
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Extension of MemAxes Sample
Visualization to Process AMD IBS Samples

Daniel P. Schenk

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Extension of MemAxes Sample
Visualization to Process AMD IBS Samples

Erweiterung der Sample-Visualisierung in
MemAxes um AMD IBS Samples

Author: Daniel P. Schenk
Supervisor: Prof. Martin Schulz
Advisor: Stepan Vanecek
Submission Date: 16.8.2023

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, 16.8.2023 Daniel P. Schenk

Acknowledgments

I want to thank Ole Hesse for support during the time of writing this thesis. Thanks
to Philipp Jurašić’s suggestions and feedback the command search feature has its fitting
name instead of painfully generic "action search". For providing a very interesting topic
that created many opportunities for me to learn, I want to thank my thesis advisor
Stepan Vanecek.

Abstract

To optimize a program in the field of High-Performance Computing, it is necessary to
have a detailed understanding of the performance characteristics of the code. MemAxes
is a visualization tool for gaining insight into the relations between hardware-level
events like cache misses, and parts of the code. Originally, MemAxes was only de-
signed to work with Intel processors. In this work, we will present newly developed
functionality for analyzing performance data from AMD processors, gathered with the
IBS sampling mechanism.

IBS samples provide data, for example of TLB performance which is not available
in samples from Intel processors. We designed new visualization features to take
advantage of this additional data. In the process we overhauled other functionality
of MemAxes, improving performance and providing new, more efficient interaction
methods. Among these features is a completely new interaction scheme that allows
users to control the visualization using text commands.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Background 3
2.1 High-Performance Computing . 3
2.2 MemAxes . 4

2.2.1 Hardware Topology View . 4
2.2.2 Code View . 8
2.2.3 Parallel Coordinates View . 8

2.3 Sampling and Mitos . 10
2.3.1 Sampling-based Performance Analysis 10
2.3.2 Instrumentation . 10
2.3.3 Mitos Sampling Interface . 11

2.4 Differences between Samples from AMD and Intel Processors 11

3 Implementation 13
3.1 Reading IBS Samples . 13

3.1.1 Decoding Cache Levels . 14
3.1.2 Storing IBS-specific Data . 15
3.1.3 Processing non-conforming Axis Names 15

3.2 Parallel Coordinates View . 15
3.2.1 Identification of Issues . 15
3.2.2 Redesigning the Parallel Coordinates to Improve Legibility . . . 16
3.2.3 Adding and Removing Axes . 18
3.2.4 Improved Axis Movement . 19
3.2.5 Usability Improvements . 19
3.2.6 Performance Analysis of Parallel Coordinates View 21

3.3 Code View . 27
3.3.1 Adapting the Top Offender Plot to IBS Samples 27
3.3.2 Integration into the Pre-Selection System 28

v

Contents

3.4 Hardware Topology View . 28
3.4.1 Pre-Selection . 29
3.4.2 Highlighting Resources without Samples 30

3.5 Command Search . 30
3.5.1 Specification Design . 31
3.5.2 Software Design . 32
3.5.3 Interpreting Incomplete Blocks of User Input 33
3.5.4 Splitting the Input into Blocks . 35
3.5.5 Evaluation . 36

4 Conclusion and future work 38

List of Figures 40

List of Tables 41

Bibliography 42

vi

1 Introduction

High-Performance Computing (HPC) drives progress in the natural sciences and
engineering. Ever more complex simulations necessitate both more powerful supercom-
puters, and more efficient use of available resources. More optimized code brings down
costs and enables simulations that were not possible before [1]. MemAxes was designed
as a tool to help in performance optimization for HPC systems through visualization
of performance samples. Visualization enables users to build an understanding of
datasets that are too large or too abstract to comprehend without assistance. The sample
sets visualized in MemAxes contain hundreds of thousands of numeric values. No
conclusions can be drawn from this data without automated processing. Visualization
not only processes the data to derive metrics but can present a visual metaphor that
enables understanding of the process in which the data was generated [2].

At the core of MemAxes is the goal to not only present hardware usage statistics,
but guide users in linking the hardware phenomena to parts of their code. Making the
connection between low-level hardware phenomena, and their causes in the code, is
key to well-informed optimizations. MemAxes can go one step beyond the hardware
and program levels and relate observations on the hardware level to semantics on the
application level, like 3D-coordinates in a physics simulation [3][4].

To collect the data across these levels, MemAxes uses hardware performance samples
which are enriched with program- and application-level context by the Mitos sampling
application. On the lowest level, hardware performance samples are collected using
performance monitoring units (PMU) of the processor. These units provide hardware-
level information that is hidden from the program level. The implementation of
performance monitoring units, what data they can collect, and how they are controlled,
is vendor specific. MemAxes was originally designed for use with samples collected
by the PEBS sampling mechanism of modern x86 Intel CPUs [3][5]. Processors by
Advanced Micro Devices (AMD), the second major manufacturer of modern x86 CPUs,
use the Instruction Based Sampling (IBS) mechanism.

This work will describe how we made MemAxes compatible with sample sets
collected with the IBS sampling mechanism. We ensured that IBS data is properly
processed and all features of MemAxes work with IBS samples. To make IBS-specific
data accessible to the user, we implemented new features for visualization of the newly
available data.

1

1 Introduction

Apart from visualizing newly available data, we will improve the preexisting vi-
sualization in MemAxes. We will show how we improved overall performance of
the application for smoother operation. We also modified all visualization modes to
improve legibility and make correlations more obvious to the user. For better analysis
of correlations in the data, we also introduced a pre-selection system to accompany the
MemAxes filtering tools. The new system improves the predictability of the original
system and makes the connections between the different view modes clearer.

Our final contribution is a new interaction scheme for MemAxes. With command
search it is possible to search for filtering options and explore correlations in the dataset
using intuitive text-based search like in an online search engine. This feature enhances
analysis of data from all levels by accepting both inputs referencing raw data, and
queries based on semantics in the hardware and program context. With this new
feature, users can tell the program through high-level text input, what they want to
visualize.

2

2 Background

First, we will give an overview of the aspects of High-Performance Computing that
are relevant to this work. Then we will describe the concepts and implementation of
MemAxes as of the time we started our development process. Finally, we will show the
key differences between IBS and PEBS sampling.

2.1 High-Performance Computing

High-Performance Computing is the field concerned with the use of supercomputers.
A supercomputer is a computer of extraordinary compute performance that is built
for scientific or engineering calculations. For these calculations, a high throughput of
numerical operations is needed [1].

The instruction throughput of a computer can be increased either by executing
instructions faster or executing more instructions in parallel. For the last 20 years,
increases in performance were mostly gained through increased parallelism [6].

Computers utilize three forms of parallelism.

• Instruction-Level Parallelism (ILP) is the parallelism that can be exploited by
concurrent execution of multiple instructions from the same instruction stream.
Modern processors utilize ILP automatically and do not expose this functionality
to the programmer, so ILP is the least relevant form of parallelism for this work
[7].

• Data-Level Parallelism (DLP) is the parallelism that arises from the same instruc-
tion being applied to multiple data elements. Specialized hardware exists that
can process multiple data elements in parallel, while profiting from the reduced
cost of managing only a single control flow. Modern CPUs have vector extensions
to exploit DLP, which are exposed to the programmer. Often generating code that
utilizes vector extensions is left to the compiler for convenience and to preserve
maintainability and portability of the source code [8].

• Thread-Level Parallelism (TLP) is the parallelism of multiple execution threads,
independent instances of a program which all have their own control flow. TLP is
used by multicore processors which provide multiple cores that can operate in

3

2 Background

parallel. Many processors also implement multithreading of cores, so that one
core can process multiple instruction streams in parallel. TLP is exposed to the
programmer and must be actively managed. For utilizing TLP, many languages
provide abstractions of threads, and frameworks like OpenMP exist that allow
for a higher-level specification of sections that can be processed in parallel by
multiple threads [9].

For the last 20 years, clusters have been the most popular architecture for supercomput-
ers. In clusters, many computer nodes are connected through a network, all executing
code to work on the same problem. A node is a device with one or multiple processor
sockets, usually accompanied by specialized accelerators. On-node communication is
much faster than communication with other nodes. A socket provides a CPU with
main memory and I/O. Modern CPUs have multiple cores, independent processing
units, which often work on more than one execution stream [10].

This work focuses on performance aspects of processors on nodes. Currently, per-
formance data from more than one node, or anything related to accelerators, are not
visualized in MemAxes.

2.2 MemAxes

The original MemAxes was developed by Alfredo Giménez and others around 2014 at
Lawrence Livermore National Laboratory (LLNL) [11]. Development continues at the
Technical University of Munich (TUM). The main feature added to MemAxes at TUM
is support for the sys-sage hardware topology capture library. The development of
MemAxes at TUM is part of the EU-funded Software for Exascale Computing (DEEP-
SEA) initiative [12]. All work was performed on the version of MemAxes developed at
TUM. MemAxes is written in C++ and uses the Qt5 GUI framework.

MemAxes implements three main views.

2.2.1 Hardware Topology View

The first view of MemAxes is the hardware topology visualization. In this view, a
hierarchical Icicle or Sunburst plot is used to visualize the memory hierarchy. Compute
resources are the leave nodes of the hierarchy, the root is the shared memory. Resources
are colored based on the memory access cycles associated with them.

4

2 Background

Figure 2.1: The 3 views of MemAxes. View A is the code view. B is the hardware
topology view. C is the parallel coordinates view.

(a) Icicle plot (b) Sunburst plot

Figure 2.2: Visualization modes of the hardware topology view

The speed of memory accesses is the determining factor for the performance of appli-
cations on modern computers. Processors are much faster at performing computations
than main memory can provide data. For example, the AMD Ryzen 5800X desktop
processor that was used to capture the performance data visualized in many of the
screenshots in this work, has maximum frequency of 4.7 GHz. Each of the eight cores

5

2 Background

can process up to six instructions per cycle [13]. The theoretical maximum instruction
throughput are 4.7 · 109s−1 · 8 · 6 = 225.6 · 109 instructions per second. The DDR4
main memory of the test system has only two channels capable of a combined 7.2 · 109

transfers of 64 bit per second. Obviously, the main memory cannot feed the processor
all the data necessary to achieve maximum compute performance.

Memory hierarchies were designed to counter the gap in performance between main
memory and compute units. Faster and higher-bandwidth memories are possible,
but there is a trade-off to be considered, as these higher-performance memories are
more expensive and consume more power. For this reason, modern CPUs have built-in
memories called caches that are much faster than main memory, but also smaller in
capacity [14].

Using smaller memories to serve most memory accesses is viable because most
programs exhibit spatial and temporal locality. Spatial locality is a program’s tendency
to make accesses to addresses that are close to previously accessed addresses. An
example for good spatial locality is sequential iteration of an array. Programs with
good spatial locality exploit that caches are organized in lines of coarse granularity, so
two consecutive array elements are likely stored in the same line. The line is loaded
into the fastest cache when the first element is accessed, the next elements can then be
read from the cache. Modern processors use prefetching, loading lines into the cache
before they are used for the first time. For prefetching to give good results, an easily
predictable memory access pattern is necessary. A program displays temporal locality
if it accesses the same address again shortly after the previous access. This increases
the chance of a cache hit because data is removed from faster caches if other data needs
the space in the cache. A short reuse distance reduces the probability that the data was
evicted from the cache since the last access. It is the programmer’s responsibility to
write programs that have good locality properties, so that most memory accesses can
be served by faster caches [15].

The coloring of resources in the hardware topology view is based on the memory
access cycles associated with a resource compared to the access cycles of other resources
on the same level of the memory hierarchy. With this design it is easy to spot imbalance
between cores, but it is not possible to reason about how well caches were utilized in
general [3].

In addition to cache behavior, MemAxes also visualizes Nonuniform Memory Access
(NUMA) regions. On systems with NUMA, not all accesses to memory are equally fast,
because some must be handled by memory that is slower to reach. An example of this
are multisocket systems, where accesses to the memory of the other socket are slower
than accesses to the memory of the processor’s own socket. While accesses to a socket’s
own memory can use the memory directly, for accessing the other socket’s memory, an
access must be processed by two memory controllers and must go through the socket

6

2 Background

Figure 2.3: Code view in MemAxes.

interconnect [16][17].
Programmers must consider the allocation policy when working with NUMA systems.

The most common allocation policy is first-touch, in which memory is allocated in the
memory of the processor that first uses, not necessarily the one that allocated it [17].

With the selection tools of the MemAxes hardware topology it is possible to identify
if there were accesses across NUMA regions. To do so, one uses the selection tools
of MemAxes. In MemAxes the sample set can be filtered. All views share the same
selection system, enabling search for correlations across visualization domains. To
select all samples associated with a NUMA region, users can click on the representation
of the NUMA region in the hardware topology view. Slow accesses from other sockets
are clearly visible in the hardware topology views as highlighted compute resource
nodes on the opposite side of the sunburst, or not below the selected NUMA region in
the Icicle plot. After such a selection, the code view can be used to trace the problem
back to a line of code [4].

7

2 Background

2.2.2 Code View

The code view serves the important purpose of revealing the relation between the
phenomena visualized in the other views, and the source code. Two parts make up the
code view, the top offender ranking, and the code editor.

In the top offender ranking, source files and source lines are ordered in descending
order by the number of memory access cycles associated with them. the ranking is
illustrated by hierarchically stacked horizontal bar graphs. On the top level, the relative
share of access cycles caused by the source files can be compared. Inside the source file
bars, there are smaller bars representing the code lines.

In the source code view, source lines or source lines can be selected by clicking on
the corresponding bar in the top offenders ranking. The read-only code editor widget
shows the source code and highlights the top offending line. When a selection is made,
the code editor jumps to the selected line and highlights it. To find out about how a
phenomenon from the other views is related to the source code, one selects the samples
associated with the phenomenon. The top offender ranking automatically changes to a
ranking based on only the samples included in the selection [3].

2.2.3 Parallel Coordinates View

In the parallel coordinates view, all sample attributes are plotted. Parallel coordinate
plots are general purpose plots for visualizing multidimensional data [2]. Dimensions
are visualized as vertical axes in a horizontal layout. For every object in a parallel
coordinates plot, a line is drawn between neighboring axes, passing the axis at the
value of the object in that dimension. For example, in figure 2.4 one object is marked
red. With this representation, correlations between axes form recognizable patterns
from the connecting lines in the space between the axes [18].

8

2 Background

Figure 2.4: Parallel Coordinates example.

Parallel coordinates plots existed before interactive computer visualization was
common, but only saw limited popularity. While it is possible to convey information
about a multi-dimensional dataset through a parallel coordinates plot in print media,
the true strength of this visualization idiom is facilitating data exploration in interactive
applications. If users can reorder the axes interactively, they can investigate the
correlations between different attributes, not just the ones the visualization designer
wanted to show [2]. For this reason, in MemAxes, the parallel coordinates axes can be
freely moved without perceptible snapping to a grid [4].

A weakness of parallel coordinates plots is that it is hard to judge the density of the
distribution of samples for a point on an axis, because lines can be drawn above other
lines [19]. MemAxes addresses this weakness by implementing the parallel histograms
variation of parallel coordinates, where Histograms are drawn on every axis. With
this modification, the density of samples on the axis can be effortlessly judged. For
MemAxes this is especially important, because some sample attributes represent flags,
which can take on only two values, so overlap of lines makes estimating their number
impossible.

The parallel coordinates view also reacts to selections performed in the other views.
Lines representing selected samples are assigned a different color than lines for not
selected samples. The opacity of selected and not selected lines can be set with a
slider to hide one of the groups. Samples that are not selected are excluded from the
calculation of the histograms. Users can select value ranges on axes by dragging a
selection box. All selections from all views can be canceled by clicking the "Select All"
button [3].

9

2 Background

2.3 Sampling and Mitos

For performance analysis of a program, it is necessary to record the performance of a
program run. There are multiple methods for collecting performance data, relevant to
this work are only sampling and instrumentation.

2.3.1 Sampling-based Performance Analysis

Performance samples contain detailed hardware information about the execution of an
instruction, like the cache level that was used to serve the memory access. To collect
performance samples, it is necessary to use the Performance Monitoring Units because
otherwise, this low-level information is hidden from programs [5].

Samples are taken at some fixed or randomized interval, or in Precise Event Sampling
(PES), a sample is taken when a specific event, like a cache miss, is triggered. MemAxes
was designed for visualizing samples taken at fixed intervals. Samples do not allow to
trace the execution instruction by instruction, because not every instruction is sampled.
Only a very small fraction of instructions is sampled because otherwise, the amount of
data generated would be enormous and writing it to memory would seriously limit
performance. Sampling only a fraction of instructions still serves the purposes of
performance analysis perfectly well if the sampling is unbiased. In unbiased sampling,
how often an instruction is sampled, is proportional to how often it was executed [20].
For performance analysis, the instructions that were executed more often are of higher
interest than instructions that were rarely executed. Amdahl’s law [21] states, that
optimization of a section of the code can reduce the runtime of a program by no more
than the runtime of the unoptimized section [22]. For that reason, the instructions that
are less likely to be sampled are less needed for performance analysis anyway.

An advantage of sampling is that it barely influences the performance of the execu-
tion [23]. As a disadvantage, sampling can only collect hardware-level information,
because it is not known to the processor, which program or application-level objects or
phenomena addresses relate to [5].

2.3.2 Instrumentation

In instrumentation, the program is extended by functionality to log data. Instrumenta-
tion can be performed manually, i.e., by modifying the code to measure the execution
time of a section and print the result, or automatically by tools that instrument the
program before compilation.

Instrumentation can give insight into program- or application-level behavior that
hardware samples cannot provide. The main disadvantage of instrumentation is that it

10

2 Background

alters the program, potentially influencing performance. It also does not have access to
hardware-level information [23].

2.3.3 Mitos Sampling Interface

MemAxes is designed for use with samples conforming to the Mitos sampling interface.
Mitos specifies an interface for collecting hardware samples and enriching them with
program-level and application-level context. Users can annotate the buffers they create
so that Mitos can reconstruct the program level information of the indices used from
the address in instruction samples. More advanced application-level attribution can be
defined by the programmer, for example to attribute an instruction to a position in the
3D space of a simulation [5].

A sampling tool that generates IBS samples in compliance with the Mitos sampling
interface was developed at TUM. For this work, mainly two pre-existing example data
sets were used.

The IBS example dataset was generated on an AMD Ryzen 5800X desktop processor
with eight cores and 16 threads. This processor model is based on the AMD Zen
2 microarchitecture and has eight cores, sixteen threads, which all access the same
main memory. As a parallel example code, a simple matrix-matrix multiplication
was used. No optimizations for better cache uses were implemented. Parallelization
was performed using by applying an OpenMP pragma to the outermost loop. 39866
samples are included in this dataset.

A second dataset was captured on a system with two Intel Xeon Platinum 8360Y
scalable processors capable of operation up to 2.4GHz with 36 cores, 72 threads each.
Both processors have their own memory, so there are two NUMA regions. A Jacobi
method iterative system of linear equations solver ran during the performance sampling.
Parallelization of the code was performed using the Message Passing Interface (MPI).
The dataset consists of 3087 samples, of which four were manually removed because
they included nonsensical memory access latencies of about 20 years.

2.4 Differences between Samples from AMD and Intel
Processors

In 2007 AMD introduced the IBS sampling mechanism in their 10h family of processors
[24]. On Intel processors, Precise Event Based Sampling (PEBS) serves a similar purpose,
but these vendor-specific sampling mechanisms are far from interchangeable. PEBS is
focused on programmability and precise capture of specific events, IBS collects more
data, but lacks the programmability for precise captures of PEBS.

11

2 Background

PEBS, which MemAxes currently uses, can be programmed to count four out of 62
subevents of 12 events. When the counter overflows, a sample of the machine state is
taken. This precise event sampling allows for sampling only events that are deemed of
interest, like misses of some cache level. This advanced technique called Precise Event
Sampling (PES) is not utilized by Mitos and MemAxes, Mitos samples are meant to be
taken at fixed time intervals.

IBS has two sampling flavors, fetch and op samples. The counters for determining
During fetch sampling only support counting fetched microinstructions and clock
cycles. This makes it harder to produce samples for gaining insight into a specific event,
but for the purposes of this work, this is not a limitation, because MemAxes does not
utilize advanced PES. 16 attributes are sampled from microinstruction fetching. Fetch
sampling collects data mainly about the instruction caches and instruction TLBs. The 44
attributes of op samples include the cache level used, information about data TLBs and
branch prediction. Unlike the PEBS samples MemAxes previously used, IBS samples
enable insights into the performance of address translation [20].

Modern CPUs need to perform address translation for every memory access because
programs operate on virtual addresses. On modern computers, every program is
assigned its own virtual address space by the operating system. Virtual memory is
an important security feature of modern computers. The virtual address space is
organized in pages, which map to a region in physical memory. To translate an address,
the position of the page in physical memory must be looked up in the page table, and
an offset must be calculated. CPUs implement dedicated memory management units
(MMU) for this purpose, which can walk the page table at high speeds. Even with a
highly optimized page table walker, it would not be possible to retrieve the physical
address fast enough to not slow down accesses to fast caches. For this reason, page
address translations are also cached in dedicated resources called Translation Lookaside
Buffers (TLB).

Because the number of pages used is much smaller than the number of addresses,
and most programs use only a few of their pages most of the time, caching in TLBs
is far more effective than data caches despite the very small size of TLBs [25]. For
example, the data TLB of the Zen 4 microarchitecture has only 72 entries in L1, and
512 in L2[26]. Although TLB misses are rare, when they happen, they have a strong
negative impact on performance, so support for visualizing these misses should be
added to MemAxes.

12

3 Implementation

We will present our contributions to MemAxes in five areas.

1. Ensuring Compatibility with IBS samples and extending the file parsing.

2. Reimagining the parallel coordinates view.

3. Making the Code view more interactive.

4. Implement interaction with the hardware topology view that is consistent with
other views.

5. Introducing Command Search, a new interaction scheme based on the semantics
of text input.

3.1 Reading IBS Samples

Both PEBS and IBS sample sets are provided as lists of comma separated values (CSV),
where one line holds the attribute values of a sample and a header contains the names
of the attribute names. The most important attributes are

• Name of the source file as a string.

• Line of code in the source file that Mitos attributed the sampled instruction to.

• Name of the instruction sampled as a string.

• Sample attributes to identify the buffer and index used in the memory access.

• Identifier of the CPU core used.

• Latency of the memory access in cycles.

• Level of the memory hierarchy used as a string.

13

3 Implementation

Sample data is stored in a list of structs, each holding the attributes of one sample.
The sample structs only contain long long attributes. String attributes are assigned an
identifier that can be used to retrieve the string from a list of the unique values of the
string attribute. This does not apply to the memory level accessed, which is decoded
into a number between 1 (L1 cache) to 4 (main memory). Treatment of different axes is
hard-coded, but the parsing is independent of the order of attributes because the index
of the attribute in the line is determined by finding the axis name in the header line
[11].

IBS samples contain 44 additional attributes for op samples, or 16 in fetch samples
[20]. In this section, we will describe how we decode the cache level used in IBS
samples where the Level attribute is invalid. We present our new approach to storing
the additional data, and how we adapted MemAxes to work with sample sets which
use other attribute names than the intended ones.

3.1.1 Decoding Cache Levels

In IBS samples, the cache level used is not stored properly in the Level attribute.
Information about the cache level used is available through IBS-specific flags. Only
the op samples provide the necessary information to decode data cache levels used,
fetch samples include only information on instruction caches. This work focuses on
op samples because fetch samples cannot provide all data necessary for MemAxes
to fulfill its design purpose of visualizing data memory performance. All names of
IBS-specific values used in this work are consistent with the AMD Bios and Kernel
Developer’s Guide (BKDG) which uses a camel case naming convention (first letter of
word in upper case), while in the example dataset, the IBS-specific axes have names in
snake case (words separated by underscores) [27].

In op samples, the attribute IbsDcMiss is set to one, if a L1 cache miss occurred, and
to zero otherwise. The attribute IbsL2Miss indicates that an access missed in the L2
cache. It is not possible to differentiate between accesses to L3 cache and main memory
using the data available in IBS samples. When reading samples for whichLevel could
not be decoded, and the IBS op sampling specific attributes are available, our modified
MemAxes performs data source decoding based on IBS attributes.

For some op samples, the IbsL2Miss flag is set, although no IbsDcMiss occurred.
This behavior appears illogical because the CPU should not start an access to L2 when
the L1 access succeeded. The BKDG explicitly states, that IbsL2Miss may be set because
of a different operation than the sampled one [27]. This type of wrong attribution is
called skid [24]. In MemAxes, we handle these samples as accesses to L1 because the
samples instruction was an L1 access, and we do not have further information that we
could visualize about the other instruction that missed in L2.

14

3 Implementation

3.1.2 Storing IBS-specific Data

For storing other data than what is available in the base version of MemAxes, we
introduced a new data structure. We did not extend the sample structs by new
attributes for IBS data for extensibility reasons. Manually creating an IBS sample struct
would not make it easier to adapt MemAxes to other additional sample data in the
future. Instead, we created a sample attribute matrix. The matrix can be generated
for any number of samples and attributes only limited by the memory of the machine
MemAxes is running on.

3.1.3 Processing non-conforming Axis Names

Previously, MemAxes could only load datasets where all names of the required at-
tributes exactly match the specification. If an attribute is missing from the data, it was
not possible to visualize the remainder of the dataset. To avoid this causing annoyance
and to provide broader compatibility, we implemented a feature for remapping attribute
names when an attribute name is not found in the header. Users are prompted with a
pop-up input dialogue if an attribute name cannot be found, to input an alternative
name or axis index. If the window is closed without an input, the highest valid axis
index is used as a fallback.

3.2 Parallel Coordinates View

To make useful modifications to the parallel coordinates view in MemAxes, we must
first establish its purpose in the context of MemAxes. The key role an interactive
parallel coordinates view can serve is as an idiom for supporting the user in searching
for correlation in the visualized data. in MemAxes, the parallel coordinates view was
implemented to enable search for correlations in all the sample attributes. As this
is the only view of MemAxes, where information from the hardware, program and
application levels can be visualized, it is critical for the fulfilment of the design goals
of MemAxes [3]. In this work, we identify issues with the legibility of the parallel
coordinates plot, and present our solutions to these issues, as well as some usability
improvements.

3.2.1 Identification of Issues

We identified four areas where improvements would be possible.

• In parallel coordinates visualizations, overplotting is an undesirable effect where
so many lines are drawn, that it is not possible to identify the individual con-

15

3 Implementation

nections. When this effect occurs, correlations are obscured and the parallel
coordinates view fails to achieve their purpose [19]. In MemAxes there are thou-
sands or tens of thousands of lines to be drawn inside a box only a few hundred
pixels in width and height, overlap of lines will always occur. We demonstrate
this effect in figure 3.1.

• The parallel coordinates fail to visualize the correlations of flags. Flags are
attributes that have values of either 0 or 1. In the IBS performance samples,
flags are common. Conventional parallel coordinates like those implemented
in MemAxes visualize the distribution of values on an axis as the density of
lines. For discrete attributes with very few distinct values, this approach fails
because only a few distinct lines are drawn. The histograms drawn on the axes in
MemAxes allow judgements of the distribution of values on the axis, but do not
properly visualize the strength of correlations between values.

• The parallel coordinates view displays some data from the domains of the code
view and hardware topology, like the code line and the CPU Core number. Despite
those semantic connections, it is not possible to easily visualize the connections
of objects in the other views to value ranges in the parallel coordinates. To find
out what value range an object relates to, the user has to select the object. This
becomes inconvenient for multiple objects because selections are necessary that
are immediately undone afterwards.

3.2.2 Redesigning the Parallel Coordinates to Improve Legibility

We identified the issues of overplotting hiding correlations, and of the correlations
between flags not being quantifiable. Our goal is to make the strength of correlations
visible, even when lines would be drawn above other lines.

For the purpose of performance analysis, it should become immediately clear what
the strong correlations in the data are, and which value ranges are connected. Previously,
functionality was implemented to reduce the number of lines to be drawn by skipping
a randomized subset of lines [11]. While this approach can resolve the overplotting
issue of correlations being obscured because no individual lines are visible, it does not
give any information about the number of lines drawn on top of each other.

16

3 Implementation

(a) Original implementation with overplotting (b) Our implementation

Figure 3.1: Comparison of original parallel coordinates implementation with overplot-
ting and our implementation.

Many modifications of the parallel coordinates visualization idiom exist, that vi-
sualize the connection density. One approach discretizes the axes, and only draws
connections for the discretized value ranges. The color of the lines is used to visualize
the correlations strength of two value ranges [28]. Because we already have discretized
the axis when we calculated the histogram bins, we could also use this discretization
for calculating the correlation strengths between histogram bins.

For visualizing the correlation strength relative to other correlations between the
same axes, we use the color luminance channel. Before drawing the lines, we sort them
so that the strongest correlations are drawn last, on top of the weaker correlations.

We use the thickness of line to express the absolute number of elements that are part
of a correlation. This feature allows users to differentiate between correlations that
most samples are part of, and correlations that are strong in the context of the current
selection, but only a small minority of samples are part of.

For every pair of neighboring axes, we calculate a correlation matrix for the histogram
bins. Previously, there was no information stored about which bin a sample belongs
to. When recalculating the number of samples per histogram bin, the categorization
of samples into history bins was performed again. A sample cannot change the bin
it belongs to, unless the number of bins, or the minimum and maximum values on
the axis change. For this reason, we implemented a matrix that stores which bin every

17

3 Implementation

attribute of every sample belongs to. This matrix does only need to be recalculated
when the number of bins, or the minimums and maximums of axes change. This
matrix makes calculating the histograms and correlation matrices much easier. Only a
row of the bin matrix needs to be iterated, and for every sample to bin mapping, the
corresponding count of samples per bin, or correlation strength needs to be increased
if the sample is part of the set of selected samples.

Figure 3.2: Pre-Selection in MemAxes. The cursor hovers over the source line axis. The
samples associated with the bin the cursor hovers over are highlighted.

Previously, to visualize the correlations of a value range, it was necessary to perform
a selection. In this work, we introduce pre-selection as a more convenient way of
exploring the correlations of a single histogram bin. Instead of having to perform a
selection, to highlight the samples with a certain value, one can hover the cursor over a
value on an axis in the parallel coordinates view. The samples with the pre-selected
value are colored red to clearly stand out against the non-pre-selected samples that
are colored in blue. For a better pop-out effect of the pre-selected sample set, the
opacity of the non-pre-selected samples can be reduced using a slider. Computationally,
pre-selection uses a second set of correlation matrices.

3.2.3 Adding and Removing Axes

MemAxes was originally designed to display all available attributes. For the 77 at-
tributes of the IBS example data set, showing all axes all the time would not be a viable
solution because of limited screen space. Because the parallel coordinates should be
adaptable to new custom sample attributes or other sampling mechanisms than PEBS
and IBS, we need to implement functionality that allows users to choose which axes
are shown on screen.

To enable adding and removing axes from the view, we needed to change the data
structure used to control the parallel coordinates view. Previously, information about
the axes was stored in vectors that held histogram data, the minimum and maximum

18

3 Implementation

values, and the position of the axis. The index used to access the values of an axis
equals the index of the data visualized on that axis. This solution does not work for
when axes can be added or removed. For that reason, we introduced a new vector that
maps an axis index to a data index.

We implemented a drop-down menu for choosing axes to add to the parallel co-
ordinates view. After selecting an axis, users can press buttons to add or remove
the selected axis from the parallel coordinates view. To avoid showing axes without
information to the user, we implemented filtering of axes so that axes where only the
first bin contains values, are not displayed by default.

3.2.4 Improved Axis Movement

The original MemAxes implemented movement of axes without a perceivable under-
lying grid. While this mode of axis movement has its defenders [19], we changed it
because we believe it is inferior for the purposes of MemAxes to a system where axes
are automatically arranged with equal distances. While a solution that does not snap
axes to an underlying grid allows the user to make more space for a correlation they
want to inspect, it also does not aid the user in clearing the space from other axes.

We implemented a new axis movement system where axes behave like tabs in a
web browser. The axis that is currently moved, can be moved freely without being
constrained to a grid, but all other axes automatically move to positions on the grid to
make room for the moving axis. This solution still allows users to temporarily increase
the space used to display a correlation but makes moving axes more convenient because
users do not need to actively move axes out of the way.

3.2.5 Usability Improvements

In the parallel coordinates view, it can be hard to retrieve the information, what object
a value range on an axis maps to. This is especially a problem with the Instruction
UID axis, on which the unique identifier of instructions is displayed. Previously, to find
out which instruction an instruction identifier maps to, one would have to look up
the index in the list of unique instructions in the sample set in order of appearance.
What type of instruction was sampled most often is useful information for performance
analysis, so this information should be easier to retrieve.

We implemented a cursor tooltip that shows when the cursor hovers over the
Instruction UID axis. The tooltip displays the instruction type the instruction UID
maps to.

For some applications, finer or more coarse histogram bins may be useful. More
coarse histogram bins are better for performance, and appear smoothed, while finer

19

3 Implementation

histogram bins might be necessary to avoid aliasing of discrete values into the same
bin. We implemented a slider that allows users to control the number of histogram bins
in the range of 50 to 1000. With less than 50 bins, significant aliasing, for example, of
instruction UIDs would occur. More than 1000 histogram bins are not desirable because
of the limited resolution of screens. Assuming a height of the parallel histograms of
500 pixels (about half of the vertical resolution of a common full HD screen), 1000
histogram bins cannot be represented with one line of pixels per histogram bin. Even
when maximizing the parallel coordinates view to take all available screen space, more
than 1000 histogram bins cannot be displayed on most screens.

To fit different analysis needs, we implemented multiple color modes for the con-
necting lines in the parallel coordinates view. By default, all lines are assigned a color
based on the represented correlation strength relative to all other correlation strengths
between the same axis pair. Pre-selected and all other samples share the same minimum
and maximums for visualization by default so that users instantly get a sense for the
relevance of the pre-selected sample set in the context of all samples. Users can uncheck
a box to enable separate coloring ranges for pre-selected and other samples.

(a) All bins (b) First axis (c) Second axis

Figure 3.3: Parallel coordinates coloring modes.

We implemented additional coloring modes that color correlation lines in other
ways than the default, based on the correlation strength relative to the minimum and
maximum strengths of correlations between the axis pair. With first axis coloring, every
line is colored based on the correlation strength relative to the bin on the left axis.

20

3 Implementation

Second axis coloring does the same for the right axis. In figure 3.3 we can see the effects
of the different modes. In the default all bins coloring, lines are colored based on their
correlation strength relative to the minimum and maximum strength of all correlations
between the source line and data source axes. Only the line between source line 37
and data source 1 is dark blue. We cannot make a statement about the correlations
strengths of other lines from their light blue color.

If for example, we wanted to find out, if there is a source line, that has its strongest
correlation with a different data source than 1 (the L1 cache), without the different
coloring modes, we would have to preselect all source line bins to see the correlation
strengths relative to only that bin. With first axis coloring, we can make the strongest
correlation of every bin on the left side stand out. We can easily tell from the second
image, that all dark blue lines are connected to 1 on the data source axis. With this tool
we can quickly answer our initial question, all lines have their strongest correlation
with data source 1.

3.2.6 Performance Analysis of Parallel Coordinates View

Our new implementation, despite the additional cost of calculating correlation matrices,
performs equally good or better than the original implementation. It also scales better
for high numbers of samples. The additional computations are offset by the reduced
number of lines that must be drawn.

We performed all performance measurements on a desktop computer running
Ubuntu 23.04 on an AMD R9 3900X 12 core CPU with a maximum operating frequency
of around 4.3GHz. Graphics were rendered using a NVIDIA RTX 2070 Super graphics
card. All tests were performed in full-screen mode at 1080p resolution. By default, we
used 100 histogram bins.

We instrumented MemAxes to report the time needed to render a frame. Our test con-
sisted of moving the CPU core axis to the left edge of the parallel coordinates view, then
to the right edge. We recorded fewer frames from the original implementation because
MemAxes rendered fewer frames in the time we performed our inputs. We did not
filter out frames where the parallel coordinates connecting lines were not recalculated.
For this reason, both sets of frame times contain times below one millisecond.

21

3 Implementation

0 50 100 150 200 250 300

0

100

200

300

400

frame number

fr
am

e
ti

m
e

(m
s)

Frame times 39866 samples

Original implementation
Our implementation

Figure 3.4: Frame times when moving an axis in the parallel coordinates view.

Axis movement in the original implementation feels noticeably detached from the
user input because of the high frame times up to 402ms. Still, the original imple-
mentation is perfectly usable, at least on the powerful desktop test system. Our
implementation achieves much lower frame times consistently.

We also used MemAxes on a less powerful laptop without a dedicated graphics card
in a Windows Subsystem for Linux (WSL) virtual machine. In that scenario, the frame
times of the original implementation were about two seconds, mainly because rendering
of 677722 lines per frame is beyond the processor’s capabilities. Our implementation,
which draws only about 2000 lines per frame when used with the default number of
histogram bins, consistently achieved frame times below 100ms.

We performed a similar test with a sample set consisting of nearly ten times as many
samples. In the second test, our implementation still achieved interactive frame rates,
while the original implementation displayed new frames only once every two seconds.

22

3 Implementation

0 50 100 150 200

0

1,000

2,000

frame number

fr
am

e
ti

m
e

(m
s)

Frame times 302391 samples

Original implementation
Our implementation

Figure 3.5: Frame times when moving an axis in the parallel coordinates view.

We will further investigate the performance of MemAxes for different numbers of
samples.

In the stacked bar graph visualizing the parts of frame time spent on different
calculations, we can clearly see that creating the line geometry causes the biggest
fraction of frame times in the original implementation. This is mainly because of
comparatively slow memory accesses in a vector of structs.

23

3 Implementation

2 4 6 8 10 12 14 16 18 20 22 24 26
0

100

200

300

400

frame number

ru
nt

im
e

of
jo

b(
m

s)
Frame time shares of the original implementation 39866 samples

Create line geometry Render line geometry

Figure 3.6: Shares of time to calculate a frame of parallel coordinates visualization in
the original implementation.

The computational cost of the original implementation scales in O(n) with the
number of samples. Because our iterations must also iterate all samples, it has the
same scaling behavior for high numbers of samples, but our code runs much faster.
The reason for this is that the code does not access values from the vector of structs,
but instead iterates lines of the bin matrix. While creating the geometry in the original
implementation took about 300ms, our implementation achieves times below 10ms.

We do not achieve the steady frame times of the original implementation because the
cost of calculating the correlation matrices depends on the axis order. Denser correlation
matrices take longer to compute because of caching. Pre-selection introduces additional
varying cost of logic determining if the currently processed sample is part of the
pre-selection. We clearly see in the frame time shares plot 3.7 that the time spent on
creating the correlation matrix displays the strongest variance.

Creating a list of vertices from the correlation matrix requires iterating the elements
of the correlation matrix twice. One time for finding the minimum and the maximum
value, and another time to generate a list of lines that have to be drawn. The size of the
correlation matrix is the square of the number of histogram bins. For this reason, frame
times of our implementation depend not only on the number of samples, but also on
the number of histogram bins. In practice, it is often possible to skip most rows of the
correlation matrix because the bin the row represents contains no elements.

24

3 Implementation

We can see in the plot of frame time shares of our implementation, that the cost of
our newly introduced operations is comparatively low.

We increased the number of points that need to be pushed to the vertices vector to
draw a line threefold because we no longer use line primitives, but pairs of triangles.
Unlike lines, for which a thickness can only be set for all lines, triangles allow for lines
of varying thickness. Because our approach to accumulated parallel coordinates uses
much fewer lines, the total number of vertices is still much lower than in the previous
implementation. We can see in the frame time shares plot, that generating the geometry
vector takes a comparatively small fraction of frame time.

5 10 15 20 25 30 35 40 45 50
0

5

10

15

frame number

ru
nt

im
e

of
jo

b(
m

s)

Frame time shares of our implementation for 39866 samples

Create correlation matrices Find minimum and maximum values
Create list of lines Sort lines

Create line geometry vector Render line geometry

Figure 3.7: Steps of our implementation of the parallel coordinates visualization and
their shares of time in displaying a frame. IBS example dataset.

We also performed performance analysis of our implementation for a larger sample
set. In plot 3.8 we can clearly observe that only the time spent on computing the
correlation matrix increases significantly, about four times for a sample set nearly ten
times as large. The time spent processing the lines did not increase significantly because
the number of histogram bins did not increase. The number of lines that have to be
rendered also did not increase.

25

3 Implementation

5 10 15 20 25 30 35 40 45 50
0

10

20

30

frame number

ru
nt

im
e

of
jo

b(
m

s)
Frame time shares of our implementation for 302391 samples

Create correlation matrices Find minimum and maximum values
Create list of lines Sort lines

Create line geometry vector Render line geometry

Figure 3.8: Steps of our implementation of the parallel coordinates visualization and
their shares of time in displaying a frame. High number of samples.

We know from our analysis of contributors to computational cost, that the size of
the correlation matrix is the square of the number of histogram bins. The size of that
matrix is important because the matrix must be iterated twice. To test the behavior of
our implementation for larger numbers of bins, we recorded frame times for a large
number of samples and the maximum number of histogram bins, 1000. In the plot 3.9
we see increases in the areas of calculating the minimum and maximum value, creating
the geometry vector and rendering the lines. Unlike the part creating the list of lines,
the minimum and maximum calculation is not optimized to skip lines in the correlation
matrix that only contain zero values. For this reason we see a strong increase in the
frame time fraction of the minimum and maximum calculation, but no such increase
in the part that creates the list of lines. The increase in time spent on rendering the
geometry is due to the higher number of lines that have to be drawn.

26

3 Implementation

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

frame number

ru
nt

im
e

of
jo

b(
m

s)
Frame time shares of our implementation for 302391 samples 1000 histogram bins

Create correlation matrices Find minimum and maximum values
Create list of lines Sort lines

Create line geometry vector Render line geometry

Figure 3.9: Steps of our implementation of the parallel coordinates visualization and
their shares of time in displaying a frame. High number of samples and
high number of histogram bins.

3.3 Code View

For this work, we adapted the code view to properly display IBS samples in the top
offenders plot. We identify usability issues with the original implementation and
describe changes made to the code view to address those issues and integrate the code
view with the pre-selection system.

3.3.1 Adapting the Top Offender Plot to IBS Samples

MemAxes assumes that the Latency attribute of samples contains the total mem-
ory access latency for the sampled operation. In AMD IBS samples, the attribute
IbsDcMissLat contains information about the latency of memory accesses, but only
of accesses that missed in the L1 cache. The latency is measured in cycles starting
at the cycle the cache miss was detected. Operations that hit in the L1 cache have
IbsDcMissLat of 0. This warps the top offender ranking, for example in the matrix

27

3 Implementation

multiplication IBS sample set, the line that performs most computations is not first in
the top offenders ranking because the L1 hits are assumed to be truly instantaneous,
although in reality they also have a latency. This version of the top offenders ranking
can mislead users to believe that code that is executed fewer times but misses the L1
cache, is more expensive overall than code that is executed many more times, but does
not miss the L1 cache. This misconception can lead to underperforming optimizations
because optimization of a section cannot reduce total runtime by more than the runtime
of the unoptimized code section.

To not make this unrealistic assumption of free L1 cache accesses, we implemented an
L1 latency estimate that is added to all IbsDcMissLat values to get the final Latency val-
ues. Because the latency of L1 caches varies between processors of different generations,
and for example for AMD Zen 4 processors, varies between integer and floating-point
units [26], we let the user set the L1 latency estimate. On loading an IBS data set, the
user is prompted to input an estimate for the latency of L1 cache access.

3.3.2 Integration into the Pre-Selection System

To inspect the contents of a line of code in the code editor, it was necessary to select the
code block in the top offenders view. Forcing users to select a code block to inspect
the code is inconvenient because users will have to undo such a selection afterwards.
We implemented a new feature to jump to the code line in the code editor when the
cursor hovers over a code block in the top offender view to alleviate the need to make
a selection for looking up a single value.

We also integrated cursor hover in the code view into the pre-selection system of the
parallel coordinates view. This allows users to preview the effects of selecting a code
block before committing to the selection. Previously, to find out what part of the code a
value rang in the parallel coordinates has the strongest correlation with, a selection was
necessary. We extended pre-selection to make looking up the code with the strongest
correlation to a value in the parallel coordinates faster. The code view jumps to the line
that is most strongly correlated with the histogram bin the cursor hovers over. Because
the code view jumping to a different line can be distracting when working with the
parallel coordinates, this behavior can be deactivated by clicking a checkbox.

3.4 Hardware Topology View

The hardware topology view received two main updates, support for the pre-selection
system and highlighting of resources without samples. We also fixed the scaling
behavior of objects in hardware topology plots with many resources. Instead of
enforcing a minimum distance between objects on the same level that might result in

28

3 Implementation

(a) Original scaling (b) Our scaling rules

Figure 3.10: Hardware topology visualization scaling for high number of compute
resources.

objects being reduced to thin lines, we allow for less distance between objects if the
objects would be too small. The new scaling is preferable because the old scaling failed
at providing space that can be colored to communicate the utilization of the resource.
Our solution ensures that every object has as much area as possible at a given scale.

3.4.1 Pre-Selection

We implemented a selection preview for selecting samples associated with a resource
in the hardware topology view. When the cursor hovers over a resource, the samples
associated with that resource are pre-selected in the parallel coordinates view. Imple-
menting this feature was harder than pre-selection for the code view because attribution
to a hardware resource is not as easy to check for a given sample as source line and
source file ID. The hardware topology view itself uses a list of pointers to samples to
store which samples are associated with a hardware resource.

Because a list of sample struct pointers does not allow for efficient categorization
whether a sample is part of the set of samples, we implemented a second data structure
for every hardware resource. A list stores the sample UIDs in ascending order. The
parallel coordinates correlation matrix computation iterates the samples in the order
of ascending unique identifiers. For every UID between 0 and the number of samples,
a sample exists. This allows MemAxes to instead of searching for every UID in the
list, to keep a pointer on the next element in the list of sample UIDs related to the
resource that could match the sample UID in the iteration. When the two UIDs match,
the sample with that UID is part of the pre-selected set and the pointer in the smaller

29

3 Implementation

(a) No highlighting (b) Highlighting

Figure 3.11: Highlighting of resources without associated samples.

set is increased.

3.4.2 Highlighting Resources without Samples

It might be useful to easily distinguish between resources with few samples and without
samples. For this reason, we implemented functionality to display all resources without
associated samples in dark blue. The dark blue color clearly sets empty resources apart
from those with samples, which have colors from a yellow to red palette.

3.5 Command Search

As a tool that allows exploring the correlations between tens of attributes of thousands
of samples, MemAxes confronts the user with an enormous search space. Especially
the parallel coordinates give little context to the data. Currently, IBS-specific data like
TLB misses or mispredicted branches can only be visualized as axes in the parallel
coordinates. This approach requires that users know which axes they have to add to
the parallel coordinates view, and what the semantics of the values and the axes are.

We want to introduce a new interaction idiom that can assist users with controlling
the visualization in MemAxes. Users should be able to perform management of axes in
the parallel coordinates view and selections based on higher level input referencing
not names and value ranges, but semantics. Such a tool would also be a good starting
point for new or infrequent users, reducing the burden of having to learn the semantics
of the axes in the parallel coordinates view.

30

3 Implementation

We first evaluated a design where users are presented recommended actions, which
can be performed with a single press of a button. The results were not satisfying. Users
could be walked through a basic analysis cycle, but with this system, only the developer
would be dictating to the user, what might interest them. Of course, such a system is
not easily extensible and cannot handle data it was not designed to handle. The system
also did not allow the user to express what they are actually looking for. To allow for
more expressive user input than choosing a recommended command from a menu, we
started to implement a text-based search function for commands.

MemAxes already has a console that can be used for selecting samples through
queries. We do not aim to extend this query functionality, which is not based on
semantics, but purely on axis names and value ranges. The new search functionality
should also be able to handle input based on semantics. The console can only process
input conforming to its query language. The new search feature should behave more
like a search engine that recommends results that might be of interest to the user,
and not require input to strictly adhere to some format. Unlike the console, our new
interaction idiom should also be useful for rearranging the parallel coordinates view
to investigate the correlations of two axes. We want to put the command search box
front and center in the UI design, so we placed it on top of the page in the middle of
the screen. This placement for a search bar should be familiar to many users from web
browsers.

Figure 3.12: User interface of command search.

The main challenge of designing the new semantics-based search was defining a
specification that allows for free form input while providing the outputs that users
expect. To keep the scope of this work reasonable, we do not want to go into the topic
of Natural Language Processing (NLP) but interpret user input based on simple rules.

3.5.1 Specification Design

We want to enable three types of interactions through command search.

31

3 Implementation

• Show and hide axes. This is the most important usability feature of command
search because it removes the need to navigate the axis names drop-down menu.
The speedup in this scenario is enormous because the dropdown menu contains
up to 72 axes, while command search recommends fewer axes that match the user
input. Because it is not required that user input matches the axis name perfectly,
we also alleviated the need for users to know exactly the name of an axis.

• Select is the action that profits the most from an interface that utilizes semantics
of user input. With command search, users should not need to know which axis
they have to bring to the parallel coordinates view, and what value range they
have to select to observe some phenomenon. With command search, they should
be able to search for the name of the phenomenon. Alternatively, users should be
able to select values on axes through command search by typing minimum and
maximum values.

• To Correlate two phenomena without command search requires the user to know
the names of the axes they want to investigate the relations of, potentially add
them to the parallel coordinates view, and move the axes next to each other
by drag and drop. Command search should allow to correlate two axes or
phenomena with a single command. Optionally, users should also be able to
specify value ranges to be selected.

The parsing of user input should give a result for every input, but to keep the complexity
of parsing manageable, we make some assumptions about the user input.

• Only one command at a time. Users are not supposed to issue multiple commands
through one input.

• Verb first. If user input features the name of a command, it is either the first word,
or will be ignored.

• Words can contain numbers, but not only numbers.

• Names of Commands, axes or phenomena only consist of words.

• Clear separation. The two axis or phenomena names used in the correlation
actions are separated by numbers for value range selection, or a "with" keyword.

3.5.2 Software Design

Our goal was to design the command search software to be as extensible as possible.
It should support manipulating any axis of the parallel coordinates plot, even those

32

3 Implementation

for custom attributes. Defining a new group for semantic search should require only
minimal changes to the code of MemAxes.

We created two abstractions for the command search system. Action and Group.
Actions are abstractions for commands that can be executed. We created subclasses

of Action for selection, show, hide and correlate actions.
Groups define a function to select the members of the group. Groups can be defined

by an axis and a value range, or a custom type of Group can be created with custom
functionality, like the AllGroup undoing all selections.

To manage the search box, we implemented an ActionManager Qt widget. When
the user inputs text into the search box, actions that fit the user input are created.
A dropdown recommendations list, like in web search engines, contains the text
descriptions of the actions.

We split parsing the user input into two subtasks

• Determining the best match for the meaning of every block. For this we need a
string distance function that accounts for how the user is most likely to complete
their input.

• Splitting the input into blocks of meaning. For example, the name of an axis and
a command word, should be in separate blocks. We perform splitting based on
our previously defined assumptions about the user input.

3.5.3 Interpreting Incomplete Blocks of User Input

As an abstraction for strings that should be matched against user input, we introduce
Phrases. We implemented two algorithms for determining the distance between user
input and a Phase, Longest Common Subsequence (LCS) [29] and Levenshtein Distance
[30].

Both algorithms calculate so-called edit distances, the number of edits a user would
have to make to transform the input into the phrase. LCS only accounts for insertions
and deletions, Levenshtein distance also allows substituting characters [31]. We normal-
ize the edit distance by division by the length of the phrase, similar to [32]. Without
normalization, shorter phrases would have lower edit distances than longer ones, even
if no character of the user input matches the shorter phrase. Because it is unlikely, if
no character matches the short phrase, that the user intends to type the phrase, we
normalize to assign short phrases comparatively higher distances in such scenarios.

We chose Levenshtein distance over LCS because it handles typos better. Levenshtein
distance has a higher tolerance for typos because substituting characters is treated
as a single operation of cost one, not two operations as in LCS. One can also define
custom distances of character substitutions in Levenshtein distance, for example, a

33

3 Implementation

lower distance for letters located next to each other on a standard keyboard [31]. Our
implementation implicitly defines a zero distance between upper- and lower-case letters,
as it is not case sensitive. We also defined an equality of blanks and underscores because
users are unlikely to use underscores to separate words, but the IBS example data set
uses underscores to separate words in the names of IBS-specific attributes.

The recursive definition of Levenshtein distance lev of strings a and b is

lev(a, b) =

|a| |b| = 0
|b| |a| = 0
lev(tail(a), tail(b)) a[0] = b[0]

1 + min

lev(tail(a), b)
lev(a, tail(b))

lev(tail(a), tail(b))

(3.1)

where tail is the function returning all of a string except the first character [30]. To
better predict user intent, we implemented different costs of actions. Insertions have a
low cost (0.3) because users are assumed to be more likely to input additional characters
than to delete their input. For example, if the input was "abcd", and recognized phrases
are "abc" and "abcdefg", the text that is a possible completion of the input should have
a lower distance than the text that shares a prefix with the input, but also has characters
that do not match the input.

We implemented the Wagner-Fischer matrix algorithm for Levenshtein distance. In
the Wagner-Fischer matrix, every element corresponds to the distance of prefixes of the
two strings. An element at Wij can be calculated from its left, upper left, and upper
neighbor. If the characters at the indices i and j are equal, the value of Wij is Wi−1,j−1.
Otherwise, it is the minimum of Wi−1,j−1 + substitution cost, Wi−1,j + deletion cost and
Wi,j−1 + insertion cost[33].

34

3 Implementation

(a) Standard cost (b) Custom cost of insertion

Figure 3.13: Wagner-Fischer matrix example. The string "baa" is transformed into "aab".
The result is in the lower right corner. Arrows mark which data was used
to calculate the value of a cell. Highlighted arrows mark the path that
leads to the result.

3.5.4 Splitting the Input into Blocks

We first split the user input into words. We combine words into blocks based on our
previous assumptions about the user input. Because we require that the first word be a
verb, or otherwise, there is no verb, we check whether the first word strongly matches
an action type phrase. A new block starts after numbers, which are assumed to be
minimum and maximum value range quantifiers. The word "with" cannot be part of a
block because it indicates the start of a new block.

When the user defines the type of action, MemAxes constructs the actions of that
type for the groups with the names that match the remaining user input best. If no
block is part of the user input, MemAxes uses the index of the axis in the dataset to
order recommendations. For correlate actions, if the user input only contains one block,
MemAxes recommends correlating the axis with the name that matches the block best,
with the source line axis, the CPU Core axis and the Data Source axis. Our assumption
is, that users are more likely interested in how a phenomenon can be attributed to the
code, if its distribution across processors was balanced, and which levels of the memory
hierarchy were used in the memory accesses related to the phenomenon.

If no action type was defined by the user, but a block is given, we interpret a single
block as the name of a group. For the groups that match the input best, we perform
context-aware recommendation of actions. If the group refers only to an axis without

35

3 Implementation

selection limits, we either recommend showing or hiding the axis depending on whether
it is visible in the parallel coordinates view. In case the group refers to a selectable set
of samples, we recommend a select action. If the input is split into more than one block,
we recommend actions correlating the groups the block most likely refer to.

3.5.5 Evaluation

We evaluate the performance of our input processing through some example scenarios.
In general, we want to minimize the number of characters a user should have to input.
Ideally, the command the user intends to execute should be the first recommended
command. Our system should be able to handle some errors in the input.

The implemented variation of Levenshtein string distance generally performs well
when confronted with abbreviated names. Because of the low cost of insertions and the
normalization, when typing a common prefix, followed by a distinct letter, the intended
action is suggested.

There is one main class of problems where our implementation does not perform
well. Reordered names of groups, like "branch mispredicted" instead of "mispredicted
branches", are not recognized as similar to the group name. This is because Levenshtein
distance does not give a lower cost to strings that are reordered versions of one another.

This is mainly a problem for the automatically generated group names, making it
harder to perform an action based on parts of a name that might be in the wrong order.
For custom groups, like L1 cache misses, this is less of a problem because aliases can
easily be introduced in our system. Still, this is not an ideal solution, as it increases the
amount of work necessary to implement a custom group.

36

3 Implementation

Intended command Input
First
Appear-
ance

Highest
position

select L1 cache miss L1 misses 2 2
L1 cache miss 2 1
miss L1 - -

hide timestamp timestamp 1 1
hide timestamp 6 1

correlate L1 TLB miss with
source line

correlate L1 TLB miss with
source line

12 1

L1 TLB with source line 15 1
correlate instruction UID
with data source

correlate instruction UID
with data source

14 1

instruction UID with data
source

23 1

correlate L2 TLB miss with
load latency

correlate L2 TLB miss with
load latency

28 1

L2 TLB with latency 14 1
select mispredicted
branches

brn misp - -

select brn misp - -
misp brn 4 1

Table 3.1: Performance of command search in example scenarios. We tested, if com-
mand search would present the intended command for different user inputs.
Performance metrics are the number of characters the user has to type before
the intended action first appears in the recommendations (lower is better),
and the highest position of the intended command in the recommendations
ranking (lower is better).

37

4 Conclusion and future work

In this work, we presented new features we implemented in the performance visual-
ization tool MemAxes. Our main contribution was implementing compatibility with
samples from AMD processors, but in adapting the visualization to work with the
newly available data, we also overhauled the user interface of MemAxes. Lastly, we
introduced a new interaction scheme that makes low-level data accessible through
high-level requests.

To make the core functionality of MemAxes compatible with AMD IBS samples,
we had to implement decoding of the cache level used from IBS-specific sample
attributes. We also introduced user-defined remapping of attribute names to ease the
strict requirements on the input format.

For visualization of the data specific to IBS, we focused mainly on the parallel
coordinates view. We improved the legibility of the view by communicating the
strength of correlations through color. Because this new approach drastically reduces
the number of lines that must be drawn, we were also able to improve performance.
The pre-selection feature makes it easier for users to quickly browse the dataset.

Pre-selection was implemented as a global system for exploring the correlations
between objects from different views. While previously many selections might have
been necessary to answer the question "which objects have samples correlated with this
attribute value?", with pre-selection users can easily browse the correlations of different
objects without performing a single selection.

We introduced command search as a tool for users to interact with MemAxes on
higher-level terms. Command search allows users to select sets of samples through
text input describing phenomena, not just value ranges. Users can also rearrange
the parallel coordinates view using command search to inspect the correlations of
phenomena.

In the areas where we improved MemAxes, there is potential for future work.

• MemAxes could be made compatible with performance data from more types of
hardware. Most of the compute performance of a modern HPC node is provided
by accelerators, often General Purpose Graphics Processing Units (GPGPU). For
analysis of on-node performance, integrating accelerator performance into the
visualization could be useful. GPGPUs do not provide performance samples like

38

4 Conclusion and future work

processors, so integrating accelerator performance in the MemAxes visualization
poses additional challenges.

• Command search could be extended to give context-aware recommendations.
Currently command search processes only the user input and state of the parallel
coordinates. A more advanced command search tool could give recommendations,
which characteristics might be worth investigating based on automatic analysis
of the sample set. A step in this direction, although without the text-based
interaction, was also proposed in a 2016 paper on MemAxes [3].

We hope that the new features of MemAxes presented in this work make the tool more
useful and provide a better basis for future improvements.

39

List of Figures

2.1 The 3 views of MemAxes. View A is the code view. B is the hardware
topology view. C is the parallel coordinates view. 5

2.2 Visualization modes of the hardware topology view 5
2.3 Code view in MemAxes. 7
2.4 Parallel Coordinates example. 9

3.1 Comparison of original parallel coordinates implementation with over-
plotting and our implementation. 17

3.2 Pre-Selection in MemAxes. The cursor hovers over the source line axis.
The samples associated with the bin the cursor hovers over are highlighted. 18

3.3 Parallel coordinates coloring modes. 20
3.4 Frame times when moving an axis in the parallel coordinates view. . . . 22
3.5 Frame times when moving an axis in the parallel coordinates view. . . . 23
3.6 Shares of time to calculate a frame of parallel coordinates visualization

in the original implementation. 24
3.7 Steps of our implementation of the parallel coordinates visualization and

their shares of time in displaying a frame. IBS example dataset. 25
3.8 Steps of our implementation of the parallel coordinates visualization and

their shares of time in displaying a frame. High number of samples. . . 26
3.9 Steps of our implementation of the parallel coordinates visualization and

their shares of time in displaying a frame. High number of samples and
high number of histogram bins. 27

3.10 Hardware topology visualization scaling for high number of compute
resources. 29

3.11 Highlighting of resources without associated samples. 30
3.12 User interface of command search. 31
3.13 Wagner-Fischer matrix example. The string "baa" is transformed into

"aab". The result is in the lower right corner. Arrows mark which data
was used to calculate the value of a cell. Highlighted arrows mark the
path that leads to the result. 35

40

List of Tables

3.1 Performance of command search in example scenarios. We tested, if
command search would present the intended command for different user
inputs. Performance metrics are the number of characters the user has
to type before the intended action first appears in the recommendations
(lower is better), and the highest position of the intended command in
the recommendations ranking (lower is better). 37

41

Bibliography

[1] M. B. Thomas Sterling Matthew Anderson, “High performance computing: Mod-
ern systems and practices,” in Morgan Kaufmann, 2018, ch. 1.1 High Performance
Computing Disciplines.

[2] R. Spence, Information Viszualization, Third. Springer, 2014.

[3] A. Giménez, T. Gamblin, I. Jusufi, A. Bhatele, M. Schulz, P.-T. Bremer, and B.
Hamann, “Memaxes: Visualization and analytics for characterizing complex
memory performance behaviors,” IEEE transactions on visualization and computer
graphics, vol. 24, no. 7, pp. 2180–2193, 2017.

[4] A. Giménez, T. Gamblin, B. Rountree, A. Bhatele, I. Jusufi, P.-T. Bremer, and
B. Hamann, “Dissecting on-node memory access performance: A semantic ap-
proach,” in SC’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, 2014, pp. 166–176.

[5] A. Giménez, B. Husain, D. Böhme, T. Gamblin, and M. Schulz, Mitos: A simple
interface for complex hardware sampling and attribution, 2015.

[6] J. L. Hennessy and D. A. Patterson, “Computer architecture: A quantitative
approach,” in Elsevier, 2011, ch. 1.1 Introduction.

[7] J. L. Hennessy and D. A. Patterson, “Computer architecture: A quantitative ap-
proach,” in Elsevier, 2011, ch. 3. Instruction-Level Parallelism and Its Exploitation.

[8] J. L. Hennessy and D. A. Patterson, “Computer architecture: A quantitative
approach,” in Elsevier, 2011, ch. 4. Data-Level Parallelism in Vector, SIMD, and
GPU Architectures.

[9] J. L. Hennessy and D. A. Patterson, “Computer architecture: A quantitative
approach,” in Elsevier, 2011, ch. 5. Thread-Level Parallelism.

[10] M. B. Thomas Sterling Matthew Anderson, “High performance computing: Mod-
ern systems and practices,” in Morgan Kaufmann, 2018, ch. 2. HPC Architecture
1: Systems and Technologies.

[11] T. G. Alfredo Giménez, Memaxes github repository, 2014. [Online]. Available: https:
//github.com/LLNL/MemAxes.

42

https://github.com/LLNL/MemAxes
https://github.com/LLNL/MemAxes

Bibliography

[12] N. E. Simon Pickartz Manolis Marazakis, Deep-sea, 2021. [Online]. Available:
https://www.deep- projects.eu/images/DEEP- SEA- deliverables/DEEP-
SEA_D31_Software_specification_Published.pdf.

[13] A. Fog, The microarchitecture of intel, amd, and via cpus, 2023. [Online]. Available:
https://www.agner.org/optimize/microarchitecture.pdf.

[14] J. L. Hennessy and D. A. Patterson, “Computer architecture: A quantitative
approach,” in Elsevier, 2011, ch. 2. Memory Hierarchy Design.

[15] T. Rauber and G. Rünger, “Parallel programming: For multicore and cluster
systems,” in Third. Springer science & business media, 2022, ch. 2.9 Caches and
Memory Hierarchy.

[16] D. A. Patterson and J. L. Hennessy, “Computer organization and design arm
edition: The hardware software interface,” in Morgan kaufmann, 2016, ch. 7.3
Shared Memory Multiprocessors.

[17] C. Lameter, “Numa (non-uniform memory access): An overview: Numa becomes
more common because memory controllers get close to execution units on micro-
processors.,” Queue, vol. 11, no. 7, pp. 40–51, 2013.

[18] A. Inselberg and B. Dimsdale, “Parallel coordinates: A tool for visualizing multi-
dimensional geometry,” in Proceedings of the first IEEE conference on visualization:
visualization90, IEEE, 1990, pp. 361–378.

[19] J. Heinrich and D. Weiskopf, “State of the art of parallel coordinates.,” Eurographics
(state of the art reports), pp. 95–116, 2013.

[20] M. A. Sasongko, M. Chabbi, P. H. Kelly, and D. Unat, “Precise event sampling on
amd versus intel: Quantitative and qualitative comparison,” IEEE Transactions on
Parallel and Distributed Systems, vol. 34, no. 5, pp. 1594–1608, 2023.

[21] G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint
computer conference, 1967, pp. 483–485.

[22] J. L. Hennessy and D. A. Patterson, “Computer architecture: A quantitative
approach,” in Elsevier, 2011, ch. 1.9 Quantitative Principles of Computer Design.

[23] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann,
and P.-T. Bremer, “State of the art of performance visualization.,” EuroVis (STARs),
2014.

[24] P. J. Drongowski, Instruction-based sampling: A new performance analysis technique
for amd family 10h processors, 2007.

43

https://www.deep-projects.eu/images/DEEP-SEA-deliverables/DEEP-SEA_D31_Software_specification_Published.pdf
https://www.deep-projects.eu/images/DEEP-SEA-deliverables/DEEP-SEA_D31_Software_specification_Published.pdf
https://www.agner.org/optimize/microarchitecture.pdf

Bibliography

[25] D. A. Patterson and J. L. Hennessy, “Computer organization and design arm
edition: The hardware software interface,” in Morgan kaufmann, 2016, ch. 5.4
Virtual Memory.

[26] Software optimization guide for the amd zen4 microarchitecture, Advanced Micro
Devices, 2023.

[27] Bios and kernel developer’s guide (bkdg) for amd family 16h models 30h-3fh processors,
Advanced Micro Devices, 2016.

[28] M. Novotny and H. Hauser, “Outlier-preserving focus+ context visualization in
parallel coordinates,” IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 5, pp. 893–900, 2006.

[29] D. S. Hirschberg, “Algorithms for the longest common subsequence problem,”
Journal of the ACM (JACM), vol. 24, no. 4, pp. 664–675, 1977.

[30] V. I. Levenshtein et al., “Binary codes capable of correcting deletions, insertions,
and reversals,” in Soviet physics doklady, Soviet Union, vol. 10, 1966, pp. 707–710.

[31] G. Navarro, “A guided tour to approximate string matching,” ACM computing
surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[32] F. Petroni and M. Serva, “Language distance and tree reconstruction,” Journal of
Statistical Mechanics: Theory and Experiment, vol. 2008, no. 08, P08012, 2008.

[33] R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,” Journal
of the ACM (JACM), vol. 21, no. 1, pp. 168–173, 1974.

44

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	High-Performance Computing
	MemAxes
	Hardware Topology View
	Code View
	Parallel Coordinates View

	Sampling and Mitos
	Sampling-based Performance Analysis
	Instrumentation
	Mitos Sampling Interface

	Differences between Samples from AMD and Intel Processors

	Implementation
	Reading IBS Samples
	Decoding Cache Levels
	Storing IBS-specific Data
	Processing non-conforming Axis Names

	Parallel Coordinates View
	Identification of Issues
	Redesigning the Parallel Coordinates to Improve Legibility
	Adding and Removing Axes
	Improved Axis Movement
	Usability Improvements
	Performance Analysis of Parallel Coordinates View

	Code View
	Adapting the Top Offender Plot to IBS Samples
	Integration into the Pre-Selection System

	Hardware Topology View
	Pre-Selection
	Highlighting Resources without Samples

	Command Search
	Specification Design
	Software Design
	Interpreting Incomplete Blocks of User Input
	Splitting the Input into Blocks
	Evaluation

	Conclusion and future work
	List of Figures
	List of Tables
	Bibliography

