

Particle Properties of CaO/Ca(OH)₂ Throughout Cyclisation in a Fluidized Bed for Thermochemical Energy Storage – Consequences for Fluidization

Leander Morgenstern¹, Elija Talebi¹, S. Ohmstedt¹, F. Kerscher¹ and H. Spliethoff¹ ¹Chair of Energy Systems, Technical University of Munich, Boltzmannstr. 15, 85748 Garching b. München, Germany

HPC Conference 2023 Edinburgh, 4 September 2023

Agenda

Motivation

Fluidization Characterization

Experimental Procedure

Results

Chair of Energy Systems - TU Munich | HPC Conference 4 September 2023 | Leander Morgenstern et al.

Thermochemical Energy Storage

Basics

Principle: Heat storage in reaction enthalpy of gas-solid reaction

Goal: (scalable) heat storage > 150°C, here: 400 °C - 600 °C

Material System: Calcium Oxide - Calcium Hydroxide

Advantages[Ren. a. Sust. En. Rev. 32 (2014): 591-610]:

- + Cheap, abundant, Non-toxic
- + Theoretically no losses during storage period
- + High storage density: 0.40 kWh/kg 385/330 kWh/m³
- + Decoupling of capacity and power^[978-3-8439-1085-9; 978-3-8439-4729-9]

Material System

Challenges

Challenges:

- Powdery material
- Agglomeration (in fixed bed)^[978-3-8439-1085-9; 978-3-8439-4729-9]
- Heat transfer (limits power)^[J.of En. Res. Tech. 140 (2018) 40]

\rightarrow Fluidized bed

Mechanical material stability (limits process)<sup>[978-3-8439-4729-9; FKZ: 03ET7025]
</sup>

\rightarrow Particle degradation/breakage

Motivation

Fluidization

What is it we need to know?

Fluidization of Ca(OH)₂ with $d_{3,2}$ = 148 µm and u_{mf} = 0.012 m/s at u_0 = 0.150 m/s in Nitrogen.

Characterization of Particles for a Fluidized Bed

What is it we need to know?

1. Fluidizability and <u>Fluidization Regime</u> \rightarrow Geldart-Classification

PSD (d_{3,2}), particle/bulk/tapped density, sphericity

2. Minimal/terminal fluidization velocity u_{mf} , u_t

theoretical vs. experimental examination

3. <u>Porosity of the fluidized bed</u>: ε , ε_{mf} , ε_{b} ...

bed expansion during operation

Geldart-Diagram at 500 °C, atm. pressure with air as fluidization gas according to Grace 2020 (ISBN: 978-3-527-69947-6) and Geldart 1976 (CONF-761109-8)

Characterization of Particles for a Fluidized Bed

What is it we need to know?

1. Fluidizability and <u>Fluidization Regime</u> \rightarrow Geldart-Classification

PSD ($d_{3,2}$), particle/bulk/tapped density, sphericity

2. Minimal/terminal fluidization velocity u_{mf} , u_t

theoretical vs. experimental examination

3. <u>Porosity</u> of the fluidized bed: ε_{n} , ε_{mf} , ε_{b} ...

bed expansion during operation

Fluidization of Ca(OH)₂ with $d_{3,2}$ = 36 µm and u_{mf} < 0.02 m/s at u_0 = 0.150 m/s in Nitrogen.

Doromotor

Lab and Pilot Scale Reactors

Experimental Set-Ups

FluBEStoR Laboratory Deastar ELUDEStoD

Vessel

Farameter	Laboratory Reactor	FIUDESLOK
Temperature TS	850 °C	700 °C
Pressure PS	4 bar	6 bar
Volume V _{FB} (V _{total})	1.8 L (7.7 L)	30 L (120 L)
Diameter Fluidized Bed	80.8 mm	254 mm
Max gas velocity (300 °C, 1bar)	0.25 mm	0.4 mm
Hight/Diameter of FB	4	2.4

ТΠ

Cyclisation of the Storage Material

Experimental Procedure

Apparent reaction equilibrium of CaO/Ca(OH)₂ according to Angerer et. al^[En. Rep. 4 (2018) 507-519] and theoretical equilibrium according to Samms et. al^[J. of Ap.Chem., 1968, 18. Jg., Nr. 1, S. 5-8].

material^{[Feul 345} (2020), 128220]

- Material: 250 400 μm CaCO₃, 0.8 or 26.4 kg
- 700 °C (Calc.), 456 °C (Hyd.), 586 °C (Dehyd.)
- $u_0 = 15 \text{ cm/s}$

Cyclisation – Change in Particle Size Distribution

Results

Sauter Mean Diameter $d_{3,2}$ is the diameter of a sphere that has the same surface to volume ratio as the respective particle bulk.

$$d_{3,2} = \frac{d_V^3}{d_s^2}, d_V = \sqrt{\frac{A_p}{\pi}}, d_p = \left(\frac{6V_p}{\pi}\right)^{1/3}$$

Particle size distribution as a function of storage cycle number given as Q_3 . Raw material is CaCO₃ (indicated). All other samples are analyzed as Ca(OH)₂. (Feul 345 (2020), 128220)

Classification According to Geldart

Results

Geldart diagram adapted from [Pow. Tech. 1973, 7 (5), 285-292] for transition A-B and B-D, evaluated for water vapor at 500°C and 1.5 bar and from [ISBN: 978-3-527-69947-6] for the C-A transition. Results on cyclisation of CaO/Ca(OH)₂ in pure steam [Feul 345 (2020), 128220].

Chair of Energy Systems - TU Munich | HPC Conference 4 September 2023 | Leander Morgenstern et al.

Samples of varying d_{32} tested in a fluidization test rig.

пп

Minimal Fluidization Velocity and Porosity

Results

 $\diamond \epsilon_{mf,exp} = 0.76$

Geldart diagram adapted from [Pow. Tech. 1973, 7 (5), 285-292] for transition A-B and B-D, evaluated for water vapor at 500°C and 1.5 bar and from [ISBN: 978-3-527-69947-6] for the C-A transition. Results on cyclisation of CaO/Ca(OH)₂ in pure steam [Feul 345 (2020), 128220].

Theoretical minimal fluidization velocity calculated according to Kunii and Levenspiel ($\mathbf{u}_{mf,1}$ and $\mathbf{u}_{mf,2}$, ^[9780409902334]) and Anantharaman et al. ($\mathbf{u}_{mf,3}$, ^[Pow. Tech. 2018, 323, 454-485]). For $\mathbf{u}_{mf,1}$ the theoretical bed porosity $\boldsymbol{\varepsilon}_{mf,1}$ according to $\boldsymbol{\varepsilon}_{mf,2} = \boldsymbol{\varepsilon}_0 = 1 - \boldsymbol{\rho}_{bulk} / \boldsymbol{\rho}_p$ [ISBN: 978-3-527-69947-6] and for $\mathbf{u}_{mf,2}$ the $\boldsymbol{\varepsilon}_{mf,2}$ according to Gibson et al ^[Chem. Eng. Res. a. Des. 2018, 135, 103-111].

Summary

- Thermochemical Energy Storage utilizing CaO/Ca(OH)₂ is promising for applications at 400 °C - 600 °C
- Fluidization technology necessary due to low heat conductivity
- Characterization of storage material breakage
 throughout storage cycles
- Significant influence on fluidization properties needs to be and is accessed experimentally

Freeboard and off-gas-system of the pilot-scale reactor FluBEStoR

Thank you for your attention!

Leander Morgenstern, M.Sc. leander.morgenstern@tum.de www.epe.ed.tum.de/en/es

Funded by the German Federal Ministry of Economic Affairs and Climate Actions (BMWK) under the funding code 03ET1599A.

M

Bundesministerium für Wirtschaft und Klimaschutz

Supported by:

Pilot-Scale Reactor FluBEStoR