
remote sensing  

Technical Note

Application of Copernicus Data for Climate-Relevant Urban
Planning Using the Example of Water, Heat, and Vegetation

Michael Max Bühler 1,* , Christoph Sebald 2, Diana Rechid 3, Eberhard Baier 4, Alexander Michalski 1,
Benno Rothstein 1, Konrad Nübel 5 , Martin Metzner 2, Volker Schwieger 2 , Jan-Albrecht Harrs 3 ,
Daniela Jacob 3, Lothar Köhler 6, Gunnar in het Panhuis 4, Raymundo C. Rodríguez Tejeda 7 ,
Michael Herrmann 8 and Gerd Buziek 9

����������
�������

Citation: Bühler, M.M.; Sebald, C.;

Rechid, D.; Baier, E.; Michalski, A.;

Rothstein, B.; Nübel, K.; Metzner, M.;

Schwieger, V.; Harrs, J.-A.; et al.

Application of Copernicus Data for

Climate-Relevant Urban Planning

Using the Example of Water, Heat,

and Vegetation. Remote Sens. 2021, 13,

3634. https://doi.org/10.3390/

rs13183634

Academic Editor: Maria Kouli

Received: 15 July 2021

Accepted: 8 September 2021

Published: 11 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Civil Engineering, Konstanz University of Applied Sciences, 78462 Konstanz, Germany;
amichals@htwg-konstanz.de (A.M.); benno.rothstein@htwg-konstanz.de (B.R.)

2 Institute of Engineering Geodesy (IIGS), University of Stuttgart, 70174 Stuttgart, Germany;
christoph.sebald@iigs.uni-stuttgart.de (C.S.); martin.metzner@iigs.uni-stuttgart.de (M.M.);
volker.schwieger@iigs.uni-stuttgart.de (V.S.)

3 Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany;
diana.rechid@hereon.de (D.R.); jan-albrecht.harrs@hereon.de (J.-A.H.); daniela.jacob@hereon.de (D.J.)

4 Mayor’s Department, City of Konstanz, 78462 Konstanz, Germany; eberhard.baier@konstanz.de (E.B.);
gunnar.inhetpanhuis@konstanz.de (G.i.h.P.)

5 Department of Civil, Geo and Environmental Engineering, Technical University Munich,
80333 Munich, Germany; konrad.nuebel@tum.de

6 Benefit Unternehmensentwicklung GmbH, 77933 Lahr, Germany; lothar.koehler@benefit-gmbh.de
7 Tejeda Ing. Büro für Planung und Projektmanagement, 39365 Eilsleben, Germany; tejeda@tejedaingburo.com
8 str.ucture GmbH, 70176 Stuttgart, Germany; info@str.ucture.com
9 Esri Deutschland GmbH, 85402 Kranzberg, Germany; g.buziek@esri.de
* Correspondence: michael.buehler@htwg-konstanz.de; Tel.: +49-151-143-144-99

Abstract: Specific climate adaptation and resilience measures can be efficiently designed and imple-
mented at regional and local levels. Climate and environmental databases are critical for achieving
the sustainable development goals (SDGs) and for efficiently planning and implementing appropriate
adaptation measures. Available federated and distributed databases can serve as necessary starting
points for municipalities to identify needs, prioritize resources, and allocate investments, taking into
account often tight budget constraints. High-quality geospatial, climate, and environmental data are
now broadly available and remote sensing data, e.g., Copernicus services, will be critical. There are
forward-looking approaches to use these datasets to derive forecasts for optimizing urban planning
processes for local governments. On the municipal level, however, the existing data have only been
used to a limited extent. There are no adequate tools for urban planning with which remote sensing
data can be merged and meaningfully combined with local data and further processed and applied in
municipal planning and decision-making. Therefore, our project CoKLIMAx aims at the development
of new digital products, advanced urban services, and procedures, such as the development of
practical technical tools that capture different remote sensing and in-situ data sets for validation
and further processing. CoKLIMAx will be used to develop a scalable toolbox for urban planning
to increase climate resilience. Focus areas of the project will be water (e.g., soil sealing, stormwater
drainage, retention, and flood protection), urban (micro)climate (e.g., heat islands and air flows), and
vegetation (e.g., greening strategy, vegetation monitoring/vitality). To this end, new digital process
structures will be embedded in local government to enable better policy decisions for the future.

Keywords: climate change; city resilience; sustainable development; urban planning; remote sensing;
internet of things; water management; heat islands; digital transformation; data analytics

1. Introduction

Currently, 55% of the global population lives in cities—with a projected percentage
of 68% in 2050 [1]. At the same time, the effects and consequences of the climate crisis
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are particularly striking in urban areas. They are associated with a high potential for
damage due to the high spatial concentration of people, buildings, technical infrastructure,
economic output, and social and cultural activities. For example, rising summer temper-
atures increase heat stress, especially in cities, leading to increased health problems and
higher heat-related deaths [2–6]. More frequent and extreme storm and tempest events
cause damage to infrastructure and commercial and residential buildings [7–9]. Cities are
particularly affected by the effects of climate change and are exacerbating this effect. Due
to increased urbanization, the rising volume of traffic is placing an increasing burden on
the environment. Thus, cities are increasingly struggling with the heat, air pollution, CO2
emissions, and traffic noise. To counteract this trend, the preservation of existing and the
development of new green spaces have become an essential part of modern urban planning
to ensure sustainable urban development (cf. [10,11]).

According to current scenarios and model calculations, Germany’s costs of climate
damage are in the range of 0.1–0.6% of GDP by 2050. Recent studies expect even higher
numbers on a global level [12]. With investments in climate adaptation amounting to
0.1–0.2% of GDP, governments could avoid much of the damage and instead generate
attractive additional benefits at the same time [13,14]. Governments could design and
implement concrete measures for climate adaptation and climate resilience, particularly
efficiently at the municipal level. Municipal actors, in particular, have various options for
action. Regional planning, urban land use planning, environmental planning, municipal
landscaping, etc., play a crucial role in mitigating or minimizing the risks and negative
consequences of the climate crisis [15].

For viable economic planning and implementation of appropriate measures to mini-
mize climate crisis-related impairments and hazards, sophisticated knowledge of environ-
mental and climatic parameters and their anticipated changes are of utmost importance.
It is possible to simulate relevant scenarios and derive measures to succeed in a targeted
adaptation of urban areas based on pertinent databases. Thus, the timeliness, quality,
suitability, and availability/usability of the available climate and environmental data are
determining factors for the ability of cities and municipalities to act, and are of central
importance for the planning and justification of climate resilience measures, which usually
have to be designed and implemented under tight budgetary constraints and complex
boundary conditions [16,17].

Meanwhile, powerful geospatial, climate, and environmental information is increas-
ingly becoming available in Copernicus data and services as past, present, and projection
data for different emissions scenarios. There are forward-looking approaches to its use in
the context of climate and weather-related influences at the local level [18]. However, the
implementation of remote sensing and imagery techniques and their secondary applica-
tions for monitoring and detecting the effects of extreme weather events and their impact
on the built environment is still underdeveloped [19].

2. Resilient and Climate-Relevant Urban Planning

As the research community expects climate change to worsen significantly in the
future, timely climate adaptation in cities is essential. In particular, thermal protection
measures are needed to counteract local overheating and maintain the quality and safety
of life in the city. A virtual representation that acts as a real-time digital counterpart of the
physical town called the digital (city/urban) twin can run simulations of a city’s cooling
energy demand and evaluate “what if” mitigation scenarios. The digital twin uses climate
models, in-situ and remote sensor networks, and building and transportation systems to
show areas most affected by heat stress (cf. [20]). City planners can use different scenarios
to determine how newly planned buildings and facilities or even entire city neighborhoods
will be affected by urban heat [11]. With the help of these scenarios, architects and engineers
can also project the effects of other essential climate factors on structures (i.e., precipitation,
wind, and humidity). Based on the results of their simulations, they can then determine the
optimal building configuration. In addition, their models can show which existing areas
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are particularly affected by heat and what counteracting measures they can propose. Their
models can guide designers in optimizing the locations where a roof/façade greening or
tree planting initiative will most effectively reduce the ambient temperature [11].

The city of Zurich, for instance, is already using the digital twin for selected urban areas
to analyze the potential positive impact of existing and planned buildings on cold airflow
corridors in the city. For this purpose, the city has developed 13 mitigation measures and
applied them to achieve an optimized climate situation. The model compares the current
state with the climate-optimized state using the different mitigation measures. The model
indicates how the physiological equivalent temperature (PET) changes within different
simulated scenarios and where mitigation through specific landscaping and urban planning
measures is most effective. City planners can give more significant consideration to climate
aspects in future planning processes thanks to the simulated scenarios. Climate factors
(i.e., solar radiation, air temperature, precipitation, humidity, and wind) will increasingly
play an important decision-making role in urban planning processes. The example of
Zurich clearly shows how the digital city twin can be used to improve the urban climate
(cf. [21] p. 108, [11]). The digital urban twin can be used to simulate future development
scenarios transparently and understandably. Considering different planning specifications
and parameters linked to geospatial data, scenarios of possible building uses, and their
effects can be calculated and compared with each other. The calculation and visualization of
different planning scenarios serve as a basis for discussion and decision-making involving
planners, architects, and city administrators as well as citizens (cf. [21] p. 107, [11]).

With the help of the digital twin, hydrologists can carry out GIS-based heavy rain
event analyses and simulate flood scenarios using hydrologic, hydraulic, and mathematical
models. The consequences of severe rain events are usually devastating, particularly when
flash flooding in combination with sealed or dried out soil with a lower water absorbency
rate leads to an overload of the sewer system. Therefore, flooding and heavy rainfall risks
must be considered in municipal urban land use planning to minimize future damage to
buildings, human life loss, number of injuries, and direct economic loss. With the inclusion
of real-time data, scientists can realistically describe predictions of heavy rain events and
their expected impact. Examples include the visualization of flood scenarios in the city of
Cologne, which identified where buildings were particularly affected by the flooding and
successfully used this information to develop effective mitigation measures [22]. Complex
simulations are feasible using a digital twin, e.g., coupled modeling of the sewer network
and surface runoff.

Furthermore, by simulating heavy rainfall, investigators can identify sewers with
increased surface runoff since exceeding the capacity of the sewer network may also
release harmful pollutants. For critical sewers, appropriate mitigation action, e.g., redesign
or retention areas, can be taken. The digital twin is a valuable tool to produce realistic
temporal and spatial forecasts of heavy rainfall events. The frequency and intensity of
extreme weather events have increased, especially in recent years. In Germany, extreme
weather situations such as heavy rain and floods occur more and more frequently ([23]
p. 483, [24] p. 668, and [11]). With the help of the simulation of heavy rainfall events,
municipal governments can realistically map flood forecasts using the digital twin and thus
can identify flood-prone areas. By modeling water levels and runoff volumes, they can
determine the damage to buildings and infrastructure and derive suitable measures and
protection plans. Finally, city managers can evaluate object-specific protective measures
based on structural and technical data and individual objects’ information (cf. [11,25]). The
city of Lisbon already used its digital city twin for urban flood simulations. Based on the
results of the simulations, it developed a master plan for drainage for several return periods.
Lisbon has already implemented suitable flood protection measures. As a result, Lisbon is
now better prepared for flood events in the next century since the city can proactively avert
significant damage from flooding (cf. [11,26]). The analyses enable precise and targeted
planning and early initiation of necessary flood protection measures. Thus, with the help
of the digital twin, the city can make the lives of its citizens safer [11].
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3. Relevant Data and State-of-the-Art Technology
3.1. CODE-DE Platform

For access to climate and environmental data by German authorities, the platform
CODE-DE (Copernicus Data and Exploitation Platform—DE; https://code-de.org/en/,
accessed on 30 August 2021) is available, representing the current state of the art, which
municipalities can also use in the context of the applications and tasks focused on here.
CODE-DE is part of Germany’s geospatial data and information strategy. It offers access
to remote sensing data, a virtual working environment for processing these data, and
extensive information material and training to support users.

In particular, CODE-DE provides access to the Sentinel and Contributing Mission data
and information products of the Copernicus services, offers processing capabilities, and
access to a portfolio of products and tools specifically designed for government applications
and applications in the science and private sectors. It is a platform that allows downloading
processed Level 1 and Level 2 raster (satellite) data. An API is also available from CODE-
DE. Many of the data products available via CODE-DE originate from the CDS and are
adapted for Germany. CODE-DE cloud contingents are available for free access to the
data [27] and the efficient data processing environment, particularly for public authorities
and their contractors. The quotas are allocated on request and, if necessary, prioritized
according to the following user categories:

• Category 1: German federal authorities and their contractors
• Category 2: German state authorities, municipalities, and their contractors
• Category 3: German research institutions and other non-commercial organizations
• Category 4: Anyone who does not fall into one of the other categories. Examples

include non-German users, students, and private sector users.

3.2. Climate Data Store (CDS)

The climate data store (Copernicus Climate Data Store, CDS; https://cds.climate.
copernicus.eu/#!/home, accessed on 30 August 2021) provides access to a multitude of
climate datasets through a searchable catalog (e.g., [28]). CDS datasets include observed
historical climate data records and estimates of essential climate variables (ECVs) derived
from Earth observations, global and regional climate reanalysis of past observations, sea-
sonal forecasts, simulated past climate, and future climate change projections. The access
to data is open, free, and unrestricted. An online toolbox is available to allow users to
create workflows and applications tailored to their needs. An application programming
interface (API) enables users to automate their interactions with the CDS and allows direct
integration of CDS offerings and functions into software tools. CDS data and tools form
the backbone of the C3S sectoral information system (SIS), which provides tools and ap-
plications for dealing with climate impact in different industrial sectors, including energy,
water management, and agriculture (e.g., [29]).

3.3. Commercial Software Products

In addition to using open source software, the consortium uses a sophisticated and
specialized GIS software suite from ESRI, an international supplier of geographic informa-
tion system software, web GIS, and geodatabase management applications. Their ArcGIS
product family offers a wide range of tools and applications, most of which the CoKLIMAx
consortium already used in the past. For instance, we successfully used ArcGIS Enterprise
(Platform), ArcGIS Online, ArcGIS Developer, ArcGIS Pro, ArcGIS Desktop, ArcGIS Online,
running on servers, in the cloud, on web and mobile devices, and desktops [30]. Possible
application contexts, including research activities as well as administrative and especially,
operational use, can be categorized as follows:

Spatial Analysis and Data Science allow the CoKLIMAx consortium to “connect the
seemingly disconnected with the most comprehensive set of analytical methods and spatial
algorithms available” [31,32]. This way, we can uncover former, new, or hidden patterns to
forge or improve predictive modeling and thus create a competitive advantage using the

https://code-de.org/en/
https://cds.climate.copernicus.eu/#!/home
https://cds.climate.copernicus.eu/#!/home
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AMCDS toolbox. Consequently, spatial data analysis and science help to extract deeper
insight from the available data of the CDS and the city of Constance. The comprehensive
set of analytical methods and spatial algorithms, including machine learning and deep
learning techniques using Python and R, are part of the software suite to deal with the
growing amount of diverse geographic data from different sources.

Location intelligence can be improved and blended with newly collected information,
using Field Operations, together with and for citizen participation, to support (municipal)
administrations, various collaborative institutions, companies, etc. It will improve coordi-
nation and operational efficiency for activities in the urban environment field to monitor
a city’s interwoven entanglement of countless processes and activities. It can also help
reduce or even replace reliance on paper, pushing digital applications. Thus, both staff
working in the field and those in administrative offices will use the same authoritative data
to reduce errors by standardization, increase productivity, and save money.

The dynamic mapping software will help create interactive maps for dashboards of
mobile applications to visualize and explore the data. Powerful analysis tools and map
styles will help discover and refine a stakeholder’s understanding of their data in place. We
will create maps with custom styles, symbols, and base maps to personalize the products
for the respective users and share the data insights to influence change positively.

3D GIS and BIM, e.g., digital twin and local real-time sensor technology, gain relevance in
daily operations. The city of Constance is early to implement and use a 3D model for city
planning. The project shall help create and add additional dimensions to the cities data.
The visualized, as-built environment improves further conceptualization of the planners’
vision. This way, planners can further analyze and extract value from available data to
solve current or future problems and understand the bigger picture. Therefore, visualizing
the urban build environment using a 3D model and data visualizations shall support to see
patterns, trends, and non-obvious relationships. Last but not least, the 3D visualization will
help to communicate information to stakeholders by the ease of sharing ideas and concepts.

Image data and remote sensing from drones, aerial and satellite imagery, and other types
of remotely sensed data are opening new possibilities in just about every field of work
and research. This data can help enhance analysts’ or users’ ability to understand their
environment and handle increasing volumes of data using robust mapping, geospatial
analytics, artificial geospatial intelligence (GeoAI), and modeling tools. The software suite
will help CoKLIMAx run the AMCDS toolbox development. In detail, it derives improved
insights with flexible deployment options for managing, mapping, analyzing, visualizing,
and sharing preprocessed or streamlined CDS climate data or local imagery and raster
data, blended with other relevant, local information.

Data acquisition and management (Big Data) are a crucial part of the project and the city
and its daily business, primarily due to the greater amount of diverse data than ever before.
Whether it is 3D imagery, real-time, or big data, the volume, and data types are constantly
increasing. Data (i.e., climate data, urban data, environmental data, or even sensor data)
comes from all kinds of sources and sensors. It is essential to organize and manage that
data properly. The applied and used software suite shall help the consortium make better
and informed decisions to enhance the productivity for all stakeholders, particularly for
and across the entities of the city of Constance with all its administrative departments,
together with external business. Therefore, the CoKLIMAx software architecture is built
with and around the ArcGIS platform, which is in the center of spatial data storage and
better organized GIS data management and workflows to collect, store, maintain, prepare,
and share relevant data.

The advantage of using a federated and distributed GIS system or platform is the
seamless interoperability and integration with and for all users who can and will use
the wide range of interconnected tools available [33]. It will help improve municipal or
other local government operations and enhance services provided to the administration,
stakeholders, and public. The local municipality and other stakeholders already use
the mentioned software suite or system (ArcGIS). They currently all work with and use
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location-based data and technology to improve daily processes and operations, and thus
enhance services provided within the administrative bodies, and to share information or
applications with external partners and the public. The city of Constance and the project
partners have recognized the positive impact on their work with and for the administration
when they use spatial data to prioritize strategies, innovate, and collaborate with internal
and external stakeholders.

Daily tasks of the local administration and their entities deal with dynamic organiza-
tional structures and processes. However, understanding how ArcGIS aligns with business
needs can be challenging. The lack of human capital and the increasing complexity of
today’s technology landscape makes it challenging to develop and deploy solutions that
meet all administrative needs. Hence, ArcGIS solutions often reduce costly development
and time to deploy location-based solutions and services across a wide range and variety
of organizational and business needs.

The CoKLIMAx federated and distributed GIS system strengthens and improves
situational awareness, tasks, operational observation, and spatial and non-spatial data [33].
Therefore, an ESRI GIS Enterprise System shall offer the possibility of various services:
data collection, processing, storage, map or app creation and analysis, for both the local
infrastructure and in the cloud with a dedicated web GIS infrastructure, so that work can
be organized and shared anytime, anywhere and on any device. The ArcGIS Enterprise
Platform puts collaboration and flexibility at the center of the project.

The purpose of the CoKLIMAx federated and distributed GIS System is to use and
build on a centralized, server and cloud-based GIS capacity for the management, provi-
sion, and collection of data to support daily operations and processes by providing more
comprehensive operational data and observations. As pointed out and displayed in the
architectural graphic (3.5), CoKLIMAx will focus on combining several data streams from
different sources. The merging, maintenance, and analysis of data will help to master the
challenging volume of data. It will ensure a better overview of what is happening in a
rapidly developing area of activity concerning digital transformation processes. It will
also include managing risks and the necessary security measures and improving already
existing or related functions.

The centralized system shall help provide decision-makers with relevant information
regarding the nature of all possible situations or even risks related to their urban or rural
environment. At the same time, the status quo of planning and response activities is always
critical to any short-term or long-term or possible crisis management in an unforeseen event.

3.4. Copernicus Climate Change Service (C3S)

The European Centre for Medium-Range Weather Forecasts (ECMWF) provides the
Copernicus Climate Change Service (C3S; https://climate.copernicus.eu/, accessed on 30
August 2021). The C3S aims to support policy development in Europe for climate change,
to improve the planning of climate mitigation and adaptation measures, and to promote
the development of new services with economic value for society, i.e., by protecting
people and assets, increasing knowledge on the state of our environment, improving
environmental policy effectiveness, facilitating the adaption to climate change, helping to
manage emergency and security related situations, and fostering downstream applications
in various fields such as health, agriculture/forestry, energy, transportation, etc. In addition
to global and regional climate change projections for Europe until the end of the 21st
century, ECMWF provides a range of observational and reanalysis data. Furthermore, it
produces reanalysis data with models of global circulation incorporating daily observations
and is thus close to the observed climate. ECMWF provides these data continuously in a
very timely manner at hourly resolution. In addition to numerous atmospheric parameters
such as temperature, evaporation, precipitation, radiation, etc., they also contain many
data on land surfaces and land hydrology and a large number of parameters for lakes.

https://climate.copernicus.eu/
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3.5. International CORDEX Initiative

Within the framework of the international COoRdinated Downscaling EXperiments
(CORDEX; Coordinated Regional Climate Downscaling Experiment; https://cordex.org/,
accessed on 30 August 2021) initiative of the World Climate Research Program (WCRP),
coordinated regional climate simulations for the 21st century are carried out for different
regions worldwide. For Europe, CORDEX generates climate change simulations at a
comparatively high spatial resolution of 12.5 km × 12.5 km within the European branch
of CORDEX, the EURO-CORDEX initiative ([34,35]). Within the Copernicus Climate
Change Service (C3S) project “Producing Regional Climate Projections Leading to European
Services” (PRINCIPLES, C3S_34b Lot2), additional regional climate change simulations
based on the global Coupled Model Intercomparison Project Phase 5 and 6 (CMIP5 and 6, [36])
simulations for different emission scenarios have been generated. These simulations will
further advance the ensemble of regional climate projections for Europe. The generated
multi-model ensembles of climate projections allow the assessment of the quality of climate
information by making statements about bandwidths and robustness of projected climate
changes. The Earth System Grid Federation and, to a large extent, also the C3S Climate Data
Store provide the data for regional climate projections.

3.6. Critical Discussion of Addressing Current Challenges of Using Climate and Environmental
Data

In principle, therefore, there already exists a wide range of forward-looking ap-
proaches to using climate and environmental data. This data is as provided in particular by
Copernicus, for the derivation of climate projections (e.g., [29,37–39]) and for the use of past,
present, and projected data for the identification of expected climate- and weather-related
challenges at the local level (e.g., [40–43]).

Although a relatively wide range of climate information and services and the ar-
ticulated need for climate information and services from adaptation practitioners exist,
studies [44] reveal that municipal users have adopted them only to a limited extent [45–47].
This lack of actual application is attributable to identifiable barriers of use. Besides, clear-
cut obstacles like technical computational capacities, financial and personal resources, and
expertise on climate information and its interpretation [36,48], also the institutional and
organizational setup as well as personal beliefs on the value of scientific data can obstruct
data application [49]. For example, regulatory barriers exist concerning climate projection
data in land use planning due to the inherent uncertainties associated with these projection
data. Similarly, the coordination of climate change adaptation is organizationally dispersed
across several task areas. In addition, it is often institutionally fragmented and usually
rather weakly anchored [34]. Other barriers and obstacles include both technical challenges
to integrate the data into municipal tools and workflows, as well as the necessary knowl-
edge on the quality of climate data and its interpretation, especially for the assessment of
uncertainties (e.g., [29]), and its connection to locally available data. Suppose pertinent
data do not exist, e.g., due to the complexity of the orography, dispersion of the stations,
or short time series. In that case, downscaling will be impossible, and remote sensing
tools have to be used to derive reliable precipitation and temperature information. An
excellent example of successfully applying remote sensing tools in combination with in situ
rain gauges has been provided by Valeriano [50], who used the Tropical Rainfall Measuring
Mission method (TRMM) at the Huong River basin in Vietnam to carry out a flooding study.

The study combined a distributed hydrological model with remote sensing precip-
itation data to transform rainfall–runoff into streamflow and subsequently compared it
with the observed in situ data. In this case study, the streamflow obtained by the satellite
rainfall showed a better match for typical flow peaks than for extreme events [50]. Another
application of remote sensing tools was provided by Wang et al. [51]. They used four
different satellite remote sensing products (GSMaP, TRMM, CHIRPS, and SM2RAIN) in the
Qaraqash River basin in China. His findings showed that CHIRPS and TRMM performed
relatively poorly in the study area, with errors between ±8 to ±12%, respectively.

https://cordex.org/
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Furthermore, TRMM underestimated maximum values in summer and overestimated
in winter, whereas CHIRPS only performed poorly in summer. GSMaP and SM2RAIN
generally performed better; nevertheless, SM2RAIN had a poor ability to reproduce the
winter precipitation but showed a better match with in situ data in summer [51]. The
investigations mentioned above clearly show that in our CoKLIMAx project, a careful
application of different remote sensing tools will be necessary to ultimately select the
optimal solution for the regional conditions at Lake Constance.

From the broad range of products and services offered by the C3S climate data store, it
is usually equally difficult for average communal users to identify the climate parameters
and data sets relevant to them. Also, it is difficult to recognize their potential benefits and
added values for specific municipal applications. Therefore, it is helpful to illustrate the
usefulness of existing climate parameters by their explanatory potential for past extreme
events and other affectedness [46,52].

CoKLIMAx should also seek coordination concerning data format as well as temporal
and geographic scales. Therefore, we have to develop solutions and integrate them into
information systems to link the different spatial scales from the macro- to the micro-
scale [45].

We will follow a transdisciplinary approach (co-design) and include municipal users.
This approach will ensure that we design and develop solutions appropriately adaptable
to local conditions and requirements and overcome or circumvent the existing usability
barriers. In addition, this approach will ensure the alignment with characteristics and
needs of institutional decision-making processes, the use of terminology understandable
by the end-user, and inform appropriate municipal processes and tasks at suitable points
in time [47,53]. This co-design process would need to identify the current roles and
responsibilities to implement climate adaptation measures through social network analyses.
Subsequently, to propose improved operation procedures, we map out the current data
flow, work processes, and understandings of climate data (fuzzy cognitive maps could be
an appropriate tool) [54]. Likewise, CoKLIMAx needs to identify climate parameters and
spatial and temporal resolutions based on available datasets [55]. Ambitious open-data
principles (FAIR) and the implementation capacities represent a crucial aspect of the co-
design process. Analyzing current databases and practices between different departments
and showing how Copernicus data can improve municipal tasks, a pathway for data
connections and centralization, regarded as an essential characteristic of good open data
policy [27], is fostered.

Thus, CoKLIMAx considers institutional structures, decision-making processes, data
use norms, networks, and actor constellations responsible for relevant municipal tasks to
ensure the persistence of climate knowledge and services. In addition, we align the input
of climate projection data closely with these municipal structures and processes during the
co-design process [48,49,56]. An extended needs assessment focused on these aspects can
ensure that climate services are transferred and anchored in municipal practice practically
and sustainably and thus continue to be used independently after the end of the project.
A positive side effect of such a transdisciplinary work process is the capacity building for
the municipal users. Similarly, outreach and education efforts should be directed towards
the general public so that capacities for the interpretation and use of provided data can be
enhanced [27].

4. Proposed Approach and Methods

The actual application by municipal actors has so far fallen far short of the possible
and necessary scope. The following hurdles and challenges are known to be the reasons
for the insufficient use of the system by municipalities:
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• It is difficult to identify the relevant datasets in each case.
• Benefits and added value for municipal applications are not directly recognizable.
• So far, there are no easy-to-use tools for identifying and merging different Copernicus

data and processing and evaluating them (together with local data) for use in mu-
nicipal planning activities. Notably, this challenge concerns linking different spatial
scales (macro-, meso-, micro-scale) and integrating data on differently resolved past
or forecast periods [57,58].

In this context, CoKLIMAx aims to develop the following new products and processes:

• Practice-oriented technical tools for the determination and use of Copernicus data
and services, merging with heterogeneous, locally available data sets and appropriate
evaluation and preparation/presentation/visualization of output.

• Associated technical and urban planning utilization methods, exemplified here to
be implemented to increase urban climate resilience. The focus areas include water
(sealing and desiccation of the soil, urban stormwater drainage design, flood control),
heat (development planning, air flows, etc.), and vegetation (greening strategy and its
spatial differentiation, vegetation monitoring/vitality).

• Establish best-practice local government process structures for efficiently integrating
climate and environmental data. Use technical tools and urban planning methods
to carry out concrete climate resilience work of the municipality (spatial planning,
environmental planning, risk management, etc.). More incentives to work collabora-
tively and mainstream adaptation processes are generated as the additional data and
information increase efficiency for some municipal tasks.

5. Advanced Municipal Climate Data Store (AMCDS Toolbox)

Within the scope of the objective, the conception, implementation, exemplary use, and
practical validation of a toolbox for the combination and use of climate and environmental
data of the Copernicus services with local data will be pursued (Advanced Municipal
Climate Data Store: AMCDS toolbox). Regarding the data to be merged and made usable
practically, the toolbox design will cover Copernicus data and services, Contributing
Missions data, and local data/additional attribute data of the municipality (Figure 1).

Against the background of state of the art presented in Section 3, CoKLIMAx takes up
the existing data offers as reasonable (besides access to the CDS, e.g., use of CODE-DE in
categories 2 and 3). However, by researching practice-oriented solutions with a particular
focus on municipal requirements and possibilities, data, services, and processing and
presentation tools are not only made available specifically for the municipal context but
through the interlinked research and development (R&D) work on workflows. The data,
services, and processing and presentation tools are not only made available specifically for
the municipal context, they are also placed in a holistic context for the first time through
the interlinked R&D work on workflows, work processes, and organizational/interaction
characteristics of relevant municipal administrative units and task areas, directly applied
in exemplary use cases, and disseminated as a completely application-suitable overall
bundle of IT tools, process concepts, and application aids through application-related
best-practice documentation.

Local data will presently include in situ measurements (temperature, wind, precipita-
tion, evapotranspiration, air pressure, humidity of local municipal and private/”crowd-
sourced” weather stations) and data from the Smart Citizen Kits already widely deployed
in Constance. CoKLIMAx will also use existing 3D models of the city of Constance, e.g.,
LoD2 GIS data, 3D mesh data from georeferenced digital orthophotos of recent overflights.
In addition, we will use data from LiDAR drones for point cloud modeling that will allow
the development of LoD3+ data, where required [59–61].
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however, CoKLIMAx will also utilize and apply open-source software to complement the described components.



Remote Sens. 2021, 13, 3634 11 of 17

An easy-to-use AMCDS data hub complements the AMCDS toolbox. The data hub
allows web browser-based searches for archived data and analyses of retrieved Copernicus
data, local data, and performed merging, processing, etc. It dynamically displays them
such as maps, scenes, or simulations. We will achieve the overall goals of the AMCDS
toolkit by adhering to the principles of low-barrier access, including

(1) Practical, ease-of-use, and value-adding application of Copernicus data by local
communities without the need for specific professional qualifications, e.g., data scien-
tist’s expertise;

(2) Informed, evidence-based and real-time decision making for climate change risk and
crisis management as well as data-driven improvement of the viability, sustainability,
and cost-effectiveness of medium- and long-term urban infrastructure planning;

(3) Independence of cities from external expertise procured on a case-by-case basis (i.e.,
autonomy of action, cost-effectiveness, and flexibility); and

(4) Improved and expanded opportunities for citizen participation and justification/com-
munication of planning measures and urban regulations to citizens.

We implement the application functions of the AMCDS toolbox in the form of apps,
which are modularly combined through standardized interfaces. The apps cover one or
a few functional steps of data localization, combination, processing, and presentation of
results. We will integrate this modular function structure into the apps for self-description
and ensure that only combinations that make sense can be applied, following the poka-yoke
(Japanese for “mistake proving”) principle. Furthermore, the user can only put together
such modular content (in each case, local checks at the corresponding combination point
of function modules), resulting in technically low-threshold applicability. The above
approach will ensure simple handling, assuring the data and workflows are consistent
with the organizational requirements (Figure 2). As such, the module/app design is also
inherently aligned with the public sector’s relevant work and administrative processes.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 18 
 

 

Local data will presently include in situ measurements (temperature, wind, precipi-

tation, evapotranspiration, air pressure, humidity of local municipal and private/”crowd-

sourced” weather stations) and data from the Smart Citizen Kits already widely deployed 

in Constance. CoKLIMAx will also use existing 3D models of the city of Constance, e.g., 

LoD2 GIS data, 3D mesh data from georeferenced digital orthophotos of recent over-

flights. In addition, we will use data from LiDAR drones for point cloud modeling that 

will allow the development of LoD3+ data, where required [59–61]. 

An easy-to-use AMCDS data hub complements the AMCDS toolbox. The data hub 

allows web browser-based searches for archived data and analyses of retrieved Coperni-

cus data, local data, and performed merging, processing, etc. It dynamically displays them 

such as maps, scenes, or simulations. We will achieve the overall goals of the AMCDS 

toolkit by adhering to the principles of low-barrier access, including 

(1) Practical, ease-of-use, and value-adding application of Copernicus data by local com-

munities without the need for specific professional qualifications, e.g., data scientist’s 

expertise; 

(2) Informed, evidence-based and real-time decision making for climate change risk and 

crisis management as well as data-driven improvement of the viability, sustainabil-

ity, and cost-effectiveness of medium- and long-term urban infrastructure planning; 

(3) Independence of cities from external expertise procured on a case-by-case basis (i.e., 

autonomy of action, cost-effectiveness, and flexibility); and 

(4) Improved and expanded opportunities for citizen participation and justifica-

tion/communication of planning measures and urban regulations to citizens. 

We implement the application functions of the AMCDS toolbox in the form of apps, 

which are modularly combined through standardized interfaces. The apps cover one or a 

few functional steps of data localization, combination, processing, and presentation of re-

sults. We will integrate this modular function structure into the apps for self-description 

and ensure that only combinations that make sense can be applied, following the poka-

yoke (Japanese for “mistake proving”) principle. Furthermore, the user can only put to-

gether such modular content (in each case, local checks at the corresponding combination 

point of function modules), resulting in technically low-threshold applicability. The above 

approach will ensure simple handling, assuring the data and workflows are consistent 

with the organizational requirements (Figure 2). As such, the module/app design is also 

inherently aligned with the public sector’s relevant work and administrative processes. 

 

Figure 2. Schematic representation of the intended design of intuitively usable, modular apps (basic function modules). 

CoKLIMAx flexibly combines data and evaluation tasks in a module-like manner (based on the basic functionalities and 

scope of services of the AMCDS toolbox). 

6. Discussion 

The Lake Constance region is already struggling with the effects of climate change. 

In particular, extreme weather events such as heatwaves, more frequent heavy rainfall, 

and drought summers have intensified due to climate change and will continue to do so 

Figure 2. Schematic representation of the intended design of intuitively usable, modular apps (basic function modules).
CoKLIMAx flexibly combines data and evaluation tasks in a module-like manner (based on the basic functionalities and
scope of services of the AMCDS toolbox).

6. Discussion

The Lake Constance region is already struggling with the effects of climate change. In
particular, extreme weather events such as heatwaves, more frequent heavy rainfall, and
drought summers have intensified due to climate change and will continue to do so in the
future. Heavy rain floods roads and affects traffic in the streets. The high temperatures
strain humans, animals, and the environment and can cause considerable damage to the
road surface [62]. The prolonged periods of heat and increasing weather extremes have
resulted in people changing their leisure behavior. They prefer places with a pleasant
climate. Thus, urban green spaces, trees that provide shade, sealed gravel areas, green roofs
and facades, and sufficient ventilation are becoming increasingly crucial for Constance [11].
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Anthropogenic climate factors increasingly shape the climate in the city of Constance.
In the future, the city will use the AMCDS toolbox to plan urban development projects
to compare different planning scenarios. By running the various design alternatives, city
planners can swiftly determine the optimal size and location of the development. One
key design objective will be to ensure sufficient ventilation in Constance and thus foster
bioclimatic and air-hygienic advantages [11].

In addition to climatically favorable development, trees can significantly improve the
urban climate by providing shade and reducing CO2 emissions. The city of Constance
has already digitally recorded the city’s tree population, visualized it in a 3D model, and
made it available on the open data platform as a 3D tree cadaster. The city can apply
the proposed solution to map the respective CO2 values of trees or entire city districts.
The AMCDS toolbox can support the simulation of the impact of air quality caused by
different tree species. In detail, the city can use the toolbox to determine which tree species
are best suited for additional planting in the city. The consequences of climate change
also include flooding and inundation as a result of heavy rainfall. By simulating and
visualizing heavy rain and flood events with the help of the CoKLIMAx initiative, the
city can identify flood-prone areas and make detailed damage forecasts. Thus, it can
change or cancel existing land use and development plans. In addition, city management
can take preventive, protective measures when the plans are drawn up, thus preventing
new risks from flooding. In addition, the simulations provide information on whether
the city’s drainage system is designed adequately. The flood visualizations can be made
available to the citizens of Constance in the form of a digital hazard map. Thus, citizens can
inform themselves about the flood risk of their building and, if necessary, take appropriate
protective measures. Minimizing risks and damages caused by floods, dealing with them,
and ensuring the safety of citizens are the responsibility of many urban stakeholders.
These include, for example, urban and structural planners, architects, climatologists and
geoscientists, security forces, and insurers. All actors are equally interested in preventing
flood damage and the management and aftercare of flood events. With the simulation of
heavy rainfall events and floods, we can create a typical level of knowledge and transparent
understanding for all stakeholders. Thus, the AMCDS toolbox serves as a collaborative
tool for crisis management [11,25].

We will need comprehensive datasets to build realistic simulations of climate scenar-
ios. In the context of sustainable and climate-friendly urban planning, satellite data have
gained importance, especially in recent years. With its European Earth observation pro-
gram Copernicus, ESA9 makes climate data freely and openly available on a cloud-based
platform (cf. [63]). By linking this satellite data to its digital twin, the city of Constance
can use the analyses to obtain detailed and meaningful results. However, the enormous
amount of data provided makes it difficult to filter out relevant data. Therefore, suitable
methods are needed to identify the appropriate climate data.

For this reason, the city of Constance submitted a project outline to the German Space
Agency (Deutsches Zentrum für Luft- und Raumfahrt e.V., DLR) in March 2021 to present a
project idea. With the project CoKLIMAx, the city envisions developing practical tools that
will aid other municipalities. These tools should enable easy handling for data collection
from the Copernicus program and the meaningful use and processing of these data. In
addition, the tools are to be made freely and openly available to other municipalities in
a digital toolbox on municipal GIS platforms. We will orient the implementation of the
methods of use to the climate needs of the city of Constance. With the project CoKLIMAx,
the city of Constance would create a new opportunity to share its know-how nationwide.
In this way, cities do not have to find their solution but can successfully implement their
climate-resilient urban planning through best practices. Constance can act as an impulse
generator for other towns to facilitate their path to a sustainable and future-proof city [11].

The implementation will be exemplary based on the concrete local needs of the city
of Constance in the focus areas as mentioned earlier. Relevant data and products will be
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developed for concrete applications in these areas and implemented, applied, and validated
in a practice-oriented manner.

Regarding the intended urban planning utilization methods and process structures,
CoKLIMAx aims to specify practical work and administrative processes and their exemplary
implementation to illustrate the added value and potential benefits for municipal applications.

There are far-reaching synergy potentials between the data processing and technical
software objectives on the one hand and the work, planning, and administration process-
related research work on the other hand. The CoKLIMAx team will leverage these synergies
by closely interlocking the associated solution approaches, work planning, and consortia
cooperation. In this way, we will develop technically efficient products and services whose
practical applicability and actual use are directly guaranteed and demonstrated in an
exemplary manner.

The three use cases and focus areas of water, heat, and vegetation will serve as action-
guiding, cross-questioning, and result-integrating “application dimensions” based on which
both the data requirements and data processing, evaluation, and presentation functions
as well as the municipal tasks, the resulting work processes, information chains, and
administrative working methods will be examined and illustrated.

Beyond the project’s scope, these practical application axes established in the use
cases also serve as leitmotifs and content-related technical basis for implementing and
expanding the lighthouse effect of the project and nationwide dissemination of the results
approaching further user partners and users [11].

7. Limitations, Project Risks, Schedule, and Project Funding

Challenges regarding data compatibility (formats, meta-information, data struc-
ture, spatial and temporal resolution, allocation, etc.) are difficult to assess in advance—
especially given the diversity of relevant geospatial and environmental data, particularly
the use of local data and data from different sources. Some data sources are not standard-
ized, such as smart citizen kits or online portals like luftdaten.info, which should be made
available performant and automated.

To achieve the intended, fully comprehensive overall objective and utilization perspec-
tive of CoKLIMAx, many different data portals, and sources will be relevant in addition to
Copernicus data and services. Likewise, municipalities and possibly relevant governmental
institutions usually have their own data structures and processes. Suppose this risk occurs
in the form of technical challenges that we cannot overcome with reasonable effort; we will
limit the scope of functionality concerning data from third-party systems. The central core
of the technology envisaged here should be implementable independently of this.

Interface requirements are challenging to assess in advance. Any restrictions on
software implementation options due to the relatively long useful life of IT hardware,
operating systems, and any relevant third-party/legacy systems in the municipal context,
e.g., backward compatibility. If this risk arises in technical challenges that we cannot
overcome or at least with reasonable effort, the functional requirements can be restricted.
The central core of the technology envisaged here should be implementable independently.

Risks exist regarding implementing the IT tools as app-based function modules (AM-
CDS toolbox): The envisaged function modules might not map the overall required func-
tionality. Thus, there is a risk of not being able to achieve a modular functional breakdown.
This risk primarily occurs due to the operational complexity required for high-performance
Copernicus data utilization. The degree of complexity depends on proper interaction
mechanisms of the software modules, e.g., synchronous/asynchronous communication
and hierarchical management requirements of the modules’ access to shared resources
and functions. Therefore, if necessary, we might restrict the modular approach at the
expense of the flexibility and scope of the modular function breakdown to mitigate im-
plementation risks. In this case, we will not change the basic functional scope, and only
limited, more precisely defined variations would be made variably configurable by way of
app-based combination.
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Organizational risks arise, for example, due to possible obstacles in the integration
of municipal shells due to rigid administrative–bureaucratic structures, possibly obstruc-
tive organizational inertia, and, under certain circumstances, limited availability of moti-
vated/interested and temporally available specialists and users in the city administration
apart from the directly scheduled project team. To minimize organizational risks, the
city of Constance plans to communicate and present the benefits clearly and prudently,
both within the administration and to the relevant partners and project partners. At the
same time, coordination with and scheduling of third parties with as much lead time
as possible is expressly planned, as well as comparatively long but more overlapping
scheduling of the individual focal points/work packages in the project, which will provide
additional flexibility.

CoKLIMAx will be funded with about one million euros and run for 32 months, start-
ing in November 2021. We are already planning follow-up projects enabling industry
participation. CoKLIMAx will perfectly complement the smart green city strategy of Con-
stance. The city recently won the Federal Ministry of the Interior’s “Smart City Model
Project” funding competition in this context. The initiative with the slogan “Constance in
transition—networked & climate-neutral” will be funded with a total of 17.5 million euros [64].

8. Conclusions and Summary

The Lake Constance region is already struggling with the effects of climate change.
In particular, climate change will exacerbate extreme weather events such as heatwaves,
more frequent heavy rainfall events, and drought summers which will become even more
severe in the future. The city of Constance is also affected, so that the topic of flood and
inundation protection is becoming increasingly important. Therefore, suitable methods
are needed to determine the relevant climate data. A differentiated knowledge of the
environmental–climatic parameters and their expected changes is of utmost importance
for sensible economic and urban planning and the implementation of suitable measures to
minimize climate-related impairments and hazards.

Specific climate adaptation and resilience measures can be efficiently designed and im-
plemented at regional and local levels. Climate and environmental databases are critical for
achieving sustainable development goals and for efficient planning and implementation of
appropriate climate actions: Available federated databases can serve as necessary starting
points for municipalities to identify needs, set priorities, and allocate investments, consid-
ering often scarce budgetary resources. Copernicus services will be critical to these efforts.
There are forward-looking approaches to using these datasets and deriving forecasts to
optimize urban processes for city governments. Therefore, our project CoKLIMAx aims to
develop new digital products, advanced urban services, and processes, such as developing
practical technical tools that capture various remote sensing and in situ datasets for vali-
dation and further processing. CoKLIMAx aims to establish a scalable toolbox for urban
planning to increase climate resilience in the areas of water, urban climate, and vegetation.
As the scientific community expects that climate change will significantly intensify in the
future, timely climate adaptation in cities is essential. In particular, thermal protection
measures are needed to counteract local overheating and maintain the quality of life in
the city. A virtual representation that acts as a real-time digital counterpart of the physical
city, called the digital twin, can simulate a city’s cooling energy demand and evaluate
“what-if” scenarios. The digital urban twin can be used to simulate future development
scenarios transparently and understandably. Considering various planning specifications
and parameters linked to geospatial data, scenarios of possible building uses and their
effects can be calculated and compared.
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