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Abstract: Wound healing refers to the replacement of damaged tissue through strongly coordinated
cellular events. The patient’s condition and different types of wounds complicate the already
intricate healing process. Conventional wound dressing materials seem to be insufficient to facilitate
and support this mechanism. Nanotechnology could provide the physicochemical properties and
specific biological responses needed to promote the healing process. For nanoparticulate dressing
design, growing interest has focused on natural biopolymers due to their biocompatibility and good
adaptability to technological needs. Polysaccharides are the most common natural biopolymers
used for wound-healing materials. In particular, alginate and chitosan polymers exhibit intrinsic
antibacterial and anti-inflammatory effects, useful for guaranteeing efficient treatment. Recent studies
highlight that several natural plant-derived molecules can influence healing stages. In particular,
essential oils show excellent antibacterial, antifungal, antioxidant, and anti-inflammatory properties
that can be amplified by combining them with nanotechnological strategies. This review summarizes
recent studies concerning essential oils as active secondary compounds in polysaccharide-based
wound dressings.

Keywords: polysaccharides; wound dressing; essential oils; nanotechnology; wound healing; antimi-
crobial; antioxidant

1. Introduction

Wound healing is a complex process that depends on internal and external conditions.
Therefore, the acceleration of wound treatment must involve promoting the healing process.
The general care procedure involves removing the infection from the wound bed and then
applying the wound dressing [1]. There are two kinds of wounds that result from injury
by cutting, hitting, and burning: open and closed wounds [2]. Open wounds are usually
accompanied by bleeding and are associated with rupturing layers of the skin [3–5]. Closed
wounds result from bruising or dead blood and crashes. In terms of clinical features,
wounds are divided into acute and chronic wounds. Acute wounds are caused by burns,
cuts, and surgical incisions, and their healing process takes 8–12 weeks [6]. Chronic wounds
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are due to tumors, bed wounds, and diabetic wounds, which lead to extended inflammation
and a more prolonged healing time.

The wound-healing processes can be divided into four successive stages: homeostasis,
inflammation, proliferation, and remodeling (Figure 1). The first healing stage is hemostasis,
which begins with the cessation of bleeding. When a part of the body bleeds, the first step is
to start the hemostasis phase, and the blood vessels contract, which reduces the bleeding [6].
In this situation, platelets then stick together to cover the damaged vascular wall, and
coagulation occurs. Many platelets stick together with fibrin glue, which traps red blood
cells like a net and stops bleeding. The process of homeostasis occurs very quickly. After
that, the first fibrin scaffold is formed in 60 s with fibrin glue, which turns from a liquid to
jelly to form a blood clot and releases prothrombin. The thrombus retains platelets, clots,
or blood cells in the wound area [7]. Inflammation is the second phase in wound healing
and occurs right after the blood vessels are damaged and blood is leaking. Inflammation
both controls bleeding and prevents infection. During this phase, white blood cells, growth
factors, nutrients, and enzymes move toward the injured area, which leads to swelling,
redness, pain, and various inflammatory stages. Inflammation is a natural part of the
wound-healing process and only extends the healing process of the wound [8]. The next
stage is proliferation, which begins when new tissue regenerates in the wound. In this step,
the new tissue is formed with extracellular matrix (ECM) and collagen. A new network of
blood vessels and healthy granular tissue is fabricated with adequate oxygen supply and
proper nutrition [9,10]. The last phase is remodeling, which occurs by converting collagen
type III to collagen type I when the wound is completely closed. In this stage, collagen is
reabsorbed along the squeezing lines, which leads to the attachment of collagen fibers and
an improvement in the new tissue’s tensile strength [7,11–13].
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Due to the complexity of the wound-healing process, selecting a suitable wound
dressing for the wound type is indispensable. An ideal wound dressing should improve
the healing process by eliminating excessive exudate, promoting autolytic debridement,
retaining adequate moisture for healing, and providing the least inconvenience for the pa-
tient [14,15]. Simultaneously, a wound dressing should allow faster healing without being
too expensive [16,17]. However, conventional dressings are mostly dry and challenging to
apply. Furthermore, traditional methods for treating chronic wounds cannot heal 70% of
patients, including dermal substitutes, human skin equivalents, and recombinant growth
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factors from human platelets [18]. To overcome these drawbacks, active wound dressing
has been developed by incorporating active agents in wound dressing materials to prevent
microorganisms from infecting the wound [14].

Natural biopolymers have recently been used as wound dressing materials because
of their biocompatibility, biodegradability, and similarity to the ECM [19]. Studies show
that they can be promising for replacing conventional wound dressing materials because
of their remarkable biocompatibility, biodegradability, and good physicochemical proper-
ties [15]. The common biopolymers for wound dressing applications are proteins, collagen,
gelatin, silk fibroin, alginate, hyaluronic acid, chitosan, and fucoidan poly-N-acetyl glu-
cosamine [20–25]. Chitosan and alginate have intrinsic antibacterial and anti-inflammatory
properties [26–30]. The improvement of dressings using nanotechnology has been inspired
by the lack of adequate physicochemical properties and specific biological responses of
classical materials for wound treatment [31]. Nanotechnology consists of manipulating
materials at nanoscale levels and is widely employed in various fields of medicine, engi-
neering, and electronics [32]. It can be a strategy to promote wound healing by intervening
in the healing phases [31].

Essential oils (EOs) such as monoterpenes and sesquiterpenes are low-molecular-
weight secondary metabolites from plants. Because of flavor, aroma, and antimicrobial
properties, they are used in various fields such as agriculture [33], medicine [34,35], wound
healing [14,36], cosmetics [37,38], pharmaceuticals, tissue engineering to develop skin
scaffolds [39–43], and the food packaging industry [44–51]. Depending on the functional
groups, the EOs may be more or less hydrophobic in nature, which must be taken into
account when incorporating them into a specific polymer matrix. Successful formula-
tion can be demonstrated by various standard techniques such as FTIR, UV-vis, 1HNMR,
thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and X-ray
diffraction (XRD) [47,48]. With regard to wound healing and medical applications, sec-
ondary compounds have traditionally been used in folk medicine for wound treatment.
Data suggest that 8% worldwide still use herbal remedies as natural medicine [52].

Antimicrobial action is a current focus in wound dressing and biomedical devices in
general. The antimicrobial wound dressing can be intrinsic, with the dressing material
itself, or can be engineered with antimicrobial molecules by adding an antibiotic agent
to a polymer backbone or in the form of nanoparticles or chemicals linked to a polymer
surface [52,53]. Many studies and reviews have reported on active wound dressings
manufactured using antimicrobial and antibiotic metal nanoparticles. However, recently,
researchers have paid attention to active natural antimicrobial and antioxidant agents from
plants. Therefore, in this review, we overview the recent studies related to incorporating
essential oils as active secondary compounds in biopolymer-based formulations using
nanotechnology and its influence on the wound-healing process (Figure 2).
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2. Biopolymers in Wound Dressings

Wound dressings are used to protect wounds and accelerate the healing process. Thus,
it is necessary to develop an appropriate wound dressing system [54]. Proper wound
dressing materials must be flexible, biodegradable, and have an adequate gas barrier to
decrease the infection rate [14]. Other significant parameters are the adhesive ability and
the capability of controlling the absorbance of exudates in a wounded area [55]. Traditional
dressings like woven or nonwoven gaze are the most common wound dressing system.
They are applied in the first step of the healing process to prevent bleeding and protect the
wound from the environment. A major disadvantage if these traditional dressings is that
they promote desiccation in wounds with minimal exudate unless used in combination
with another dressing or topical agent. Semisolid materials such as ointments, creams, and
gels can be used alone or in combination with a protecting cover [56–60]. They can easily
fill wound cavities as a result of their flowable properties and support the maintenance of
a physiological moist environment [14,61–64]. Other forms of wound dressings include
transparent films ranging from µm to mm in thickness to flexibly cover the wounds [65–68].
An optimal wound dressing material must appropriately respond to the wound target’s
characteristics, such as its size and exudate amount.

Nowadays, natural biopolymers are extensively used for wound treatment because of
their compatibility with the human organism. Furthermore, they show good adaptability to
technological needs due to their easy chemical modification with derivatives [69]. The most
common natural biopolymers applied for wound healing are polysaccharides (cellulose,
alginates, chitosan, heparin, hyaluronic acid, and chondroitin), proteoglycans, and proteins
(collagen, gelatin, fibrin, keratin, silk fibroin, and eggshell membrane) [16,53,70]. They
have been selected based on their biodegradability and inherent cellular interaction, and
closeness to the structure and surface topography of the ECM [52]. Their enzymatic
degradation, which principally occurs if biopolymers are not crosslinked, releases well-
tolerated byproducts [69]. Moreover, it is well known that engineered natural biopolymers
can respond to physiological signals and release growth factors or related molecules to
reproduce the natural healing mechanism [71].
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For example, cellulose dressings seem to release epidermal growth factor and basic
fibroblast growth factor at their application site, stimulating wound closure. They can
mitigate pain and control the granulation and epithelialization processes, allowing tissue
regeneration [72,73]. Nanocellulose has also been used as a dressing biomaterial since it
exhibits anti-infectious features, and in the form of a scaffold, it improves tensile proper-
ties [74]. Chitosan is a de-acetylated derivative of chitin, which is the principal constituent
of the exoskeleton of insects, crustaceans, and arachnids and is similar in structure to
cellulose. It is a cationic linear polysaccharide that contains D-glucosamine and N-acetyl
glucosamine units. Its electrostatic behavior induces the activation of early-phase reaction
pathways related to accelerated wound-healing mechanisms by triggering collagen synthe-
sis and fibroblast growth, inducing the activation of the cytokine interleukin-8. The wide
use of chitosan in dressings is mostly related to its antimicrobial, non-antigenic, and film-
forming features [70]. Besides, chitosan shows other advantages, such as tensile strength,
easy applicability, water sorptivity, oxygen permeability, and hemostatic action [75,76].
Another nonimmunogenic polysaccharide is alginate, which originates from brown algae.
It exists in two forms: calcium and calcium sodium salts of alginic acid. A hydrophilic gel
of sodium alginate forms from the ionic exchange between alginate calcium and sodium
salts in wounds. This reaction induces the absorption of fluid at the wound site, which
maintains moist conditions. Furthermore, alginate dressings can be easily removed and
show hemostatic and flexibility properties [16,77]. The swelling capability of biopolymers
is a necessary characteristic to allow exudate absorption and preserve hydration at the
wound site.

3. Nanotechnology in Wound Dressings

Nanomaterials are useful agents for accelerating the wound-healing process due to
their advantageous ratio of surface area to volume and drug delivery capability. This
feature can influence collagen deposition and skin tissue regeneration. Specifically, the
nanoparticles’ dimensions allow them to penetrate into the wound, which allows for
specific target molecules in wounds to be contacted and for bioactive agents or drugs
to be released locally, which influences the healing progress [78,79]. The encapsulation
of drugs into nanocarriers protects them from attack by wound-bed proteases, so they
can carry out their biological action. Moreover, nanomaterials target specificity and con-
trolled release into the site of interest decrease the number of therapeutic administrations
and the possible risks due to high dose drug [80]. In general, the biological effects of
bionanomaterials suitable for enhancing the wound-healing process refer to antibacterial
and anti-inflammatory actions and the capability to influence ECM synthesis, stem cell
proliferation, differentiation, and growth factors [81,82].

3.1. Major Architectures of Nanomaterials

Nanoemulsions, biphasic dispersions of two nonmiscible liquids, are among the most
common types nanomaterials used for wound treatment. They show small droplet size,
long shelf life, and simple synthesis processes, but their pharmacokinetics and pharmaco-
dynamics are affected by the type of route of administration [83].

Nanoparticles generally refer to nanospheres, nanocapsules, solid lipid nanoparticles
(SLNs), as well as nanostructures lipid carriers (NLCs). Nanocapsules consist of biopoly-
mers containing a core of lipidic/lipophilic molecules. Their feature is the capability to
release their cargo safely and enhance its diffusion into deeper skin layers. However, their
efficacy can be compromised by a large amount of substance being directly administered
on the skin.

Nanospheres are usually made of poly(lactic-co-glycolic acid) (PLGA) and chitosan as
colloidal systems useful for delivering proteins and peptides involved in wound healing.
However, their loading capacity is low, and the release is characterized by a kinetic burst.
Protein administration can also be obtained by SLNs using a topical route.
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NCLs exhibit good efficiency, safety, and sustained drug release, but they have a low
drug-loading capacity. They are similar in structure to liposomes, but they accommodate
synthetic non-ionic surfactants. They exhibit specific target recognition thanks to the
expression of surface receptors. This characteristic improves their effectiveness and reduces
side effects.

Metal nanoparticles have antibacterial properties, low penetration into the skin, and
transparency after application. However, some physicochemical and biological have to
be improved. For these reasons, metal and metal oxides nanoparticles, such as zinc and
gold nanoparticles, are preferred. They have toxicity related to their size, so the synthesis
process must be strongly controlled [84,85].

Polymeric nanoparticles represent architectures where the active molecule is embed-
ded in the polymeric matrix and/or absorbed on its surface. They are used in versatile
systems for wound dressings and delivery vehicles [86]. The degradation of polymeric
nanoparticles is progressive and occurs in situ, and their products are metabolized by the
host, allowing them to avoid additional surgical intervention [18]. Another advantage of
using polymeric nanoparticles is regulating the release mechanism of a bioactive molecule
from its matrix by choosing the right type of polymer and synthesis method [87].

3.2. Synergistic Actions between Nanoparticles and Wound Dressing Matrix

The combination of nanoparticles with a specific matrix allows synergistic actions.
Polymeric hydrogels are widespread in wound dressings. Their porous structure can
absorb large amounts of exudate, maintain moisture in the wound site, and permit oxygen
permeation [88]. Gas exchange is an essential feature since it influences the wound site’s
acidity conditions, allowing bacteria colonization [89]. Moreover, hydrogels show physical
properties similar to those of living tissue. A 3D hydrogel structure protects nanoparticles
and their cargo from premature degradation to sustain a controlled response into the
wound site. The properties responsible for nanohydrogels success are swelling, stimuli
responsiveness, softness, and high biocompatibility. However, studies highlight their
deficiency in pharmacodynamic and pharmacokinetic aspects [88].

For the bioadhesiveness and resistance necessary for dressings, polymeric films and
membranes are synthesized to guarantee mechanical flexibility. They are composed of
natural polymers, such as alginate, hyaluronan, or vegetable oil, or synthetic ones, like
polyvinyl alcohol, as well as mixtures of these. Biopolymers, such as collagen, allow for
biomimetic and bioactivity features. To improve wound-healing effects, nanoparticles that
are able to release bioactive molecules can be added to films during their synthesis [80].
Casting is the most commonly used technique to produce films. It consists of pouring a
polymeric solution into a mold and then waiting for the evaporation of the organic solvent
until the polymer dries [90]. However, this method has the disadvantage of obtaining
dense structures with low permeability, leading to exudate accumulation and infection [80].

Several studies have focused on using nanofiber scaffolds for wound management
due to their structural features and wound-healing potential. Biodegradable scaffolds
similar to ECM are considered ideal dressings, and electrospinning is the best technique
to produce them since it can create scaffolds made of uniform polymeric nanofibers with
desired dimensions. Scaffolds show several properties such as biocompatibility, controlled
porosity, and permeability. Furthermore, they allow cell attachment because of their
microporous structure similar to ECM. The polymers most used to create scaffolds are
collagen, chitosan, and non-degradable fibers, such as polylactic acid, poly (vinyl alcohol)
(PVA), polyethylene, and polyurethane. These scaffolds can allocate bioactive molecules
that release nanoparticles to enhance the wound-healing process, influence cell behavior,
and inhibit infection [91]. Recently, to obtain better-performing dressings, multicomposite
scaffolds have been designed. They consist of a mixture of different types of scaffolds
and nanoparticles. This combination leads to the synthesis of multifunctional dressings.
Composite dressings can be used as one or two layers that are adaptable for several wound
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types. They show good permeability, compliance, control of infection, and absorptive
capacity, but they also have high costs and must be replaced once a day [92].

3.3. Two Major Nanotechnological Preparatory Techniques Applied in Wound Dressing

The nanoformulation strategy is a solution to preserve the therapeutic efficacy of
essential oils while minimizing their physicochemical limitations. For this purpose, mainly
large molecules (e.g., cyclodextrin) and polymers have been used as carriers [93]. As
a delivery system for the pharmacological application of essential oils, nanoemulsions
are gaining special attention because they are inexpensive and scalable [94]. In fact, the
nanoemulsion method is a simple synthetic technique and is applied for a simple composi-
tion. Nanoemulsions are isotropic dispersed systems of two immiscible liquids formed by
mixing oil and water and adding surfactant/cosurfactant to obtain a droplet size in the
nanometer range [95]. Three essential parameters should be considered in the composition,
method, and manufacturing conditions to obtain a stable formulation [95]. The emulsion
of the two immiscible liquid phases can create an interfacial tension that can be controlled
by the addition of surfactants, which allows the dispersion of the particles [96]. Nanoemul-
sions can be classified as water-in-oil (W/O) and oil-in-water (O/W) emulsions. O/W
nanoemulsions are mainly used in the pharmaceutical field because they are easily washed
out and are often used in drug delivery systems. The preparation of nanoemulsions starts
with the successive conversion of a macroemulsion into a nanometric form by applying
ultrasonic emulsification, high-pressure homogenization and microfluidization as high-
energy methods, phase inversion and self-emulsification as low-energy techniques [97].
Macroemulsions are thermodynamically more stable than nanoemulsions, but the nano-
metric size improves lipophilic molecules’ loading capacity (like essential oils, natural
compounds) [98] and reduces particles sedimentation by decreasing the gravity effect onto
their surface [99]. Even if the use of essential oil nanoemulsion as a food biopreserver
is more prevalent [100], their wound-healing potential is noteworthy. The development
of all kinds of wound dressing also influences the design of essential oil nanoemulsions.
Indeed, essential oil nanoemulsions are combined with biopolymers, such as chitosan, with
recognized biological effects [101], or they are used to ameliorate another kind of wound
dressings, such as hydrogel [102] or both situations, as chitosan/alginate films [103].

The three-dimensional architecture of electrospun nanofiber membranes has an excel-
lent advantage for wound treatment by mimicking the ECM structure. The properties of
electrospun nanofibers also improve the wound-healing progress. In particular, the size
of nanofibers and their network promote gas exchange and alienation of bacteria, while
their high surface-to-volume ratio supports the delivery of therapeutic molecules [104].
Moreover, electrospun membranes show good adaptability to wound shape compared
to conventional dressings, and their surface can be functionalized to enhance their bioac-
tivity [105]. In electrospinning, a positive high voltage is applied to a viscoelastic liquid
droplet of the polymer solution, deforming it into a conical shape. A pump ejects the
droplets as a jet from a metal needle attached to a syringe and deposits them as fibers on
an anodically charged collector plate. During the process, the overlapping of the fibers
gradually forms mats. The resulting electrospun fibers are influenced in their morphology
and mechanical properties by several parameters associated with the process, such as
the applied voltage, the distance between the needle and the collector, the viscosity and
conductivity of the solution, the volatility of the solvent, and the molecular weight of
the polymer [106]. In particular, the solvent properties and the collector geometry seem
to influence the porosity of the electrospun fibers. Indeed, the volatility of the solvent
can affect the fiber surface, and the boiling point of the solvents and nonsolvents used
can create pores due to the phase separation phenomena that occur before or during the
electrospinning process [107]. Chitosan, alginate, and cellulose are the most common
polysaccharide-based biopolymers used for wound dressings [108]. In addition, various
polymer solutions can be electrospun using the coaxial method, which consists of simulta-
neous deposition of multiple concentric needles [109]. This modification can be used to
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obtain a wound dressing based on two different types of polymer matrices such as sodium
alginate and chitosan that interact with electrostatic force [110].

4. Essential Oils as Active Secondary Compounds in Wound Dressings

Secondary metabolites like other antibiotic chemical compounds, e.g., such as aminogly-
cosides [111], beta-lactams [112], glycopeptides [113], quinolones [114], sulphonamides [115],
and tetracyclines [116,117], can be used to control wound infections. The influence of nat-
ural antimicrobials on the wound-healing process could be explained by their effects on
growth factors (epithelial cells, fibroblasts, vascular endothelial cells) as stimulators of
wound cells and cellular mechanisms [118]. In other words, the antimicrobial compounds
accelerate and promote skin regeneration by influencing cell migration and ECM depo-
sition [119]. In vitro and in vivo evidence indicates antimicrobial and anti-inflammatory
effects of secondary active metabolites in the wound-healing process [8,14]. Natural an-
timicrobial compounds defuse through bacteria cell walls and break their cell membranes
by invading the bacteria’s membrane phospholipids and lipids [120]. Active metabolites
can also act as antioxidant agents and accelerate the wound-healing process by decreasing
intracellular ROS production and controlling the rate of nitric oxide synthase [121,122].
Bioactive secondary metabolites of plants could be used for wound healing, including alka-
loids, essential oils, flavonoids, tannins, terpenoids, saponin, fatty acids, and phenols [36].
These active compounds could improve the wound-healing process by influencing one of
the healing stages through antibacterial, antifungal, antioxidant, and anti-inflammatory
effects [123]. Many studies have been done on the potential application of essential oils
and other secondary metabolites in wound-healing applications by incorporating them in
dressing materials. Moreover, essential oils demonstrate the capacity to be used as both
a solvent and active material, which improves the synthesis process’s sustainability and
safety. Table 1 gives an overview of the different types of essential oils that have been
formulated into polysaccharide-based wound dressing systems using nanotechnologies
and their bioassays.

Table 1. Essential oil applications for wound healing.

Essential Oils Wound Dressing System Method Bioassay References

Cinnamon, clove, and
lavender oils

(Cinnamomum Syzygium
aromaticum and Lavandula)

or Lavender oil/

Sodium
alginate/polyvinyl alcohol
nanofibers (cotton gauze)

Electrospinning Staphylococcus aureus [124]

Clove, Mandarin, and
Niaouli oil

(Syzygium aromaticum,
Citrus reticulata and

Melaleuca quinquenervia)

Sodium alginate film+
silver nanoparticles Nanocoating/casting E. coli, Staphylococcus aureus,

and Candida albicans [125]

Eucalyptus essential oil (+
Manuka honey, aloe vera gel)

Sodium
alginate/methylcellulose

hydrogels
3D bioprinting S. aureus and E. coli + human

dermal fibroblasts [126]

Silvery wormwood oil
(Artemisia argyi)

Sodium
alginate/polyvinyl alcohol
microcapsules/nanofibrous

membranes

Emulsification-internal
gelation/electrospinning Escherichia coli [127]

Cabreuva essential oil
(Myrocarpus fastigiatus)

Polyvinyl
alcohol/chitosan

nanofibers
Electrospinning

Candida albicans, E. coli,
S. aureus, and

Staphylococcus epidermidis
[128]

Cardamom oil
(Elettaria Cardamomum) Chitosan nanocomposites Ionic

gelation/utrasonication

S. aureus, and E. coli + human
corneal epithelial cells and

human hepatocellular
carcinoma cells

[129]
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Table 1. Cont.

Essential Oils Wound Dressing System Method Bioassay References

Cinnamaldehyde
Chitosan fibers Centrifugal spinning Staphylococcus aureus [130]

Chitosan/polyethylene
oxide Electrospinning Escherichia coli and

Pseudomonas aeruginosa. [131]

Clove and Sandalwood oils
(Syzygium aromaticum and

Santalum)

Dextran/
nanosoy/glycerol/

chitosan nanocomposite
membranes

Nanoprecipitation/casting S. aureus and E. coli [132]

Eugenol oil (Clove oil-
Syzygium aromaticum)

Polycaprolactone/polyvinyl
alcohol/chitosan fiber Emulsion electrospinning Staphylococcus aureus and

Pseudomonas aeruginosa [133]

Thyme oil (Zataria multiflora)

Chitosan poly(vinyl
alcohol)/gelatin

nanofibers
Electrospinning

Staphylococcus aureus,
Pseudomonas aeruginosa and

Candida albicans
[134]

chitosan/poly(vinyl
alcohol)/gelatin. into poly
(vinyl alcohol) nanofibers

Electrospinning

Staphylococcus aureus,
Pseudomonas aeruginosa and

Candida albicans + scaffolds on
mouse fibroblast cells

[134]

Terpinen-4-ol (from
Melaleuca alternifolia

essential oil)

Liposomes-incorporated
chitosan/polyethylene

oxide electrospun
nanofibrous film

Thin-film hydration and
electrospinning

Candida albicans,
Escherichia coli,

Staphylococcus aureus + mouse
fibroblast cells

[135]

Satureja mutica or
Oliveria decumbens essential oil

Chitosan/polyvinyl
alcohol as core and
polyvinylpyrroli-

done/maltodextrin
as shell

Electrospinning
E. coli, S. aureus, and

P. Aeruginosa and
antioxidant activity

[136]

Zataria multiflora essential oil chitosan/poly(vinyl
alcohol)/gelatin Electrospinning

Staphylococcus aureus,
Pseudomonas aeruginosa, and

Candida albicans
[137]

Thymol (TH) and its isomer carvacrol (CA) are monoterpenoid phenols from the
Origanum genus. They are found in thyme oil extracted from Thymus vulgaris, a plant from
the Lamiaceae family and a native plant of Southern Europe ranging from the Western
Mediterranean to Southern Italy [14]. Many studies have shown that carvacrol and thymol
have anti-inflammatory, antioxidant, skin fibroblast-stimulating, and antibiotic effects
in the wound-healing process [138–146]. In this regard, Hamedi et al. loaded a thyme
oil nanoemulsion in chitosan alginate films (TM-PEC) at two different polymer ratios
of polymers of 0.4 and 1 w/v% through a solvent evaporation technique [103]. An in-
vitro antibacterial test proved that the thyme-formulated films could limit the growth of
Escherichia coli and Staphylococcus aureus. Viable cell counting demonstrated the antibacterial
effect of nanoemulsion-films, and the release profile showed a controlled kinetic during
the time (150 h) after an initial burst. Furthermore, the good value obtained by the tensile
strength test confirmed these biomaterials suitable as wound dressings [103].

Oregano (Origanum vulgare) is a plant from the mint family native to Western and
Southwestern Eurasia and the Mediterranean region. Turmeric (Curcuma longa) is in the
ginger family and a native plant to the Indian subcontinent and southeast Asia. The
essential oils of these plants have potential applications in wound healing because of their
antimicrobial and antioxidant ability (Figure 3) [146]. In this respect, Sami et al. fabricated
different types of dressings (ointment, hydrogel, and nanofiber) with 5% turmeric, 1%
oregano, and 1% chitosan nanoparticles and compared their antibacterial, antioxidant,
and cytotoxicity properties with those of commercial alginate silver dressing [147]. The
antioxidant test showed that ethanolic turmeric extract had better antioxidant activity than
oregano, chitosan nanoparticles, and alginate silver (p value < 0.0001). Thus, the bioassay
result showed that the ointment, hydrogel, and commercial alginate silver produced 100%
inhibition against S. aureus and E. coli, and nanofibers produced 50% inhibition [148].
In another study, Berechet et al. formulated thyme or oregano essential oils into the
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collagen nanofibers and evaluated the dressing system in an antimicrobial test [149]. The
microbiological results showed that the nanofibers were active against S. aureus, E. coli,
P. aeruginosa, and C. albicans [149].Appl. Sci. 2021, 10, x FOR PEER REVIEW 10 of 19 
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(d), (e) and (f) three main tea tree oil compounds α-terpinene, γ-terpinene, and terpinen-4-ol, and
(g) 1,8-cineole one of the main ingredient of eucalyptus oil.

Cinnamaldehyde (CAL) or (2E)-3-Phenylprop-2-enal is found in cinnamon essen-
tial oil (55–76%) isolated from cinnamon trees, camphor, and cassia. CAL is used in
wound healing for antibacterial and antifungal activity and as an anti-inflammatory agent
(Figure 3) [150]. Kenawy et al. incorporated CAL into gelatin/chitosan biopolymer mem-
branes and investigated their microbiological activity [151]. The result showed that the
developed CAL/gelatin/chitosan membranes inhibited the growth of three Gram-negative
bacteria species (P. aeruginosa, Salmonella, and E. coli) and one Gram-positive bacteria species
(S. aureus). Based on their results, they proposed that the bioactive, biodegradable, and
nontoxic CAL/gelatin/chitosan membranes could be a promising candidate for wound
dressing applications [151]. In another study, Liakos et al. demonstrated the antimicrobial
activity of cinnamon, lemongrass, and peppermint essential oils encapsulated in cellulose-
based fiber dressings. These formulated products inhibited the growth of Escherichia coli
and showed good biocompatibility when tested on fibroblasts and keratinocytes as cell
models (NIH3T3 and HaCaT cells) [152].

Another essential oil widely used in wound healing is tea tree oil (TTO), which is ex-
tracted from the leaves of M. alternifolia [153,154]. Three main compounds of TTO, terpinen-
4-ol, γ-terpinene, and α-terpinene are shown in Figure 3 [155]. The presence of terpene
hydrocarbons and tertiary alcohols results in TTO antimicrobial and anti-inflammatory
activity and helps in the regeneration of collagen [156]. In one study, Flores et al. for-
mulated a TTO nanocapsule (TTO-NC) and nanoemulsions (TTO-NE) into the hydrogels
separately and compared both systems [102]. They investigated their influence on the
treatment of inflammatory disorders and wound healing [102]. The result showed that both
formulated hydrogels could promote the healing process, although the TTO-NC hydrogel
could heal the wounds faster than TTO-NE by reducing inflammation [102]. Green tea
extract (GT) is another tea tree product isolated from the leaf of Camellia sinensis. Sadri et al.
formulated green tea extract in chitosan/polyethylene oxide nanofiber to investigate the
wound-healing effect of GT [157]. The antibacterial assay on chitosan/PEO/GT nanofibers
showed inhibition against Escherichia coli and Staphylococcus aureus. The in vivo study was
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conducted on rat, and the result showed that chitosan/PEO/GT nanofiber could accelerate
the healing process, and the wound recovered completely after 16 days [157].

Eucalyptus oil with its main compound 1,8-cineole is extracted from Eucalyptus globu-
lus, an evergreen tree with endemic wild growth in southeastern Australia (Figure 3) [158].
Sugumar et al. formulated a eucalyptus oil nanoemulsion for topical application to
investigate the antibacterial and wound-healing potential against Staphylococcus aureus
and Wistar rats, respectively [158]. The O/W nanoemulsions were prepared by ultra-
sonic method using the nonionic surfactant Tween 80. They showed that the viability
of Staphylococcus aureus was affected within 15 min of contact with the eucalyptus oil na-
noemulsion, and bacterial membrane damage occurred. Animal studies showed a higher
wound contraction rate compared to control and neomycin and confirmed that the formu-
lation was not irritating [158]. In another study, Sugumar et al. impregnated eucalyptus oil
nanoemulsion in chitosan film by casting method and performed the antibacterial test on
formulated film. The in vitro bioassay on formulated films content 3% eucalyptus oil had
activity against Staphylococcus aureus [159].

Lawsonia inermis Linn is extracted from the henna tree and can be used in the healing of
chronic and burn wounds due to its antioxidant, analgesic, anti-inflammatory, antibacterial,
and antifungal activities. Yousefi et al. prepared chitosan/polyethylene oxide (PEO) (90/10)
nanofiber with Lawsonia inermis (2 wt%) by electrospinning [160]. The enriched nanofiber
showed antimicrobial activity against Escherichia coli and Staphylococcus aureus. The in vivo
test was performed on the back of rats for 14 days (Figure 4). The results showed that
Lawsonia inermis could promote the wound-healing process [160].
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Lavender EO (LEO) is extracted from the flowers of Lavandula angustifolia and is known
as an anxiety reducer, pain reliever, antioxidant, and anticancer agent [161,162]. Hajili et al.
formulated lavender EO in Alginate (SA)/PEO nanofiber to evaluate LEO antibacterial
and anti-inflammatory activity and its influence in recovering burn wounds [163]. The
antibacterial results showed nanofiber inhibition against Staphylococcus aureus. The anti-
inflammatory activity was determined by in vivo test on the rat skin exposed to midrange
ultraviolet radiation (UVB). The data suggested that the designed dressings affected the
bacteria vitality. They were able to reduce the production of proinflammatory cytokines in
human fibroblast cells by polymerase chain reaction (PCR) analysis and in mice exposed to
UVB irradiation, evaluated by enzyme-linked immunosorbent assay (ELISA). This result
proved that in the role of LEO in burn wound treatment by backing the cytokine levels to
control value after 96 h without the appearance of erythema on their injured skin [163].

Lavender essential oil (LEO) is extracted from the flowers of Lavandula angustifolia
and is known as an anti-anxiety, analgesic, antioxidant, and anticancer agent [161,162].
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Hajili et al. formulated LEO in alginate/PEO nanofibers to investigate the antibacterial
and anti-inflammatory activity of LEO and its effect on the healing of burn wounds [163].
The antibacterial results showed inhibition of nanofibers against Staphylococcus aureus.
The anti-inflammatory activity was determined by an in vivo assay on rat skin exposed
to medium ultraviolet radiation (UVB). The data suggested that the designed dressings
affected the vitality of bacteria [163].

Clove oil extracted from Syzygium aromaticum exhibits antioxidant and anticancer
activity due to its secondary metabolite eugenol. Alam et al. first analyzed the effect of
clove oil in a wound excision rat model by oral administration. A clove oil nanoemulsion
was obtained by spontaneous emulsification using triacetin as oil phase, Tween-80 as
surfactant, Labrasol as cosurfactant, and distilled water as aqueous phase. It was found
that the leucine content was higher compared to the treatment with pure clove oil and
the control. Moreover, the absence of inflammatory cells in nanoemulsion-treated rats
in the histopathological experiments showed that the clove oil nanoemulsion was safe
and nontoxic [164].

5. Conclusions and Future Perspectives

As a complicated process, wound healing requires several physiological activities.
Therefore, the selection of suitable wound dressing systems is vital. As an alternative for
conventional wound dressing, polysaccharide-based biopolymers such as chitosan and
alginate are promising because of their biocompatibility, biodegradability, antimicrobial
activity, and ability to accelerate wound healing. Thus, they are considered promising ma-
terials for wound dressing applications. Nanotechnology has increasingly revolutionized
medical care, and its potential has also been investigated for the formulation of wound
dressings. The application of secondary natural products in active wound dressings as
antimicrobial and antioxidant additives is promising, providing fully biodegradable and
sustainable biomaterials. However, there is a deep gap between laboratory scale research
and clinical scale and even commercialization. To achieve this goal, the future trend in
bioactive wound dressings should focus on overcoming the limitation of extracting natural
products to improve their sustainability by using more environmentally friendly and cost-
effective approaches and carefully investigating clinically the problem of toxicity of natural
products and lack of uptake by host cells.
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