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Simple Summary: Squamous cell carcinoma (SCC) is the most prevalent type of human cancer
worldwide and represents the majority of head and neck tumors. As SCC from aerodigestive or
genitourinary tracts share not only common etiology and histological features but also molecular
patterns, the major objectives of this study were the establishment of a pan-SCC-related prognostic
gene signature by an integrative analysis of multi-omics data and the elucidation of underlying
oncogenic pathway activities as potential vulnerabilities for a more efficient and less toxic therapy.
Our approach delivers a reliable molecular classifier to identify HNSCC and other SCC patients at
higher risk for treatment failure with tumors characterized by a more prominent MAPK activity, who
might benefit from a targeted treatment with MEK inhibitors.

Abstract: Squamous cell carcinoma (SCC) is the most prevalent histological type of human cancer,
including head and neck squamous cell carcinoma (HNSCC). However, reliable prognostic gene
signatures for SCC and underlying genetic and/or epigenetic principles are still unclear. We identified
37 prognostic candidate genes by best cutoff computation based on survival in a pan-SCC cohort
(n = 1334) of The Cancer Genome Atlas (TCGA), whose expression stratified not only the pan-SCC
cohort but also independent HNSCC validation cohorts into three distinct prognostic subgroups.
The most relevant prognostic genes were prioritized by a Least Absolute Shrinkage and Selection
Operator Cox regression model and were used to identify subgroups with high or low risks for
unfavorable survival. An integrative analysis of multi-omics data identified FN1, SEMA3A, CDH2,
FBN1, COL5A1, and ADAM12 as key nodes in a regulatory network related to the prognostic
phenotype. An in-silico drug screen predicted two MEK inhibitors (Trametinib and Selumetinib)
as effective compounds for high-risk SCC based on the Cancer Cell Line Encyclopedia, which is
supported by a higher p-MEK1/2 immunohistochemical staining of high-risk HNSCC. In conclusion,
our data identified a molecular classifier for high-risk HNSCC as well as other SCC patients, who
might benefit from treatment with MEK inhibitors.
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1. Introduction

Squamous cell carcinoma (SCC) is the most common type of human cancer, which
arises from epithelial tissues of the upper aerodigestive or angiogenital tracts, skin, or
lung [1–3]. SCCs are diagnosed as a substantial fraction of head and neck (90%) [4], cervix
(62%) [5], oesophagus (38%) [6], non-melanoma skin (20–30%) [7], as well as lung cancers
(30%) [8], and share common histological features and certain risk factors, e.g., smoking, al-
cohol abuse, and human papillomavirus (HPV) infection [9,10]. A recent pan-cancer study
based on The Cancer Genome Atlas (TCGA) demonstrated similar molecular patterns
among SCCs of different origins, which were distinct from other cancer entities [11]. This
and other studies highlighted common features in the mutational landscape, such as copy
number alterations (CNAs) at chromosome 3q and 5p among others [11,12], in oncogenic
pathways, including Ras/MAPK and PI3K signaling [9] as well as in the immune mi-
croenvironment [13–15]. However, previous pan-SCC studies have not addressed common
prognostic gene signatures and underlying genetic and/or epigenetic principles. These
gene signatures have the innovative potential to improve risk assessment for treatment
failure and to predict potential vulnerabilities for targeted therapy.

The availability of multi-omics data on all major cancers enables the development
of novel molecular classification algorithms that can either complement or replace the
established organ- and tissue-based tumor typing [11]. The rationale behind such molecu-
lar reclassifications is that genetic and epigenetic alterations offer a more precise view on
underlying oncogenic principles and often provide an improved predictive value for thera-
peutic response [11]. As a consequence, basket trials have been launched as a new clinical
study design in which targeted therapy is evaluated for multiple cancers with common
molecular patterns, but independent of their site of origin [16]. With the rising interest and
effort toward precision oncology, it is vital to elucidate the prognostic biomarkers shared
among tumors of distinct origins, enabling a better risk prediction for cancer patients, who
will benefit from targeted therapies [17,18].

Hence, the main objectives of our study were the establishment of common prognostic
gene signatures to enable the stratification of SCC patients at higher risk for treatment
failure and to predict promising drug targets for a more effective and less toxic therapy.
We identified three robust prognostic subtypes in a pan-SCC training cohort based on
consensus clustering of the expression profile for 37 survival-related genes, which were
confirmed in independent HNSCC validation cohorts. Subsequently, 18 candidate genes
were prioritized by a Least Absolute Shrinkage and Selection Operator (LASSO) Cox
regression algorithm to establish a prognostic risk model for SCC patients. Finally, we
performed an integrative analysis of multi-omics data to unravel key nodes of a functional
network, and proposed potential drug targets for high-risk SCC based on the in-silico drug
screening analysis of SCC cell lines.

2. Results
2.1. Molecular Prognostic Subgroups in a Pan-SCC Cohort

Four individual gene expression datasets with 1334 SCC cases, including TCGA-
CESC (Cervical squamous cell carcinoma and endocervical adenocarcinoma; n = 252),
TCGA-ESCA (Esophageal carcinoma; n = 81), TCGA-HNSC (Head and Neck squamous
cell carcinoma; n = 500), and TCGA-LUSC (Lung squamous cell carcinoma; n = 501) were
used to identify prognostic candidate genes by best cutoff computation considering either
overall survival (OS) or progression-free intervals (PFI) as the clinical endpoint. The
transcription of 258 genes were significantly associated with OS in at least three out of four
SCC datasets, including 145 candidate genes related to a favorable and 133 candidate genes
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related to an unfavorable OS. In addition, the transcription of 276 genes were significantly
associated with PFI in at least three out of four datasets, including 153 candidate genes
related to a favorable and 123 candidate genes related to an unfavorable PFI (Figure S1;
Table S1). Gene Ontology (GO) enrichment analyses demonstrated an enrichment for
genes implicated in DNA replication for the gene set related to a favorable OS, response
to wounding for the gene set related to an unfavorable OS, and T cells differentiation and
activation for the gene set related to favorable PFI (Figure S2). Finally, 37 survival-related
candidate genes were identified, which were significantly correlated with an unfavorable
(n = 20) or favorable (n = 17) prognosis concerning both OS and PFI, respectively (Table S2).
Comparing matched tumor samples and normal tissue, we found twelve of these candidate
genes to be differential expressed (−1 > log2FC > 1, FDR < 0.05) in the pan-SCC cohort,
14 in the TCGA-HNSC, and 16 in the TCGA-LUSC cohorts (Figure S3). However, it is worth
noting that up- or down-regulation of survival-related candidate genes among matched
normal versus tumor tissue was not strictly related with their association concerning a
favorable or unfavorable prognosis (Figure S3). As an example, five candidates were
up-regulated in SCCs as compared to normal tissue of which three (PLOD1, PLOD3, and
SLC16A3) also shared a higher expression in tumors with an unfavorable prognosis, while
a higher expression of two candidate genes (FOXRED2 and FOXE1) were associated with a
favorable outcome (Figure S3A).

Consensus clustering of 1334 SCC cases based on the expression profile of 37 survival-
related candidate genes revealed three robust clusters (Figures 1A and S4), which were
further supported by a random forest regression model for the pan-SCC cohort (Figure 1B).
The SCC cases in cluster A (n = 444) were characterized by a higher expression of candidate
genes related to a favorable survival, while cluster B (n = 602) and C (n = 288) shared
a higher expression of candidate genes related to an unfavorable survival (Figure 1A).
Moreover, cluster A was significantly enriched for HPV16-positive SCC as compared to
cluster B and C (Chi-square test p value < 0.001).

In terms of the clinical outcome, patients of cluster A exhibited an improved survival
as compared to clusters B and C, which reached statistical significance for five-years OS,
disease specific survival (DSS), and PFI in the pan-SCC cohort (Figure 1C). Univariate Cox
regression models confirmed a significantly favorable clinical outcome (OS, DSS, and PFI)
for cluster A in all cohorts except TCGA-ESCA, which was independent of the HPV16
status (Figure S5).

The robustness of the 37 gene signature to stratify three prognostic clusters was
confirmed for two independent HNSCC cohorts (GSE65858 [19] and GSE117973 [20]) and
one HPV-negative oral SCC (GSE41613 [21]) cohort (Figure S6). Again, HNSCCs in cluster A
had a significantly favorable OS as compared to cluster B and C for the combined validation
cohort, which was also evident in the subgroup of HPV-negative HNSCC (Figure S7).

2.2. Prioritization of Prognostic Candidate Genes by a LASSO Cox Regression Model

Most relevant prognostic candidate genes were prioritized by a LASSO Cox regression
model concerning OS in 1315 cases of the pan-SCC cohort (Figure S8). The analysis revealed
18 prognostic candidate genes, of which seven were related to a favorable OS (RPS6KA5,
EVA1C, FOXRED2, ITPRIPL1, TIAM1, FAM83C, and NOS2), and eleven were related to
an unfavorable OS (BZW1, CTSL, TPRG1, ITGA5, SLC16A3, PTX3, CAMK2A, SERINC3,
SUSD1, EDA2R, and TMEM92). The pan-SCC cohort was divided into high-risk (n = 579)
and low-risk (n = 736) groups based on the risk score best cutoff by a log rank analysis.
As expected, cluster A cases were strongly enriched in the low-risk group, while cluster
B and C cases were enriched in the high-risk group (Figure 2A). Moreover, HPV-positive
tumors and cases of the TCGA-CESC cohort were more abundant in the low-risk group
(Figure 2A). Concerning the clinical outcome, the high-risk group of the pan-SCC cohort
was associated with an unfavorable OS, DSS, and PFI as determined by a Kaplan–Meier
analysis (Figure 2B), and univariate Cox regression models confirmed an unfavorable OS
for most tested subgroups with a high-risk score (Figure S9). Moreover, univariate Cox
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regression models confirmed an unfavorable OS, DSS, and PFI for HPV16-positive and
HPV-16 negative SCC with a high-risk score for TCGA-CESC or TCGA-HNSC, but not for
HPV18-positive SCC of TCGA-CESC (Figure S10).

Figure 1. Establishment of a prognostic pan-SCC classifier based on survival-related candidate genes.
(A) Heatmap illustrates classification of pan-SCC cases by k-means clustering based on a distance
matrix calculation from the resampled expression data of indicated candidate genes. Rows and
columns indicate candidate genes and cases, respectively. (B) Random forest MDS plot presents
distinct features of clusters based on 37 survival-related candidate genes for the pan-SCC cohort.
(C) Kaplan–Meier plots for five-years OS (top), DSS (middle), and PFI (bottom) of the three clusters
for the pan-SCC cohort. p-values were computed by the log-rank test and numbers represent cases at
risk at the indicated time points.
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Figure 2. LASSO Cox regression model for the pan-SCC cohort. (A) Dot plot displays risk scores for low-risk (blue dots)
or high-risk (red dots) subgroups, and the heatmap summarizes expression of 18 prioritized candidate genes within the
pan-SCC cohort. (B) Kaplan–Meier plots for five-year OS (left), DSS (middle), and PFI (right) of the low-risk and high-risk
subgroups for the pan-SCC cohort. p-values were computed by the log-rank test and numbers represent cases at risk for the
indicated time points.

Concerning the impact of the tumor immune microenvironment (TIME), we did
not observe a significant correlation among the prognostic clusters or risk groups with a
previously reported cytotoxic immune phenotype [15] (data not shown). Furthermore, the
analysis of ESTIMATE signatures (stromal, immune, and ESTIMATE scores) revealed no
significant difference among high-risk and low-risk groups in TCGA-CESC or TCGA-ESCA
cohorts, while significant differences were detected for TCGA-LUSC and in part for the
TCGA-HNSC cohorts (Figure S11).
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2.3. Differences in the Mutational Landscape Related to Prognostic Risk Groups

To address the question of whether distinct prognostic phenotypes are the consequence
of a complex regulation of molecular networks, including genetic and/or epigenetic events,
we conducted an integrative analysis of multi-omics data. First, we analyzed the quantity
and quality of somatic mutations among low-risk and high-risk groups of the pan-SCC
cohort. While no significant difference for the total mutation load was evident in the
pan-SCC cohort (Figure 3A) or for individual SCC cohorts (Figure S12A), the relative
frequency of NSD1 and PIK3CA mutations was significantly higher in SCCs of the low-risk
as compared to the high-risk group (Figure 3B). In contrast, the relative frequency of TP53
mutations was significantly higher in tumors of the high-risk as compared to the low-risk
group. While differences in the relative frequency of NSD1 and PIK3CA mutations were
consistent for all analyzed SCC cohorts (Figure 3C), the enrichment of TP53 mutations in
the high-risk group was particularly detected for TCGA-HNSC (Figure S12B).

In terms of CNAs, we identified a significantly higher fraction of global CNAs in
the low-risk as compared to high-risk group of the pan-SCC cohort (Figure 3D), which
was significant for HPV16-negative SCC and TCGA-LUSC, but not any other subgroup
(Figure S13). An analysis of the quality of CNAs revealed several hot spot regions with
copy number gains (chromosomes 1q, 3q, 7q, 18p, and 18q) or deletions (chromosomes
6q, 10q, 13q, and 16q) as characteristic features of the low-risk group in the pan-SCC
cohort (Figure 3E). Several of these hot spot regions were also observed in distinct SCC
subtypes, in particular TCGA-LUSC (Figure S14). To evaluate whether these CNAs explain
at least in part changes in global gene expression, differentially expressed genes (DEGs)
between low-risk and high-risk groups of the pan-SCC cohort were analyzed. In total,
1081 DEGs (−1 > log2FC > 1 and FDR < 0.05) were identified, including 520 genes with
higher transcript levels in the low-risk group and 561 genes with a higher transcript level in
the high-risk group (Figure 3F; Table S3). Eight up-regulated DEGs in the high-risk group
were related to the unfavorable gene set considering OS and PFI (ANKRD1, CAMK2A,
CAMK2N1, FADS3, ITGA5, PTX3, SYT7, and TNFRSF12A), while six up-regulated DEGs
in the low-risk group were related to the favorable gene set considering OS and PFI
(FOXE1, FOXN1, FOXRED2, HLF, NOS2, and SPRR3). An enrichment analysis considering
MSigDB hallmark, C2, C5, and C6 datasets revealed extracellular matrix organization and
interaction, epithelial mesenchymal transition, invasion, coagulation, BMI, KRAS, and
EGFR signaling as the top features for SCC of the high-risk group, and distinct metabolic
processes, E2F activity, G2M checkpoint, HPV positivity, and epithelial differentiation as
the top features for SCC of the low-risk group (Tables S4–S7). In total, 49 up-regulated
DEGs in SCCs of the high-risk group were encoded by genomic regions with a significantly
higher frequency for deletions in SCCs of the low-risk group, while 68 up-regulated DEGs
in SCCs of the low-risk group were encoded by genomic regions with a significantly higher
frequency for copy number gains in this group (Table S8).

In summary, these data indicate an impact of specific somatic mutations and CNAs
on the clinical outcome of SCCs. It is worth noting that previous studies already demon-
strated a favorable survival of HNSC with NSD1 mutations accompanied by global DNA
hypomethylation [22,23], suggesting a pivotal role of epigenetic events for the prognosis
of SCCs.

2.4. Differences in Epigenetic Events Related to Prognostic Risk Groups

To explore the impact of DNA methylation on the establishment and maintenance
of prognostic risk groups, we analyzed global DNA methylation data of the pan-SCC
cohort. The global methylation value was significantly lower in SCCs of the low-risk as
compared to the high-risk group (Figure 4A), which was consistently found for HPV16-
negative and HPV16-positive subgroups or distinct SCC subtypes, except for TCGA-ESCA
(Figure S15A–B). Furthermore, 4503 differentially methylated probes (−0.5 > log2FC > 0.5,
FDR < 0.05) were extracted comparing low-risk and high-risk groups of the pan-SCC cohort
(Figure 4B). A total of 213 probes had significantly higher beta values for the low-risk group
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and were located in proximal promoters of 66 DEGs with higher expression in SCCs of the
high-risk group. Finally, 18 probes had significantly higher beta values for the high-risk
group and were located in the proximal promoter of nine DEGs with a higher expression
in SCCs of the low-risk group (Table S9). Significant differences in beta mean values of
probes in the proximal promoter of DEGs related to favorable or unfavorable survival were
also found for distinct tumor entities (Figure S16A,B).

Figure 3. Differences in the mutational landscape among high-risk and low-risk subgroups of the pan-SCC cohort. (A) Violin
plot demonstrates no significant difference for total mutation load among high-risk and low-risk subgroups of the pan-SCC
cohort. (B) Bar plot summarizes the relative abundance of somatic mutations for significant MutSig genes (chi-square test
p < 0.05) among high-risk and low-risk subgroups of the pan-SCC cohort. * chi-square test p < 0.001. (C) Graphs show the
relative frequency of either NSD1 (left) or PIK3CA (right) somatic mutations for the indicated TCGA cohorts. (D) Violin plot
demonstrates a significant higher global CNA fraction in the low-risk as compared to high-risk subgroup for the pan-SCC
cohort. (E) CNA plot shows the relative frequency of copy number gains (red) or deletions (blue) among high-risk and
low-risk subgroups of the pan-SCC cohort and displays highly significant differences by Fisher’s exact test. (F) Volcano plot
presents significant differentially expressed genes (DEGs) (−1 > log2FC > 1, FDR < 0.05, n = 1081) among high-risk and
low-risk subgroups of the pan-SCC cohort computed by edgeR.
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Figure 4. Differences in the epigenetic landscape among high-risk and low-risk subgroups of the pan-SCC cohort. (A) Violin
plot demonstrates significant higher genome-wide beta mean values for promoter DNA methylation of the low-risk as
compared to the high-risk groups in the pan-SCC cohort. (B) Heatmap shows beta values for differentially methylated probes
(n = 231) annotated for promoters of DEGs among high-risk and low-risk subgroups of the pan-SCC cohort. (C) Volcano
plot shows significant differentially expressed miRs (DEFMs, n = 78) among high-risk and low-risk groups of the pan-SCC
cohort (−1 > log2FC > 1, FDR < 0.05). (D) Venn diagrams summarize the amount of predicted DEFM-DEG links according
to indicated databases and miRs which are up-regulated in either high-risk (left) or low-risk (right) groups of the pan-SCC
cohort. (E) Volcano plot shows significant differentially expressed lncRNAs (n = 513) among high-risk and low-risk groups
of the pan-SCC cohort (−1 > log2FC > 1, FDR < 0.05). (F) Venn diagrams summarize the amount of predicted miR-DEG
links according to indicated databases and based on miRs, which are linked to differentially expressed lncRNAs, which are
up-regulated in either the high-risk group (left) or the low-risk group of the pan-SCC cohort.

We also identified 78 differentially expressed functional miRNAs (DEFM)
(−1 > log2FC > 1, FDR < 0.05) among low-risk and high-risk groups for the pan-SCC
cohort (Figure 4C; Table S10). For miRNAs with higher expression in the high-risk group,
267 DEFM-DEG links were identified by at least two databases, including 170 up-regulated
DEGs in SCCs of the low-risk group. For miRNAs with higher expression in the low-risk
group, 249 DEFM-DEG links were identified, including up-regulated 160 DEGs in SCCs of
the high-risk group (Figure 4D).

Next, we identified 513 differentially expressed lncRNAs (−1 > log2FC > 1, FDR < 0.05)
among low-risk and high-risk groups of the pan-SCC cohort (Figure 4E, Table S11). The
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target miRNA prediction revealed 2105 lncRNA-miR links, including 41 lncRNAs and
275 miRNAs, of which 363 target 175 up-regulated DEGs in SCCs of the high-risk group
and 223 target 127 up-regulated DEGs in SCCs of the low-risk group (Figure 4F). Based
on the differentially expressed miRs and lncRNAs as well as predicted links with targeted
DEGs, a complex network was plotted that summarizes the underlying molecular traits for
distinct prognostic risk profiles of the pan-SCC cohort (Figure S17).

2.5. DEGs Affected by Several Modes of Genetic and Epigenetic Regulation

We assumed that DEGs regulated by different modes of genetic and epigenetic events
might represent important drivers of our prognostic risk model. In total, 45 DEGs were
identified, which were affected in at least three out of four genetic or epigenetic models
(Table S12). Of these DEGs, two (CAMK2N1 and HLF) were previously identified as
candidate genes of the prognostic 37 gene signature, 34 shared a higher expression in
SCCs of the high-risk group and eleven were up-regulated in SCCs of the low-risk group
(Figure 5A). A random forest regression model confirmed the stratification of tumors in the
pan-SCC cohort into low-risk and high-risk groups based on the transcript levels of these
45 DEGs (Figure 5B). In addition, the analysis of protein–protein interaction according to
the STRING database highlighted FN1, SEMA3A, CDH2, FBN1, COL5A1, and ADAM12 as
key nodes of a well-defined network (Figure 5C). Interestingly, the prominent expression
of these key nodes was detected in either fibroblasts or cancer cells with an mesenchymal-
like phenotype in HNSCC (Figure S18), according to single-cell RNA sequencing data
(GSE103322) [24].

2.6. In-Silico Drug Screen for SCC Cell Lines Resembling a High or Low-Risk Profile

Finally, we addressed the question of whether SCC cells with a high-risk profile share
traits of resistance or sensitivity to well-established compounds with the perspective to
elucidate vulnerabilities for a more effective treatment of high-risk SCC patients. Risk
scores were computed for 66 tumor cell lines from cervix, oesophagus, upper aerodigestive
tract, and lung SCCs based on the previously established 18 gene signature. SCC cell lines
with the highest or lowest risk scores (n = 20, respectively) were selected for further analysis
(Figure S19A). It is worth noting that the selected SCC cell lines exhibited a significant
difference in transcript levels for 16 out of 45 candidate genes, which were affected by
genetic or epigenetic alterations in the pan-SCC cohort (Figures 6A and S19B). In line with
the pan-SCC cohort, SCC cell lines with a low-risk profile had a significantly higher CNA
fraction as compared to cell lines with a high-risk profile (Figure S20A), accompanied by a
significantly higher frequency of chromosome 3q gains (Figure S20B). Again, no statistically
significant difference was evident concerning total mutational load (Figure S20C), but a
trend towards a higher frequency of RB1 somatic mutations was found for SCC cell lines
with a low-risk profile, while more KRAS somatic mutations were present in cell lines
with a high-risk profile (Figure S20D). We detected a difference in neither the frequency of
NSD1 somatic mutations nor in the global beta mean value for DNA methylation among
SCC cell lines with a low-risk or high-risk profile (Figure S20D,E). However, the beta mean
value of probes in the proximal promoter of up-regulated DEGs in the high-risk group
of the pan-SCC cohort was significantly higher in SCC cell lines with the low-risk profile
(Figure S20F).

Drug sensitivity data of the CCLE database were analyzed and revealed a signifi-
cantly higher sensitivity for SCC cell lines with a high-risk profile under Trametinib and
Selumetinib-1 treatment, while SCC cell lines with a low-risk profile were more sensitive to
Lapatinib, MG-132, or S-Trityl-L-cysteine (Figure 6B). Trametinib and Selumetinib-1 are
well established MEK inhibitors [25,26], and according to the protein–chemical association
network based on the STITCH database, are related to MEK-ERK and STAT3 signaling
(Figure 6C). Indeed, significantly higher ssGSEA scores for either MAPK-ERK or STAT3
signaling were detected for SCC cell lines with a high-risk as compared to a low-risk profile
(Figures S21A and S22A) of the pan-SCC cohort (Figure 6D,E). The MAPK-ERK pathway



Cancers 2021, 13, 5182 10 of 22

was consistently enriched in the high-risk group independent of the HPV16 status or the
SCC subtype, except for TCGA-ESCA (Figure S21B,C). Significantly higher ssGSEA scores
for the JAK-STAT3 pathway were evident for HPV16-negative tumors of the pan-SCC
cohort, but not for HPV16-positive SCC (Figure S22B). Concerning individual SCC sub-
types, significantly higher ssGSEA scores for the JAK-STAT3 pathway were confirmed
for TCGA-HNSC and TCGA-LUSC (Figure S22C). These data suggest a pivotal role of
MEK1/2 activation for the prognosis of SCC, which is further supported by significantly
higher MEK1 (pS217/221) phosphorylation levels, but not total protein amounts in the
high-risk group of the pan-SCC cohort according to The Cancer Proteome Atlas (TCPA)
(Figure S23A). In addition, significant higher levels of the up-stream signaling proteins
CRAF and phospho-EGFR (pY1173) were found for the high-risk group of the pan-SCC
cohort (Figure S23B,C). Significantly higher MEK1 (pS217/221) phosphorylation levels
were also detected for the high-risk group of HPV16-negative tumors of the pan-SCC
cohort, and two SCC subtypes (TCGA-HNSC and TCGA-CESC), while a similar trend was
also evident for TCGA-LUSC and TCGA-ESCA, which did not reach statistical significance
(Figure S24A,B).

Figure 5. Candidate genes affected by different modes of genetic and epigenetic regulation. (A) Venn diagrams show the
amount of DEGs with higher expression in either the high-risk (left) or the low-risk (right) group of the pan-SCC cohort,
which are affected by different modes of indicated genetic (CNV) or epigenetic (Methylation, miRs, lncRNAs) events.
(B) Random forest MDS plot presents distinct features of risk groups based on DEGs (n = 45), which are affected by three
out of four genetic and epigenetic events. (C) Schematic presentation of a protein–protein interaction network (minimum
required interaction score: medium confidence (0.400)) for selected DEGs (n = 45), which are affected by at least three out of
four genetic or epigenetic events according to the STRING database.
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Figure 6. MEK inhibitors as potential drugs for high-risk SCC. (A) Heatmap demonstrates expression
pattern of 16 survival-related candidate genes in indicated cancer cell lines with a low-risk or
high-risk profile. (B) Volcano plot summarizes the relative change in the IC50 z-score and p-value
among selected SCC cell lines with a low-risk or high-risk profile, which were treated with indicated
compounds based on the Genomics of Drug Sensitivity in Cancer (GDSC) database. Red dots
represent drugs with a significantly higher sensitivity for high-risk SCC cell lines and blue dots
represent drugs with a significantly higher sensitivity for low-risk SCC cell lines. (C) Schematic
presentation of a protein–protein and protein–chemical association network (minimum required
interaction score: medium confidence (0.400)) for Trametinib and Selumetinib based on the STITCH
database. (D,E) Violin plots demonstrate significantly higher ssGSEA scores for either ERK-MAPK or
JAK-STAT3 signaling pathways in high-risk as compared to low-risk groups of the pan-SCC cohort.
(F) Representative pictures of an IHC staining demonstrates prominent MEK1/2 phosphorylation
(brown signal) in cancer cells of high-risk (upper row) but not in low-risk (lower row) HNSCC of the
indicated subsites. Histological staining with hematoxylin to visualize the tissue architecture.
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To further validate accelerated MEK1 signaling as a characteristic feature and potential
drug target for high-risk SCCs, 30 cases of the HIPO-HNC cohort (GSE117973) [20] were
stratified into high-risk and low-risk groups (Figure S25A,B) based on transcript levels
of the 18 gene signature, and stained by IHC. Prominent staining for phospho-MEK1/2
(pS217/221) was detected in cancer cells of most high-risk HNSCCs (11 out of 15 cases)
but was only detected in four out of 15 cases for the low-risk HNSCCs at different subsites
(Figure 6F).

3. Discussion

SCCs represent the most frequent human solid tumors and are a major cause of cancer
mortality. They share common histological features, epidemiological risk factors, as well as
molecular patterns [9,11]. Previous studies focused on the tumor immune microenviron-
ment [13–15], biological and genetic traits [9], as well as oncogenic pathways [11], while
others unrevealed germline variants as prognosticators in the pan-cancer landscape [27–29].
However, the poor 5-year survival rate in distinct HNSCC and other SCC subtypes [3]
highlighted the urgent need for a better prognostic stratification and understanding of the
underlying molecular principles to establish a more effective and less toxic therapy of SCCs
at a higher risk for treatment failure and tumor recurrence. Hence, we describe a new risk
stratification model for SCCs with a distinct clinical outcome based on a survival-related
gene signature, which was established in a pan-SCC training cohort of TCGA and con-
firmed in independent HNSCC validation cohorts. Most relevant prognostic genes were
prioritized by a LASSO Cox regression model and were used to identify subgroups with
high or low-risks for unfavorable survival. An integrative analysis of multi-omics data
among low-risk and high-risk groups highlighted FN1, SEMA3A, CDH2, FBN1, COL5A1,
and ADAM12 as key nodes of a regulatory network, and finally predicted MEK-ERK and
JAK-STAT3 signaling as promising drug targets for high-risk SCC patients. Presented
data could pave the way for a better prognostic stratification of HNSCC and other SCC
patients with an unfavorable clinical outcome, who may benefit from a more efficient and
personalized treatment in future clinical trials.

In the first part of this study, 37 survival-related candidate genes were identified of
which twelve candidates were differentially expressed among matched tumor and normal
tissue. It is worth noting that only half of these candidate genes shared the expected
up-regulation in tumor tissue and higher expression in SCC with an unfavorable prognosis
or vice versa. This finding is of particular relevance as many previous studies reporting
prognostic gene signatures focused on DEGs among tumors and normal tissues [30,31].
Our data indicate a certain risk for missing clinically relevant prognostic genes by focusing
on DEGs among normal and tumor tissue, which is supported by An et al. [32].

Subsequently, 18 survival-relevant candidate genes were identified based on a LASSO
Cox regression model applied on a large pan-SCC cohort. Several candidate genes of
this signature, in particular candidate genes related to unfavorable survival, are already
well-known prognostic factors. Previous studies reported that the up-regulation of CTSL
or PTX expression correlates with poor prognosis [33] as well as lymph node or distant
metastases, tumor stage, and overall survival in HNSCC [34–37]. Moreover, ITGA5 was
identified as a candidate for partial EMT [24], and was related to unfavorable prognosis
in HNSCC [38,39]. Regulation of SLC16A3 by DNA methylation and its prognostic value
was reported in a previous pan-cancer study, including ESCA, HNSC, and LUSC [40]. A
similar regulation or prognostic value was demonstrated in pancreatic cancer [41], lung
adenocarcinoma [42], and clear cell renal cell carcinoma [43,44]. TMEM92 was reported
in a 14 gene signature related to unfavorable survival of LUSC [45]. Finally, BZW1 and
CAMK2A were not reported in SCC tumors yet; however, they were identified as prognostic
markers in non-SCC tumors [46–49]. In the past, several prognostic biomarkers or gene
sets have been published of which some have been confirmed by systematic reviews and
meta-analyses for HNSCC more recently [50–52]. It is worth noting that none of them are
included in our list of survival-related candidate genes and consequently are not part of the
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prognostic 18 gene signature for risk prediction. Confirmation of the prognostic 18 gene
signature by a meta-analysis will generate a higher level of clinical evidence and remains
a major challenge for future studies but is currently hampered by limited accessibility
of publicly available datasets, including RNA-seq and survival data from independent
pan-SCC cohorts.

A somatic mutation analysis elucidated a higher frequency of NSD1 and PIK3CA
mutations in the low-risk group of the pan-SCC cohort, but also in all analyzed SCC sub-
types. In 2017, Peri et al. reported a favorable survival of HNSCC with NSD1 mutations
accompanied by global DNA hypomethylation [53], which is also a characteristic feature
of low-risk SCCs in our study. As a histone methyltransferase, a previous study indicated
that NSD1 mutations alter the methylation of histone H3 at K36 (H3K36), subsequently
blocking cellular differentiation and promoting oncogenesis in HPV-negative HNSCC [22].
Other studies demonstrated that NSD1-mediated H3K36me2 is required for the recruit-
ment of DNMT3A and maintenance of DNA methylation at intergenic regions in mouse
cells [54], and that NSD1 mutations define a low immune infiltration phenotype in several
SCCs [55,56].

By applying an integrative analysis of multi-omics data taking into account both
genetic and epigenetic events and their impact on DEGs among low-risk and high-risk
groups of the pan-SCC cohort, we unraveled FN1, SEMA3A, CDH2, FBN1, COL5A1, and
ADAM12 as key nodes of a gene regulatory network. Interestingly, FN1 and CDH2 were
well established markers for epithelial-to-mesenchymal transition (EMT) and promoted
metastasis in several SCCs [56–59]. Furthermore, FN1 is a glycoprotein of the extracellular
matrix, which enables interactions between tumor cells and the extracellular matrix and
plays essential roles in cell adhesion and dissemination processes [60,61].

Furthermore, two MEK inhibitors (Trametinib and Selumetinib) were predicted as
effective compounds for high-risk SCCs by an in-silico drug screen. This prediction was
further supported by a higher activity of the MAPK-ERK pathway in high-risk as compared
with low-risk SCCs. The well-established oncogenic role of the MEK-ERK pathway [62–65]
has made this pathway a primary drug target for numerous cancers [66,67]. The efficacy of
MEK inhibitors as monotherapy or in combinatorial treatment strategies was supported
by several pre-clinical or clinical trials in several primary or metastatic settings [68–73].
Interestingly, a higher frequency of RASA1 mutations was found in the high-risk SCC
cohort and cell lines, which is a negative regulator of the RAF–MEK–ERK pathway. RASA1
can enhance the intrinsic GTPase activity of RAS, resulting in an increase of inactive GDP-
bound forms of Ras, thereby leading to an aberrant intracellular signaling through the
RAF–MEK–ERK pathway [74]. On the other hand, more frequent KRAS mutations were
evident in the high-risk SCC cohort and cell lines, which play an essential role in controlling
the activity of multiple downstream effectors, including MEK-ERK signaling [75]. Aberrant
RAS function is closely associated with a single mutation, typically at codon 12, 13, or 61.
Mutations at these conserved sites favor GTP binding and lead to constitutive activation
of the RAS–MEK–ERK pathway [76], which is in line with more KRAS mutations and
enrichment of its activity in high-risk SCC. Though our study demonstrated a higher
staining pattern for phospho-MEK1/2 in cancer cells of HNSCC with a higher risk pattern,
a limitation of the presented data is the small sample size and confirming in larger cohorts,
including SCC from other anatomical sites, is a major challenge in future studies.

It is also worth noting that Ngan et al. reported a favorable survival of HNSCC
patients with somatic mutations in key components of the MAPK pathway [77], which
raises concerns on the clinical benefit of targeted inhibition of the MEK-ERK pathway
as a “magic bullet” for all SCC. However, tumors might exhibit accelerated MEK-ERK
pathway activity despite missing MAPK pathway mutations due to the activation of
upstream regulators (e.g., EGFR) by genomic alterations or high levels of stimulating
ligands [78]. This assumption is in line with computational inferred pathway activities,
which are not necessarily associated with the mutational landscape of key components
in the respective pathways as demonstrated recently for EGFR or PI3K pathways [78,79].
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On the other hand, Ngan et al. provide compelling experimental evidence that HNSCC
with MAPK pathway mutations share an immune-active tumor microenvironment with
a CD8-positive T cell-inflamed phenotype [77]. In contrast, numerous studies reported
an association between EGFR-MEK pathway activity with an immune cold phenotype
in multiple cancers, including HNSCC, and a lower benefit from ICI therapy in cancers
with EGFR mutations [80]. These data underline the urgent need for a better cellular and
molecular stratification of high-risk SCC patients, who might benefit from the targeted
inhibition of the MEK-ERK pathway.

Similar to other integrative analyses of multi-omics data derived from bulk tumor
tissue, this study shares some limitations. For example, the LASSO Cox model established
on RNA sequencing data has limited power using datasets based on microarray platforms.
Moreover, the risk model should be confirmed by a prospective analysis of a large SCC
patient cohort, and the efficacy of MEK inhibition for high-risk SCC requires validation in
appropriate pre-clinical models and future clinical trials.

4. Methods and Methods
4.1. Expression and Clinical Datasets Acquisition

Messenger RNA, functional miRNAs, and lncRNA expression data were downloaded
for 1466 tumors across TCGA-CESC (n = 304, including 252 SCC and 52 non-SCC), TCGA-
ESCA (n = 161, including 81 SCC and 80 non-SCC), TCGA-HNSC (n = 500), and TCGA-
LUSC (n = 501) cohorts from https://portal.gdc.cancer.gov/ (accessed on 8 November 2019)
and protein expression levels were downloaded from https://www.tcpaportal.org/tcpa
(accessed on 15 November 2019). In total, RNA-seq data were available for 1334 SCC
for further analysis. The pan-cancer clinical and follow-up data were accessed from the
https://gdc.cancer.gov/ in 28 November 2019. Information on the HPV status was accessed
from Cao et al. [81].

Transcriptome data for HNSCC validation cohorts were downloaded from Gene
Expression Omnibus (GSE65858 [19] and GSE41613 [21]) in 18 January 2021 or were
available from HIPO-HNC (GSE117973 [20]). For GSE65858 (n = 270), we considered only
primary HNSCC (n = 253) for further analysis.

Transcriptome and drug screening data of the Cancer Cell Line Encyclopedia (CCLE)
cell lines were downloaded from cBioPortal (https://www.cbioportal.org/) [82–84] in 18
February 2020. We selected SCC cell lines (n = 66) from the cervix, oesophagus, upper
aerodigestive tract, and lung for further analysis.

4.2. Survival Analyses

The best cutoff for OS or PFI of distinct SCC cohorts, respectively, was computed
by “maxstat” (smethod = “LogRank”, pmethod = “exactGauss”, and abseps = 0.01) in
R. OS, DSS, and PFI probabilities were calculated for a combined cohort or individual
cohorts using the Kaplan–Meier method and the log-rank test was used to compare the
differences among groups. The survival analysis and visualization were performed by R
packages “survminer”, “survival” and “ggplot2”. A univariable Cox regression analysis
was performed by the R package “survival”, and the hazard ratio and 95% confidence
interval were computed.

4.3. Consensus Clustering

Consensus clustering was performed by “ConsensusClusterPlus” package in R, with
80% cases resampling, k-means clustering algorithm upon 1-spearman correlation distances,
and seed as 123456. SCC tumors were classified from 2 to 10 clusters and the partition was
determined by the consensus cumulative distribution function evaluating the consensus
matrix [85].

https://portal.gdc.cancer.gov/
https://www.tcpaportal.org/tcpa
https://gdc.cancer.gov/
https://gdc.cancer.gov/
https://www.cbioportal.org/
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4.4. Random Forest Regression

Random forest regression was performed by the “randomForest” (seed = 100) and
visualized by the “ggplot2” package in R.

4.5. The LASSO Cox Regression

The LASSO Cox regression was used for prioritizing the most relevant prognostic
candidate genes by the “glmnet” package in R. The prioritized gene set was used to es-
tablish the regression risk model based on the pan-SCC cohort of TCGA [85,86]. The risk
score was computed by the R package “glmnet” (s = lambda.min and type = “response”),
and the analytical formula for risk assessment was derived on the basis of 18 prioritized
candidate genes (coefficients of genes: RPS6KA5 = −0.091314273; EVA1C = −0.028241615;
FOXRED2 = −0.015921459; ITPRIPL1 = −0.015085757; TIAM1 = −0.009605322;
FAM83C = −0.001895369; NOS2 = −0.001432844; BZW1 = 0.000472265; CTSL = 0.00075636;
TPRG1 = 0.001472244; ITGA5 = 0.001809248; SLC16A3 = 0.005035462; PTX3 = 0.005254341;
CAMK2A = 0.007942951; SERINC3 = 0.010006911; SUSD1 = 0.020496547; EDA2R = 0.025931937
and TMEM92 = 0.043746806).

The same risk score cut-off was applied to all cases of the pan-SCC cohort from TCGA
for stratification into the low- or high-risk groups.

4.6. ESTIMATE Immune Score

Stromal, immune, and ESTIMATE scores for distinct SCC cohorts were computed by
the R package “estimate” [87].

4.7. Somatic Mutation Analysis

The mutation counts and candidate genes with a MutSig 2.0 q-value < 0.05 for TCGA-
CESC, TCGA-ESCA, TCGA-HNSC, and TCGA-LUSC cohorts were accessed from cBio-
Portal in 23 January 2020. Significant enrichment among distinct prognostic clusters were
analyzed by a Chi-square test. The somatic mutation data of CCLE cell lines were accessed
from cBioPortal in 18 February 2020.

4.8. CNV Analysis

The CNA fractions of individual SCC cohorts from TCGA were downloaded from
cBioPortal in 9 January 2020. The CNA fraction data of CCLE cell lines were downloaded
from cBioPortal in 18 February 2020.

Global CNA data (Level_3_segmented_scna_minus_germline_cnv_hg19_seg) of TCGA-
CESC, TCGA-ESCA, TCGA-HNSC, and TCGA-LUSC cohorts were downloaded from
http://www.firebrowse.org/ in 29 January 2020. The segment mean < −0.2 was defined
as loss and >0.2 as gain. CoNVaQ web tool (https://convaq.compbio.sdu.dk/, accessed
on 9 March 2020) [88] was used as a statistical model for distinct prognostic clusters based
on Fisher’s exact test. CNA plots were visualized with IGV_2.4.19 (Integrative Genomics
Viewer_2.4.19) [89].

4.9. Differential Expression Analysis

Differentially expressed gene, miR, and lncRNA analyses were performed by the
“EdgeR” package in R [90].

4.10. DNA Methylation Analysis

DNA methylation data (Methylation 450k) of TCGA-CESC, TCGA-ESCA, TCGA-
HNSC, and TCGA-LUSC cohorts were downloaded from https://gdc.xenahubs.net/ in 19
February 2020. Methylation 450k data were normalized with the R package “limma”. The
global methylation value was computed as beta mean values of probes annotated for gene
promoters (n = 13,564) with the most variable beta values among the top 30,000 probes with
the highest beta mean value. Significant differences among distinct prognostic clusters
were computed by the Wilcoxon test.

http://www.firebrowse.org/
https://convaq.compbio.sdu.dk/
https://gdc.xenahubs.net/
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The processed methylation data of CCLE cell lines were downloaded from Gene
Expression Omnibus (GSE68379) [91] in 18 February 2020.

4.11. Target Gene Prediction

The MiRcode database [92] was used for differentially expressed lncRNA to establish
an miR link prediction on highly conserved miR families. Three online databases (Tar-
getScan V7.2 [93], miRDB V6.0 [94,95], and mirTarBaseV7.0 [96]) were used for functional
miR-DEG link prediction. The visualization of the network structure was completed by
Cytoscape [97].

4.12. Genome Annotation and Enrichment Analyses

The STRING database (Search Tool for Recurring Instances of Neighboring Genes) [98]
was used to establish the network structure for multi-omics regulated candidate genes. The
STITCH database (Search Tool for Interacting Chemicals) [99] was used for establishing the
protein–chemical interaction networks.

Kyoto Encyclopedia of Genes and Genomes (KEGG) and GO hypergeometric enrich-
ment analyses were processed by the R package “clusterProfiler” [100]. The Gene Set
Enrichment Analysis (GSEA) algorithm was used to compute the normalized enrichment
score and statistical significance for Molecular Signatures Database (MSigDB) hallmark, C2,
C5, as well as C6 collection terms and gene set permutations were performed 1000 times
for each analysis by GSEA v4.0.3 software.

4.13. Single Cell Sequencing Analysis

The Cell Browser online database (https://cells.ucsc.edu/, accessed on 19 June 2020)
was used to analyze single cell sequencing data from ten HNSC patients (GSE103322) [24].

4.14. Single Sample Gene Set Enrichment Analysis (ssGSEA)

Enrichment scores were computed by ssGSEA applying the “GSVA” package in
R [101]. The lists of ST_ERK1_ERK2_MAPK_PATHWAY and HALLMARK_IL6_JAK_STAT3
_SIGNALING signatures were accessed from https://www.gsea-msigdb.org/gsea (ac-
cessed on 9 July 2020).

4.15. Immunohistochemistry (IHC) Staining

IHC staining was performed as described previously (19) on formalin-fixed paraffin-
embedded (FFPE) tumor sections of the HIPO-HNC cohort with a rabbit anti-phospho-
MEK1/2(Ser217/221) antibody (#9121, Cell Signaling Technology). The specificity of the
staining was confirmed with a rabbit IgG isotype control antibody (DA1E, Cell Signaling
Technology) (data not shown). FFPE tumor sections were provided by the tissue bank of the
National Center for Tumor Disease (Institute of Pathology, University Hospital Heidelberg,
Heidelberg, Germany).

4.16. Study Approval

Patients of the HIPO-HNC cohort (GSE117973) were treated between 2012 and 2016
at the University Hospital Heidelberg, Germany. Patient samples were obtained and
analyzed under protocols S-206/2011 and S-220/2016, approved by the Ethics Committee
of Heidelberg University, with written informed consent from all participants. This study
was conducted in accordance with the Declaration of Helsinki.

5. Conclusions

In conclusion, we established a prognostic risk model for pan-SCC and identified
potential drug targets and predicted effective compounds. Our data pave the way for
innovative pre-clinical studies and future clinical trials stratified for SCC patients at higher
risk for treatment failure and tumor relapse.

https://cells.ucsc.edu/
https://www.gsea-msigdb.org/gsea
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levels were downloaded from https://www.tcpaportal.org/tcpa (accessed on 15 November 2019).
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org/, accessed on 18 February 2020).
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