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Abstract: Climate mitigation and adaptation planning (CMAP) has recently been implemented across
the EU-28 to reduce GHG emissions (CO2, CH4, N2O). Thus, the aim of this study was to provide
an overview of GHG emissions from the agricultural sector in the EU-28 from 1990 to 2019, and
cluster the EU-28 countries regarding their total GHG emissions. The results emphasize the positive
impact of CMAP through a negative trend of the total GHG emissions (−2653.01 thousand tons/year,
p < 0.05). Despite the positive and not significant trend of the total CO2 emissions, both CH4 and
N2O exhibited a negative and significant trend. At the country scale, Italy, the United Kingdom,
and the Netherlands showed the highest reduction in total GHG emissions, by −282.61thousand
tons/year (p < 0.05), −266.40 thousand tons/year (p < 0.05), and −262.91 thousand tons/year
(p < 0.05), respectively. The output of the multivariate analysis approach indicates changes in the
pattern of GHG emissions between 1990 and 2019, where CO2 emissions decreased in the case of
Poland and Czechia. The output of this study highlights the positive impact of CMAP, adopted by EU
countries, in minimizing GHG emissions. Despite some fluctuations in CO2 emissions, strategies for
attaining carbon neutrality in the agricultural sector, across the European Union, should be pursued.

Keywords: climate policy; GHGs emissions; PCA; IPCC; CSA

1. Introduction

Rapid population growth and the concomitant increase in anthropogenic activities
have resulted in climate change-induced challenges, and pose major threats to the sus-
tainability of natural resources and the stability of the Earth’s biosphere, especially in the
recent past [1]. These challenges are leading to uncontrolled accumulation of greenhouses
gases in the Earth’s atmosphere [2]. The global concentration of greenhouse gas emissions
(GHGs) has been accelerating particularly rapidly since the beginning of the industrial era
because of various anthropogenic activities [3]; for instance, although the concentration of
CO2 in the 1760s was 280 ppm, the current estimate is 410 ppm, and is expected to reach
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590 ppm by the end of 2100 [2]. The global tracking of greenhouse gas emissions provides
a framework for assessing the contribution of individual countries to the climate change
challenge. Climate change indicators define the emissions of the most significant GHGs
from human activity, atmospheric concentrations, and how emissions and concentrations
have evolved over time [4,5]. These indicators employ the concept of “global warming
potential” for comparing the emissions of gases, in order to convert the quantities of other
gases into CO2 equivalents. The emissions of GHGs from human activities are rising and
exacerbating climate change. This increasing level of GHGs is resulting in many more
climate-related changes at the local to global scale [6].

Since the beginning of the industrial age, CO2 and other GHGs in the atmosphere have
been on the rise, primarily because of human activity. The net emissions of greenhouse
gasses from human activities worldwide increased to 43% between 1990 and 2015. During
this period, carbon dioxide emissions, representing approximately 35% of the total emis-
sions, have grown by 51% [7]. The industrial and agricultural sectors accounted for 31.6%
and 13.8%, respectively, and were considered to be major sources of GHG emissions, while
12.2% of the emissions came from land use changes [8]. Unpredictably, GHG emissions
from the agricultural sector increased by 1.1% between 2000 and 2010 [9]. Many factors,
such as agricultural expansion and/or intensification, deforestation, land clearing, fertiliza-
tion, livestock production, and traditional soil management and cultivation, alter the global
geochemical cycle and enhance GHG emissions from the agricultural sector, especially in
developing countries [10]. Interestingly, Tian et al. [11] reported that 87% of the total N2O
emissions originated from the agricultural sector (71% agricultural + 16% N-fertilization),
with cropland farming accounting for roughly 5% of all anthropogenic GHG emissions [12].
Therefore, many databases and analyses were developed to address the current and future
contribution of the agricultural sector to climate change, and formulate adaptation and
mitigation strategies. Politically, the assessment of GHG emissions from the agricultural
sector, along with related sectors, such as forestry and other land use (i.e., AFOLU), will
support the discussion about the role of agriculture in climate mitigation within the United
Nations Climate Change Conference (COP26).

Recently, the GHG emissions from the European Union’s agricultural sector were
estimated to be 10% of the total GHG emissions [13]. Although the total amount of EU-27
GHG emissions in 2019 was 4.065 MtCO2e [14], the annual estimate of GHG emissions by
agriculture was 436 million tons [15]. This suggests that energy is one of the main inputs
in the agricultural system [16], whereas the energy from creating fossil fuels is mainly
utilized by agriculture and multiple other actions, including forestry, which form 2.78% of
the European Union correlated activities [17]. The Netherlands has the highest share of
agricultural energy usage, with 8.1 percent, followed by Poland, which has 5.6 percent. In
contrast, Romania accounts for the lowest percentage overall [18]. The growing quantity of
energy is due to the neoteric agricultural activities, which are partly responsible for the
persistent increase in GHG emissions [19]. About half of the energy used in the agricultural
sector is derived from diesel and gas oil, which make up the highest share of energy
utilized in the agricultural sector in the EU [15]. Regardless of the size and variation in the
contribution of the agricultural sector in the national GDP in each member country of the
EU, the EU has achieved a 23% reduction in GHG emissions in the last two decades [13].

Since its foundation, the EU has adopted many strategies, plans, and programs for
environmental sustainability, with emphasis on energy management and the reduction
in GHG emissions [20,21]. The common agricultural policy (CAP) is a policy created
by the European Union, with the aim of implementing activities to integrate climate
change reduction procedures into its policies [22]. During 2014–2020, over one hundred
billion Euros, accounting for about 25% of the CAP budget, was the contribution of the
commission to reduce, alleviate, and adjust to climate change. The European Green Deal
strategy has recently been adopted, which is designed to promote climate neutral actions
and resource-efficient consumption [20,23]. Many studies were carried out to assess low-
carbon economy (LCE) within the agricultural sector. In view of this, Piwowar et al. [24]
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stress the importance of raising the awareness of farmers about LCE practice in rural areas
of Poland. In Spain, Baccour et al. [25] suggested that a combination of measures could help
reduce GHG emissions from the agricultural sector by 75%. Interestingly, Bajan et al. [20]
proved that the usage of renewable energy in food production is approaching the expected
strategic goals within V4 countries (Czechia, Slovakia, Hungary, Poland), resulting in some
of the successes recorded in the reduction in GHG emissions from the agricultural sector
in some EU countries (1990–2018). However, EU polices in agricultural sector led to a
reduction of GHG emissions [26].

Promoting efforts towards minimizing GHG emissions at the field scale are required
to attain the aspiration of GHG reduction in Europe by 2050 [27]. In addition to an efficient
energy toolkit, water and carbon footprints for agriculture output are being established by
the European Union. This is aimed at reducing water shortage, enhancing energy efficiency,
and excluding gas emissions by 2050 [28]. The objectives laid out under the EU effort
sharing law may vary slightly among member states, and there are exceptions, even though
most EU member states do not have agricultural targets. The Netherlands, for instance,
has established an emission reduction target of 3.5 MtCO2eq yr−1 by 2030, which should
be reached by the co-funding of mitigation measures, and governmental and business
cooperation in their National Agreement on Climate Change (NACC) [29]. Other member
states have set carbon budgets in their national low-carbon strategy. France, for example,
projected a cut in GHG emissions of 8% by 2023, 13% by 2028, and 20% by 2033, based on
a benchmark of the 2015 levels [30]. The UK has also created carbon budgets that have
strategic sector objectives, including a 20% reduction in agriculture, forestry, and other land
use emissions from 2016 to 2030 [31]. In its 2050 climate action plan, Germany has more
aggressive targets of reducing agriculture emissions by 31–34% in 2030, using a 1990 bench-
mark [32]. The climate action plan of Ireland provides a de-carbonization route to 2030,
consistent with the adoption, by 2050, of net zero emission objectives [33]. There are some
measures for reducing GHGs from the agricultural sector, such as cost-effectiveness analy-
sis [34], reducing water consumption in different agricultural systems [35], no or reduced
tillage (NT/RT) combined with crop rotations (i.e., legumes and cover crops) [36], and
others [37,38]. On this basis, the objective of this study was to (1) evaluate the changes in
GHG emissions from the agricultural sector of the EU-28 from 1990 to 2019, and (2) cluster
the EU-28 countries regarding their total GHG emissions.

2. Materials and Methods
2.1. Data Collection

Data for the EU-28 countries between 1990 and 2019 were collected from the European
Environment Agency (EEA) [39] (Table 1). These data were checked and updated in
June 2021. All countries and their abbreviations are listed in Table 2.

Table 1. Type of collected data.

Data Type Unit Time Frequency

Total GHGs emission from agricultural sector * Thousand tons Annual
CO2 Thousand tons Annual

CH4 (CO2 equivalent) Thousand tons Annual
N2O (CO2 equivalent) Thousand tons Annual

* Greenhouse gases (CO2, N2O in CO2 equivalent, CH4 in CO2 equivalent, HFC in CO2 equivalent, PFC in CO2
equivalent, SF6 in CO2 equivalent, NF3 in CO2 equivalent).

2.2. Trend Analysis

Trend analysis could be conducted using parametric and non-parametric methods.
Despite the effectiveness of parametric methods, they require independent and normally
distributed data. In contrast, non-parametric methods simply require independent data [40].
In this research, the Mann–Kendall (MK) test [41,42] was used for detecting trend of GHGs
across EU-28 countries. The MK is a well-known rank-based non-parametric test used to
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detect decrease (−) or increase (+) for studied variables through time. The advantage of
using the MK test is that data do not have to be normally distributed, and they are not
affected by outliers. The null hypothesis (H0) in MK test states that there is no trend over
time. For time series X = (X1, X2, . . . Xn), the static test of MK (S) could be interoperated as
shown in Equations (1) and (2) as follow [41,42]:

S =
N−1

∑
i=1

N

∑
j=i+1

∇ij (1)

∇ij = sign
(
xj − xi

)
=


1 xj > xi

0 xj = xi

−1 xj < xi

(2)

where N: length of the data, xi and xj: observations.
The variance in S is denoted as shown in Equation (3), as follows:

Var (S) =
n(n− 1)(2n + 5)−∑P

i=1 ti(ti − 1)(2ti + 5)
18

(3)

where P: tied group, ti: number of data. Then Z standard can be calculated. More details
about MK calculations could be found in [40].

In this study the Mk was adopted for detecting the trend of GHG emissions to over-
come the presence of outliers and skewed data [43]. Also, the Sen slope (ρ) [44] was used
to determine the amount of GHG changes per time. The ρ is a non-parametric method that
captures the slope of the trend in a dataset (N pairs) as depicted in Equations (4) and (5),
as follows:

ρ =
xj − xi

j− k
(j > k) (4)

where xj, xi are values of the data. Then the median of ρ is computed as follows:

ρmedian =

ρ (N+1)
2

if N is odd
ρ
( N

2 )
+ρ (N+2)

2
2 if N is even

(5)

2.3. Multivariate Analysis

Principal component analysis (PCA) is a multivariate method for reducing a large
number of inter-correlated quantitative data (dependent variables) to a smaller number of
representative variables, known as principal components (PCs), by employing complex
underlying mathematical functions [45,46]. In this study, the similarities and differences
in GHG emissions (CO2, CH4 and NO2) across EU-28 were determined using principal
component analysis (PCA). The PCA was performed with the standardized approach using
the correlation matrix to reveal the pattern of GHG emissions (CO2, CH4 and NO2) in the
ordination space defined by the principal components (PCs).

To show the differences between GHG emissions in 1990 and 2019, we conducted two
PCAs by using biplots. Biplots can depict the cases considering the three dimensions with
the correlations. We tested the model fit with the root mean square residual (RMSR), where
values <0.1 are considered good and <0.05 indicated very good [47].

The EU-28 countries were divided into the following 6 groups: western (w)
(Belgium, France, Luxemburg, the Netherlands, Ireland, the United Kingdom); northern
(n) (Denmark, Finland, Sweden, Iceland); middle (m) (Austria, Germany); southern (s)
(Greece, Spain, Italy, Cyprus, Portugal); post-socialist (Bulgaria, Estonia, Croatia, Latvia,
Lithuania, Romania, Slovenia); and Visegrad 4s (v4) (Czechia, Slovakia, Hungary, Poland)
based on their location and historical basis (having the heritage of communism on the
economy). Using these groups, we tested the following hypothesis: H0 that each group
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was from the same statistical population with the same medians using Kruskal–Wallis test.
We performed the test with PCs of the PCA for the dataset of 1990 and 2019.

We also conducted a cluster analysis on the GHG emissions with the change, i.e., the
ratio of 2019 and 1990 as percentages. We applied the Ward’s method and the output was
visualized with a hierarchical dendrogram and in boxplot diagram.

3. Empirical Findings
3.1. Trend Analysis of GHGs Emissions between 1990 and 2019
3.1.1. Total GHGs Emissions between 1990 and 2019

The result of the MK test indicated that there was a significant decline in GHG emis-
sions from the agricultural sector in the majority of the EU-28 countries (Figure 1, Table 2).
Table 2 shows that 20 European countries, Belgium (BE), Czechia (CZ), Denmark (DK),
Germany (DE), Greece (EL), France (FR), Croatia (HR), Italy (IT), Latvia (LV), Malta (MT),
the Netherlands (NL), Austria (AT), Poland (PL), Portugal (PT), Romania (RO), Slovenia
(SI), Slovakia (SK), Finland (FI), Sweden (SE), and the United Kingdom (UK), had significant
(p < 0.05) negative trends. The GHG emission trends were negative, but not significant, in
Bulgaria (BG), Cyprus (CY), Lithuania (LT), Luxembourg (LU), and Iceland (IS). In contrast,
positive, but not significant, trends were recorded in Estonia (EE), Ireland (IE), Spain (ES),
and Hungary (HU).
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Figure 1. Time evolution of total GHG emissions between 1990 and 2019 from agricultural sector within EU-28.

The highest reduction in GHG emissions was recorded in IT (−282.61 thousand
tons/year, p < 0.05), followed by the UK (−266.40 thousand tons/year, p < 0.05), and
NL (−262.91 thousand tons/year, p < 0.05). The lowest reduction was recorded in
MT (−1.18 thousand tons/year, p < 0.05), and SI (−3.55 thousand tons/year, p < 0.05).
Nonetheless, the total emissions from the EU-28 depicted a significant reduction by
−2653.01 thousand tons/year.

3.1.2. CO2 Emissions between 1990 and 2019

The majority of the EU-28 countries exhibited a positive CO2 emissions trend from
the agricultural sector between 1990 and 2019 (Figure 2, Table 2). Only a few coun-
tries showed a negative significant trend, e.g., DK (−8.98 thousand tons/year, p < 0.05),
EL (−1.03 thousand tons/year, p < 0.05), IT (−5.26 thousand tons/year, p < 0.05), CY
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(−0.05 thousand tons/year, p < 0.05), NL (−0.99 thousand tons/year, p < 0.05), PL (−33.94
thousand tons/year, p < 0.05), SI (−0.81 thousand tons/year, p < 0.05), FI (−11.44 thou-
sand tons/year, p < 0.05), and SE (−1.05 thousand tons/year, p < 0.05). In contrast, some
EU countries exapted a positive significant trend, such as BG (+0.57 thousand tons/year,
p < 0.05), CZ (+5.41 thousand tons/year, p < 0.05), DE (+16.33 thousand tons/year, p < 0.05),
FR (+9.17 thousand tons/year, p < 0.05), HR (+1.16 thousand tons/year, p < 0.05), LU (+0.17
thousand tons/year, p < 0.05), AT (+2.7 thousand tons/year, p < 0.05), and IS (+0.13 thou-
sand tons/year, p < 0.05). Nonetheless, the rest of the EU countries showed positive, but
not significant, trends (Table 2).

Table 2. Trend analysis of GHG emissions and its component across EU-28 countries between 1990 and 2019.

EU-28 Countries
Total GHGs
Emissions CO2 CH4 N2O

ρ MK ρ MK ρ MK ρ MK

Total * EU-28 <0.0001 −2653.01 0.42 −9.61 <0.0001 −1675.72 <0.0001 −916.06
Belgium BE <0.0001 −92.22 0.97 0.01 <0.0001 −31.48 <0.0001 −61.12
Bulgaria BG 0.38 −22.62 0.00 0.57 <0.0001 −42.93 0.24 23.42
Czechia CZ <0.0001 −65.77 0.00 5.41 <0.0001 −65.89 0.70 −3.03

Denmark DK <0.0001 −78.51 <0.0001 −8.98 0.00 −7.76 <0.0001 −55.91
Germany DE 0.00 −166.74 0.02 16.33 <0.0001 −177.53 0.83 5.06
Estonia EE 0.72 3.00 0.40 0.14 0.83 −1.22 0.30 3.55
Ireland IE 0.86 3.90 0.94 0.15 0.06 27.96 0.02 −22.92
Greece EL <0.0001 −73.27 <0.0001 −1.03 0.09 −6.02 <0.0001 −58.88
Spain ES 0.34 66.99 0.32 1.69 0.92 9.10 0.05 52.44
France FR <0.0001 −227.20 <0.0001 9.17 <0.0001 −122.76 <0.0001 −109.34
Croatia HR 0.00 −24.17 0.00 1.16 <0.0001 −16.16 0.00 −11.35

Italy IT <0.0001 −282.61 0.00 −5.26 <0.0001 −136.56 <0.0001 −143.50
Cyprus CY 0.02 −2.37 <0.0001 −0.05 0.75 −0.11 0.00 −2.16
Latvia LV 0.57 5.62 0.01 0.74 0.36 −4.73 0.04 7.97

Lithuania LT 0.34 −7.94 0.34 0.19 <0.0001 −34.91 0.00 24.14
Luxembourg LU 0.17 −0.91 <0.0001 0.17 0.34 0.51 <0.0001 −1.61
Hungary HU 1.00 0.07 0.18 2.44 <0.0001 −33.08 <0.0001 37.97

Malta MT <0.0001 −1.18 - - <0.0001 −0.82 <0.0001 −0.37
Netherlands NL <0.0001 −262.91 0.01 −0.99 0.00 −92.96 <0.0001 −173.15

Austria AT 0.00 −27.57 <0.0001 2.70 <0.0001 −21.41 0.00 −7.01
Poland PL 0.00 −216.02 <0.0001 −33.94 <0.0001 −137.11 0.03 −36.94

Portugal PT 0.00 −24.21 0.83 0.03 0.00 −14.47 0.01 −10.32
Romania RO <0.0001 −257.30 0.13 0.77 <0.0001 −187.77 0.02 −72.44
Slovenia SI 0.00 −3.55 <0.0001 −0.81 0.18 −1.04 0.00 −1.56
Slovakia SK <0.0001 −43.52 0.42 0.54 <0.0001 −40.52 0.48 −3.10
Finland FI 0.00 −11.64 <0.0001 −11.44 0.01 −3.27 0.14 2.70
Sweden SE <0.0001 −32.85 0.02 −1.05 <0.0001 −18.21 <0.0001 −15.46
Iceland IS 0.46 0.27 0.00 0.13 0.13 −0.45 0.02 0.49
United

Kingdom UK <0.0001 −266.40 0.17 8.47 <0.0001 −161.26 <0.0001 −115.55

* (2013–2020).

3.1.3. CH4 Emissions between 1990 and 2019

The total emissions of CH4 from the agricultural sector decreased significantly across
the EU-28 (Table 2, Figure 3). The highest significant reduction was recorded in RO
(−187.77 thousand tons/year, p < 0.05), DK (−177.53 thousand tons/year, p < 0.05), the UK
(−166 thousand tons/year, p < 0.05), and PL (−137.11 thousand tons/year, p < 0.05). Despite
the negative significant changes in CH4, some countries, e.g., EE, CY, LV, SI, and IS, exhibited
a negative, but not significant, trend. Notably, apart from IE (+27.96 thousand tons/year,
p > 0.05), ES (9.10 thousand tons/year, p > 0.05), and LU (0.51 thousand tons/year, most
of the EU-28 countries witnessed a negative trend of CH4 emissions (p > 0.05) (Table 2,
Figure 3).
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Figure 2. Time evolution of CO2 emissions between 1990 and 2019 within EU-28 (agricultural sector).
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Figure 3. Time evolution of CH4 emissions between 1990 and 2019 within EU-28 (agricultural sector).

3.1.4. N2O Emissions between 1990–2019

Similarly to CH4 emissions, N2O emissions exhibited a negative trend from most
of the EU-28 countries (Table 2, Figure 4). The total reduction in N2O emissions from
all the EU-28 countries was −916 thousand tons/year (p < 0.05) (Table 2). However,
some countries showed a significant positive trend of N2O emissions; for instance, LV
(+7.79 thousand tons/year, p < 0.05), LT (+24.14 thousand tons/year, p < 0.05), HU
(+37.97 thousand tons/year, p < 0.05), and IS (0.49 thousand tons/year, p < 0.05). On
the other hand, some other countries, such as BG (+23.42 thousand tons/year, p > 0.05),
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DE (+ 5.06 thousand tons/year, p > 0.05), EE (+3.5 thousand tons/year, p > 0.05), ES
(+52.44 thousand tons/year, p > 0.05), and FI (2.7 thousand tons/year, p > 0.05), showed
a positive, but not significant, trend in N2O emissions. Interestingly, the other EU coun-
tries showed a significant negative trend of N2O emissions, whereas the highest value
of reduction was recorded in NL (−143.5 thousand tons/year, p < 0.05), followed by IT
(−143.5 thousand tons/year, p < 0.05), then the UK (−115.55 thousand tons/year, p < 0.05).

Energies 2021, 14, x FOR PEER REVIEW 10 of 21 
 

 

3.1.4. N2O Emissions between 1990–2019 

Similarly to CH4 emissions, N2O emissions exhibited a negative trend from most of 

the EU-28 countries (Table 2, Figure 4). The total reduction in N2O emissions from all the 

EU-28 countries was −916 thousand tons/year (p < 0.05) (Table 2). However, some coun-

tries showed a significant positive trend of N2O emissions; for instance, LV (+7.79 thou-

sand tons/year, p < 0.05), LT (+24.14 thousand tons/year, p < 0.05), HU (+37.97 thousand 

tons/year, p < 0.05), and IS (0.49 thousand tons/year, p < 0.05). On the other hand, some 

other countries, such as BG (+23.42 thousand tons/year, p > 0.05), DE (+ 5.06 thousand 

tons/year, p > 0.05), EE (+3.5 thousand tons/year, p > 0.05), ES (+52.44 thousand tons/year, 

p > 0.05), and FI (2.7 thousand tons/year, p > 0.05), showed a positive, but not significant, 

trend in N2O emissions. Interestingly, the other EU countries showed a significant nega-

tive trend of N2O emissions, whereas the highest value of reduction was recorded in NL 

(−143.5 thousand tons/year, p < 0.05), followed by IT (−143.5 thousand tons/year, p < 0.05), 

then the UK (−115.55 thousand tons/year, p < 0.05). 

 

Figure 4. Time evolution of N2O emissions between 1990 and 2019 within EU-28 (agricultural sector). 

3.2. Multivariate Analysis of GHGs Emissions in 1990 and 2019 

The total variance explained was 99% for the data of 1990 and 98% for 2019. Good-

ness-of-fit analysis also indicated a very good fit, with RMSRs of 0.01 for both years. Two 

PCs were confirmed by the RMSRs; PC1 correlated with the N2O and CH4 emissions, ex-

plaining 58% (in 1990) and 51% (in 2019) of the variance, while PC2 correlated with CO2, 

and explained 41% (in 1990) and 46% (in 2019) of the variance. Consequently, PC2 in-

volved only one variable, CO2, while PC1 followed the state of N2O and CH4 on the same 

axis. 

Most countries formed a compact group in both years in the lower section of the di-

agram, regarding N2O and CH4, and with a larger variance in CO2. There were also outlier 

countries (having scores larger than two) regarding the lower or higher GHG emissions 

(Figure 5). In 1990, DE, FR, the UK, and PL represented the highest emissions of N2O and 

CH4, and CZ, PL, and DE had larger emissions of CO2. The lowest CO2 belonged to RO, 

FR, IT, and ES. The scores were mainly between −1 and 1 regarding the CO2; thus, the 

variance was smaller than what was observed in PC2 (N2O and CH4). There were changes 

4400

4600

4800

5000

5200

5400

1988 1996 2004 2012 2020

A
T

5000

5400

5800

6200

1988 1996 2004 2012 2020

B
E

0

2000

4000

6000

8000

1988 1996 2004 2012 2020
B

G
240

280

320

360

400

1988 1996 2004 2012 2020

C
Y

3000

4000

5000

6000

7000

8000

1988 1996 2004 2012 2020

C
Z

28000

32000

36000

40000

44000

1988 1996 2004 2012 2020

D
E

5800

5900

6000

6100

6200

6300

1988 1996 2004 2012 2020

D
K

400

600

800

1000

1200

1400

1988 1996 2004 2012 2020

E
E

4400

4600

4800

5000

1988 1996 2004 2012 2020

E
L

20000

22000

24000

26000

28000

1988 1996 2004 2012 2020

E
S

2400

2500

2600

2700

2800

1988 1996 2004 2012 2020

F
I

36000

38000

40000

42000

44000

1988 1996 2004 2012 2020

F
R

1200

1600

2000

2400

2800

1988 1996 2004 2012 2020

H
R

2000

3000

4000

5000

1988 1996 2004 2012 2020

H
U

11500

12500

13500

14500

1988 1996 2004 2012 2020

IE

320

340

360

380

400

1988 1996 2004 2012 2020

IS

18000

19000

20000

21000

22000

23000

1988 1996 2004 2012 2020

IT

1000

2000

3000

4000

5000

1988 1996 2004 2012 2020

L
T

400

420

440

460

480

1988 1996 2004 2012 2020

L
U

500

1000

1500

2000

2500

1988 1996 2004 2012 2020

L
V

40

45

50

55

60

65

1988 1996 2004 2012 2020

M
T

11000

12000

13000

14000

15000

1988 1996 2004 2012 2020

N
L

12000

14000

16000

18000

20000

22000

1988 1996 2004 2012 2020
P

L

4000

4200

4400

4600

4800

1988 1996 2004 2012 2020

P
T

8000

10000

12000

14000

16000

18000

1988 1996 2004 2012 2020

R
O

3200

3400

3600

3800

1988 1996 2004 2012 2020

S
E

1080

1120

1160

1200

1240

1280

1988 1996 2004 2012 2020

S
I

1000

1500

2000

2500

3000

3500

1988 1996 2004 2012 2020

S
K

24000

26000

28000

30000

1988 1996 2004 2012 2020

U
K

220000

240000

260000

280000

300000

1988 1996 2004 2012 2020

E
U

-2
8

Figure 4. Time evolution of N2O emissions between 1990 and 2019 within EU-28 (agricultural sector).

3.2. Multivariate Analysis of GHGs Emissions in 1990 and 2019

The total variance explained was 99% for the data of 1990 and 98% for 2019. Goodness-
of-fit analysis also indicated a very good fit, with RMSRs of 0.01 for both years. Two
PCs were confirmed by the RMSRs; PC1 correlated with the N2O and CH4 emissions,
explaining 58% (in 1990) and 51% (in 2019) of the variance, while PC2 correlated with CO2,
and explained 41% (in 1990) and 46% (in 2019) of the variance. Consequently, PC2 involved
only one variable, CO2, while PC1 followed the state of N2O and CH4 on the same axis.

Most countries formed a compact group in both years in the lower section of the
diagram, regarding N2O and CH4, and with a larger variance in CO2. There were also
outlier countries (having scores larger than two) regarding the lower or higher GHG
emissions (Figure 5). In 1990, DE, FR, the UK, and PL represented the highest emissions of
N2O and CH4, and CZ, PL, and DE had larger emissions of CO2. The lowest CO2 belonged
to RO, FR, IT, and ES. The scores were mainly between −1 and 1 regarding the CO2; thus,
the variance was smaller than what was observed in PC2 (N2O and CH4). There were
changes in the pattern in 2019, but the most important ones were observed in the lowest
and largest values. The positions regarding PC1 (i.e., N2O and CH4) did not change, but
the CO2 emission decreased in PL and CZ, and increased in the UK, DE, and FR. The lowest
CO2-emitting countries were ES, IT, and NL.

There were no significant differences regarding PC1 in 1990 (Kruskal–Wallis H: 8.334,
p = 0.138) and in 2019 (Kruskal–Wallis H: 6.654, p = 0.254). Similarly, there was no significant
difference in CO2 emissions in 1990 (Kruskal–Wallis H: 9.973, p = 0.076) and in 2019
(Kruskal–Wallis H: 10.59, p = 0.052). Accordingly, the spatial distribution of the countries
did not discriminate the emissions.
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Cluster analysis, focusing on the positive and negative changes, revealed that the
difference was the most discriminative in the case of Iceland, due to its high increase in
CO2 emissions. Other clusters were only partly formed by their location (e.g., southern or
western), and the differences were relatively smaller than those observed in Iceland. As
Iceland formed a unique cluster in itself, we did not involve it in the statistical evaluation.
Cluster 1 (C1) was formed by purely post-socialist countries, but all the other clusters were
a mixture of different locations and historic heritage (Figure 6). This approach maximized
the variance among the countries; thus, the clusters reflected similarity in the changes
(Figure 7).

The C1 cluster contained the countries that had the largest negative change, i.e., these
countries made the largest progress in reducing GHG emissions. The countries of the C2
cluster gained relevant results on decreasing CO2 and CH4, and the N2O emissions also
decreased, but by a smaller measure. In the C3 cluster, the countries only reached a small
decrease in each GHG, and a limited increase was observed for CO2. In both the C4 and C5
clusters, the CO2 emissions increased, while the N2O and CH4 emissions decreased; the
difference between the two clusters was that in C5, the decrease was smaller.
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4. Discussion

In general, the trend of GHG emissions from the agricultural sector in EU countries was
negative during 1990–2019, except for some countries, such as Estonia, Ireland, and Latvia,
which displayed a slight increase from 3–5.6 thousand tons/year. Iceland and Hungary both
exhibited insignificant increases. A significant increase in GHG emissions was exhibited
by Spain (Figure 1), with a significant increase in N2O emissions (Figure 4). In fact, more
than 72% of the Spanish land was used for agricultural practices and forestry, while 19%
was used for meadows, which accelerated the GHG emissions from this sector [48,49].
Nonetheless, 11% of the total emissions in Spain originated from the agricultural sector [50].
The increase in GHG emissions in Spain, between 1990 and 2019, could be attributed to
the lack of clear national strategies for minimizing and mitigating GHG emissions from
the Spanish agricultural sector [51] (Table 2). This was exacerbated by the highly intensive
agricultural production per capital and technological advancements in the agricultural
sector in Spain in the recent decades [52]. The significant positive trend of GHG emissions
was mainly dependent on the increase in N2O emissions from 1990 to 2019, with an overall
trend of 52.44 thousand tons/year. This trend may be because of the mismanagement of
soil fertilization, agrochemicals. Livestock manure was the main cause of N2O emissions,
eutrophication of water courses, and atmosphere acidification. Similar conclusions have
been reported by Albiac et al. [52] and other workers [53,54]. Magrama [55] noted that
the overdose of N fertilizer, along with the neglect of livestock manure, added more than
780.000 tN of fertilizer to the soil, leading to severe environmental pollution. Nevertheless,
the mean annual increase in CH4 and CO2 emissions during the period of this study showed
much lower values of 9.10 and 1.69 thousand tons/year, respectively. Other countries, such
as Italy, the Netherlands, the UK, among others, manifested a significant decline in the
total GHG emissions.

In Italy, only 7.1% of the GHG emissions originated from the agriculture sector in 2016.
The decline in GHG emissions can be attributed to a decrease in the number of animals,
especially the dairy cattle heads from 1990 to 2016, which resulted in a decline of about
40% [56]; this may have contributed to the negative trend of CH4 emissions (Table 2 and
Figure 3). Also, the CH4 and N2O from manure management decreased with the decline in
the number of animals during the studied period. The more efficient manure management
system may have also contributed to the reduction in N2O [56]. The CH4 emissions from
rice cultivation have also decreased, according to the revised CH4 daily EF measurements
in Italian rice fields [57,58], considering the different agronomic practices between the
different cultivars [59,60], and the different irrigation regimes [61]. The N2O emissions
from managed soils declined from 29.72 Gg (80.6% of N2O emissions for the agriculture
sector) in 1999 to 23.99 Gg (78.2%) in 2016, where this decline agreed with Table 2 and
Figure 4. The decline in the N2O emissions from managed soils may be because of a
reduction in the use of inorganic and organic fertilizers, which was about 25% from 1990
until 2016 [56]. Romano et al. [56] reported that the application of carbonate for decreasing
soil acidity is one of the main sources for CO2 emissions. In this context, the liming process
in Italy was responsible for 2.3% (2016) of the total CO2 emissions from the agricultural
sector [56].

The agricultural sector in the UK accounted for 10% (2018) of the GHG emissions [62],
where livestock and manure accounted for 56% of the emissions, synthetic fertilizers
accounted for 31%, and fuel and machinery accounted for 12% [62]. There was a significant
decline in CH4 and N2O emissions in the UK during the studied period, with values of
−166 thousand tons/year, p < 0.05, and −115.55 thousand tons/year, p < 0.05, respectively;
this resulted in a decline in the total GHG emissions, with a trend of −266.40 thousand
tons/year, p < 0.05 (Table 2). Similarly, Nair et al. [63] and NFS [64] reported that, overall,
the GHG emissions from agriculture in the UK have decreased by 16% from 1990 to 2018.
Ortiz et al. [62] mentioned three factors that led to a significant GHG emission decrease
from the agricultural sector. The factors are as follows: (1) adaptation of new technology
in the agricultural sector, (2) national policies, and (3) changing the incentives model,
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which reduced the number of ruminants to meet the EU-CAP (Common Agricultural
Policy). The UK have launched a national framework for evaluating the annual reduction
in GHG emissions since 2012. This framework covers ten indictors, including mitigation
and adaptation methods, farmer knowledge and behavior, and emission per product [65].
It is good to mention here that a large amount of research in the UK was focused on the
improvement in the agricultural GHG inventory [65]. The livestock population in the UK
reduced by 19.8% from 1990 to 2018, while only the dairy cattle category also decreased by
33.6%. The application of N fertilizer had been dropped by permanent grasslands, which
represented almost half of the area of the UK’s major crop area, with 55.6% from 1990 to
2018, while the other crops have been fluctuating between declining, such as by grass leys,
oilseed rape, and potatoes, with 41%, 19%, and 27.2%, respectively; stabilizing, such as by
wheat; and increasing in N fertilizer, such as by Spring and Winter barely, with 15.6% and
10%, respectively [66].

Studies indicate that liming is a major contributor to CO2 emissions in the agricultural
sector. The contribution of the agricultural sector to GHG emissions in the Netherlands
was about 9.7% in 2019. There was a reduction in the application of lime, which also
caused a reduction in CO2 emissions during 1990–2008 and 2016–2019 in the Netherlands,
although there was a slight increase in emissions in 2009. The reduction in liming resulted
in the decline of CO2 emissions, by 80.9%, from 1990 to 2019 (0.18–0.03 Tg CO2 eq), while
the CO2 emissions from urea application increased from 0.002 to 0.045 Tg CO2 eq in
the same period [67]. This behavior explained the results of the CO2 emissions of NL
(Figures 2 and 3, and Table 2). The trend of methane during the studied period decreased
because of a reduction in the application of mature dairy cattle, where the CH4 emissions
of enteric fermentation and manure management decreased from 1990 to 2005, increased
from 2007 to 2016, then start to decrease again [67]. The significant negative trend of N2O
emissions in NL (Figure 4) is explained by the decrease in organic and inorganic N fertilizer
application, the decrease in animal numbers, and the decrease in animal production on
pasture, from 1990 to 2010, and, after 2010, the decline in N2O emissions was stabilized at
44.8% (8.7–4.8 Tg CO2 eq). This is similar to the decrease in N2O from the agriculture soil
reported by Ruyssenaars et al. [67].

For Romania, a number of measures have contributed to the reduction in GHG emis-
sions, such as minimizing the amount of synthetic nitrogen fertilizer, decreasing the number
of livestock, and reducing the area under rice cultivation [68]. The Romanian agricultural
sector contributed 18.98% (2015) to the total GHG emissions [68]. Compared to 1989, the
reduction in GHG emissions reached 78.93% by liming, 72.98% by rice cultivation, 61.86%
by manure management, 49.20% by enteric fermentation, 48.48% by agricultural soils,
46.34% by urea application, and 12.84% by the field burning of agricultural residues [68].
These findings agreed with the negative trend of Romania in Table 2 and Figures 1–4.
Table 2 shows that the negative trend of CH4 was the highest, −187.77 thousand tons/year,
followed by N2O emissions with a negative trend, −72.44 thousand tons/year.

The total share of GHG emissions from agriculture in 2017 in Poland was 7.16% [69].
However, Poland showed a significant decline in the agricultural GHG emissions from
1990 to 2019, with a trend of −216.02 thousand tons/year (p < 0.05), which was categorized
into −33.94 thousand tons/year (p < 0.05), −137.11 thousand tons/year (p < 0.05), and
−36.94 thousand tons/year (p < 0.05) for the CO2, CH4, and N2O emissions (Table 2),
respectively. Poland’s National Inventory Report [69] stated that the decline in CH4
emissions was due to the dramatic decrease in the livestock population after 1989, especially
for the dairy cattle population that decreased by almost 50% from 1990 to 2017. This
decline in the livestock population decreased the CH4 emissions for enteric fermentation
and manure management. As well as this, the N2O emissions from manure management
dropped by 31% from 1988 to 2017, also depending on the diminishing livestock population.
N2O emissions mainly come from the agriculture soil, which was significantly decreased
from 1988 to 2017, by 21%. However, nitrogen fertilization accounted for 47% of direct
N2O emission (2017). Piwowar [70] explained that the liming process and carbonate usage
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were balanced from 2000 to 2004, and were relatively low later on. The CO2 emissions from
lime, dolomite and urea utilization were significantly decreased from 1988 to 2017 [69].

French agriculture GHG emissions contributed 16.8% of the total GHG emissions in
2019 [71]. France accounts for 25% of the livestock in Europe, and 40% of the agricultural
land in France is used for cereal production, making France the largest producer of cereal
in the EU [72]. The large proportion of livestock and cereal production in France also
implies that France will account for a large part of the GHG emissions, and will have a
difficult challenge in reducing GHGs. However, there was a significant decline in CH4
emissions resulting from livestock (Table 2). The National Inventory Report for France [71]
noted that a 34% decline in the dairy cattle population resulted in a 13% decrease in enteric
fermentation emission from 1990 to 2019. An increase in the number of pig herds has been
linked to an increase in manure management and a 7% increase in CH4 emissions over the
period 1990–2019. However, other parameters, such as the increase in manure management
systems in the form of slurry, are contributing inversely to this trend. Rice cultivation is
also a major contributor to CH4 emissions. The area under rice cultivation in 1990 was
22,458 ha. This increased to 34,405 ha in 1994, but has declined to 15,100 ha in 2019. A
decrease in the area under rice cultivation results in a decrease in rice cultivation-induced
CH4 emissions. Table 2 shows that the N2O emissions also decreased significantly during
1990–2019. The National Inventory Report for France [71] indicated a decrease in N2O
emissions by minimizing the use of mineral nitrogen fertilizers, which reduced the N2O
emissions by −16% (1990–2019), and decreasing the cattle herds, resulting in a reduction in
both the nitrogen excreted in the pasture and the organic nitrogen to be applied, leading
to a 12% decline in N2O emissions from 1990 to 2019. The total N2O emissions from
agricultural soils decreased by −9% over the period 1990–2019 (Table 2).

In Germany, the agriculture sector was responsible for 7.6% of the total GHG emissions
in 2019 [73]. The total GHG emissions from the agricultural sector decreased by 19.2%
in the period 1990–2021 [74]. This decline is consistent with the negative trend in Table 2
(−166.74 thousand tons/year, p < 0.05), which mainly depends on the CH4 emissions trend
that revealed −177.53 thousand tons/year (p < 0.05) (Table 2). As mentioned before, the
CH4 emissions come from enteric fermentation and manure management, and both rely
the most on the population of animals, especially the dairy cattle, and pig for manure
management. The German NIR [75] reported that, from 1990 to 2019, the decline in the
animal population was almost 37%, 42%, 18.5%, and 41.6% for the dairy cattle, swine,
sheep, and goats, respectively. This notable decline in the animal population leads to
a decrease in CH4 emissions, by 27.7% and 21.3% for enteric fermentation and manure
management, respectively [74] (Table 2 and Figure 3). The N2O emissions include manure
management, energy crops (from digester and storage of digestate from the anaerobic
digestion of energy crops, and include both CH4 and N2O emissions), and agricultural
soil. In regards to the emissions from energy crops (CH4 and N2O), which presented
the smallest share of the total agricultural GHG emissions (2.5% in 2019), they increased
from zero in 1990 to 1573 Tg CO2 eq in 2019, with a gradual utilization of energy crops
since 1991. The N2O emissions decreased by 18.9% for manure management and 15.3%
for agricultural soil. The smaller dwindling of N2O emissions from 1990 to 2019 may
be attributed to variation in its components’ behavior (decrease in mineral fertilizer N
quantities by 35%, decrease in manure N quantities, including energy crops, by 18.6%,
increase in crop residues N quantities by 16%, and the relatively unchanged indirect soil
emissions) [74,75]. In contrast, our results indicate a positive, but not significant, trend
of N2O (Table 2). The reasonable cause of that could be the increase in the applied N
fertilization quantities between 2014 and 2016. The CO2 emissions trend exhibited an
increase, with a positive trend (16.66 thousand tons/year (p > 0.05)) (Table 2, Figure 2).
Similar results were reported by the German NIR [75], which highlighted a 10.68% and
8.8% increase in the application of limestone and urea, respectively, and a decrease in the
application of dolomite and calcium ammonium nitrate (84.5% and 61.6%, respectively).
This resulted in a total increase in CO2 emission from 1990 to 2019, by 11.6% [74].
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The highest share of GHG emissions in the agricultural sector is presented by the
CH4 and N2O emissions, accounting for more than 90% of the total GHG emissions. This
majority share explained the clear proximity of the CH4 and N2O emission values of the
contributing countries to the PC1 (Figure 5), where CH4 and N2O emissions, which are the
closest components to PC1, best approximate the total GHG emissions. Nevertheless, the
CO2 emission values with a lower share of GHG emissions, and sometimes with opposite
behavior to the total GHG emission values, were close to PC2. However, analysis of the
spatial pattern, or even the historical heritage (post-socialist shared heritage on the agricul-
ture, with the transformation from large agricultural co-operations to private farming), did
not reveal any result. There were exceptions in each group; thus, the differences were not
significant in the change between 1990 and 2019. The biplots pointed out countries that
had increasing or decreasing changes during the 29 years. Furthermore, cluster analysis
was the best method to show the country groups of similar changes, but, in this case, we
involved the ratio of the change in the GHG emissions between the earliest and latest dates,
dividing the data of 2019/1990. This approach was an efficient tool to identify the countries
that have similar gains in GHG emission reduction, or in pointing out the ones that have
issues in reaching the goals.

Iceland formed a sole cluster, but we have to highlight that the cause of this was
the 1128% surplus in the CO2 emissions from agricultural sources. This seems to be
a large increase, but in 1990, the initial emissions were only 0.52 thousand tons, the
smallest in the EU countries; even Luxembourg and Cyprus could approach it (with 6.3
and 1.8 thousand tons). In 2019, the CO2 emissions of Iceland increased to 5.87 thousand
tons, which was the second lowest in the EU, and Cyprus was the first, with 0.22 thousand
tons in this year. In 2021, the world’s first CO2 removal plant started operating in Iceland,
which will remove 4000 t of CO2 a year [76]. Austria and Luxembourg formed the cluster,
both having the worst performance, but the increase should also be evaluated carefully;
Luxembourg is still third in the ranks of CO2 emissions in the EU. Accordingly, the countries
that had the smallest emissions in 1990 can appear as inefficient ones in CO2 reduction, but
there are lot of components of these numbers. Besides local food production, transportation
and even food import can also count, and can have direct consequences on the emissions
too [77]. Although the population did not increase in the European countries, globalization
can generate demands and, therefore, food or agricultural product import and export. In
the case of Iceland, the food product import was USD 268,000 in 1990 and USD 1,266,638 in
2019; therefore, the increase was almost five times as large [78].

Climate change mitigation, for finding more efficient farming, is one of the global
challenges in the EU. The utilization of optimal agricultural practice management, pro-
vided by convenient technologies, assists by not only reducing the GHG emissions, but also
promoting agricultural productivity and income [79]. Precision agriculture can achieve
this, where precision agriculture based on utilizing digital techniques can aid in monitoring
and optimizing agriculture production processes at different field scales [80]. Precision
agriculture supports the optimization of field management based on the actual crop needs;
for example, using sensors to identify the specific area in field that needs a particular treat-
ment, such as irrigation, fertilizers, insecticides, and herbicides [81]. However, promoting
precision agriculture in Europe could be one of the solutions for mitigating climate change
across the EU-28.

In this research, the trend of GHG emissions from agricultural sectors across the EU-28
was analyzed between 1990 and 2019, accompanied by multivariate analysis. The results
only highlighted the GHG trend, with no further information about the GHGs origins (soil,
fertilization, livestock, food production), which is one of the drawbacks of this research.
On the other hand, this study did not investigate the relationship between GHGs and GDP,
where GDP can play an important role in GHG emissions, and could help in discriminating
and categorizing European countries regarding their emissions. However, future steps will
employ the environmental Kuznets curve (EKC) for exploring the relationship between
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economic growth and environmental degradation. Previous studies also reveal that, in the
long run, economic growth could lead to the reduction in atmospheric pollution [2,82].

5. Conclusions

Since the release of the Paris Agreement in 2015, the EU have strived to reduce GHG
emissions from all sectors to achieve carbon neutrality (zero emission). Thus, a package of
policies and strategies was released in order to achieve this aim. To reach this ambitious
goal by 2050, GHG emissions need to be evaluated on a sectorial level (i.e., industry,
agriculture, energy) to provide decision makers with a full overview of the changes, and
the efficiency of mitigation and adaptation strategies.

In this research, the GHG emissions from the agricultural sector within the EU-28,
from 1990 to 2019, was analyzed by using the MK test and multivariate approach. The
analysis revealed that most of the EU-28 countries exhibited a significant reduction in
GHG emissions (1990–2019). The highest reduction in the total GHG emissions was
recorded in Italy (−282.61 thousand tons/year, p < 0.05), followed by the United Kingdom
(−266.40 thousand tons/year, p < 0.05), and the Netherlands (−262.91 thousand tons/year,
p < 0.05). Similarly, the CH4 and N2O emissions exhibited a negative emission trend
from most of the EU−28 countries. However, a positive CO2 emissions trend from the
agricultural sector, between 1990 and 2019, was recorded. Nonetheless, the accumulation
of CO2 emissions from all the EU-28 countries depicted a non-significant negative trend
(−9.61 thousand tons/year). Interestingly, the multivariate analysis approach indicates
changes in the pattern of GHG emissions between 1990 and 2019. In 1990, DE, FR, the UK,
and PL represented the highest emissions of N2O and CH4; where CZ, PL, and DE had
larger emissions of CO2. In 2019, the patterns were changed, in terms of the lowest and
largest values.

The findings of this study highlight the need for policy makers in the European Union
to evaluate the strategies for mitigating CO2 emissions, and underline the need to formulate
new policies for reducing CO2 emissions from the agricultural sector. However, future
studies should focus on analyzing the relationship between GHG emissions from the agri-
cultural sector and environmental degradation, through the application of environmental
Kuznets curve hypothesis.
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