimation, they still
necessitate the use of real images, albeit in reduced quantities, to
capture style and texture nuances.

Many works (Kehl et al., 2017; Sundermeyer et al., 2018;
Hagelskjær and Buch, 2021) on 6D pose estimation from synthetic
data only evaluate on benchmarks, however, the performance in
the real world remains unclear. Zhang et al. (2022) deploy 6D pose
estimationDNNs to real-world robotic grasping, showing promising
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performance when tested under normal lighting conditions in a
structured environment. When tested in unstructured scenarios,
where environmental conditions can be inconsistent, the learned
algorithms often need real-world data for fine-tuning to bridge the
domain gap and achieve comparable performance (Li Y. et al., 2018;
Deng et al., 2020).

This work aims to enhance the reliability of robotic grasping
through the use of 6D pose estimation techniques. To address the
limitations of existing state-of-the-art approaches and minimize
the requirement for manual data labeling, we present 6IMPOSE,
a new framework for sim-to-real data generation and 6D pose
estimation. The base of 6IMPOSE is the synthetic data generation
pipeline that employs the 3D software suite Blender to create
synthetic RGBD image datasets with 6D pose annotations. We
also include an annotated RGBD dataset of five household objects
generated using the proposed pipeline.The object detection module
of 6IMPOSE consists of a real-time two-stage 6D pose estimation
approach that integrates the object detector YOLO-V4 (Wang et al.,
2021) and a streamlined, real-time version of the PVN3D 6D pose
estimation algorithm (He et al., 2020a) for time-critical robotics
applications. Furthermore, we provide the codebase to facilitate
the integration of the vision system into a robotic grasping
experiment.

We evaluate the proposed 6IMPOSE framework and 6D pose
estimation algorithm on the LineMod dataset (Hinterstoisser et al.,
2012).The results show a competitive performance with 83.6% pose
recognition accuracy, comparable to the state-of-the-art methods.
Notably the models were trained on synthetic data that was
uncorrelated to the validation data. To validate the effectiveness
of the proposed approach in real-world scenarios, we conducted
robotic grasping experiments under varying lighting conditions.
We achieved an overall success rate of 87% for five different
household objects. To the best of our knowledge, this work is
the first to systematically and successfully test sim-to-real 6D
pose estimation in robotic grasping. As a contribution to the
robotic grasping and related communities, we make the code,
synthetic dataset, and all the pretrained models available on
Github1.

This work is structured as follows: Section 1 describes the
background of 6D pose estimation in robotic grasping and related
work for the proposed data-generation pipeline and two-stage
pose estimation algorithm. The design and implementation for
the proposed approaches are introduced in detail in Section 2.
The proposed approach is evaluated with the experimental
setup discussed in Section 3 and results presented in Section 4.
Section 5 concludes the work and gives a brief outlook on future
work.

2 Materials and methods

In this section, we first introduce a data preparation pipeline for
synthetic data generation and augmentation. Second, we present a
two-stage approach to solve the 6D pose estimation problem in real
time for robotic applications.

1 https://github.com/HP-CAO/6IMPOSE

2.1 Synthetic data generation

In this work, the synthetic data is generated in Blender
(Community, 2018) by leveraging its state-of-the-art raycasting
rendering functionality. To render RGBD images, a textured 3D
model of the object is required, which can be derived from CAD
data or collected by 3D scanning.

2.1.1 Image Generation
Image Generation Given a set of objects, we generate a separate

dataset for each object of interest, with the other objects and
additional unrelated objects acting as distractors. We show the
order of operations to generate the final augmented datasets in
Figure 1. For each scene to be rendered, we randomly place the
objects in the camera’s view. In order to avoid overfitting on the
color during training, we recolor 25% of the distracting objects with
the dominant color of the main object. Moreover, the distractors’
optical properties, such as surface roughness and reflectivity, are
varied to further increase the variety of generated images. During
simulation, the randomly placed distracting objects can severely
occlude the main object, which makes the main object not clearly
visible, resulting in invalid training data. To avoid this, we check
whether the centroid of the main object is occluded, in which case,
we move the occluding objects to the back of the main object.

We sample images from SUN 2012 (Xiao et al., 2010) to use
as backgrounds in Blender. Instead of adding the backgrounds
to the images after rendering, we follow the idea of image-based
lighting, where the background images are physically rendered as
infinite spheres around the scene and emit light. Therefore, the
backdrop images affect reflections and lighting conditions in the
scene. Furthermore, random point lights are added to the scene with
arbitrary power and position.Once the scene is constructed, Blender
starts rendering to generate RGB and depth images.

2.1.2 Labels
Labels The segmentation mask can be directly rendered using

the object ID feature in Blender. The position and rotation of
all objects and the camera is known, and the ground truth
transformation matrix Rt can be derived accordingly. The labels for
each image are then saved to separate JSON files for each image.

2.2 Data augmentation

After rendering the images, we apply several augmentation
techniques to mitigate the reality-gap. Transformations that would
change the object’s position in the image would invalidate the
ground truth labels, except rotations around the imaging sensor’s
central axis. This type of rotation preserves the object’s pose relative
to the camera, allowing us to adjust the labels accordingly. By
rotating each image around the central axis, we can effectively
multiply our training data and apply the following techniques
separately to each rotated image.

2.2.1 RGB data augmentation
The synthetic RGB images are augmented by randomizing

saturation, brightness, hue and contrast, sharpening and blurring.
Moreover, we add Gaussian and smooth 2D Perlin noise as in Perlin
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FIGURE 1
The pipeline to generate a dataset containing m ⋅n data points is shown here. In the first generation section, the images are created using Blender. In
order to the increase the size of the dataset each of the images is augmented multiple times, by the pipeline in the second section.

(2002) to each color channel to cover different environments and
sensors.

2.2.2 Perlin noise
Perlin noise is a type of gradient noise developed by Ken

Perlin in 1983. It’s widely used in computer graphics to generate
natural-looking textures, shapes, and motion. In our work, we use
Perlin noise to simulate real-world data’s random variations and
inconsistencies. For example, we add Perlin noise to the depth
channel to simulate the warped point clouds observed from real
depth cameras, and we use it to create missing regions in the
synthetic depth image, simulating themissing depth problem caused
by strong reflections or limitations of the depth sensor.

2.2.3 Depth data augmentation
The synthetic depth images rendered from simulations are

noiseless and almost perfect. This is not the case for images
obtained from a real depth camera, where the depth values
are often inconsistent and incomplete (Mallick et al., 2014). To
approximate inconsistent depth values, we introduce Gaussian
and Perlin noise. Similar to Thalhammer et al. (2019b), pixel-level
Gaussian noise is added to the synthetic depth images resembling a
blurring effect. Smooth Perlin noise has been shown to significantly
increase performance when learning from synthetic depth data
(Thalhammer et al., 2019a). We create Perlin noise with random
frequency and amplitude and add it directly to the depth channel.
The introduced Perlin noise shifts each depth point along the

perceived Z-axis, resulting in a warped point cloud, similar to the
observed point clouds of real depth cameras.

In real RGBD images, a misalignment can be observed between
depth and RGB images. Similar to Zakharov et al. (2018), we use
Perlin noise again to additionally warp the depth image in the image
plane. Instead of using a 3D vector field to warp the entire depth
image, we restrict warping to the edges of the objects. We apply a
Sobel filter to detect the edges and obtain edge masks. We then shift
the pixels on the edges using a 2D vector field generated using Perlin
noise.

The rendered depth images have no depth information where
there is no 3Dmodel, resulting in large empty areas between objects.
However, it is also essential to simulate plausible depth values for the
background (Thalhammer et al., 2019a).

The background depth is based on a randomly tilted plane, to
which we add a random Gaussian noise. The noise is sampled on
a grid over the image and then interpolated. Additional Gaussian
noise is sampled from a second grid and again interpolated.
Due to the random and independent choices of grid sizes and
interpolation for the two grids, we can achieve a wide variety of
depth backgrounds. By adding an appropriate offset, we guarantee
that the artificial background is in close proximity to the main
object; hence, making object segmentation from the background
more difficult. The artificial depth background then replaces empty
depth pixels in the original synthetic depth image.

In the real depth images, some regions might miss the depth
values and are observed as holes due to strong reflections of the
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object or other limitations of the depth sensor (Mallick et al., 2014).
To simulate the missing depth problem, we first generate a random
2D Perlin noise map, which is converted to a binary masking map
based on a threshold. This binary masking map is then used to
create missing regions in the synthetic depth image. While this
method is not an accurate simulation, we found this approximation,
in combination with the other augmentation strategies, helpful to
improve the accuracy of the neural network.

In real-world scenarios, our model needs to handle a variety
of challenges, such as changes in lighting, occlusions, variations in
object appearance, and inconsistencies in depth values. The data
augmentation techniques described here were chosen to simulate
these conditions and improve our model’s ability to generalize
to real-world data. Our experiments show that these techniques
significantly improved the model’s accuracy and robustness in
diverse conditions. We believe that this comprehensive data
augmentation strategy is a key factor in the success of our approach.

2.3 A two-stage 6D pose estimation
approach

The goal of 6D pose estimation is to estimate the homogeneous
matrix Rt ∈ SE(3), which transforms the object from its coordinate
system to the camera’s coordinate system. This transformation
matrix consists of a rotation R ∈ SO(3) and the translation t ∈
ℝ3 of the target object. In this work, we use PVN3D (He et al.,
2020a) to infer the homogeneous matrix Rt on the cropped
region of interest (ROI) identified by a YOLO-V4-tiny (Wang et al.,
2021) object detector. This two-stage approach is shown in
Figure 2.

The RGB image is processed at the first stage using YOLO-
V4-tiny, which provides several candidate bounding boxes and

confidence scores. The bounding box with the highest confidence
score for a specific object determines the ROI. Given the ROI,
the cropped area is the smallest square centered on the ROI and
including it, that is a multiple of the PVN3D input size (e.g., 80 ×
80, 160 × 160, …).The square cropped images are then resized to 80
× 80 using nearest neighbor interpolation.

Following PVN3D (He et al., 2020a) and PointNet++ (Qi et al.,
2017), the point cloud is enriched by appending point-wise R, G,
B values and surface normals. We estimate the surface normal
vectors by calculating the depth image’s gradients and the pixel-wise
normals geometrically as in Holzer et al. (2012). Differently from
the original PVN3D (He et al., 2020a) implementation, where the
nearest neighbor approach is used to compute the normals from
unstructured point clouds, calculating normals from structured
depth image is more computationally efficient (Nakagawa et al.,
2015). This also allows us to use a GPU-based gradient filter in
TensorFlow.The resulting point cloud is then randomly subsampled
to increase computational efficiency.

In the second stage, PVN3D is used for the pose estimation,
with PSPNet (Zhao et al., 2017) and PointNet++ (Qi et al., 2017)
as backbones to extract RGB and point cloud features separately.
The extracted latent features are then fused by DenseFusionNet
(Wang C. et al., 2019) at pixel level. Because of the resizing of the
cropped RGB image, we map the resized features back to the nearest
point in the point cloud. SharedMLPs are then used to regress to the
point-wise segmentation and keypoints offsets {o fi} ∈ ℝ

3.
To obtain the final object pose, the point-wise segmentation

filters out background points and the keypoint offset are added
to the input point cloud to get keypoint candidates. In He et al.
(2020a), keypoint candidates are clustered by using Mean-Shift
clustering for the final voted keypoints { ̃kpi} ∈ ℝ

3. However, the
Mean-Shift algorithm works iteratively, preventing an efficient GPU
implementation with deterministic execution time. To make the

FIGURE 2
A two-stage pose estimation approach showing the object detection with YOLO-tiny to localize the object of interest at the first stage, followed by the
6D object pose estimation with PVN3D-tiny at the second stage.
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keypoint voting temporally deterministic, we first select a fixed
amount of point cloud points for each keypoint with the smallest
predicted offset. Compared to random sampling, this selection
method already removes those outliers that show a high offset. To
eliminate any further outliers, we filter out any keypoint candidate
whose distance to the mean prediction μ exceeds the standard
deviation σ, i.e., the offsets ofi will bemasked out if |ofi − μ| > σ. After
removing outliers, we apply global averaging on {x,y,z} axis to obtain
the voted keypoints { ̃kpi} ∈ ℝ

3. The SE(3) transformation matrix
Rt between the predicted keypoints { ̃kpi} and the reference model
keypoints {kpi} can be found by solving the following least-squares
problem:

min
R,t
∑
i
‖R ⋅ kpi + t− ̃kpi‖

2 , (1)

where R is the rotationmatrix, and t is the translation vector.We use
singular value decomposition (SVD) to find the optimal R* and t*
that minimize Eq. 1. Specifically, given two sets of points {kpi} and
{ ̃kpi}, SVD decomposes the cross-covariance matrix H into three
different matrix as follows:

H = UΣVT , (2)

where U and V are orthogonal matrices and Σ is a diagonal matrix
containing the singular values of H. The optimal rotation matrix is
calculated as: R* = V ⋅UT, and the translation vector t is obtained
by subtracting the center of the reference points kpc rotated with
R* from predicted center point ̃kpc, as summarized in Algorithm 1.
To improve the run time performance, we implement all operations
with TensorFlow and run them on the GPU.

In this two-stage pose estimation pipeline, the pose estimation
accuracy is improved by cropping the image to the ROI, as only
the relevant part of the data is processed. With the same number of
sampling points, the sampled point cloud from the cropped image is
denser, providing PointNet++with richer geometric information for
feature processing, which can also be observed in Lin et al. (2022).

 1: Input: 3D model points {kpi}, detected object

points { ̃kpi}

 2: Output: Rotation matrix R and translation

vector t

 3: function SVD_OPTIMAL_POSE({kpi}, { ̃kpi})

 4:   kpc← Centroid({kpi})

 5:    ̃kpc← Centroid({ ̃kpi})

 6:   {kpi} ← {kpi} −kpc     ⊳ Translate both sets of

points to the origin

 7:   { ̃kpi} ← { ̃kpi} − ̃kpc
 8:   H← {kpi} ⋅ { ̃kpi}

T
    ⊳ Compute cross-covariance

matrix

 9:   U,Σ,VT← SVD(H)     ⊳ Compute SVD of H

 10:   R*← V ⋅UT     ⊳ Compute rotation matrix

 11:   t*← ̃kpc −R
* ⋅kpc     ⊳ Compute translation

vector

 12:   Return R,t

 13: end function

Algorithm 1. SVD-BasedOptimal Pose Estimation.

Given the cropped input, we could build the PVN3Dwith only about
8 million parameters, which is approximately 15% of the original
implementation (He et al., 2020b). In our test on the LineMOD
dataset, the reduced PVN3D performs similarly to the original
model. We refer to the reduced PVN3D model as PVN3D-tiny.

3 Experiments

In this section, we study the effectiveness of the proposed
synthetic data preparation pipeline and the two-stage 6D pose
estimation algorithm. Specifically, we use 3D models of objects to
generate synthetic RGBD data for training the proposed algorithm.
After training, we deploy the trained deep models for 6D pose
estimation on LinemMod dataset to study ADD(S) pose estimation
accuracy and in a real robotic grasping experiment to study grasping
success rate (SR).

3.1 Synthetic data preparation

In this work, we are interested in the 6D pose estimation
of a single object in cluttered environments. For each object, we
render scenes in Blender to generate 20 k synthetic images using
the provided 3D model. We then augment the rendered dataset
by rotating each image around the center of the image 16 times,
resulting in around 300 k images. We discard the images where
the object is out of view and pad the images with zeros for empty
areas after rotation. Additionally, each image is augmented offline
by applying the domain randomization techniques introduced in
Section 2. To train PVN3D-tiny, we crop the RGBD to obtain
the region of interest according to the ground truth bounding
boxes. Furthermore, we generate the point-wise semanticmasks and
keypoints offsets from the cropped RGBD images using the ground
truth poses and segmentation masks.

3.2 Synthetic data inspection

To quantify the reality-gap we sample 50 RGBD images from
the synthetic and real datasets and compare global statistics. For
RGB images, we compute the average and the standard deviation
for brightness and saturation, as we qualitatively observed that these
two factors strongly influence the appearance of the generated data.
By comparing the statistic of brightness on the synthetic and real
subsets, we can optimize the average power and randomization
of the point lights and the light-emitting background in Blender.
Similarly, with the statistics of saturation, we can optimize the color
management in the Blender. To study the statistics of depth images,
we use the average power spectral density (PSD) and compare the
average distribution on frequencies, as shown in Figure 3. Studying
PSD on frequencies allows us to inspect the structures of the depth
images and adjust accordingly the frequency of the Perlin noise used
for depth augmentation. It can be seen that the augmented depth
images are closer in frequency distribution to the real images than
the non-augmented ones. This indicates that depth augmentation
reduces the gap between the synthetic and real data.
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FIGURE 3
The plot showing the qualitative average power spectral density (PSD)
of depth images with respect to frequencies for the object “cat” from
LM dataset over 50 randomly sampled images.

Examining global statistics for RGBD images is efficient,
as it does not require real annotations. This examination
also enables us to identify the “reality gap” qualitatively and
adjust the data generation parameters, such as brightness and
depth frequencies, to align the synthetic data closer to the
real data. Figure 4 illustrates examples of real and synthetic
images.

3.3 Implementation

Thesynthetic data generation pipeline is implemented in Python
using Blender’s API. The data randomization and preprocessing
are implemented using TensorFlow, accelerating the processing
with GPUs. As for the two-stage 6D pose estimation approach,
we use the original Darknet implementation (Wang et al., 2021)
of YOLO-V4-tiny for the object detection at the first stage
and PVN3D-tiny, implemented in TensorFlow, in the second
stage.

3.4 Training and evaluation on LineMod
dataset

To address single object 6D pose estimation problem on
LineMod, we separately train a binary YOLO-V4-tiny model and
a PVN3D-tiny model for each object of the LineMOD dataset.
The YOLO-V4-tiny model is trained using the Darknet framework
(Redmon, 2016), and PVN3D-tiny is trained in TensorFlow
(Abadi et al., 2016). All deep neural networks are trained from
scratch using only synthetic data without any pretrained models.
After training, we build the two-stage 6D pose estimation pipeline
by combining YOLO-V4 and PVN3D.We followHe et al. (2020a) to
evaluate the 6D pose estimation performance on the annotated real
images provided in LineMOD.The 6D pose estimation performance
is measured using ADD(S) metrics (Hinterstoisser et al., 2012).

ADDmeasures the average distance between the ground truth point
cloud and the point cloud transformedwith predictedR, t, which can
be defined as follows:

ADD = 1
m
∑
v∈O
‖ (Rv+ t) − (R*v+ t*)‖, (3)

where m is the number of the sampled points, R*, t* is the ground
truth pose, and v ∈ R3 denotes a vertex from the objectO. Similarly,
the ADDSmetric measures the average minimum distance between
two point clouds as:

ADDS = 1
m
∑

v1∈O
min
v2∈O
‖ (Rv+ t) − (R*v+ t*)‖, (4)

Compared to ADD, ADDS measures the distance to the nearest
point instead of correspondent mesh points. ADDS is better suited
for symmetrical objects because ADD yields low scores if the object’s
pose is different from the ground truth, even if the pose corresponds
to an invariant rotation. The success rates on test images are used
to quantify the pose estimation performance. A threshold of 10{%}
of the object’s diameter is typically used to classify a prediction as
successful.

3.5 Robotic grasping

We train the proposed approach for pose estimation from purely
synthetic images, to perform robotic grasping experiments. We
choose five household objects: a rubber duck, a stapler, a chew
toy for dogs, a glue bottle, and pliers, as shown in Figure 5, for
which the 3D models of the objects are obtained using a Shining3D
Transcan C 3D scanner. We generate synthetic training data and
train a multi-classes detector YOLO-V4 to localize the target object
and train multiple PVN3D-tiny models to estimate the poses of
different target objects, as described in Section 2. For the grasping
experiments, we use a robotic manipulator Fanuc CRX 10iAL with
a custom Python interface. As endeffector, we use an OnRobot
RG2 gripper. Attached to the endeffector is an Intel Realsense D415
which is used to obtain the RGBD images. This setup is then
used to perform 50 grasp attempts per object in three different
lighting conditions, which yields 750 grasps in total. The three
lighting conditions are diffused, low and spot lighting, to test
the algorithm’s robustness to different lighting levels, as shown in
Figure 6.

3.5.1 Grasping strategy
The following approach is used to conduct grasping

experiments. The robot starts by moving to a predefined home
position where the entire bin is visible in the camera’s field of
view. The object of interest is then identified using YOLO and
PVN3D-tiny. To ensure that possible collisions around the object
can be observed, the robot moves its end-effector directly above
the object. This is important when the object is close to the edge of
the camera’s view and surrounding obstacles may be out of sight.
A safe grasp pose is selected using the pose estimation and grasp
selectionmethod. A smooth and tangential trajectory, using a Bézier
curve, is generated to approach the object. The gripper is closed
when it reaches the grasp pose and the object is lifted out of the
bin. To conclude one grasping attempt, the object is dropped back
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FIGURE 4
The figure showing the visualization of RGB images, depth images and surface normals from the left to the right. (A) Real data. (B) Rendered synthetic
data. (C) Augmented synthetic data.

FIGURE 5
The figure showing the photographed, photo-realistically rendered RGB and rendered depth images from the left to the right for the five selected
household objects.

into the bin after the robot returns to the initial home position. If
the object can be grasped and lifted without slipping, this grasp
is regarded as a success, a failure otherwise. We distinguish the
failure cases between a missed grasp and a collision, to identify the
cause of failure, which can be the pose estimation or the collision
avoidance.

3.5.2 Grasp pose estimation
Typically, grasp pose estimation follows either an algorithmic or

data-driven approach (Eppner et al., 2021; 2022). In this paper, we
leverage a simple algorithmic approach similar to Kleeberger et al.
(2022). Local grasp poses in the object’s coordinate frame are
generated offline and beforehand. With the estimated pose of the
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FIGURE 6
The figure showing the real world grasping experiments under varying lighting conditions with the experimental setup, RGB view, depth view and the
predicted pose of pliers on RGB shown from the left to the right. (A) Diffused lighting conditions. (B) Low lighting conditions. (C) Spot lighting
conditions.

object, the local grasp pose can be lifted to the global coordinate
frame as a target pose for the robotic manipulator. Generally, it is
not required to find all grasp poses or the best one, but to find
a set of poses, that cover most directions from which the robot
may approach the object. Therefore, a list of grasp candidates is
generated, that will enable the robotic gripper to securely grasp the
object.

We use a sampling based grasp pose estimation using the
available mesh of the objects, where randomly sampled points on
the objects’ surface are considered as possible contact points. For
each connecting line between a pair of points, we generate 24 grasp
poses rotated around the connecting line. Additionally we generate
the corresponding antipodal grasps. A grasp pose is considered valid
if it meets following criteria.

• The surface curvature on the mesh should not prevent a stable
friction grasp.Therefore, no sharp edges or concave surfaces are
considered;

• The contact surfaces should be perpendicular to the connecting
line. This ensures a stable friction grasp;
• The gripper bounding box should not collide with the object.

The remaining grasps are then downsampled, using sparse
anchor points in three-dimensional space. Our approach typically
yields less than 100 grasps for each object, while still providing a
high degree of coverage of all possible angles, as can be seen in
Figure 7.

3.5.3 Grasp pose selection
The optimal grasp pose for an object of interest is then selected

utilizing the predicted 6D pose and the pointcloud data from an
RGBD camera. We first filter out grasp poses that would require the
robot to approach the object from a vastly different angle than the
current pose of the gripper. We then evaluate the remaining grasp
poses for collisions by considering every point in the pointcloud not
belonging to the object as an obstacle. The grasp poses that would
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FIGURE 7
The figure showing the automatically generated grasp poses for the
household object “duck”.

lead to a collision with the obstacle points are rejected. Finally, we
choose the grasp pose that maximizes the distance to the pointcloud
for safety.

4 Results

In this section, we report the ADD(S) accuracy
performance of the proposed two-stage 6D pose estimation
algorithm on the LineMOD dataset after training on the
synthetic data. We also report the success rate (SR) for
grasping different household objects in robotic grasping
experiments.

4.1 6D pose estimation accuracy

We evaluate the performance of the proposed 6D pose
estimation approach on all objects from the LineMOD dataset.
The results, alongside comparisons to state-of-the-art methods, are
presented in Table 1. The performance metrics for PointFusion are
sourced from Lin et al. (2022), while those for SSD-6D (Kehl et al.,
2017) are taken from Sundermeyer et al. (2018). When compared
to other synthetic-only trained methods, our approach achieves
competitive performance with overall 83.6% pose recognition
accuracy without the need for pose refinement. It performs
particularly well on small objects like “ape”, “duck”, on which the
SSD-6D (Kehl et al., 2017) and AAE (Sundermeyer et al., 2018) are
less accurate. However, our model’s performance is suboptimal for
objects like “holepuncher” and “camera”. This discrepancy might be
attributed to the lower-quality textures of the LineMOD models.
Being trained end-to-end on RGBD data, our approach could
be more sensitive to less-detailed textures than refinement-based
approaches.

In comparison to related works that solely rely on synthetic data
for training, our method surpasses both AAE (Sundermeyer et al.,
2018) and SSD-6D (Kehl et al., 2017). Additionally, the 6D pose
estimation algorithm proposed by Hagelskjær and Buch (2021),
which is based on DGCNN (Wang Y. et al., 2019), achieves an
impressive average accuracy of 98%. However, it is heavily
dependent on pose refinement and requires approximately one
second to detect a single object.

As illustrated in Table 1, algorithms trained on real data
typically outshine those trained exclusively on synthetic data. Yet,
it’s worth noting that our method can attain an accuracy of roughly
94% without refinement when the ground truth bounding box
is utilized for target object localization, as depicted in Table 2.
This performance is on par with state-of-the-art techniques that
are trained using real data. One avenue for enhancing object
detection performance could be the incorporation of RGBD
images (Gupta et al., 2014). In this setup, the object detector
would benefit from the robust features derived from both the
appearance characteristics of RGB images and the geometric
attributes of depth images. This performance disparity might also
be reduced by fine-tuning the object detector using a small set of
annotated real data. Importantly, we did not detect any performance
degradation of the object detector on our robotic grasping
dataset.

4.2 Run time

The efficiency of the proposed approach was evaluated on a
workstation equipped with two Xeon Silver-CPU (2.1 GHz) and an
NVIDIA Quadro RTX 8000 graphics card. The results, as reported
in Table 3, indicate that the inference of PVN3D-tiny consumes the
majority of the running time, while the other procedures have, in
aggregate, similar computational requirements. For an input of 480
× 640 RGB and depth images, the proposed approach has an average
running time of 46 ms per single object pose estimation. This
performance is comparable to or better than the existing state-of-
the-art methods listed in Table 1, and suitable for real-time robotic
tasks. As demonstrated in the following section, the accuracy of the
proposed approach is sufficient for grasping tasks.

4.3 6DoF pose estimation in robotic
applications

As shown in Table 4, the robotic arm has achieved an
approximate 87% success rate (SR). The three scenarios show
similar success rates, showing the algorithm’s robustness to different
lighting levels. Notably, the proposed algorithm works well in
low-lighting conditions. The reason could be attributed to two
factors: first, the training on domain-randomized synthetic data
makes the algorithm learn more robust features. Second, the depth
information remains consistent under different lighting conditions,
as shown in Figure 6. So the algorithm can extract sufficient
features from depth to compensate for the underexposed color
camera.

In general, collision avoidance is not the focus of this research
and the results regarding the accuracy of the pose estimation
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TABLE 1 The performance of 6D pose estimation on LineMOD compares to the state-of-the-art using RGBD. The bold objects are symmetric.

Real data Synthetic data

PointFusion1 DenseFusion2* G2L-Net3 PVN3D4 FFB6D5 E2EK6 AAE7* SSD-6D8* DGCNN9* Ours

Ape 70.4 92.3 96.8 97.3 98.4 98.7 20.55 65 97.7 78

Benchvise 80.7 93.2 96.1 99.7 100 100 64.25 80 99.8 92

Camera 60.8 94.4 98.2 99.6 99.9 99.9 63.20 78 98.3 66

Can 61.1 93.1 98 99.5 99.8 100 76.09 86 98.8 95

Cat 79.1 96.5 99.2 99.8 99.9 100 72.01 70 99.9 97

Driller 47.3 87 99.8 99.3 100 100 41.58 73 99.2 91

Duck 63 92.3 97.7 98.2 98.4 99.4 32.38 66 97.8 89

Eggbox 99.9 99.8 100 99.8 100 100 98.64 100 97.7 91

Glue 99.3 100 100 100 100 100 96.39 100 98.9 73

Holepuncher 71.8 92.1 99 99.9 99.8 100 49.88 49 94.1 61

Iron 83.2 97 99.3 99.7 99.9 100 63.11 78 100 94

Lamp 62.3 95.3 99.5 99.8 99.9 99.9 91.69 73 92.8 87

Phone 78.8 92.8 98.9 99.5 99.7 100 70.96 79 99.1 74

All 73.7 94.3 98.7 99.4 99.7 99.8 64.67 79 98.0 83.6

Speed(s) — 0.06 0.044 0.19 0.075 0.068 — 0.1 1.0 0.046

* With refinement.
1Xu et al. (2018).
2Wang et al. (2019a).
3Chen et al. (2020).
4He et al. (2020a).
5He et al. (2021).
6Lin et al. (2022).
7Sundermeyer et al. (2018).
8Kehl et al. (2017).
9Hagelskjær and Buch (2021).

TABLE 2 6D pose estimation ADD(S) scores, using predicted or ground truth bounding boxes.

Ape Benchvise Camera Can Cat Driller Duck Eggbox Glue Holepuncher Iron Lamp Phone All

Predicted bboxes 78 92 66 95 97 91 89 91 73 61 94 87 74 83.6

GT bboxes 81 99 98 96 97 99 94 99 99 78 96 94 96 94.3

TABLE 3 Running time analysis of the proposed two-stage pose estimation
approach.

Procedures Speed Mean/Std(ms) Percent (%)

YOLO-V4 tiny 6.7/0.5 15

Pcld preproc. 8.2/5.9 18

PVN3D tiny 23.7/0.9 51

Pose regression 7.2/0.7 16

All 45.8/6.2 100

pipeline are more relevant. Thus it is interesting to analyse the
grasping success and pose estimation failures excluding all the
collision events. The collision cases are mainly due to insufficient
collision checking. If we neglect the collision cases, the failure cases
decrease by 50%, and the overall grasping performance achieves

93%. This suggests that a more sophisticated collision checking and
grasp pose selection strategy is required and it will be the subject of
future work.

4.3.1 Rubber Duck
The grasping of the rubber duck is the most robust and

successful of all objects. The non-regular shape of the duck with no
rotational symmetries are robust features, resulting in an accurate
pose estimation. Additionally, the rubber material and soft structure
facilitate robotic grasping, where slight inaccuracies still lead to
successful grasps.

4.3.2 Glue bottle
The glue bottle achieves a good SR as well due to its shape and

material, which are forgiving, similarly to those of the rubber duck.
Additionally, the bright color of the glue bottle might aid in low light
environments, making the object easily visible.
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TABLE 4 Single Object grasping experiments under variable lighting
conditions.

Conditions Category Duck Stapler Glue Chewtoy* Pliers All

Diffused

Success 47 46 46 45 40 224

Grasp missed 2 3 4 1 5 15

Collision 1 1 0 4 5 11

SR 94.0% 92.0% 92.0% 90.0% 80.0% 89.6%

SR w.o collision 95.9% 93.9% 92.0% 97.8% 88.9% 93.7%

Low

SR 47 38 43 42 41 211

Grasp missed 3 8 4 2 7 24

Collision 0 4 3 6 2 15

SR 94.0% 76.0% 86.0% 84.0% 82.0% 84.4%

SR w.o collision 94.0% 82.6% 91.5% 95.5% 85.4% 89.8%

Spot

Success 48 43 44 39 44 218

Grasp missed 2 2 2 1 3 10

Collision 0 5 4 10 3 22

SR 96.0% 86.0% 88.0% 78.0% 88.0% 87.2%

SR w.o collision 96.0% 95.6% 95.7% 97.5% 93.6% 95.6%

All conditions
SR 94.7% 84.7% 88.7% 84.0% 83.3% 87.06%

SR w.o collision 95.3% 90.7% 93.0% 96.9% 89.3% 93%

* symmetrical object.

4.3.3 Stapler
The grasping of the stapler is highly affected by the

lighting conditions, with 86.0% SR under spot light and 76.0%
under low light. Possibly, the stapler, due to its dark color,
loses more details in low light conditions, making 6D pose
estimation more difficult without properly distinguishable
features.

4.3.4 Chewtoy
During grasping of the chew toy, collisions have been the

primary cause of failure due to its small size, as it easily gets stuck
in small cavities between other objects. We observed that this is
especially relevant for the chewtoy, because the round shape makes
the object roll in the bin, until it gets stopped by other objects.
Therefore, the primary reason for failure is not the pose estimation,
but the inferior collision avoidance. Moreover under spot lighting
conditions, the chewtoy is under-exposed, particularly when stuck
in a hole and this makes 6D pose estimation challenging. Combined
with the proximity to other objects, this leads to an increased rate of
collisions.

4.3.5 Pliers
In the case of grasping the pliers, we observe a higher number of

missed grasps, due to the small size of the grasp handles. The grasp
generation places all the grasps on the handles and, while according
to the ADD most of the proposed grasp would be successful, in
practice, some fail in the robotic experiment.

5 Conclusion and future work

This work introduces 6IMPOSE, a novel framework for sim-
to-real data generation and 6D pose estimation. The framework
consists of a data generation pipeline that leverages the 3D suite
Blender to produce synthetic RGBD image datasets, a real-time
two-stage 6D pose estimation approach integrating YOLO-V4-tiny
Wang et al. (2021) and a real-time version of PVN3D He et al.
(2020a), and a code base for integration into a robotic grasping
experiment.

The results of evaluating the 6IMPOSE framework on
the LineMod dataset Hinterstoisser et al. (2012) showed
competitive performance with 83.6% pose recognition accuracy,
outperforming or matching state-of-the-art methods. Furthermore,
the real-world robotic grasping experiment demonstrated
the robustness of the 6IMPOSE framework, achieving an
87% success rate for grasping five different household
objects from cluttered backgrounds under varying lighting
conditions.

The contribution of 6IMPOSE lies in its efficient generation
of large amounts of photo-realistic RGBD images and successful
transfer of the trained inference model to real-world robotic
grasping experiments. To the best of our knowledge, this
is the first time a sim-to-real 6D pose estimation approach
has been systematically and successfully tested in robotic
grasping.

In future work, there is potential to further improve 6IMPOSE
by exploring improvements to the perception pipeline, such
as using a more sophisticated pose detection network or
multi-frame detection; improving the scalability and quality
of the data generation process; and improving the robotic
integration, for example, in areas such as collision detection,
grasping pose selection, and support for more scenarios like bin
picking where there are multiple instances of the same object
class.
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