

Demonstration of a Decentralized Disposal Concept for Sewage Sludge by Torrefaction and Subsequent Entrained Flow Gasification for Gas Engine Use

PyroGas Research Project

Technical University of Munich

TUM School of Engineering and Design

Chair of Energy Systems

Bologna, 5th June 2023

Uhrenturm der TVM

Agenda

Content of This Presentation for EUBCE 2023

- The PyroGas Concept
 - Scheme
 - Pictures
- Setup
 - Entrained-flow Gasifier
 - Cogeneration Gas Engine
- Operating Conditions
 - Procedure
 - Results
- Conclusions

Chair of Energy Systems TUM School of Engineering and Design Technical University of Munich

The PyroGas Concept

PyroGas as a Scheme

Chair of Energy Systems TUM School of Engineering and Design Technical University of Munich

The PyroGas Concept

PyroGas in Pictures

TORREFACTION

COGENERATION

Setup

Biomass Pilot-scale Entrained-flow Gasifier (BOOSTER)

Conversion of the solid fuel to a combustible product gas; Cracking of organic impurities (pathogens, drug residues, ...)

autothermal

0 to 5 barg

pneumatic

~10 h

up to 1500 °C

100 kW (+/- 25 %)

Air, O_2 , H_2O , CO_2

Technical data:

- Operation:
- Temperature:
- Pressure:
- Fuel input:
- Dosing system:
- Gasification media:
- Operation time:

Research focus:

- Industry-like design (realistic conditions)
- Investigation of cold gas efficiency
- Gas quality (ammonia, hydrochloric and hydrocyanic acid)
- Tar formation and ash melting behavior

Setup

Cogeneration Gas Engine

Product gas utilization by combustion; Combines engine and exhaust gas heat utilization; Reduction of exhaust and noise emissions

Technical data:

• Mitsubishi diesel engine converted into an otto engine

79 kW

- Fuel input:
- Mechanical performance: 21.5 kW
- Generator efficiency: 93.2 %
- Electric power: 20 kW
- Electrical efficiency: 25.3 %
- Thermal power: 50 kW
- Thermal efficiency: 63.3 %
- Overall efficiency: 88.6 %

Research focus:

- Engine performance for low calorific value product gases
- Exhaust gas compostion (CO, NO_X, ...)

Procedure

Varying operating conditions such as fuel input and gasification medium:

Procedure

Varying operating conditions such as fuel input and gasification medium:

 \rightarrow Finding a product gas composition to run the engine by adding the least amount of pure O₂

√ÖLKL **I**I∏

Operating Conditions

Addition of Pure Oxygen to Air as the Main Gasification Medium – Lower Heating Value

Addition of Pure Oxygen to Air as the Main Gasification Medium – Product Gas Composition

Operating Parameters for Stable Engine Operation

Fuel input measured	122.7 kW
Air ratio λ measured	0.41
Dosing rate measured	34.4 kg/h
Nitrogen addition (cooling, dosing system)	3.7 Nm³/h (~ 14 %)
Air addition (primary gasification medium)	13.9 Nm³/h (~ 53 %)
Oxygen addition (secondary gasification medium)	8.8 Nm³/h (~ 33 %)
Temperature measured at flame height	1318 °C
Temperature measured below flame	1230 °C
Lower heating value of product gas	5.46 MJ/m ³
Carbon conversion rate	82.5 %
Fuel conversion rate	91.8 %
Cold gas efficiency	47.4 %
Electrical power of the cogeneration gas engine	15 kW _{el}
Electrical efficiency	12.2 %

Conclusions

Summary of Results and Outlook

It is possible to operate the engine with sludge product gas from an entrained-flow gasifier.

 \rightarrow The overall proof of concept was successful

Optimization potential:

Reduction of nitrogen addition

- \rightarrow Higher heating value of the product gas
- Carbon dioxide in the dosing system
- \rightarrow Higher heating value of the product gas

A higher fuel input (and a more suitable gasifier design)

 \rightarrow More product gas for the engine and a higher heating value

Final Statement:

Optimization may not be sufficient to eliminate the addition of pure oxygen.

 \rightarrow Admixture of sewage gas from sludge digestion at the wastewater treatment plant

Chair of Energy Sytems TUM School of Engineering and Design Technical University of Munich

Thank you for your attention.

Don't hesitate to ask questions!

EUBCE 2023 | 4AO.2.2 | PyroGas | 5th June 2023