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Simple Summary: Soft-tissue sarcomas constitute a rare cancer type, with approximately 40% of
patients experiencing disease recurrence. There is a need for a better identification of patients with
especially aggressive tumors. Previous research demonstrated that the qualitative assessment of
imaging data by radiologists (“semantic features”) and the algorithm-based analysis of imaging data
(termed “radiomics”) may help to achieve a more thorough identification of patients at high risk
for cancer-specific mortality. In this work, we compared the performance of predictions of patients’
survival based on semantic features extracted by radiologists with a “radiomic” approach. While
some semantic features were helpful to identify high-risk patients, the radiomic approach achieved
an overall improved ability to identify patients at high risk. For the radiomic prediction, only one
MRI sequence was sufficient and an MRI sequence without the need for contrast agent achieved
good predictive performance.

Abstract: Background: In patients with soft-tissue sarcomas of the extremities, the treatment decision
is currently regularly based on tumor grading and size. The imaging-based analysis may pose
an alternative way to stratify patients’ risk. In this work, we compared the value of MRI-based
radiomics with expert-derived semantic imaging features for the prediction of overall survival
(OS). Methods: Fat-saturated T2-weighted sequences (T2FS) and contrast-enhanced T1-weighted fat-
saturated (T1FSGd) sequences were collected from two independent retrospective cohorts (training:
108 patients; testing: 71 patients). After preprocessing, 105 radiomic features were extracted. Semantic
imaging features were determined by three independent radiologists. Three machine learning
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techniques (elastic net regression (ENR), least absolute shrinkage and selection operator, and random
survival forest) were compared to predict OS. Results: ENR models achieved the best predictive
performance. Histologies and clinical staging differed significantly between both cohorts. The
semantic prognostic model achieved a predictive performance with a C-index of 0.58 within the test
set. This was worse compared to a clinical staging system (C-index: 0.61) and the radiomic models
(C-indices: T1FSGd: 0.64, T2FS: 0.63). Both radiomic models achieved significant patient stratification.
Conclusions: T2FS and T1FSGd-based radiomic models outperformed semantic imaging features for
prognostic assessment.

Keywords: radiomics; machine learning; soft-tissue sarcomas; radiology; MRI; tail sign; prognosis;
elastic net regression

1. Introduction

Soft-tissue sarcomas (STS) constitute a rare malignant entity comprising 1% of all
cancers [1]. Patient outcome and therapeutic management differ significantly between
anatomic sites of the primary tumor (1). In patients with high-risk STS of the extremities,
resection is commonly combined with neoadjuvant or adjuvant radiotherapy (RT) for
improved local progression-free survival (LPFS) and overall survival (OS) [2,3]. In contrast
to the high LPFS rates of up to 94%, current therapy regimens achieve comparably low OS,
with low distant progression-free survival (DPFS) rates [4–7].

There are large research efforts underway to find biomarkers for the prediction of
therapy response, disease progression, and survival. Semantic imaging features have been
shown to correlate with prognosis in multiple cancer entities [8–10]. In STS patients with
diverse histologies, Crombé et al. demonstrated significant correlations of three semantic
features (peritumoral enhancement, necrosis, heterogenous Tw2 signal intensity) with high
tumor grading, OS, and DPFS [11].

The relatively novel field of imaging-based “radiomics” constitutes an alternative
approach to characterize tissues, with the advantage of analyzing the whole tumor volume
instead of only a focal biopsy sample. It is defined as an algorithm-based large-scale
quantitative analysis of imaging features [12–15]. Such imaging biomarkers were shown
to predict survival, tumor progression, spatial infiltration, and molecular aberrations in
a multitude of cancer types [16–21]. In a recent publication, Spraker et al. did demon-
strate a prognostic potential of contrast-enhanced and fat-saturated T1-weighted (T1FSGd)
sequence-based radiomics in STS patients [22]. An earlier pilot study showed a predictive
capability for distant metastases by applying radiomics to T1-weighted and T2-weighted
fat-saturated (T2FS) sequences that were fused with 18F-fluorodeoxyglucose positron emis-
sion tomography data [23].

The scope of this study was to compare the benefit of expert-derived semantic imaging
features with radiomic models based on multiparametric MRI-scans, combining T1FSGd
and T2FS sequences. The predictive value for OS was assessed and compared to clinical
baseline models. The resulting models were validated in an external patient cohort. Finally,
the importance of single semantic features was assessed.

2. Materials and Methods
2.1. Patients

Two independent patient cohorts from the University of Washington, Seattle, WA,
USA (UW) and the Technical University of Munich, Munich, Germany (TUM) were used
for radiomic model training and testing, respectively. Patient records of patients with STS
of the extremities or trunk were analyzed for patients’ age, grading, and TNM-staging. All
patients received either preoperative, postoperative, or definitive RT, curative in intent,
with or without chemotherapy. Exclusion criteria were low-grade, incomplete imaging
data; previous RT; primary bone sarcomas; Ewing sarcomas; rhabdomyosarcomas; distant
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metastases at diagnosis (M1); and endoprosthesis-dependent MRI artifacts. See Figure S1
for a patient workflow. If an exclusion-relevant criterium was missing, the patient was
excluded. In the final patient cohort, no modeling-specific data were missing. OS was
calculated from the initial pathologic diagnosis to the time point of death or the time point
of censoring. Data reporting follows the TRIPOD recommendations (Table S10: TRIPOD
checklist) [24].

2.2. Image Acquisition and Definition of Volume of Interests

Each included patient received pre-RT MRI scans. See Table S2 for acquisition param-
eters and scan planes. Tumor segmentation was performed using MIM software version
6.6 (MIM Software Inc, Cleveland, USA), Eclipse 13.0 (Varian Medical Systems, Palo Alto,
USA), iplan RT 4.1.2 (Brainlab, Munich, Germany), and 3D Slicer (3D Slicer, Version 4.8
stable release). All segmentations were transformed to masks. The primary tumor as
the volume of interest (VOI) was manually segmented by JCP, by adapting existing ex-
pert segmentations from RT treatment planning in the TUM cohort. In the UW cohort,
segmentation was performed by MBS, MM, JCP, and TC. Edematous changes were not
included in the VOI. To compensate for operator-dependent bias, multiple delineations
were performed for 21 randomly selected patients by three radiation oncologists (RA, MBS,
JCP) in the UW cohort (see Figure 1). The DiceComputation module of 3D Slicer was used
to calculate the Dice coefficient (DC) [25].

Figure 1. Radiomics Workflow. Abbreviations: AJCC: American Joint Committee on Cancer and the International Union for
Cancer Control (8th edition), DCA: decision curve analysis, ENR: elastic net regression, ICC: intraclass coefficient, LASSO:
least absolute shrinkage and selection operator, T1FSGd: T1-weighted fat-saturated with gadolinium, T2FS: T2-weighted
fat-saturated, VOI: volume of interest.

2.3. Image Preprocessing and Radiomic Feature Extraction

N4ITK MRI bias field correction was applied to each imaging study using the Slicer3D
implementation to compensate for non-uniform intensity caused by field inhomogene-
ity [26]. The pyradiomics package (Version 2.2) implemented in Python (3.7) was used for
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all preprocessing steps and radiomic feature extractions [27]. All radiomic features were
calculated consistent with the Imaging Biomarker Standardization Initiative (IBSI) [28].
Preprocessing was conducted before image analysis. Due to the relative nature of MRI
intensity values, image discretization was performed with a fixed bin width of 10. In-
tensity normalization was performed by redistributing the image at the mean with the
standard deviation and a scale of 100. Isotropic resampling to a voxel size of 1x1x1 mm was
performed by using Bspline interpolation. No voxel array shift was performed to be consis-
tent with the IBSI guidelines. As current data point towards impaired reproducibility of
filter-based features, we extracted features only from the original version of the image [29].
In sum, 105 features were extracted from the original image of each sequence within the
segmented label map, including first-order features, shape features, and texture features.
Texture features included “Gray Level Co-occurrence Matrix” (GLCM) features, “gray level
size zone matrix” (GLSZM) features, “gray level run length matrix” (GLRLM) features,
“neighboring gray tone difference matrix” (NGTDM) features, and “gray level dependence
matrix” (GLDM) features, leading to a total feature number of 210. A detailed listing of
extracted features is shown in Table S3.

2.4. ComBat Batch Harmonization

ComBatHarmonization has been proposed as a method for the correction of batch
effects among multicenter radiomic cohorts [30,31]. Its value to improve reproducibility
between different centers has been shown in multiple studies [32–34]. The additive and
multiplicative batch effects on a given feature distribution are estimated using a maximum
likelihood approach. We applied nonparametric ComBatHarmonization (https://github.
com/Jfortin1/ComBatHarmonization, accessed on 16 April 2020), correcting for MRI
scanner models with mean site effects adjustment. We compensated for the MRI scanner
type due to the small patient number.

2.5. Semantic Imaging Features

The MR imaging examinations were independently assessed by three radiologists (8
years, 7 years, and 3 years of experience in musculoskeletal radiology, respectively). The
radiologists were blinded to the clinical information as well as the histological diagno-
sis. Two of the radiologists exclusively read imaging studies of one of the cohorts. The
third radiologist, however, read image studies from both cohorts. Ten patients within the
TUM cohorts were read by all three radiologists to assess the interrater agreement. The
following radiological features were assessed in the study (see Table 1 for a description
of all features) [35–38]: anatomical region of tumor (chest/back, leg, foot, arm, hand,
gluteal/pelvic region), localization (epifascial, subfascial, or epi- and subfascial; intramus-
cular; intermuscular or inter-/intramuscular), tumor morphology (multinodular (more
than one separate mass in the same region), mass-like (round or oval mass) or with
superficial expansion along membranes/surfaces)), and tumor margins (well-defined,
locally infiltrating or diffusely infiltrating). Moreover, on T1-weighted images with fat
saturation and contrast enhancement, volume of contrast-enhancing tumor tissue (ex-
tent of enhancement < 1/3, 1/3–2/3, or > 2/3 of tumor volume), enhancement pattern
(homogeneous/inhomogeneous), presence of vascularization (present/absent), necrosis
(present/absent), perilesional contrast enhancement (present/absent), and the tail sign (de-
fined as a well-defined, pointed curvilinear formation at least 10 mm in length on T1FSGd
images) were assessed. The maximal tumor diameter without tail sign (in mm) was mea-
sured on the T1FSGd images with contrast enhancement. On the T2FS images, presence of
perilesional edema (present/absent), diameter of edema (in mm), extent of edema (diffuse
or circumscribed), dominant T2FS signal intensity (hypointense/isointense/hyperintense),
and dominant T2FS signal pattern (homogeneous or inhomogeneous) were graded. Before
modeling features were one-hot encoded to dummy variables.

https://github.com/Jfortin1/ComBatHarmonization
https://github.com/Jfortin1/ComBatHarmonization
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Table 1. Description of all semantic features extracted radiologist for the description of soft-tissue sarcomas.

Feature Description

Anatomical region 1: chest/back, 2: neck, 3: leg, 4: gluteal/pelvis 5: arm, 6: hand, 7: foot

Localization 1: epifascial, 2: subfascial, 3: epi- and subfascial, 4: intramuscular,
5: intermuscular; 6 intra- and intermuscular

Image pattern 1: multinodular, 2: mass-like round/oval, 3: superficial spread

Borders 1: well defined /pushing type, 2: focal infiltrating, 3: diffuse infiltrating

Dominant STIR Signal intensity 1: hypointense, 2: isointense, 3: hyperintense

STIR Homogeneity 1: homogenous, 2: inhomogenous

Contrast enhancement of the tumor 1:<1/3 of the tumor, 2: 1/3–2/3, 3: >2/3

Homogeneity of Tumor contrast enhancement 1: homogeneous, 2: inhomogeneous

Tail sign 1: present, 0: absent, 2: uncertain

Vascularization 1: present, 0: absent

Necrosis 1: present, 0: absent

perilesional Edema 1: present, 0: absent

perilesional Contrast enhancement 1: present, 0: absent

Max diameter (in mm without tail) in mm

Edema diameter (in mm) in mm

2.6. Modeling Strategy

Three common machine learning techniques established for survival analysis were
trained and compared to predict OS: random survival forest (RSF), least absolute shrinkage
and selection operator (LASSO), and elastic net regression (ENR) [39–41]. As a first feature
reduction step, all features susceptible to variations in the subset of patients that received
three independent segmentations were excluded. As a threshold, an intraclass correlation
coefficient (ICC) (3,1) of 0.8 was used. The remaining features (T1FSGd: 103, T2FS: 72)
were used as input for the modeling pipeline. All three models were developed within
the same pipeline. The pipeline combined (1.) additional feature reduction and (2.) model
training (see Figure 1). (1.) The following feature reduction procedure was performed
using 1000 bootstrap samples. Features correlated to the clinical American Joint Committee
on Cancer and the International Union for Cancer Control (AJCC) (8th edition) staging
groups defined by a Spearman correlation coefficient of greater than 0.8 were excluded [42].
Secondly, highly intercorrelated features defined by a Spearman correlation coefficient
of greater than 0.8 were excluded. For the identified highly correlated feature pairs, the
feature with the highest mean correlation to all remaining features was excluded. Thirdly,
the Boruta algorithm was applied to filter the most relevant features [43,44]. The features
were ranked according to the frequency of their selection in the 1000 bootstrap runs. The
final feature set was defined as the top-ranking features. The final feature number per
model was defined as the median feature number selected over all bootstrap runs.

To compare the performance of the three machine learning models, 50 iterations of
5-fold nested cross-validation was performed using the UW cohort (referred to as “training
cohort”). All three models were developed using the mlr3 package [45]. Hyperparameters
were optimized using random search and 25 evaluations. The RSF was developed with
1000 trees. Hyperparameter optimization was conducted for node size (search space 3–20)
and the number of input variables randomly chosen at each node (mtry) (search space
2–10). For ENR, alpha (search space 0.05–1.0) and lambda were optimized. For LASSO,
alpha was set to 1 and lambda was optimized. No correction for unbalanced data was
applied. After comparison of the modeling strategies (see 3.2) a final set of ENR models
was retrained on the training cohort using 5-fold cross-validation and tested on the TUM
cohort (referred to as “testing cohort”).
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In total, three different radiomic models were developed: Radiomics-T1 based on
T1FSGd-derived radiomic features, Radiomics-T2 based on T2FS-derived radiomic features,
and Radiomics-T1T2 combining both feature sets. A semantic model (Semantic) was trained
using the semantic features as input. Finally, a model combing semantic and radiomic
features (Radiomics-T1T2+Semantic) was developed. Combined models were trained and
tested as multivariate cox regression models using AJCC-stage, age, and the predictors
of the developed models as an input. The concordance index (C-index) was calculated
to assess model performance. The 95% confidence interval was estimated using 1000-
fold bootstrapping.

To assess the influence of independent patient cohorts on model performance, we
recalculated the final models on a new training set, mixing randomly chosen patients from
both institutions with equal size and event numbers compared to the original training
cohort. The remaining mixed patients were used as a test cohort.

2.7. Statistical Analysis

Statistical analysis and modeling were performed using R (version 3.4.0, R core
team, Vienna, Austria). See Table S4 for R packages and versions. Fleiss Kappa and
ICC were calculated to test for interrater agreement. Kaplan–Meier survival curves were
generated to analyze stratified patient subgroups. The cutoff to split patients into low-risk
and high-risk patients was defined as the median of the predictors in the training set.
Statistical significance was tested using the Log-rank test. Time-dependent area under the
receiver operating characteristic (ROC) curve (AUC) and calibration curves were plotted
to characterize model performances. Bonferroni correction was performed in cases of
multiple testing as specified. A p-value below 0.05 was regarded as significant.

3. Results
3.1. Patient Characteristics, Histology and VOI Definition

Overall, patient demographics were similar between both cohorts (Table 2); however,
STS histologies were different between the cohorts (p < 0.001) (Table S1). Pleomorphic
sarcoma was the most frequent histology in both groups, although with a larger proportion
in the training set (training: 45%, testing: 34%). The second and third most frequent
histologies were leiomyosarcoma (11%) and spindle cell carcinoma (10%) in the training
cohort and myxofibrosarcoma (18%) and synovial sarcoma (13%) in the testing cohort.
There were more unfavorable characteristics in the testing cohort with a larger proportion of
AJCC stage 3 patients and 5 patients (7%) treated in a recurrent setting. Significantly more
patients from the training cohort received chemotherapy. In the testing cohort, the delivered
total RT dose was significantly higher than in the training cohort and a higher number of
patients received definitive RT (6% vs 1%). There was an overall high similarity between
multiple tumor target volume delineations performed by the three independent operators
with a mean Dice similarity coefficient (DSC) of 0.92 (range (min–max): 0.81–0.96).

3.2. Interrater Agreement of Semantic Imaging Features

Ten randomly chosen patients were read by the three independent radiologists. Nom-
inal and ordinal features achieved a median Fleiss Kappa of 0.524 (range: 0.035–1.00).
Overall, five features achieved a “substantial/good” agreement (Kappa > 0.60), five fea-
tures achieved a “moderate” agreement (0.40–0.60), and three features achieved only
“slight/fair” agreements (0.00–0.40), as defined by Altmann and Landis [46,47]. The two
continuous measures were correlated with a median ICC of 0.833 (range: 0.138–0.846).
Table S5 displays all Kappa and ICC values for each feature.
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Table 2. Patient demographics, outcomes, and treatment specifics.

Institution Testing Cohort Training Cohort p-Value 1 p-Value Adjusted 1

Accrual time 2010–2016 2007–2015

Total Patients 71 p 108 p

Primary 66 p (93%) 108 p (100%) <0.001 * <0.001 *

Recurrent 5 p (7%) 0 p

Location Lower Extremity 56 p (79%) 75 p (70%) 0.36 1.0

Upper Extremity 10 p (14%) 17 p (16%)

Trunk 5 p (7%) 16 p (14%)

Age m 57 (r 17–87) m 53.7 (r 19.1–88.5) 0.16 1.0

Gender female 35 p (49%) 29 (27%) 0.005 * 0.078

male 36 p (51%) 76 (70%)

unknown 0 p 3 p (3%)

T-stage 2 1 4 p (6%) 9 p (8%) 0.40 1.0

2 30 p (42%) 32 p (30%)

3 23 p (32%) 41 p (38%)

4 14 p (20%) 26 p (24%)

M-stage 2 0 71 p (100%) 108 p (100%) - -

1 0 p (0%) 0 p (0%)

N-stage 2 0 69 p (97%) 108 p (100%) 0.16 1.0

1 2 p (3%) 0 p

Grading 3 1 0 p (0%) 0 p (0%) 0.88 1.0

2 28 p (39%) 44 p (40%)

3 43 p (51%) 64 p (60%)

AJCC-Stage 2 IIA 9 p (13%) 15 (14%) 0.0025 * 0.045 *

IIB 4 p (6%) 32 (29%)

III 48 p (68%) 61 (58%)

Margin-status positive 12 p (17%) 28 p (26%) 0.011 0.18

negative 53 p (75%) 76 p (70%)

unknown 2 p (3%) 3 p (3%)

no resection 4 p (6%) 1 p (1%)

RT type post-operative 15 p (21%) 32 (29%) <0.001 * 0.007 *

neoadjuvant 52 p (72%) 75 p (70%)

definitive 4 p (6%) 1 p (1%)

Total RT Dose m 50 Gy(r 28–70
Gy)

m 50 Gy(r
38–50Gy) <0.001 * <0.001 *

Chemotherapy 3/71 p (4%) 64 p (59%) <0.001 * <0.001 *

Median OS 40.1 (r 6.0–105.5) 39.9 (r 4.2–130.4) 0.53 1.0

Abbreviations: *: p-value < 0.05, AJCC: American Joint Committee on Cancer and the International Union for Cancer Control (8th
edition), m: median, p: patients, r: range, RT: radiation therapy, 1 Wilcoxon rank-sum test for continuous and ordinal variables, Fisher’s
exact test for nominal variables, log-rank test for comparison of survival times. Corrected for multiple testing by Bonferroni correction
(“p-value adjusted”). 2 Following AJCC staging system 8th edition [42]. 3 According to the French Federation of Cancer Centers Sarcoma
Group (FNCLCC).
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3.3. Comparison of Semantic Imaging Features and Radiomics for Prediction of Overall Survival

The feature reduction pipeline yielded a median number of 12 (Radiomics-T1, range:
4–23), 10 (Radiomics-T2, range: 3–16), 11 (Radiomics-T1T2, range: 7–27), and 9 (Semantic,
range: 3–16) features that were used for the prediction models. Radiomics-T1T2+Semantic
combined features of Radiomics-T1T2 and Semantic. The selected features are listed in
Table S7.

Three ML modeling strategies were applied and compared to predict OS. The ML
techniques were ranked in order of the predictive performance in the external cross-
validation folds for each model. ENR, RSF, and LASSO achieved a mean rank of 1.4, 2.2,
and 2.4, respectively. Table S6 lists the C-indices per ML technique and feature set. Due
to the overall better outcome of the ENR model, it was applied for further analyses and
validated on the independent test set. See Figure 2 for the respective C-index values.

Figure 2. Prognostic performance of developed ENR models. Abbreviations: AJCC: American Joint Committee on Cancer
and the International Union for Cancer Control (8th edition), C-index: concordance-index, OS: overall survival.

During nested cross-validation within the training set, Radiomics-T1 achieved a supe-
rior performance (C-index: 0.68) compared to Radiomics-T2 (C-index: 0.60). In comparison,
the Semantic model achieved a performance comparable to Radiomics-T1 in the training set
(C-index: 0.67).

In the external test set, however, both radiomic models performed similarly (Radiomics-
T1: C-index: 0.64, Radiomics-T2: 0.63). Combining both feature sets (Radiomics-T1T2) did
not trigger an improved testing performance (C-index: 0.60). The Semantic model failed
to reproduce the predictive performance from the training set (C-index: 0.58). A model
combining all imaging features Radiomics-T1T2+Semantic did not improve performance
further (C-index:0.6). For comparison, three clinical baseline models were computed.
The AJCC staging system (C-index: 0.61), and tumor volume (C-index: 0.59) showed
worse performance compared to the radiomic models in the test set. Age achieved the
highest C-index (0.69) among all predictors in the test set. Figures S2 and S3 depict the
time-dependent AUC and calibration curves, respectively.

The propensity to achieve patient stratification was evaluated using Kaplan—Meier
analysis (Figure 3). In the testing cohort, all three radiomic models achieved a significant
separation of survival curves (curves were split at the median of the training cohort predic-
tors). For Semantic, Radiomics-T1T2+Semantic, Volume, and Age, there was no significant risk
stratification. For AJCC, a trend towards significance could be observed (p = 0.0532).



Cancers 2021, 13, 1929 9 of 17

Figure 3. Kaplan–Meier survival analyses of developed models in the testing cohort. (A–F) Kaplan–Meier survival curves.
Cohorts were split based on the median predictor value determined on the training cohort. (G,H) As a consequence, the
AJCC staging system was split between stage III and stages IIA/B.

3.4. Relevance of Combined Clinical-Imaging Models

To test for a potential incremental benefit, the radiomic and semantic models were
combined with the AJCC staging system and patients’ age (Figure 4). AJCC+Age alone
achieved the best performance in the test set so far (C-index: 0.71). Adding the Radiomics-T2
model improved the predictive performance further by +0.02 (Radiomics-T2+AJCC+Age:
C-index: 0.73). Models combining AJCC and age with the Semantic model (C-index: 0.62)
or the Radiomics-T1 model failed to increase performance (C-index: 0.67). The combined
Radiomics-T2+AJCC+Age model achieved significant patient stratification in Kaplan–Meier
analysis (Figure 5). The mean time-dependent AUC was 0.79.

Figure 4. Prognostic performance of combined models. Abbreviations: AJCC: American Joint Committee on Cancer and the
International Union for Cancer Control (8th edition), C-index: concordance-index, OS: overall survival.
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Figure 5. Prognostic performance of the Radiomics-T2+AJCC+Age model in the testing cohort. (A) Kaplan–Meier survival
curve. Cohorts were split based on the median predictor value determined on the training cohort. (B) Time-dependent area
under the receiver operating curve (AUC). (C) Predicted survival probabilities of the Cox proportional hazards model. (D)
Calibration curve of the Cox proportional hazards model.

3.5. Relevance of Single Imaging Parameters

To investigate the prognostic value of isolated semantic features, univariate Cox
proportional hazards regression was performed on the combined cohort (Table 3). Three
features, including “maximal diameter without tail” (p = 0.022), “necrosis” (p = 0.039), and
“edema perilesional” (p = 0.043), were significantly associated with OS (without correction
for multiple testing). When testing for an interaction between patient cohorts, none of the
interactions reached statistical significance.

All semantic parameters that were found to be significant in the combined cohort
were also included in the final feature reduction set. Besides, the parameters “epifascial
and intramuscular location”, “contrast enhancement perilesional”, as well as the anatomic
location “leg” were selected. See Table S7 for the coefficients of the final models. Figure 6
shows two exemplary cases.

In the Radiomics-T1 model, only the features “Firstorder-Mean” and “Shape-SurfaceArea”
retained non-zero coefficients. The Radiomics-T2 model included several GLSZM and
GLDM based features with non-zero coefficients.
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Table 3. Cox proportional hazards regression of semantic features for patients’ overall survival.

Combined Cohort

Feature HR (95% CI) p-Value

Anatomic region 0.58 (0.33–1) 0.067

Localization 1.2 (0.95–1.5) 0.12

Image pattern 0.94 (0.59–1.5) 0.8

Borders 1.3 (0.86–1.9) 0.22

Maximal diameter without tail (in mm) 1 (1–1) 0.022

Dominant STIR signal intensity 1.3 (0.45–3.5) 0.66

STIR homogeneity 1.5 (0.74–2.9) 0.27

Tumor contrast enhancement 0.74 (0.52–1.1) 0.1

Homogeneity of Tumor contrast
enhancement 1 (0.54–1.9) 0.98

Tail sign 1.5 (0.86–2.6) 0.16

Vascularization 0.95 (0.47–1.9) 0.88

Necrosis 1.9 (1–3.6) 0.039

Edema perilesional (in mm) 1.1 (0.6–1.9) 0.81

Edema diameter 1 (1–1) 0.043

Contrast enhancement perilesional 1.5 (0.85–2.6) 0.16
Univariate Cox proportional hazards regression was performed for semantic imaging features. Significant factors
are written in bold. Depicted p-values were not corrected for multiple testing. Abbreviations: 95% CI: 95%
confidence interval.

Figure 6. Two exemplary patient cases.
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3.6. Analysis of Model Calibration

Besides the C-index, we analyzed calibration curves of the developed models. Table
S8 depicts Brier scores of all models. AJCC and Age had the lowest Brier scores (24 and 30,
respectively). AJCC showed the most monotonous slope. Radiomic models showed Brier
scores ranging from 88 to 114, while models comprising semantic features had the worst
calibrations (Brier scores from 370–702). For combined models, however, the predicted risk
showed a better correlation with observed frequency with lower Brier scores (Brier scores
from 37 to 56) (Figure 5D, Figure S4). For all models, larger predicted risks were not well
correlated to high observed frequencies.

3.7. Assessment of the Impact of the Independence of the Test Cohort

Retraining and testing of prediction models on randomly selected training and testing
cohorts combining patients form both institutions led to a better reproducibility of the
developed models. Both radiomic models Radiomics-T1 and Radiomics-T2 achieved a testing
AUC of 0.63, which was equal to the training performance. Interestingly, the Semantic
model also achieved a higher reproducibility, with a testing AUC of 0.63 and a difference
of –0.01 compared to the training set.

4. Discussion

In this work, we demonstrated that a standardized semantic prognostic model pre-
dicted survival with moderate performance. Radiomic models achieved an added benefit
in predicting OS relative to semantic features. Interestingly, the performance of Radiomics-
T1 and Radiomics-T2 was comparable in terms of C-index. Both models achieved sig-
nificant risk stratifications in the testing cohort. Importantly, combining the T1FSGd
and T2FS radiomic feature sets with or without the semantic features did not trigger
an additional benefit. The best combined model using T2FS-based radiomics features
(Radiomics-T2+AJCC+Age) achieved a modest incremental benefit above the clinical model
(AJCC+Age) alone.

Multiple studies previously demonstrated significant associations of semantic imaging
features with prognosis in STS patients. For instance, in a previous study, we demonstrated
that semantic features, such as tumor size, septa thickness, contrast enhancement could dis-
tinguish atypical lipomatous tumors from benign lipomas [38]. The presence of perilesional
edema and T2 heterogeneity of liposarcomas detected with MRI predicted pulmonary
metastases in a previous study [48]. Moreover, perilesional edema detected on MR im-
ages of myxofibrosarcomas correlated significantly with a poor OS rate [49]. The “tail
sign” describing tumor cell infiltrations extending from the primary tumor along the deep
fascia has been shown to correlate with LPFS in myxofibrosarcoma and undifferentiated
sarcomas [37]. In a non-histology-specific STS cohort, the three semantic features found
by Crombé et al. (peritumoral enhancement, necrosis, heterogenous T2-weighted signal
intensity) were also correlated to OS and DPFS [11]. In our analysis, necrosis was associated
with worse survival as well. Besides necrosis, peritumoral enhancement and the tail sign
were selected into the final Semantic feature set, signaling a predictive relevance in our
study, too.

In the univariate analysis, we could identify significant prognostic semantic features.
However, several factors may have contributed to negatively influencing the predictive
performance of the developed combined semantic prediction model. First, a substantial
proportion of the semantic features achieved only moderate interrater agreement and
may have hindered effective reproduction in the testing cohort. Second, semantic feature
assessment may have been impaired by image acquisition and reconstruction parameters
as it is known for radiomic features. ComBatHarmonization has been proposed to reduce
the variability of radiomic features [33]. Potential novel standardization techniques may
help to harmonize between readers and/or imaging acquisition characteristics. Third,
with the availability of only two distinct sequences and only one high resolution plane
orientation per sequence, the radiologists’ assessment was limited compared to a clinical
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setting. Fourth, semantic properties may differ significantly between different histologies
of STS. As a consequence, the prognostic value of each feature may be different depending
on the histological subtype, too. This may be of particular importance as both cohorts
showed a different histological distribution of histologies. This could have impaired a better
performance. As a consequence, building a Semantic “histology-agnostic” prediction model
may simply not be feasible. Interestingly, Radiomic models seem to extract a proportion of
histology-agnostic information. Regardless, histology-specific models may be superior for
patient stratification and should be investigated in the future with the expansion of our
multi-institutional database, given the rarity of STS overall and the further refinement with
each particular histology with over 150 different subtypes. Alternatively, if a sufficiently
large cohort would be available, histology could also be added as a predictive variable itself.

The significantly improved reproducibility of the Semantic model and, to a lesser
extent, the Radiomic models in the non-independent training and testing cohort (Table S9)
demonstrated the impact of differing treatment, acquisition, and patient characteristics be-
tween cohorts. This validation, however, only corresponds to a TRIPOD type II validation,
as differences between the cohorts become mitigated following randomized splitting of
the training and testing cohort [24,50]. The usage of independent cohorts as performed in
the main results corresponds to a TRIPOD type III validation, yielding a better estimate
for generalizability.

In our previous study, we demonstrated the feasibility of radiomic-based prognostic
risk assessment based on planning CT data, despite its inferior soft-tissue resolution [51].
In a different study, we showed the general propensity to predict OS based on T1FSGd MRI
sequences using radiomics. The final model achieved a C-index of 0.68 in the independent
test set [22]. In this work, we could now demonstrate that by using T2FS sequences, a
similar prognostic value can be achieved without the need for contrast agent administration.
However, the reported performance of our MRI models and the incremental benefit above
a clinical model was lower compared to the previous results. This may be reasoned by the
more stringent selection of patients based on clinical criteria (e.g., exclusion of low-grade
STS and non-extremity/trunk locations), and most importantly the simultaneous presence
of T1FSGd and T2FS MRI sequences leading to a 34% smaller training cohort (see the
patient workflow in Figure S1).

Combing semantic and radiomic features did not improve the prediction of survival.
This may be explained by the fact that radiomic features may at least partly encode tumor-
specific semantic imaging features. Moreover, the total relevance of semantic features
appeared to be inferior to the radiomic features when comparing model performances.

Model calibration among solely imaging-based models was suboptimal. By combing
imaging models with clinical features, model calibration could be improved. As a conse-
quence, future models should be combined with known clinical characteristics. This way,
the best predictive performance and calibration can be achieved.

Improved pretherapeutic prognostic assessment of patients’ risk for systemic progres-
sion or death may help to individualize treatment regimens. Current therapy regimens of
high-grade STS achieve a good LPFS by combining resection and radiotherapy. DPFS and
OS, however, remain comparably low [4]. Multiple studies have analyzed the use of addi-
tional systemic therapies. For instance, multiagent chemotherapy was recently shown to be
significantly associated with improved OS in a large meta-analysis of 22 studies encompass-
ing 5044 patients [52]. However, the toxicity of these chemotherapy regimens is substantial
and the total outcome remains unfavorable. Novel systemic treatment agents could be an
alternative and are currently under investigation in clinical trials [53,54]. Regarding the
high mutational burden of some STS entities, immunotherapeutic checkpoint inhibition
may be a further option for a systemic therapy modification, which is currently being tested
in the phase-II Sarc032 trial using Pembrolizumab (NCT03092323) [55]. Other molecular
targeted agents, such as the MDM-2 inhibitor AMG 232 (NRG DT001 trial, NCT03217266)
or trabectedin (TRASTS trial, NCT02275286), are given as a supplement to neoadjuvant
RT [56,57]. Imaging-defined high-risk patients could benefit from such additional therapies,
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whereas low-risk patients could be spared unnecessary toxicities. The true value of such
radiomic-guided therapies should be investigated in future prospective trials.

Apart from direct prognostic assessment, radiomics may be beneficial for several
other tasks in STS patients. For instance, tumor characterization in terms of molecular
aberrations (“radiogenomics”) or histological properties could be a potential outcome
target. Multiple authors demonstrated noninvasive prediction of the important prognostic
factor, “tumor grading” [58,59]. In an ongoing work, we could demonstrate promising
results differentiating benign lipomas from atypical lipomatous tumors based on the murine
double minutes (MDM2) gene amplification status. Besides, tumor response prediction may
be another area of investigation by analyzing longitudinal changes in radiomic features
(“delta radiomics”) parallel to RT or systemic therapies [60]. The first studies in STS and
osteosarcomas demonstrated promising results [61,62].

Multiple limitations of the study should be noted that leave room for improvement of
radiomic models. First, both study cohorts were collected retrospectively, constituting a
reason for a potential source of bias [63]. Second, to achieve clinically homogenous patient
cohorts, the patient number had to be reduced and this impaired statistical power. Third, as
in many multicenter radiomic studies, the patient cohorts are prone to a substantial amount
of technical heterogeneity, including a large plethora of MRI scanner types and imaging
protocols. Fourth, the heterogenous histologies of STS may impair better prognostic
performance for semantic, but also radiomic models. Finally, the semantic imaging features
in the training and testing cohort were read by three separate readers. However, one
reader read a part of each cohort and thus may have falsely increased the likeliness of
overoptimistic validation between cohorts. By addressing these limitations, future research
may be able to develop more effective prognostic models. As consequence, an optimal
study would comprise of a large prospectively acquired patient cohort, be restricted to a
predefined STS histology type, and use clearly defined MRI acquisition protocols.

5. Conclusions

In conclusion, we demonstrated that both MRI-based radiomic features and semantic
imaging features were associated with overall survival. For radiomic models, we found
that a T2FS-based radiomic model enabled prognostic assessment in addition to previous
work using T1FSGd. Both models were able to achieve significant patient stratification. In
comparison, the semantic model showed a decreased performance in the testing cohort.
Combined semantic + radiomic models did not improve performance. Further investigation
is warranted to advance towards a more personalized approach for risk-adapted tailored
treatment intensification or deintensification based on imaging-based biomarkers.
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