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Abstract: This work aims at reviewing, analyzing and comparing a range of state-of-the-art ap-
proaches to inertial parameter identification in the context of robotics. We introduce “BIRDy (Bench-
mark for Identification of Robot Dynamics)”, an open-source Matlab toolbox, allowing a systematic
and formal performance assessment of the considered identification algorithms on either simulated or
real serial robot manipulators. Seventeen of the most widely used approaches found in the scientific
literature are implemented and compared to each other, namely: the Inverse Dynamic Identification
Model with Ordinary, Weighted, Iteratively Reweighted and Total Least-Squares (IDIM-OLS, -WLS,
-IRLS, -TLS); the Instrumental Variables method (IDIM-IV), the Maximum Likelihood (ML) method;
the Direct and Inverse Dynamic Identification Model approach (DIDIM); the Closed-Loop Output
Error (CLOE) method; the Closed-Loop Input Error (CLIE) method; the Direct Dynamic Identification
Model with Nonlinear Kalman Filtering (DDIM-NKF), the Adaline Neural Network (AdaNN), the
Hopfield-Tank Recurrent Neural Network (HTRNN) and eventually a set of Physically Consistent
(PC-) methods allowing the enforcement of parameter physicality using Semi-Definite Program-
ming, namely the PC-IDIM-OLS, -WLS, -IRLS, PC-IDIM-IV, and PC-DIDIM. BIRDy is robot-agnostic
and features a complete inertial parameter identification pipeline, from the generation of symbolic
kinematic and dynamic models to the identification process itself. This includes functionalities for
excitation trajectory computation as well as the collection and pre-processing of experiment data. In
this work, the proposed methods are first evaluated in simulation, following a Monte Carlo scheme
on models of the 6-DoF TX40 and RV2SQ industrial manipulators, before being tested on the real
robot platforms. The robustness, precision, computational efficiency and context of application the
different methods are investigated and discussed.

Keywords: dynamic parameters identification; performance evaluation and benchmarking

1. Introduction
1.1. Motivation and Related Works

The growing popularity of adaptive, predictive, and passivity-based control strategies
in robotic applications raises new challenges for researchers and engineers. Since these
methods rely on an explicit formulation of system dynamics, substantial research efforts are
being made in the field of inertial parameter identification to improve their performance
and robustness, see for example [1] and the references therein. In the context of rigid
robots, techniques for identifying the inertial parameters are generally based on a rigorous
analysis of joint movements and torque signals over a predefined time horizon. A given
robot is tracking a trajectory that excites the different components of its dynamic model and
the residuals in terms of motion and torque are used to refine the parameters estimates.
The most common approach to offline or batch dynamic parameter identification is the
Inverse Dynamic Identification Model with ordinary Least-Squares estimation (referred to
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as IDIM-OLS in [2,3]). This method is based on the assumption that the mapping between
joint torques and the inertial parameters of a robot is linear (this holds provided that the
robot links are rigid, that friction nonlinearity is negligible and that the joints are not subject
to backlash). Both efficient and easy to implement, IDIM-OLS and its variants—including
Weighted Least-Squares (IDIM-WLS) and Total Least-Squares (IDIM-TLS) methods de-
scribed in [4]—however lack noise immunity and exhibit a strong dependence on the
conditioning of the robot’s trajectory, as depicted in [5,6]. As a matter of fact, whether
due to measurement noise, incorrect data-filtering, or insufficient excitation, IDIM-OLS
parameter estimates may eventually prove to be highly biased, to the point of losing all
physical coherence, yielding, for example, negative link masses, friction coefficients, or
non-positive-definite rotational inertia. Over the past two decades, much research effort
has focused on solving these issues, and multiple promising methods were proposed.
These approaches can generally be divided into two distinct classes, whether the objective
is to improve the statistical consistency of the estimates – physical consistency naturally
stemming from statistical consistency (although the opposite is not true.)—or to more ex-
plicitly enforce physicality by means of dedicated constrained optimization techniques. In
both cases, performance evaluation is generally carried out through direct comparison with
unconstrained IDIM-OLS or IDIM-WLS. For instance, ref. [7] compared the performance
of the IDIM-WLS method with that of an Extended Kalman Filter (EKF) estimator, on a
2 degree of freedom (DoF) SCARA robot. The results indicate that unlike IDIM-WLS, the
EKF estimator has convergence issues and exhibits a strong dependence to both initial
conditions and tuning parameters. In [8] the authors presented an approach based on
Set Membership Uncertainty (SMU). This approach was tested on a 2 DoF SCARA robot
and compared to IDIM-OLS but did not show significant improvement. In [9–11], the
authors compared IDIM-WLS with a Maximum Likelihood (ML) estimator on 2- and 3
DoF robots. The results suggest that ML techniques may reduce the bias of the parameter
estimates in the case of noisy joint measurements, at the price however, of a much greater
computational effort. Interestingly, only a few studies have actually performed a formal
comparison between more than two identification approaches at the same time, and on
robots with many degrees of freedom, such as industrial manipulators or humanoids.
In [5,12], the authors used a 6 DoF TX40 industrial robot manipulator to compare the Direct
and Inverse Dynamic Identification Model (DIDIM) method, the Closed-Loop Output
Error (CLOE) method, the Closed-Loop Input Error (CLIE) method and the IDIM-WLS.
In [6] the same research team compared the Instrumental Variable approach (IDIM-IV) with
IDIM-WLS, the Total Least-Squares approach (IDIM-TLS) and CLOE. The results suggest
that DIDIM, IDIM-IV, CLOE and CLIE are significantly less sensitive to noise than Least-
Squares approaches. The authors moreover enhanced the fact that DIDIM and IDIM-IV
require much lower computational effort compared to CLOE and CLIE due to the reduced
number of model evaluations. However, it is worth noting that DIDIM and IDIM-IV were
not directly compared to each other. In [13,14], the authors compared five identification
methods, namely the IDIM-OLS, Adaline Neural Networks (AdaNN), Hopfield-Tank Re-
current Neural Networks (HTRNN), EKF, and a genetic algorithm, on a 5-DoF SCARA
robot. Among these five methods, only IDIM-OLS and AdaNN gave results that were
accurate enough to be exploited. The results also suggest that other methods may lack
regularity, as they do not converge for all the considered parameters. Recently, multiple
works highlighted the possibility of explicitly enforcing physical consistency by means of
constrained optimization techniques, rather than implicitly, through statistical consistency.
With some notable exceptions (e.g., [15–19]), the classic approach to physically consistent
parameter identification consists of expressing physicality constraints in the form of a Lin-
ear Matrix Inequality (LMI), thereby allowing the reformulation of the whole identification
process as a constrained optimization problem, solvable using Semi-Definite Programming
(SDP) methods, as for example proposed in [20–23], or using optimization on manifolds
as proposed in [24–26]. Please note that although several approaches such as [27,28], use
Deep Neural Networks (DNN) to learn the full robot dynamics, these contributions will
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not be considered in this work, as the mapping between DNN hyper-parameters and
robot dynamic parameters is not yet fully understood, thereby making a comparison with
conventional identification methods irrelevant.

1.2. Problem Formulation and Proposed Contributions

Although it seems possible from the previous studies to infer specific tendencies as to
the performance and context of application of the different identification algorithms [29], it
is worth noting that no study currently provides a general guideline, based on quantitative
arguments, such as encoder noise level, sampling frequency or knowledge of the control
law. To be valid, such a study should be carried out within the same framework, on a
wide range of methods, under well-defined experimental conditions and using a Monte
Carlo analysis scheme to provide statistically significant results. Although benchmarking is
common practice in the automatic control community—see e.g., [30–32] among others—it
is less common in robotics, with some notable exceptions [33–35]. In practice, evaluating
the performance of an identification method on a real system proves to be a difficult task
since the latter can never be perfectly modeled. This is a direct consequence of the wide
variety of complex physical phenomena—such as backlash or nonlinear friction—that have
a significant influence on the system behavior while being relatively challenging to model.
On the contrary, the identification of a simulated system allows a rigorous quantification
of an algorithm’s performance since the characteristics and parameters of the simulated
model are well known and can therefore be used as a reference. The simulation also makes
it possible to highlight the influence of specific physical phenomena—e.g., joint friction
or measurement noise—on the estimates’ quality. Therefore, our first contribution is to
propose a dedicated framework, in the form of an open-source Matlab toolbox, which
makes it possible to formally evaluate the performance of multiple identification algorithms
on the same robot model and under the same conditions or assumptions. We use this
benchmark to formally evaluate the performance of a set of algorithms among the most
widely used offline computational approaches to robot dynamic parameter identification.
These methods are the IDIM-LS (including the WLS, IRLS and TLS variants), ML, IDIM-IV,
Output Error methods (CLOE, CLIE, DIDIM), the Extended Kalman Filter (EKF) as well
as several of its Sigma-Point and Square-Root alternatives (SPKF), the Adaline Neural
Network (AdaNN), the Hopfield-Tank Recurrent Neural Network (HTRNN) and finally
a set of Semi-Definite Programming (SDP) approaches with Linear Matrix Inequalities to
enforce physical consistency (PC-IDIM-OLS, PC-IDIM-WLS, PC-IDIM-IRLS, PC-DIDIM).
The reader can find a summary of the evaluated identification methods in Appendix A
Table A1. Though it is always interesting to formally compare different methodologies, the
usefulness of such a comparison remains questionable if no conceptual relationship can
ultimately be established between these approaches. For instance, stating that IDIM-IV or
DIDIM outperforms IDIM-OLS in the case of improper data-filtering and/or too noisy data
is not really helpful nor constructive for practitioners since this gain of robustness against
noises is expected from IDIM-IV, and Output Error approaches. Instead, it is more inter-
esting to show how the data-filtering helps IDIM-OLS to provide results that match those
provided by IDIM-IV and Output Error approaches. Therefore, our second contribution is
to establish some relationships between different methods to emphasize their similarities
and differences. Finally, establishing relationships allows providing some guidelines to
practitioners non-expert in robot identification to help them to choose an identification
method among all the available approaches: this is the third and last contribution of this
work. The paper is organized as follows: Section 2 provides a theoretical overview of
how simulated robot modeling and control are achieved in the context of identification.
Sections 3–7 provide a theoretical overview of each method, highlighting their differences,
weak points and discussing the potential implications in terms of expected performance. In
more detail, Section 3 discusses the IDIM-OLS, -WLS, and -IRLS identification approaches,
and highlight their weaknesses. Section 4 introduces the IDIM-IV, and ML approaches,
Sections 5 and 6 respectively introduce the Input- and Output Error methods (CLOE, CLIE,
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and DIDIM) as well as a set of the alternative approaches based on nonlinear Kalman
filtering and neural networks. Section 7 discusses the different approaches allowing the
enforcement of physicality in the parameter identification process. Section 8 then de-
scribes the proposed benchmark, emphasizing its structure and the adopted conventions.
The different experiments, and their results, are presented in Section 9 and discussed
in Section 10. Finally, Section 11 provides a brief conclusion and opens perspectives for
further developments of BIRDy.

2. Robot Modeling and Control in the Context of Parameter Identification
2.1. Inverse and Direct Dynamic Models

The inverse dynamic model (IDM) of a rigid serial robot manipulator with n-degrees-
of-freedom relates the joint-space motion quantities q, q̇, q̈ ∈ Rn, to the generalized forces
τidm ∈ Rn applied to the system. The IDM can be derived using the Euler-Lagrange
formalism (c.f. [36]), resulting in the following equation

M(χ, q)q̈ + C(χ, q, q̇)q̇ + g(χ, q) + ζ(χ, q̇) = τidm . (1)

where M(χ, q) ∈ Rn×n denotes the generalized inertia matrix, C(χ, q, q̇) ∈ Rn×n the
Coriolis and centripetal effects matrix, g(χ, q) ∈ Rn the gravitational torque vector,
and ζ(χ, q̇) ∈ Rn the friction vector. This equation is parameterized by the vector
χ = [χ>1 χ>2 · · · χ>n ]> ∈ Rp concatenating the standard dynamic parameters of each robot
link j, expressed as

χj =
[
XXj, XYj, XZj, YYj, YZj, ZZj, MXj, MYj, MZj, Mj, Iaj, Fvj, Fcj

]> , (2)

where XXj, XYj, XZj, YYj, YZj, ZZj are the elements of the inertia tensor Lj of link j, ex-
pressed at the link origin Lj, Iaj refers to inertia of the actuator and transmission system,
Mj is the link mass, Xj, Yj, Zj are the coordinates of the link Center-of-Mass in Lj and
MXj, MYj, MZj are the corresponding first moments (c.f. [37]). Let h(χ, q, q̇) ∈ Rn be the
vector that regroups the Coriolis, centripetal, gravitational and frictional effects, namely
h(χ, q, q̇) = C(χ, q, q̇)q̇ + g(χ, q) + ζ(χ, q̇). The direct dynamic model (DDM), allowing
calculation of the joint accelerations q̈ as a function of the joint positions q, joint velocities q̇,
generalized forces τidm and of the vector χ of dynamic parameters, can then be written as

q̈ = M−1(χ, q)(τidm − h(χ, q, q̇)) . (3)

From Equation (3), is it clear that the DDM is nonlinear with respect to the dynamic
parameters and the robot’s state vector defined as x = [q̇> q>]> ∈ R2n. By contrast, the
IDM has the interesting property of being linear in χ, and can thus be reformulated as

τidm = Yχ(q̈, q̇, q)χ , (4)

where Yχ(q̈, q̇, q) = ∂τidm/∂χ ∈ Rn×p denotes the closed-form expression of the Jacobian
matrix of τidm with respect to χ, often referred to as the model regressor. It is worth noting
that the equality in Equation (4) only holds provided that the friction term ζ(χ, q̇) is also
linear with respect to the parameter vector (in case this is not verified (4) is only a first-order
approximation of a potentially much more complex system.) χ and that the vectors q, q̇, q̈
and τidm are noise-free. Under these assumptions, dynamic parameters identification can
be considered to be an inverse problem. Sampling (4) at multiple different time epochs
along a given state trajectory results in an over-determined observation system of linear
equations in χ, for which a unique solution can be derived provided that the system is
not rank deficient. Note however that this latter point turns out to be hardly verifiable
in practice.
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2.2. Base Parameters and Identification Model

As explained in [2], the rank of the sampled observation system is function of two
factors, namely the nature of the collected data samples, and the internal structure of the
regressor matrix Yχ. Data rank deficiency of the observation system is a direct consequence
of noisy or improper data samples that do not adequately excite the model parameters (i.e.,
that do not sufficiently reveal their influence on the system dynamics). This issue can most
of the time be solved by having the robot track a trajectory that is specifically designed to
excite the model parameters [38]. The other aspect of the problem lies in the fact that the
intrinsic geometrical properties of robot manipulators naturally imply that some of the
dynamic parameters within the χ vector simply cannot be identified, for having rigorously
no influence on the actual robot motions whatever the followed trajectory. In the same
manner, some parameters can only be identified jointly because of their combined influence
on the system. From a formal point of view, these issues can be characterized as a structural
rank deficiency of the regression matrix Yχ. To solve this issue, it is necessary to perform
a set of column rearrangements within Yχ, eventually leading to the set of b ≤ p base
parameters that are actually linear combinations of the standard parameters χ. Base inertial
parameters are defined by [39,40] as the set of dynamic parameters which is sufficient to
completely describe the–intrinsically constrained–dynamics of a robot mechanism. As
exposed in [37], the base parameter vector β ∈ Rb can be obtained by performing a
set of rearrangements in the symbolic expressions of (4) (note that in this context, some
of the performed symbolic simplifications are only made possible using proximal DH
convention). In [41], an alternative computation method was proposed based on Fourier
series decomposition of the robot dynamic equations. Dedicated numerical methods
based, for example, on QR decomposition can also be used. Consider the observation
matrix Wχ(q̈, q̇, q) ∈ R(n·N)×p constructed by stacking the samples of Yχ obtained from a
randomly generated set of N >> 1 distinct joint values:

WχP = Q
[

R
0(r−b)×p

]
(5)

where for r = nN, Q ∈ O(r), R ∈ Rb×p is an upper-triangular matrix of rank b ≤ p and
P ∈ O(p) is a permutation matrix chosen – by default – so that the diagonal values of R are
arranged in decreasing order. Denoting by P ∈ Rp×b and P ∈ Rp×(p−b) the first b and last
p− b columns of P leads to[

WχP WχP
]︸ ︷︷ ︸

WχP

=
[
Q Q

]︸ ︷︷ ︸
Q

[
R R

0(r−b)×p

]
(6)

=
[
Q R Q R

]
(7)

= Q R
[
1b×b R−1R

]
(8)

= WχP
[
1b×b R−1R

]
(9)

where R ∈ Rb×b and R ∈ Rb×(p−b) respectively denote the first b and the last p− b columns
of R. Since P is orthogonal, one can write

Wχχ =
[
WχP WχP

][χ
χ

]
(10)

with χ = P>χ and χ = P>χ, yielding

Wχχ = WχP
[
1b×b R−1R

][χ
χ

]
(11)

= WχP β (12)
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and hence the corresponding non-bijective mapping between the base parameter vector β
and the standard parameter vector χ

β =
[
P> R−1R P>

]
χ (13)

Note that—as explained in [20]—a bijective map m can still be defined between (β, χ)
and χ as

m(χ) =

[
1b×b R−1R

0(p−b)×b 1(p−b)×(p−b)

]
P>︸ ︷︷ ︸

G

χ (14)

in which case the inverse mapping is

m−1(β, χ) = P

[
1b×b −R−1R

0(p−b)×b 1(p−b)×(p−b)

]
︸ ︷︷ ︸

G−1

[
β
χ

]
(15)

The problem of robot identification can hence be formulated as estimating the value
of β such that the dynamic behavior of the model matches that of the actual robot while it
is tracking a permanently exciting trajectory. It is worth noting that as some of the base
parameters may only have a minor influence on the robot dynamics, they can be neglected
in practice. Therefore, a reduced set of parameters, referred to as “essential” parameters
in [42] can be identified but will not be considered in this work.

2.3. Control Strategy

Robots being double-integrator systems, they are naturally unstable in open-loop and
must therefore be operated and identified in closed-loop. Since most electrically actuated
robots use Direct Current (DC) or Brushless Direct Current (BLDC) motors, the control
structure at the joint level usually consists of a cascade of PD or PID regulators, the position
and velocity loops providing a reference for the current-torque loop (c.f. [37]). As pointed
out in [12,43], provided that the low-level current loop has a sufficient bandwidth, (typically,
above 500 Hz, which is usually verified on most Direct current (DC) or Brushless Direct
Current (BLDC) actuators since the torque reference is adjusted at the PWM frequency,
i.e., 16–40 kHz) and considering the linear mapping between the current and the torque
within DC and BLDC motors, its transfer function can be expressed as a static gain in the
characteristic frequency range of the rigid robot dynamics (typically, less than 10 Hz for
industrial robots as explained in [12,43]). In the case of a PD controller, the resulting control
torque applied to the robot can be then typically be computed as:

τctrl = KτKp(qd − q) + KτKd(q̇d − q̇) + τ f f (16)

where Kτ , Kp and Kd ∈ Rn×n are the diagonal drive, position and velocity gain matrices
and τ f f is a feed-forward term (assumed to be zero in this work). Please note that the
drive-gain matrix Kτ contains the combined influence of the static gains Kv of the current
amplifiers, gear ratios Kr and electromagnetic motor torque constants Km, and can thus be
written as Kτ = KvKrKm (c.f. [43]).

3. Inverse Dynamic Identification Model (IDIM) and Least-Squares (LS)
Estimation Methods
3.1. Ordinary, Weighted and Iteratively Reweighted Least-Squares (IDIM-OLS, -WLS, -IRLS)

Let Yβ(q̈, q̇, q) = ∂τidm/∂β ∈ Rn×b be the closed-form expression of the Jacobian
matrix of τidm with respect to the vector β of base parameters, obtained by column rear-
rangements of the robot regressor matrix Yχ(q̈, q̇, q) following Yβ(q̈, q̇, q) = Yχ(q̈, q̇, q)P,
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with P the permutation matrix defined in Section 2.2. Then (1) can be rewritten in the
following form:

τidm = Yβ(q̈, q̇, q)β , (17)

In practice, because of the uncertainties caused by measurement noises and modeling
errors, the actual torque τ differs from τidm by an error e ∈ Rn so that (17) becomes

τ = Yβ(q̈, q̇, q)β + e . (18)

Equation (18) represents the Inverse Dynamic Identification Model (IDIM) relation
(c.f. [43] and the references therein). The IDIM is sampled at a rate f while the robot is
tracking exciting trajectories during an experiment. For N collected samples, an over-
determined linear system of n · N equations and b unknowns is obtained

yτ = W(q̈, q̇, q)β + ε , (19)

where yτ ∈ Rn·N is the sampled vector of τ; W(q̈, q̇, q) ∈ R(n·N)×b is the sampled matrix
of Yβ(q̈, q̇, q), referred to as observation matrix; and ε ∈ Rn·N is the sampled vector of e. For
the sake of compactness, W(q̈, q̇, q) will be noted W in the rest of this work. Please note
that ε is here assumed to be serially uncorrelated, zero-mean and heteroskedastic, with
a diagonal covariance matrix Σ. This choice is justified in [6,44] by the fact that robots
are nonlinear multi-input multi-output (MIMO) systems. The most popular approach to
solving (19) consists of computing the weighted least-squares estimate β̂WLS and associated
covariance matrix ΣWLS

β̂WLS = (W>Σ−1W)−1W>Σ−1yτ ,

ΣWLS =
(

W>Σ−1W
)−1

,
(20)

The diagonal terms Σjj of Σ can be evaluated from the ordinary least-squares solution
of (19), following the guidelines of [2]

∀j ∈ {1 · · · n}, Σjj =

∥∥∥εOLSj

∥∥∥
N − b

. (21)

where εOLSj denotes the IDIM-OLS sampled error vector for joint j. Note that a correlation
between the measured joint torque signals will result in non-negligible off-diagonal terms
in Σ. However, these terms can still be estimated using for instance the method of [23].
This method is both simple to implement and computationally efficient. In addition, it was
successfully applied to multiple existing systems such as cars [45], electrical motors [46]
or compactors [47]. It is worth noting that the vulnerability of OLS and WLS to outliers
can be addressed using a specific Huber estimator (c.f. [48,49]). This is referred to as the
Iteratively Reweighted Least-Squares (IRLS) in [50]. The resulting IDIM-IRLS method
takes the form of an iterative process, which consists of applying additional penalty to
the outliers, in the form of a dedicated weight vector υi ∈ Rn·N and a weight matrix
Υi = [υi, · · · , υi] ∈ R(n·N)×b for each iteration i, in order to eventually mitigate their
contribution to the final result

W∗i = Υi · ∗W
y∗iτ = υi · ∗yτ

(22)

where ·∗ refers to the element-wise multiplication operator. Accordingly, the IDIM-IRLS

estimate β̂
i
IRLS at iteration i is given by

β̂
i
IRLS = (W∗i>Σ−1W∗i)−1W∗i>Σ−1y∗iτ . (23)
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The weight vector υi is updated following

υi = Min (υi−1, Λ(εi
IRLS)) (24)

where Min(·) is the element-wise min operator and Λ : Rn·N → [0, 1]n·N is a tailor-made
weight function. The process is iterated until convergence of the weights. This method
was successfully tested on robotic systems in [23,51]. It is critically important to note that
the LS estimates in general, will be unbiased if and only if the observation matrix W is
uncorrelated with the error term ε, or in other words, that the following equality holds

E(W>ε) = 0 . (25)

Unfortunately, the presence of uncorrelated random components within the observa-
tion matrix does not allow this hypothesis to be validated in practice. Noise sensitivity is
especially problematic in the context of robotic systems as the joint accelerations, obtained
by double time differentiation of the noisy encoder data, often exhibit poor signal-to-noise
ratio with multiple outliers. A workaround to this issue is to filter the joint measurement
signals as suggested by [2] where a pragmatic and tailor-made data-filtering is proposed.
Nevertheless, this requires the knowledge of the bandwidth of the position closed-loop
and special attention due to the bias induced by the filter, see [7,43,52] for more details. It
is worth noting that in the case of periodic excitation trajectory with a known characteristic
frequency, it is possible to use Fourier analysis tools to perform frequency domain filtering
as suggested in [11,53]. The other alternative is to use identification methods that are robust
against a violation of (25).

3.2. Total Least-Squares (IDIM-TLS)

The issue of noisy observation matrix, can in theory, be tackled using Total Least-
Squares (IDIM-TLS) approach. As exposed in [54,55], the TLS estimate β̂TLS can be com-
puted using a singular value decomposition of the augmented matrix X = [W yτ ] ∈
R(n·N)×(b+1) as

X = [UW Uy]

[
S 0
0 Smin

][
VWW VWy
VyW Vyy

]>
, (26a)

β̂TLS = −VWyV−1
yy (26b)

where VWy ∈ Rb and Vyy ∈ R?. Following [4,56], the covariance ΣTLS of the TLS estimate
β̂TLS can be approximated as

ΣTLS≈
(

1 +
∥∥∥β̂TLS

∥∥∥2

2

)
S2

min
n · N

(
W>W − S2

min I
)−1

(27)

where Smin ∈ R is the minimum non-zero singular value of X. Only a few pieces of
research actually explore the potential use of total least-squares in the context of robot
dynamic parameters identification. In [6], the authors observed that the IDIM-TLS estimate
is biased if the joint data are not suitably filtered. Moreover, they noted that although
TLS convergence occurs with adequate data-filtering, it does not outperform ordinary
and weighted least-squares. Motivated by [57,58], in [59] part 4.2.6, the author raised
some general comments on the IDIM-TLS method and stressed that its disappointing
performance can be explained by the fact that it is based on the hypothesis that the noises
have all the same variances whereas this assumption is violated in the case of an improper
data-filtering according to [60]. It would in fact be more appropriate to use the Generalized
Total Least-Squares (GTLS) method popularized by Van Huffel and Vandewalle, [4,61].
However, to properly use the GTLS method, the covariance matrix of noises involved in W
must be known. Unfortunately, if such an information is easily accessible for linear systems,
it is not for robots. Indeed, besides the noise amplification effect induced by the process
of numerical time derivation of the joint angles—used for joint velocity and acceleration
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computation—the IDM involves nonlinear functions such as the sine, cosine, square or
sign operators, making the calculation of this covariance matrix difficult, if not intractable.
This comment explains the reason the TLS or GTLS methods are seldom employed in the
context of robot identification (see e.g., [54,62]) whereas they are widely considered in
signal processing, see e.g., [63] and the references therein.

4. The Instrumental Variables (IV) and Maximum Likelihood (ML) Approaches
4.1. Inverse Dynamics Identification Model (IDIM) and Instrumental Variables (IV)

First introduced by [64] in the context of econometrics, the Instrumental Variables (IV)
approach to parameter identification consists of defining an instrument matrix Z ∈ R(n·N)×b

such that
E(Z>W) is full column rank, (28a)

E(Z>ε) = 0, (28b)

which means that Z is both well correlated with the observation matrix W and uncorrelated
with the error term ε, see e.g., [6,65,66]. In this case, one obtains

Z>yτ = Z>W(q̈, q̇, q)β + Z>ε (29)

and the IV estimates given by
β̂ = (Z>W)−1Z>yτ (30)

are consistent. The use of IV for identification of robotic systems is reported in several
approaches (see for instance [6,52,67–70] and the references therein). The critical issue
here lies in the construction of the instrument matrix Z fulfilling (28a) and (28b). In this
context, an ideal candidate for the Z instrument matrix appears to be the observation matrix
denoted W s filled with simulated data that are the outputs of an auxiliary model, [66]. As
explained in [6], for robot identification, the auxiliary model is the direct dynamic model
(DDM) which is simulated assuming the same controller and reference trajectories that the

one applied to the actual robot (c.f. Figure 1), and using the IV estimate β̂
i−1
IV obtained at

the previous iteration. This defines an iterative algorithm. At iteration i and time epoch tk,
the vector of simulated joint accelerations q̈i

s(tk) is computed as

q̈i
s(tk) = M−1(β̂

i−1
IV , qi

s(tk))
(

τi
s(tk)− h(β̂

i−1
IV , qi

s(tk), q̇i
s(tk))

)
. (31)

By successive numerical integration of (31) one can obtain the vector of joint simulated
positions and velocities denoted (qi

s, q̇i
s), respectively, from which it is then possible to

build the instrument matrix Zi ∈ R(n·N)×b by stacking the regression matrices Yβ(qi
s, q̇i

s, q̈i
s)

obtained from the samples of qi
s, q̇i

s, q̈i
s at each tk as

Zi = W i
s = W

(
qi

s, q̇i
s, q̈i

s

)
. (32)

Assuming that there are no modeling errors, the simulated joint positions, velocities
and accelerations tend to the noise-free estimates denoted (qn f , q̇n f , q̈n f ), respectively,
yielding

Zi = W i
n f = W

(
qi

n f , q̇i
n f , q̈i

n f

)
∀i . (33)

Please note that Zi given by (33) naturally complies with the conditions (28a) and (28b).
In [6,52,69,70] the IDIM-IV estimates are formulated in a weighted recursive manner as:

β̂
i
IV = (W i>

s Σ−1W)−1W i>
s Σ−1yτ (34)
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where W i
s is given by (32). Once the IDIM-IV method has converged, the covariance matrix

of the IDIM-IV estimates is given by

ΣIV =
(

W>
s Σ−1W

)−1
. (35)

It should be emphasized that the consistency of the close-loop simulation in IDIM-IV
relies on the assumption that the controller of the real robot and that of the simulated robot
are the same. A difference in the control strategy will result in a different command τs being
issued for a given state, eventually resulting in a bias in the parameter estimate. The results
of [6,52,59,69,70] suggest that the convergence of IDIM-IV method is more robust against
noise than IDIM-OLS/-WLS/-TLS and also faster than Output Error methods presented
later in this article (c.f. Section 5). It should be noted, however, that convergence is slower
than IDIM-OLS since simulation of the DDM is required. More generally since both the
IDM and DDM are calculated from Newton’s laws, it seems more natural to simulate the
DDM to construct Z rather than computing the covariance matrix of noises involved in
W and y. In [52,69] the authors proved that IDIM-IV gives excellent results provided that
the low-level controller is well-identified. Nevertheless, the robustness against high noise
levels have not yet been suitably investigated and would deserve deeper treatment.

Robot system

Closed-loop model

Control

Control DDM

Robot

Sampling

Sampling

Sampling

IDM + Decimate

IDM + Decimate

IDIM-IV
Equation (34)

qd, q̇d, q̈d

+

+

τ

τs

W
yτ

W i
s

q, q̇, q̈

−

qs, q̇s, q̈s

−

β̂
i
IV

Figure 1. Block diagram of the IDIM-IV identification method.

4.2. Maximum Likelihood (ML) Identification Method

Investigated in [9–11], the Maximum Likelihood (ML) parameter identification algo-
rithms aims at tackling the issue of noisy torque and joint angle measurements. These
works are the first ones actually addressing the issue of noisy observation matrices. In [10],
the authors present an improvement of the original ML approach presented in [9]. The ML
criterion they adopt can be formulated as

β̂ML = arg min
β

1
2

N

∑
k=1

ε>(tk)
(

Gkσ2
kG>k

)−2
ε(tk), (36)

where σ2
k ∈ R4n denotes the diagonal variance matrix of the kth sample (this allows in

particular to account for the effects of time differentiation in the joint signal in terms
of noise amplification), ε(tk) is the error at the kth torque sample defined in (19); and
Gk = ∂ε(tk)/∂sk ∈ Rn×4·n is the Jacobian matrix of this error relative to the measurement
vector sk =

[
q(tk)

>q̇(tk)
>q̈(tk)

>τ(tk)
>]> ∈ R4·n. Because Gk involves the IDM, this

ML approach can be called IDIM-ML. In the IDIM-ML approach, the authors suggest
constructing the vector sk by averaging the original measurements of q(tk), q̇(tk), q̈(tk)
and τ(tk) over Nreal realizations. Then, sk is used to construct the following observation
matrix denoted W . It must be noticed that provided Nreal is big enough and the variances
of the original measurements are finite, the Lyapunov criterion ensures that sk is close to a
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Gaussian distribution. Note also that it can be even further assumed that sk tends to the
noise-free original measurements as Nreal grows and the noise level is reasonable which
means that one has W →Wn f . Interestingly, this ML approach is somehow related with the
IDIM-IV method developed in [6]. Indeed, the authors suggest building an instrumental
matrix such that Z = Wn f using simulated data and the IDM while in [10] the authors
suggest constructing W with W → Wn f . Furthermore, in [71], the author establishes
some interesting relationships between IV and ML approaches. It is thus expected that
IDIM-IV and ML approaches give similar results. However, in [9] a prewhitening process
has been carried out to remove all the coloring and correlation of the measurement noise.
Without this prewhitening process which can be connected with the use of the decimate filter,
the statistical assumptions made on the noise may be violated making the ML approach
potentially unable to provide consistent estimates. Furthermore, it should also be stressed
that the joint torques in these approaches are measured via current-shunt monitors instead
of being the outputs of low-level controllers as usually done in [42]. Therefore, if the ML
method does not require the simulation of the DDM, it could prove more sensitive to noises
and is more time-consuming than IDIM-IV is.

5. The Output Error (OE) and Input Error (IE) Identification Approaches
5.1. Closed-Loop Output Error (CLOE)

As indicated by its name, an Output Error method consists of finding the parameter
vector β that minimizes the value function J(β) defined as the squared L2-norm of the
error between the output y of a system to be identified and the output ys of its model
(see [72,73] and the references therein)

J(β) = ‖y− ys‖
2
2 , (37)

In the case of a robot we define y = [q(t1)> · · ·q(tN)
>] ∈ Rn·N (resp. ys = [qs(t1)

> · · ·qs(tN)
>]

∈ Rn·N). Please note that Cartesian space formulations of the error function are also
possible, see for instance [74]. The minimization of (37) is a nonlinear LS-optimization
problem solved by running iterative algorithms such as the gradient or Newton methods
which are based on a first- or a second-order Taylor’s expansion of the value function J(β).
The unknown parameters are therefore updated iteratively so that the simulated model
output fits the measured system output, with

β̂
i+1

= β̂
i
+ ∆β̂

i
, (38)

where ∆β̂
i ∈ Rb is the innovation vector at iteration i. Output Error identification can be

carried out in Open-Loop or in Closed-Loop. However, robots being double-integrator
systems, Open-Loop Output Error (OLOE) turn out to be seldom used in practice compared
to Closed-Loop Output Error (CLOE) as it is highly sensitive to initial conditions (c.f. [43]
for a more detailed discussion on the topic). In CLOE, the simulated data are obtained
by integrating the DDM in (3) assuming the same control law for both the actual and
simulated robots—without gain adjustments—and using β̂i−1 the estimate of β calculated
at iteration i− 1. The general principle of the CLOE method is illustrated in Figure 2. Let
the simulated joint positions qs be the model outputs. At time tk the error to be minimized
is given by

eCLOE(tk, β) = q(tk)− qs(tk, β) , (39)

Then, if a classical Gauss-Newton algorithm is chosen, after data sampling and data-
filtering, the following over-determined system is obtained at iteration i:

∆y(q) = Φi
CLOE∆βi

CLOE + εi
CLOE , (40)

where ∆y(q) ∈ Rr is the vector built from the sampling of eCLOE(t, β); Φi
CLOE ∈ R(r×b) is

the matrix built from the sampling of Gqs
= ∂qs/∂β|

β=β̂
i
CLOE
∈ R(n×b), the Jacobian matrix
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of qs evaluated at β̂
i
CLOE; and the term εi

CLOE ∈ Rr is the vector built from the sampling

of the residuals of the Taylor series expansion. Then, ∆β̂
i
, the LS estimate of ∆βi

CLOE at
iteration i is calculated with (40). Please note that numerically computing the Jacobian Gqs
with finite differences requires b + 1 model simulations. Therefore, CLOE is expected to be
computationally expensive compared to IDIM-OLS or IDIM-IV. Once CLOE has converged,
the covariance matrix of the CLOE estimates is given by

ΣCLOE =
(

Φ>CLOEΣ−1
q ΦCLOE

)−1
, (41)

where Σq is the variance matrix of the joint position measurement noise. Although CLOE
is less sensitive to initial conditions, it turns out to be less responsive to changes in the
parameters as explained in [5]. As a result, CLOE is expected to converge slowly and
potentially to local minima. Please note that alternative optimization methods using the
derivative-free Nelder–Mead nonlinear simplex method, Genetic Algorithm (GA), Particle
Swarm Optimization (PSO) can potentially be used to tackle this issue. In [5] for example,
the authors used the fminsearch Matlab function which makes use of the Nelder–Mead
simplex algorithm. According to the results presented in [5], although the simplex method
appears to be more robust than the classic Levenberg–Marquardt method, it requires an
even higher computational effort.

Robot system

Closed-loop model

Control

Control DDM

Robot

Sampling

Sampling

CLOE
Equations (37)–(39)

−

+
εCLOE

qd, q̇d, q̈d

+

+

τ

τs

q, q̇, q̈

−

qs, q̇s, q̈s

−

β̂
i
CLOE

Figure 2. Block diagram of the CLOE identification method.

5.2. Closed-Loop Input Error (CLIE)

The CLIE method can be seen as a variation of the CLOE method where the simulated
torque is being used instead of the simulated position in Equation (37), resulting in y =[
τ(t1)

> · · · τ(tN)
>] ∈ Rn·N and ys =

[
τs(t1)

> · · · τs(tN)
>] ∈ Rn·N . The general

principle of the CLIE method is illustrated in Figure 3. In this case, the error function which
must be minimized at time tk has the following expression

eCLIE(tk, β) = τ(tk)− τs(tk, β) , (42)

and relation (40) thus becomes

∆y(τ) = Φi
CLIE∆βi

CLIE + εi
CLIE , (43)

where ∆y(τ) ∈ Rr is the vector built from the sampling of eCLIE(t, β); Φi
CLIE ∈ R(r×b) is

the matrix built from the sampling of Gτs = ∂τs/∂β|
β=β̂

i
CLIE
∈ R(n×b), the Jacobian matrix

of τs evaluated at β̂
i
CLIE (often referred to as input sensitivity); and εi

CLIE ∈ Rr is the vector

built from the sampling of the residuals of the Taylor series expansion. Then, ∆β̂
i
, the LS
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estimate of ∆βi
CLIE at iteration i is calculated with (43). Once CLIE has converged, the

covariance matrix of the estimate is given by

ΣCLIE =
(

Φ>CLIEΣ−1ΦCLIE

)−1
. (44)

This method was successfully implemented in [12] and formally compared to CLOE,
DIDIM and IDIM-OLS. From this work, it appears that although CLIE outperforms both
IDIM-OLS and CLOE in terms of accuracy, it has a similar computational complexity as
CLOE, as a direct consequence of the finite difference Jacobian matrix computation. The
authors demonstrated that CLIE could in fact be thought of as a frequency weighting of
the CLOE method by the controller’s gains. This property can be verified in practice by
re-injecting (16) into the expression of the sensitivity matrix Gτs . As a result, although the
two estimators are asymptotically equivalent, CLIE proves in practice to be more sensitive
to the changes in parameters than CLOE, thereby inducing better convergence properties.

Robot system

Closed-loop model

Control

Control DDM

Robot

Sampling

Sampling

CLIE
Equations (37)–(42)

qd, q̇d, q̈d

+

+

τ

τs

+

−

εCLIE

q, q̇, q̈

−

qs, q̇s, q̈s

−

β̂
i
CLIE

Figure 3. Block diagram of the Closed-Loop Input Error (CLIE) identification method.

5.3. The Direct and Inverse Dynamic Identification Model (DIDIM) Algorithm

In [43], a new algorithm termed Direct and Inverse Dynamic Identification Model
(DIDIM) was proposed. The DIDIM method can be seen as a variation of the CLIE algorithm
where some judicious approximations, made in the torque Jacobian matrix computation,
yield Gτs = ∂τs/∂β|

β=β̂
i
DIDIM

≈ Yβ(q̈s, q̇s, qs). The initial nonlinear LS problem at iteration

i hence turns into a much simpler linear LS problem allowing the DIDIM estimates to be
calculated as

β̂
i
DIDIM = (W i>

s Σ−1W i
s)
−1W i>

s Σ−1yτ , (45)

where W i
s = W(qi

s, q̇i
s, q̈i

s) is the observation matrix constructed with the joint simulated
position, joint velocities and joint acceleration obtained from the closed-loop simulation

of the DDM with β̂
i−1
DIDIM as explained in Section 4.1. The general principle of DIDIM is

illustrated in Figure 4. Once DIDIM method has converged, the covariance matrix of the
DIDIM estimates is given by

ΣDIDIM =
(

W>
s Σ−1W s

)−1
. (46)

According to the results gathered in [12,43,75], the DIDIM algorithm converges signifi-
cantly faster than the CLOE and CLIE methods as it only requires a single robot simulation
per iteration. In [12], the authors also demonstrate that DIDIM has a similar precision as
CLIE. It is interesting to note that the OE methods are generally less sensitive to noise
than IDIM-OLS methods since only simulated data are used to build W i

s. Until now, no
formal comparison with IDIM-IV was carried out although [76] provides some elements of
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discussion, suggesting that the two methods have similar performance. However, further
investigations must be conducted to refine the conclusions made in [76].

Robot system

Closed-loop model

Control

Control DDM

Robot

Sampling

Sampling

IDM + Decimate

DIDIM
Equation (45)

qd, q̇d, q̈d

+

+

τ

τs

yτ

W i
s

q, q̇, q̈

−

qs, q̇s, q̈s

−

β̂
i
DIDIM

Figure 4. Block diagram of the DIDIM identification method.

6. Direct Dynamics Identification Model (DDIM) with Nonlinear Kalman Filtering
(NKF) and Neural Networks (NN) Methods
6.1. Direct Dynamics Identification Model (DDIM) and Nonlinear Kalman Filtering (NKF)

Widely used for state estimation purpose, Kalman filtering techniques can also be
exploited in the context of parameter identification. As explained in [77], identification can
be carried out in two different manners, denoted respectively as dual method (c.f. [78,79])
and joint method (c.f. [7,14,80,81]). In the first approach, the system state and parameters
are identified separately, within two concurrent Kalman filter instances, while in the
second one, state and parameters are estimated simultaneously, within a single Kalman
filter featuring an augmented state representation. With the notable exception of [79],
approaches to robot dynamic parameters identification found in the scientific literature
are usually based on the joint filtering paradigm. Since this approach allows accounting
for the statistical coupling between the state and the parameters, as suggested by [82],
it is, therefore, expected to be significantly more robust than the dual filtering method.

In the joint filtering approach, at time tk, the state vector xk =
[
q̇(tk)

> q(tk)
>]> ∈ R2·n

and the current estimate of base parameters β̂
k−1
KF are stacked column-wise into a higher-

dimensional state vector zk =
[

x>k β̂
k−1>
KF

]>
∈ R2·n+b resulting into the following set of

update equations:
zk+1 = Γ(zk) + vk , (47a)

yk = Szk + wk , (47b)

where vk =
[
n>k r>k

]> ∼ N (0(2·n+b)×1, Q) is the process noise; wk ∼ N (0n×1, R) is the
measurement noise; Q ∈ R(2·n+b)×(2·n+b), R ∈ Rn×n are respectively the process-noise and
measurement-noise covariance matrices; S =

[
0n×n 1n×n 0n×b

]
∈ Rn×(2·n+b) is a selection

matrix; 1n×n denotes the (n × n) identity matrix, and 0n×b the (n × b) zero matrix. As
with [7], the nonlinear state transition function Γ(zk) is given by the robot direct dynamic
model (DDM) as

DDM(zk) = M−1(β̂
k−1
KF , q(tk))(τ(tk)− h(β̂

k−1
KF , q(tk), q̇(tk))) (48a)

Γ(zk) =

q̇(tk)
q(tk)

β̂
k
KF


︸ ︷︷ ︸

zk

+

DDM(zk)
q̇(tk)
0b×1


︸ ︷︷ ︸

żk

· δt . (48b)
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In [79], the authors used a different state representation, assuming that the noise level
in the joint encoders was negligible, and that the joint motion derivatives could therefore be
computed independently. In this context, the state update Equation (48) can be simplified

into Γ(zk) = β̂
k
KF, with zk = β̂

k−1
KF while the measurement prediction equation consists of

the IDM, computed using the Recursive Newton Euler (RNE) algorithm (c.f. [83]). Note
that this is not the exact formulation of [79], as the authors use sigmoid barrier functions
to enforce physical consistency. This aspect is discussed in greater details in Section 7.
In practice, the DDM nonlinearity in (47) and (48) can be addressed in several different
manners. We here briefly present some of the most popular approaches, namely the
Extended Kalman Filter (EKF), the Sigma-Point Kalman Filter (SPKF) and the Particle Filter
(PF). In the EKF, the prior estimate is propagated through a first-order linearized version
of the robot dynamics. Although the resulting computational cost is low, it should be
noted that the first-order linearization induces a bias in the posterior mean and covariance
of the estimate. This bias can be non-negligible when the considered system is highly
nonlinear. In SPKF implementations such as the Unscented Kalman Filter (UKF) or the
Central Difference Kalman Filter (CDKF), a set of deterministic samples of the prior estimate
(assumed to be normally distributed) are propagated through the true nonlinear dynamics
of the system. In this manner, the nonlinearities can be taken into account up to the second
order. Although this method significantly reduces the bias on the estimates of the posterior
mean and covariance, it must be noted that it has a higher computational cost than the EKF,
although it remains on the same order of magnitude. This aspect is discussed in greater
details in [82]. Finally, in a Particle Filter (PF) no prior assumption is made on the nature
of the estimate distribution. The latter is in fact sampled using a Monte Carlo method,
hence resulting in enhanced robustness, even to severe non-linearities and non-Gaussian
noises, but at the expense of computational cost, as the number of particles has a direct
influence on the precision of the estimate (c.f. [84,85]). The full derivation of the EKF, SPKF
and PF algorithms being out of the scope of this paper, the reader is referred to [82] for a
more in-depth discussion and comparison between the different filters. In the context of
parameter identification, it is worth noting that τ(tk) in Equation (48a) may either denote
the torque measured during the experiments—as is for example the case in [7,80]—or the
control torque applied to the simulated closed-loop system during the time-update step of
the Kalman filter. In this manner, parameter identification can still be achieved when torque
measurements are not available or available at a low sampling rate, but that the robot
control structure and control parameters are known. Note however that in the latter case
the control loop is updated at the robot control frequency fc. As a result, several control
iterations can potentially be executed between two updates of the Kalman filter. To the best
of our knowledge, this was so far never applied to the field of parameter identification.

6.2. Parameter Identification Using an Adaline Neural Network (AdaNN)

The Adaline (ADAptive LInear NEuron) uses stochastic gradient learning to converge
to the IDIM-OLS estimate. The estimator has the following dynamic equation

˙̂θAdaNN = −η∇(e>e) (49)

where e is the error defined in Equation (18). The parameter estimate β̂
k
AdaNN at epoch tk

can hence be expressed recursively as

β̂
k
AdaNN = β̂

k−1
AdaNN + ηYk>

(
τ(tk)− Yk β̂

k−1
AdaNN

)
(50)

where Yk = Yβ(q̈(tk), q̇(tk), q(tk)) is the observation matrix of the real system at epoch tk,
τ(tk) is the corresponding torque, and η ∈ R is referred to as the learning rate. A single
“neuron” thus allows full model identification (c.f. Figure 5a). As several passes over the
hole dataset may be necessary to achieve proper convergence, the sequence of observations
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Yk and τ(tk) must be randomly reshuffled to avoid cycles [86]. Applications of the Adaline
method to robot identification was investigated in [13,14]. The results suggest that the
main advantage of Adaline over IDIM-OLS could be its ability to run online.

neuron
Σ

β̂AdaNN

f yτYβ(q̈, q̇, q)

(a) AdaNN Identification.

neuron 1

neuron 2

neuron 3

neuron b

Σ
ψ11

ψ1b

f
u1 s1κ1

Σ
ψ21

ψ2b

f
u2 s2κ2

Σ
ψ31

ψ3b

f
u3 s3κ3

...
...

Σ
ψb1

ψbb

f
ub sbκb

(b) HTRNN Identification.

Figure 5. Adaline and Hopfield Neural Networks used for Inertial Parameter Identification.

6.3. Parameter Identification with Hopfield-Tank Recurrent Neural Networks (HTRNN)

Hopfield-Tank recurrent neural networks are dynamic systems made of a set of
N interconnected units, or neurons. Each neuron i behaves as an integrator coupled
with a specific nonlinear activation function f as depicted in Figure 5b. In its original
formulation [87], the neuron continuous state equation is expressed as

dui(t)
dt

=
N

∑
j=1

ψijsj(t)−
ui(t)
RiCi

+ κi, (51)

where ui(t) is the internal state of neuron i, κi ∈ R is its input bias, ψij ∈ R is the connection
weight of neuron i with neuron j, sj(t) = f (uj(t)) ∈ [−1, 1], and where Ri, Ci ∈ R?

+

are design parameters corresponding to a resistance and a capacitance respectively. As
with [13,14,88] we consider in this work the discrete Abe’s formulation of Hopfield-Tank
neural networks (originally described in [89]) since, as explained in [88,90], it is particularly
suitable for parametric optimization and parameter identification purpose. In Abe’s
formulation, the activation function is a hyperbolic tangent:

sj = f (uj) = αj tanh

(
uj

ϑj

)
, ∀αj, ϑj ∈ R?

+ (52)

This leads to the following discrete neuron state equation:

uk+1
i = uk

i + η
N

∑
j=1

ψijαj tanh(
uk

j

ϑj
) + κi , (53)

where η ∈ R?
+ is a tuning parameter often referred to as the learning rate of the network. It

can be demonstrated (c.f. [88,91]) that such a dynamic system is asymptotically Lyapunov-
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stable, and that its natural evolution converges toward the minimum of the following
energy function:

E = −1
2

N

∑
i=1

N

∑
j=1

ψijsisj +
N

∑
i=1

κisj, (54a)

= −1
2

s>Ψs + s>κ, (54b)

where Ψ = (Ψij)i,j=1···N ∈ RN×N , s = [s1 s2 · · · sN ]
> ∈ RN and κ = [κ1 κ2 · · · κN ]

> ∈
RN . Under these conditions, the process of parameter identification can be thought of as
matching the L2-norm of the parameter error ε of Equation (19) with the energy function
(54) of the Hopfield network. This can be achieved by selecting:

Ψ = −W>W
κ = −W>yτ

s = β̂HTRNN

(55)

The resulting neural network will therefore have as many neurons as base dynamic
parameters to identify, and the corresponding parameter estimate β̂HTRNN will converge
to the ordinary least-squares (IDIM-OLS) estimate, provided that the appropriate solution
range is selected. This range should therefore be carefully adjusted. This is made possible
by properly tuning the parameter αj in (53).

7. Enforcing Physical Consistency within Inertial Parameter Identification
7.1. Mathematical Formulation of the Physical Consistency Constraints within a Parameter
Identification Process

The possibility of enforcing physical consistency as part of a parameter identification
process has been the subject of extensive research over the past two decades, in robotics.
Early contributions, such as [15,16,20], formulated the parameter physicality of a given
robot link j, as a set of positivity constraints on its mass Mj, viscous-Coulomb friction
parameters Fvj, Fcj and on its transmission-chain inertia Iaj, as well as a positivity-definition
constraint on the inertia tensor I j expressed at the link’s CoM, namely

∀ link j :

{
Mj > 0, Fvj > 0, Fcj > 0, Iaj > 0
I j � 0.

(56)

It is worth noting that prior [20], approaches to physically consistent inertial parameter
identification were usually leveraging the equivalence between the positivity-definition
constraint on the inertia matrix I j a set of strict positivity constraints on its eigenvalues
Ĭxxj, Ĭyyj and Ĭzzj. These eigenvalues are in fact the moments of inertia along the so-called
link’s principal axes of inertia, yielding

I j = Rj Ĭ jR>j � 0 ≡ Ĭxxj > 0, Ĭyyj > 0, Ĭzzj > 0, (57)

where Ĭ j = diag( Ĭxxj, Ĭyyj, Ĭzzj) and Rj ∈ SO(3) is the rotation matrix relating the frame
Ij of the principal axes of inertia, to the link’s Center-of-Mass frame Cj. In this context,
ref. [16] proposed a reformulation of IDIM-OLS as a nonlinearly constrained optimization
problem, solved using Sequential Quadratic Programming (SQP), while [79] suggested to
directly identify the elements of Ĭ j instead of Lj, using sigmoid functions within an EKF
identification loop to smoothly bound the parameter estimates to physicality. It is worth
pointing that such an approach could also possibly be applied to the HTRNN identification
process by modifying the hyperbolic tangent activation function, although, to the best
of our knowledge, this was never done. Conversely, ref. [20] proposed reformulating
IDIM-LS under physicality constraints in a Semi-Definite Programming (SDP) perspective,
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writing (56) in the form of a Linear Matrix inequality (LMI). Provided that the reference
frame Lj of link j and its CoM frame Cj have the same orientation, I j can indeed be related
to the inertia tensor Lj expressed in Lj, using the Huygens-Steiner theorem

I j = Lj −M−1
j S(l j)

>S(l j), (58)

where l j =
[
MXj, MYj, MZj

]> ∈ R3 denotes the vector of link’s first moments and
∀u, v ∈ R3 S(u)v = u× v. Observing that (58) is in fact the Schur complement of a matrix
DLj(χ) ∈ S6×6 allows rewriting (56) as

Dj(χ) =

[
DLj(χ) 06×3

03×6 DAj(χ)

]
� 0, where: (59)

DLj(χ)=

[
Lj S(l j)

>

S(l j) Mj13×3

]
, DAj(χ)=

Fvj 0 0
0 Fcj 0
0 0 Iaj


where 03×3, 13×3 respectively denote the 3× 3 zero and identity matrices. In [21,22,24], the
authors went one step further by noticing that (56) and (59) could still potentially lead to in-
consistent link mass distributions. They consequently defined a density-realizability criterion
as an additional triangle-inequality condition to be fulfilled alongside with (56), namely

Ĭxxj + Ĭyyj > Ĭzzj

Ĭyyj + Ĭzzj > Ĭxxj

Ĭzzj + Ĭxxj > Ĭyyj

≡ tr( Ĭ j) > 0 ≡ tr(I j) > 0 (60)

where tr (·) denotes the trace operator. A reformulation D′Lj(χ) ∈ S4×4 of the term DLj(χ)

within the constraint matrix Dj(χ) was eventually proposed to account for density realiz-
ability constraints alongside with (56)

D′Lj(χ) =

1
2

tr
(

Lj
)
13×3 − Lj l j

l>j Mj

 � 0, (61)

naturally leading to the following SDP reformulation of IDIM-OLS and -WLS, that will be
here referred to as Physically Consistent (PC-IDIM-OLS and -WLS)

β̂WLS =arg min
β,χ

(W β− yτ)
>Σ−1(W β− yτ)

s.t. χ = G−1
[

β> χ>
]>

Dj(χ) � 0 ∀j = {1 · · · n},

(62)

where G−1 denotes the inverse mapping m−1(β, χ) defined in (15). It is worth mentioning
that the very structure of IDIM-IRLS (c.f. [23]), IDIM-IV and DIDIM (c.f. [92]) also makes it
possible to seamlessly integrate the LMI physicality constraints by actually solving an SDP
at each iteration of the corresponding algorithms. For instance, the PC-DIDIM algorithm
(proposed in [92]) can be implemented by solving at each iteration i

β̂
i
DIDIM =arg min

βi ,χ

(
W i

sβi − yτ

)>
Σ−1

(
W i

sβi − yτ

)
s.t. χ = G−1

[
β> χ>

]>
Dj(χ) � 0 ∀j = {1 · · · n}.

(63)
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Please note that [19] recently proposed a set of alternative parametrizations, allowing
direct enforcement of physicality of the reconstructed dynamic parameters without need
for constrained optimization techniques. Following their method, one could for instance
enforce the constraints in (61) by adopting the parametrization χ′, based on the Cholesky
decomposition of D′Lj(χ)

D′Lj(χ) = HH> + ε14×4,

χ′ =[H11, H22, H33, H44, H21, H31, H32, H41, H42, H43]
> (64)

where ∀i, j ∈ [1, · · · , 4], Hij ∈ R is the element of row i and column j of the lower triangular
matrix H ∈ R4×4 and ε << 1 is a regularization term. It is also worth mentioning
that [93] independently proposed a linearization of both the positivity-definition and
density realizability constraints applied to I j, in the form of a mass-positivity constraint
applied to a distribution of point-masses located within each robot link (this is not without
reminding the linearized friction-cone constraints applied to walking robots to ensure
stable contacts with the environment). Provided that the number of point-masses is “high
enough”, PC-IDIM-OLS and -WLS can be reformulated as Quadratic Programs (QP) with
a good precision. Nevertheless, although QP are generally extremely fast to resolve,
dimensionality can here rapidly become problematic since a good approximation of a link
mass distribution typically requires several hundreds of samples.

7.2. Preventing Marginal Physicality

As highlighted in [25,26], imposing parameter physicality using a set of rigid con-
straints within an optimization process may eventually lead to situations where the pa-
rameter estimates lie at the very border of the physical consistency spectrahedron. This
phenomenon, referred to as marginal physicality, typically occurs when the unconstrained
estimate lies outside the physicality region, as it might for instance, be the case when the
observation matrix W is ill-conditioned, due to a lack of excitation or to excessive noise in
q, q̇, q̈. In [16,94] for instance, the authors proposed adding a relaxation term within the
IDIM-OLS cost function, minimizing the Euclidean distance between the current parameter
estimate χ and the set of initial standard parameters χ0 of the robot. In this case, (62) would
be reformulated as

β̂OLS =arg min
β,χ

‖W β− yτ‖
2
2 + λ‖χ− χ0‖

2
2︸ ︷︷ ︸

Euclidean relaxation

s.t. χ = G−1
[

β> χ>
]>

Dj(χ) � 0 ∀j = {1 · · · n},

(65)

where λ << 1 is a tuning quantity. In practice, this term allows “shifting” the current
parameter estimates toward the CAD original estimates which, by essence, are physically
consistent. Observing that the set of physically consistent parameters, verifying (61) could
be given a Riemannian manifold structure, with a well-defined metric, refs. [25,26] pro-
posed to replace the Euclidean distance used in the relaxation process by a non-Euclidean
distance, eventually leading to

β̂OLS =arg min
β,χ

‖W β− yτ‖
2
2 + λd(χ− χ0)

2︸ ︷︷ ︸
Geometric relaxation

s.t. χ = G−1
[

β> χ>
]>

Dj(χ) � 0 ∀j = {1 · · · n},

(66)

where d(·) refers to a distance function on the set of physically consistent parameters.
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8. Introducing the BIRDy Matlab Toolbox: A Benchmark for Identification of
Robot Dynamics

In this work, we conduct a rigorous and systematic performance analysis of the differ-
ent algorithms described above. This analysis is carried out within a single framework and
on the same robot models, following a Monte Carlo process to ensure the statistical rele-
vance of our results. Our main objective is ultimately to provide a set of general guidelines
as to the applicability of a given identification method to a particular experimental context.
To our knowledge, no comparison has been made to date on such a scale, although several
identification frameworks are already available [33–35]. To ensure the repeatability of our
results and their generalization to different robot models or experimental conditions, we
propose a new open-source identification framework in the form of a dedicated Matlab
toolbox named BIRDy (i.e., Benchmark for Identification of Robot Dynamics). BIRDy offers
a wide range of functionalities, allowing the end-user to simulate, debug and identify
his own robots while focusing on the mathematical aspects of identification rather than
on the implementation of his own experimental framework. As observed by [53,95], of-
fline parameter identification methods often follow a similar workflow, whose main steps
usually involve:

1. selecting an appropriate model for the studied system,
2. designing a state trajectory which excites the different components of this model,
3. collecting a bunch of experimental data by having the—real or simulated—system

follow the generated excitation trajectory,
4. executing the selected identification process,
5. evaluating the quality of the results by comparing the predicted and actual torques

along a validation trajectory.

The very structure of BIRDy is directly inspired by this pipeline of operation (c.f.
Figure 6). The various aspects of this configuration are presented and discussed in the
following subsections, along with their operation modalities.
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BIRDy: Benchmark for Identification of Robot Dynamics

Symbolic Model Generation
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Y

Figure 6. Block diagram of BIRDy, the Benchmark for Identification of Robot Dynamics. In this figure, q̈d, q̇d, qd refers to
the desired trajectory data, obtained from the trajectory interpolator, q̃, τ̃, ĩ respectively denote the noisy joint positions,
torques and (in the case of a real robot) drive current measurements. The actual data q̈m, q̇m, qm, τm used for identification,
is obtained after a short pre-processing step of the raw experiment data.

8.1. Symbolic Model Generation

Model generation is the very first step toward identification: not only should the robot
be simulated in a realistic manner, but its dynamics should also be expressed in the form
of a system of linear equations (c.f. Equation (17)) with a well-conditioned identification
regressor. BIRDy features a symbolic model generation engine, capable of computing the
complete kinematics, dynamics and identification models of any fixed-base serial robot.
The cases of parallel robots—such as Stewart platforms—or floating-base robots—such
as Humanoids—are not yet implemented in this approach and are here considered to
be future works. Similar to the robotic-system-toolbox proposed by [96], the simulated
robots are described using dedicated parameter files, containing a Denavit–Hartenberg
table as well as the corresponding reference dynamic, friction and control parameters of
each link. Both classic (distal) and modified (proximal) Denavit–Hartenberg conventions
are supported. The dynamic model is generated using the Euler-Lagrange equations
of motion (c.f. [36]). It is worth noting that in case the robot is gear-driven, the inertia
of the actuators and gearboxes can be precisely taken into account within (1) following
the approach of [97]. A simpler alternative—used in BIRDy—consists of modeling the
drive-chain inertia as an additional diagonal term Ia ∈ Rn×n within the inertia tensor
M(χ, q), following the approach of [44]. The symbolic expression of the regressor matrix
Yχ(q̈, q̇, q) is computed following the approach detailed in [98]. Finally, the vector β
of base dynamic parameters and the corresponding identification regressor Yβ(q̈, q̇, q)
are generated numerically, following the QR decomposition method of [39] described in
Section 2.2.

8.2. Trajectory Data Generation

To avoid data rank deficiency of the observation matrix W , the different components
of the model should be sufficiently excited during the experiments. This can be achieved by
means of specific joint trajectories, referred to as exciting. The design of excitation trajecto-
ries has been widely investigated over the past two decades, see e.g., [9,17,23,38,53,99–102].
From these works, it appears that the conditioning of the observation matrix W is a relevant
quality indicator for the generated trajectory. In our case, joint trajectories are obtained
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by parametrization of finite Fourier series as presented in [9,23,101]. The following cost
criterion Jt is minimized over the experiment time horizon using a standard nonlinear
programming solver (in our case the “fmincon” and “ga” Matlab functions):

Jt = k1 · cond(W>W) +
k2

σmin
, (67)

where cond(·) refers to the condition number of a matrix; σmin is the smallest singular
value of W ; and k1, k2 ∈ R+ are tuning gains defined by the user. It should be emphasized
that this method also allows the generated trajectories to be constrained to comply with the
physical limitations of the considered robot, such as joint, velocity, torque or operational
space limits. The generated trajectory is eventually stored in a dedicated data container.
We provide multiple interpolation routines, based on the “interp1” Matlab function, so that
relevant trajectory data can be obtained at any epoch, from a limited number of points,
either generated by the optimizer or coming from a pre-existing file, created outside BIRDy.
Please note that any third-party trajectory file containing a time series of joint values can
be imported into the benchmark, provided its data are first stored in one of its predefined
data containers.

8.3. Experiment Data Generation and Pre-Processing

Identifying the dynamic parameters of a robot manipulator requires the collection of
appropriate measurements in terms of joint angles q and torques τ over a predefined time
horizon. Such data can be collected when a robot—real or simulated—tracks an exciting
trajectory. As depicted in Figure 6, BIRDy provides a set of simulation routines, allowing
the previously generated robot models to be used for this purpose. The data collection
process in the case of a simulated robot is depicted in Figure 7. The direct dynamic model
(DDM) of the robot, computed according to Equation (3), is subjected to a control torque
τ. BIRDy contains implementations of multiple friction models, in particular the Viscous-
Coulomb, Stribeck and LuGre models, allowing for more realistic data generation (c.f. [103]).
The resulting joint acceleration signal q̈ is integrated twice, using a fixed-step Runge–Kutta
method (RK1, RK2 or RK4) before a zero-mean Gaussian noise nσq with a standard deviation
σq is added to it. The resulting signal q̃ is then derived and eventually fed back into the
controller without filtering. This allows better accounting for the effects of the numerical
differentiation process occurring on real digital controllers, in terms of amplification of
the measurement noise. The control algorithm itself is described in Equation (16). The
robot tracks the reference trajectory (qd, q̇d) at an update frequency fc. The data sampling
process occurs at a frequency f ≤ fc, both for q̃ and for the torque measurement τ̃ (namely
the torque signal τ corrupted by a zero-mean Gaussian noise nστ with a standard deviation
στ). Please note that the reference trajectory files created by BIRDy can also be used to
generate desired behaviors directly on a real robot manipulator. However, in this case, the
data collection process is achieved independently using the robot communication interface.
Unlike the BIRDy simulation interface, which provides direct feedback in terms of joint
position and torque, the real robot interface often provides feedback only in terms of joint
position q̃ and drive currents ĩ. Nevertheless, a reliable prior knowledge of the robot drive
gains Kτ of (16) makes it possible to reconstruct the torque signal τ̃. In practice, the robot
drive gains can be identified following a dedicated Least-Squares method such as that
proposed by [104,105]. The “raw” signals q̈m, q̇m, qm, τm used for identification purpose, are
eventually built from q̃, τ̃ by sequential time derivation followed by a parallel-decimation
step in order to eliminate torque ripple and high-frequency noise components. The term
“raw” here refers to the fact that the signals used for identification are not necessarily filtered.
This makes it possible to test the robustness of the different identification algorithms to
measurement or numerical differentiation noise. The parallel-decimation process in BIRDy
is carried out with a zero-shift low-pass Tchebyshef filter, implemented using the decimate
Matlab function. Similar to [2,6] the cutoff frequency fdec is set to be approximately one
order of magnitude higher than the joint bandwidths. The decimation ratio nd by which the
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input data are being sub-sampled is defined as nd = b0.8 f /2 fdece where f is the sampling
frequency. As additional band-pass filtering may be required by some algorithms (such
as IDIM-OLS), the pre-processing pipeline of BIRDy also features an implementation of
zero-shift Butterworth filter that can potentially be applied to the raw joint position signal
q̃ before time derivation.

Simulation Engine

d/dt

Control
Robot Model
Equation (3)
+ RK1-RK4

Sampling

Sampling

qd, q̇d

+

+

τ

q
+

+
nσqq̃ f , ˙̃q f

−

+nστ

q̃

τ̃

Figure 7. Detail of the “Simulation Engine” of Figure 6.

9. Benchmarking Inertial Parameter Identification Algorithms: Monte Carlo
Simulations and Validation Using BIRDy
9.1. Hardware Description and Experiment Setup

This work takes the form of a case study, carried out on two different robots, both
in simulation and on the real systems. These robots are the 6-DoF RV2SQ industrial
manipulator from Mitsubishi, depicted in Figure 8b and the 6-DoF TX40 robot from Staubli,
depicted in Figure 8a. Both are described using the proximal DH convention. Widely used
for industrial and research purposes, these systems are ideal test platforms for having a
similar kinematic structure but somewhat different communication interfaces and control
characteristics. Generally speaking, evaluating the performance of multiple identification
methods on different robot models within the same framework is relevant. It allows
observing the influence of system-specific factors, such as the sampling rate or the control
structure’s knowledge, on the overall algorithm performance. This, in turn, makes it
possible to infer guidelines regarding the selection process of an identification algorithm
depending on the experimental context. In practice, while the TX-40 has a high-speed
communication interface allowing the joint position and torque to be sampled at rates of
up to f = 5 kHz, the data acquisition process on the RV2SQ is achieved at a much lower
frequency, namely f = 140 Hz. Moreover, although the low-level control characteristics
of the TX40 are known with a sufficient level of accuracy (see in particular [6]), it must
be emphasized that no prior knowledge of control structure, gains nor bandwidth of the
RV2SQ is available. In this work, the low-level control structures are assumed to be of
cascaded PD type—as described in Section 2.3—with a control bandwidth fc = 5 kHz.
Please note that during the simulation experiments the control structure and gains used
for data generation and identification are the same. Although hardly verifiable in practice,
this hypothesis has critical implications as to the convergence properties of identification
algorithms that are based on successive closed-loop DDM simulation runs such as DIDIM,
CLIE, CLOE or NKF. We considered an integrated Viscous-Coulomb friction model for
both data generation and parameter identification processes. This choice is deliberate and
justified by the results exposed in [6,106]. In this model, the jth component ζ j of the friction
force vector ζ is expressed in the form of a linear function of two parameters, namely the
Coulomb friction force Fcj ∈ R+ and of the viscous friction coefficient Fvj ∈ R+ as

ζ j(χj, q̇j) = Fcj · sign(q̇j)︸ ︷︷ ︸
Coulomb friction

+ Fvj · q̇j︸ ︷︷ ︸
Viscous friction

(68)
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As a result, the friction coefficients can be directly included within the link’s standard
dynamic parameter vector χj ∈ R13, as shown in Equation (2). A specificity of the TX40
is the coupling existing between the joints 5 and 6 of the robot. As explained in [75], this
can be accounted for using two additional friction parameters denoted Fvm6 and Fcm6.
Although it was decided to neglect this coupling during the simulation experiments, this
was later taken into account during the validation phase on the real robot. In the context of
Monte Carlo Simulation (MCS) experiments, the model generation step resulted in a vector
β of 52 base dynamic parameters for each robot. During the validation experiments on the
TX40, this base parameter vector was of dimension 54 due to Fvm6 and Fcm6. It is worth
noting that in the more general case where joint friction is nonlinear, provided that the
friction model is not load dependent, the IDM given by (1) can be identified using a separable
approach as suggested by [59,106]. The detail of such method being out of the scope of this
paper, the reader is redirected to [107] and the references therein for a more detailed review
of friction modeling and identification. The reference trajectories used for the experiments
were generated using the optimization method presented in Section 8.2 with the gains
k1 = 1 and k2 = 100, and over a time horizon of 10 s. Two trajectories are considered
for each robot, for identification and validation purposes, respectively. The generation of
experiment data is carried out using Runge–Kutta fixed-step integration (RK4) of the close-
loop DDM. The computations were realized using Matlab R2020a on an AMD-Threadripper
1920X workstation with 32GB of RAM. When possible, the parallel computing toolbox
from Matlab was used, along with the Matlab C/C++ Coder, to enhance concatenated
for-loops execution speed, such as that found in sigma-point Kalman filters. The number of
parallel threads allocated to each algorithm was limited to six for repeatability reasons. It is
worth mentioning that the closed-loop model simulations required by some identification
algorithms—such as IDIM-IV, DIDIM, CLIE, CLOE, or NKF—were carried out at the
same frequency fc as in the data generation process. Nevertheless, in this case, the DDM
time integration was performed using an Euler (RK1) algorithm, as — besides a higher
computation time — no significant difference was noticed in the identification results when
using more advanced integration algorithms, such as RK2 or RK4. The obtained closed-
loop simulation data were then sampled and decimated at the very same frequencies as in
the experiments before being used in the corresponding algorithms. To obtain statistically
relevant data, the simulation experiments were executed following a Monte Carlo scheme,
consisting of a set of b independent runs, where b denotes the dimension of the base
parameter vector β. For each method and each independent run, the identification process
was repeated 25 times with different initial parameter vectors to investigate the sensitivity
to initial conditions, eventually resulting in a total of M = 25 · b = 1300 runs for each
identification method and on each robot. The 25 initial parameter vectors were obtained
using the reference parameters’ values (i.e., previously used for collecting simulation data)
distorted by a relative error of 15%, which suitably represents the tolerances obtained
with computer-aided design (CAD) software. The validation experiments were performed
on the real robots. In this case, the identification methods requiring an initial parameter
estimate – namely IDIM-IV, DIDIM, CLOE, CLIE, ML, NKF, AdaNN, and HTRNN—were
initialized using the filtered IDIM-OLS estimate.
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(a) Staubli TX40. (b) Mitsubishi RV2SQ. (c) Drive-Gain setup.

Figure 8. The left and center figures denote the end-effector trajectories—desired in green and actual
in dark blue—executed during the experiments on the real robots and visualized on Rviz using the
Matlab-ROS interface. The excitation trajectory of the TX40 was manually generated, with trapezoidal
velocity profiles and was later imported into BIRDy, while that of the RV2SQ was directly generated
using the benchmark Fourier trajectory generation tool. The rightmost figure depicts the experiment
setup used for drive gains identification on the Mitsubishi RV2SQ. Note the external payload, with
known inertial parameters, attached to the end-effector of the robot.

9.2. Selected Figures of Merit for Performance Evaluation

Besides the element-wise errors between the reference parameter vector βre f and the

estimated parameter vector β̂, we define the following figures of merit (FOM), to quantify
the performance of the evaluated parameter identification algorithms:

1. the average relative angle difference dq defined as

dq =
1
N

N

∑
k=1

∥∥∥qβre f
(tk)− qβ̂(tk)

∥∥∥
2
/
∥∥∥qβre f

(tk)
∥∥∥

2
(69)

where qβre f
and qβ̂ are obtained respectively by direct measurements on a – real

or simulated – robot and closed-loop noise-free simulation of the DDM using the
estimated parameter vector β̂,

2. the average relative torque difference dτ defined as

dτ =
1
N

N

∑
k=1

∥∥∥τβre f
(tk)− τ β̂(tk)

∥∥∥
2
/
∥∥∥τβre f

(tk)
∥∥∥

2
(70)

where τβre f
(tk) is the measured torque and τ β̂(tk) = Yβ(q̈d(tk), q̇d(tk), qd(tk))β̂,

∀k = {1, · · · , N},
3. the mean total time dt that is required to compute one parameter estimate,
4. the mean number dNit of iterations until convergence,
5. the mean number dNsim of model simulations (for methods which require it).

In the context of Monte Carlo experiments, we will discuss the mean values and
standard deviations of these different figures of merit across the M = 1300 runs.

9.3. Implementation Details
9.3.1. IDIM-OLS, -WLS, -IRLS and -TLS Implementations

For each of IDIM-LS method, two distinct experimental scenarios were considered. In
the first scenario, the least-squares methods were executed directly on the raw—unfiltered—
data set q̈m, q̇m, qm, τm obtained by successive central differentiation and parallel decima-
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tion of q̃, τ̃. In the second scenario, identification was carried out using the filtered signals.
Data-filtering was implemented in a similar fashion as in [2,43], namely through zero-lag
Butterworth band-pass filtering of the raw joint positions (Please note that in general, only
the joint positions are filtered and the raw—potentially decimated—torque values τ̃ are
used directly.) signal q̃ in the range

[
0, ω f

]
, followed by one (resp. two) zero-shift central

differentiation steps, to obtain the corresponding joint velocities and accelerations. We
used the “filtfilt” Matlab function to implement the desired zero-lag forward-backward
Butterworth filter with a bandwidth of 50 Hz.

9.3.2. ML Implementation

As with the IDIM-LS methods, two different variations of the ML identification
algorithm were evaluated, namely with and without data-filtering. In the proposed im-
plementation of the ML identification method, the values of the diagonal variance matrix
σ2

k are set based on variance measurements of the error signal between the measured
joint derivatives q̃, ˜̇q, ˜̈q and the simulation reference q, q̇, q̈. Please note that it is usually
difficult to obtain the value of σ2

k on a real system as the reference quantities q, q̇, q̈ are
not available. The resolution of the nonlinear optimization problem (36) is carried out
using the Levenberg–Marquardt algorithm through the lsqnonlin function from the Matlab
Optimization Toolbox. The Jacobian matrices Gk are computed numerically, with finite
differences and a tolerance of 10−7. The algorithm stops once any of the following criteria
is reached:

•
(∥∥∥ρi+1

ML

∥∥∥
2
−
∥∥ρi

ML
∥∥

2

)
/
∥∥ρi

ML
∥∥

2 < tol1 where ρi
ML denotes the error at iteration i,

defined following (36) as ρi
ML =

1
2

N

∑
k=1

ε>(tk)
(

Gkσ2
kG>k

)−2
ε(tk);

• max
j

∣∣∣(β̂
i+1
ML(j)− β̂

i
ML(j)

)
/β̂

i
IV(j)

∣∣∣ < tol2, ∀β̂
i
ML(j) 6= 0 with j the index and i the

iteration number.
• maximum number of iterations: imax = 10.

where the values of the function tolerance tol1 and step tolerance tol2 are set according to
the guidelines given in [11]. In our case, we have tol1 = 0.1% and tol2 = 2.5%.

9.3.3. IDIM-IV Implementation

The IDIM-IV method is only executed on the unfiltered data set. The instrument
matrix Zi at iteration i is filled with the noise-free simulated data, obtained by integration

of the closed-loop DDM using the current parameter estimate β̂
i−1
IV (c.f. Equation (31)).

The control structure and gains are the same as those used during the experiment data
generation process. Integration is carried out using the Euler (RK1) at the rate fc = 5kHz
of the data generation loop. The data pre-processing step only involves sampling and
decimation, to fit the sampled dataset. To stop the sequence of linear LS problems solved
by the IDIM-IV method, a set of three stop criteria are implemented:

•
(∥∥∥ρi+1

IV

∥∥∥
2
−
∥∥ρi

IV
∥∥

2

)
/
∥∥ρi

IV
∥∥

2 < tol1 where ρi
IV denotes the error at iteration i, defined

as ρi
IV = yτ −W (i−1) β̂

i
IV ;

• max
j

∣∣∣(β̂
i+1
IV (j)− β̂

i
IV(j)

)
/β̂

i
IV(j)

∣∣∣ < tol2, ∀β̂
i
IV(j) 6= 0 with j the index and i the

iteration number.
• maximum number of iterations: imax = 10.

where the values of the function tolerance tol1 and step tolerance tol2 are set according to
the guidelines given in [6,59]. In our case, we have tol1 = 2.5% and tol2 = 2.5%.
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9.3.4. DIDIM Implementation

As with the IDIM-IV, the simulation data are obtained by Euler (RK1) integration of
the closed-loop DDM at a rate of 5 kHz. The following three stop criteria were implemented
within the DIDIM method:

•
(∥∥∥ρi+1

DIDIM

∥∥∥
2
−
∥∥ρi

DIDIM
∥∥

2

)
/
∥∥ρi

DIDIM
∥∥

2 < tol1 where ρi
DIDIM denotes the torque

error at iteration i, defined as ρi
DIDIM = yτ −W (i−1)

s β̂
i
DIDIM. Please note that unlike

IDIM-IV, we here make use of the simulated joint positions to compute the observation
matrix;

• max
j

∣∣∣(β̂
i+1
DIDIM(j)− β̂

i
DIDIM(j)

)
/β̂

i
DIDIM(j)

∣∣∣ < tol2, ∀β̂
i
DIDIM(j) 6= 0 with j the pa-

rameter index and i the iteration number.
• maximum number of iterations: imax = 10.

where the values of the function tolerance tol1 and step tolerance tol2 are set according to
the guidelines given in [5], namely tol1 = 2.5% and tol2 = 2.5%.

9.3.5. Relevant Details of the CLIE and CLOE Implementations

The proposed implementation of CLIE and CLOE makes use of the Levenberg–Marquardt
algorithm, and is implemented using the lsqnonlin function from the Matlab Optimization
Toolbox. The algorithm stops once any of the following criteria is reached:

•
(∥∥ρi+1

∥∥
2 −

∥∥ρi
∥∥

2

)
/
∥∥ρi
∥∥

2 < tol1 where ρi denotes the error at iteration i. In the case
of CLIE one has, ρi = εi

CLIE as defined in (43) while in the case of CLOE, we have
ρi = εi

CLOE as defined in (40).

• max
j

∣∣∣(β̂
i+1
CLIE(j)− β̂

i
CLIE(j))/β̂

i
CLIE(j)

∣∣∣ < tol2,

(resp. max
j

∣∣∣(β̂
i+1
CLOE(j)− β̂

i
CLOE(j))/β̂

i
CLOE(j)

∣∣∣ < tol2), ∀β̂
i
CLIE(j) 6= 0,

(resp. β̂
i
CLOE(j) 6= 0) with j the parameter index and i the iteration number.

• maximum number of iterations: imax = 10.

where the values of the function tolerance tol1 and step tolerance tol2 are set according
to the guidelines given in [59]. In our case, we have tol1 = 2.5% and tol2 = 2.5%. Please
note that although only the Levenberg–Marquardt approach is investigated in this paper,
BIRDy actually contains multiple CLIE and CLOE implementations, based on genetic
algorithm, particle swarm optimization and the Nelder–Mead nonlinear simplex methods.
These methods could be easily implemented using respectively the ga, particleswarm and
fminsearch function from the Matlab Optimization Toolbox.

9.3.6. DDIM-NKF Implementation

Based on the guidelines of [82], it was decided to exploit the joint filtering ap-
proach to parameter identification. BIRDy actually features multiple flavors of nonlin-
ear Kalman filters, namely the Extended Kalman Filter (EKF), the Unscented Kalman
Filter (UKF), the Central Difference Kalman Filter (CDKF), the bootstrap Particle Filter
(PF) as well as the improved numerically stable implementations of these filters, known
as Square-Root Extended Kalman Filter (SREKF), Square-Root Unscented Kalman Fil-
ter (SRUKF), and Square-Root Central Difference Kalman Filter (SRCDKF). Aside from
the particle filter—whose results were rather unsatisfactory—each of these methods
was considered in this work. We used the same set of tuning parameters for each fil-
ter. The initial covariance matrix P0 and the process-noise covariance matrix Q are re-
spectively given by: P0 = diag

([
p1 · 1n×n p2 · 1n×n 0.15 · diag(

∣∣∣β0
∣∣∣+ ε)

])
and Q =

diag
([

q1 · 1n×n q1 · nd/ f · 1n×n q2 · 1p×p
])

, where β0 refers to the initial parameter es-
timate, ε ∈ Rb

+ provides additional tolerance for small values of β̂0, f is the sampling
frequency and nd is the decimation rate. The scalar values (p1, p2) and (q1, q2) were set
heuristically to (0.1, 0.1) and

(
10−4, 10−5) respectively. Following the ideas developed
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in [82], q2 was annealed during identification. The initial measurement-noise covariance
matrix R is given by R = σ2

q · 1n×n (in rad2) according to the data generation procedure.
The Jacobian matrices of the EKF and SREKF are computed numerically, with finite differ-
ences and a tolerance of 10−7. The tuning coefficients of the UKF and SRUKF, referred to as
(α, β, κ) in [82], were set to

(
10−2, 2, 0

)
respectively. Finally, the tuning coefficient h of the

CDKF and SRCDKF, is set to h =
√

3, following the recommendations of [82].

9.3.7. AdaNN Implementation

BIRDy features two different implementations of the Adaline neural network, namely
with classic gradient descent and with stochastic gradient descent. By classic, we refer to
the fact that the whole observation matrix is used in the gradient computation, as opposed
to the stochastic gradient, where only one sample of W is considered. In this work, we
considered the stochastic gradient descent implementation. In this implementation, the
data are reshuffled at each training epoch to avoid cycles. As with IDIM-OLS methods,
two executions of the AdaNN were considered, namely with and without joint position
data band-pass filtering. The maximum number of training epochs was set heuristically to
10 · N.

9.3.8. HTRNN Implementation

As with IDIM-OLS and AdaNN methods, two versions of the HTRNN were imple-
mented, namely with and without data-filtering. The practical implementation of the
HTRNN parameter estimator simply consists of re-injecting (55) into Equation (53). As
explained in [108], special attention must be given to the parameter bounds, defined by
α. In our case, we selected α = 1.5 ·max

(
|β̂0|+ ε

)
, to account for the uncertainty in the

initial parameter estimate β̂0, where ε ∈ Rb
+ provides additional tolerance for small values

of β̂0. The maximum number of training epochs was set heuristically to 10 · N. Finally, the
learning rate η ∈ R?

+ was set to η = 10−6 for the experiments performed on the TX40 and
to η = 10−7 for the experiments performed on the RV2SQ robot.

9.3.9. Physically Consistent PC-OLS, -WLS, -IRLS, -IV and -DIDIM Implementations

In this work, we used the CVX optimization framework ([109]) alongside with
MOSEK ([110]) to solve the SDP (62) and (63) subject to physicality constraints. As pre-
viously, PC-IDIM-OLS, -WLS and -IRLS were tested with and without data-filtering and
the tolerances in PC-DIDIM and PC-IDIM-IV were set to the same level as DIDIM and
IDIM-IV. When activated, the regularization factor λ was set to a value of λ = 10−2 and
was otherwise maintained to zero.

9.4. Case Study on the Simulated TX40 and RV2SQ

We executed a set of 15 different Monte Carlo Simulation (MCS) experiments, each
containing 1300 runs. The same identification methods were executed on the TX40 and
the RV2SQ for data decimation frequencies of 500 Hz and 100 Hz—corresponding to
decimation ratios of 1 and 4—and under five different joint-position and torque-noise
levels. The detail of the different experimental conditions is given in Table 1. The high joint
levels of position noise explored during these experiments result in substantial degradation
of tracking performance, visible in the results. Although interesting from a theoretical
perspective, this is not representative of a commercial robot platform’s reality. Given the
substantial amount of generated data, only a subset of relevant results will be included in
this paper. The reader is referred to the report section in the supplementary material for a
more detailed overview of the MCS experiments’ results.
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Table 1. Overview and naming convention of the different experiments performed during the MCS. The first row of the
table refers to noise conditions that are close to what can be encountered on an industrial robot manipulator. The four other
rows explore the performance of identification in the case of substantially higher joint position and torque noise levels.

MCS Experimental Conditions TX40 Decimation 1 TX40 Decimation 4 RV2SQ Decimation 1

σq = 10−4 rad, στ = 5× 10−2 N·m MCS-TX40-1-1 MCS-TX40-4-1 MCS-RV2SQ-1-1
σq = 10−3 rad, στ = 5× 10−2 N·m MCS-TX40-1-2 MCS-TX40-4-2 MCS-RV2SQ-1-2
σq = 10−2 rad, στ = 5× 10−2 N·m MCS-TX40-1-3 MCS-TX40-4-3 MCS-RV2SQ-1-3
σq = 10−3 rad, στ = 10−1 N·m MCS-TX40-1-4 MCS-TX40-4-4 MCS-RV2SQ-1-4
σq = 10−2 rad, στ = 10−1 N·m MCS-TX40-1-5 MCS-TX40-4-5 MCS-RV2SQ-1-5

9.5. Validation Experiments on the Real TX40 and RV2SQ

A set of validation experiments were conducted on the real Staubli TX-40 and Mit-
subishi RV2SQ robots. These experiments aimed at assessing the performance of the
different identification algorithms presented in this paper on real systems, with unknown
sensor characteristics, unknown control structure, and potentially non-negligible model
errors stemming from nonlinearities in the joint friction. During these experiments, the
coupling between the fifth and sixth joint of the TX40 was considered for better precision re-
sulting in 54 base parameters as opposed to the 52 considered during the MCS experiments.
In both cases, the robot drive gains were identified following the Least-Squares approach
developed by [104,105], which consists of having the robot track a permanently exciting
trajectory, both with and without a well-known external payload, rigidly attached to the
end-effector as depicted in Figure 8c in the case of the RV2SQ. Drive-gain identification is
made possible by analyzing variations in the control current, sampled along the same exci-
tation trajectories, both with and without the external payload attached to the end-effector.
Good prior knowledge of the payload parameters is, of course, essential to the quality of
the estimation. In practice, this is made possible either by direct measurements or through
modern CAD software, given the generally simple geometry of the payload. During the
experiments, the benchmark was executed a single time for each robot, along a dedicated
validation trajectory. The joint position and drive current data were sampled at a rate of
1 kHz on the TX40 and at a rate of 140 Hz on the RV2SQ. The detailed results of these
experiments in terms of the values of the different figures of merit defined in Section 9.2,
are presented in the table section of the supplementary material for the real TX40 and the
real RV2SQ. The different links to the supplementary material are made available to the
reader in the Data Availability Statement, Section 11. Finally, the reconstructed torque
signals for the IDIM-IV and DIDIM methods are displayed in Figure 9 for the TX40 and in
Figure 10 for the RV2SQ.
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Figure 9. Reconstructed IDIM-IV and DIDIM torque signals during the validation experiment on the real TX40 robot.

Figure 10. Reconstructed IDIM-IV and DIDIM torque signals during the validation experiment on the real RV2SQ robot.

10. Results, Discussion and Perspectives
10.1. Analysis and Discussion of the Results

For the sake of clarity, the present discussion is organized around a set of specific
comparison points, namely the noise-immunity, the estimation accuracy, convergence properties,
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and finally, the computation cost. These comparison points will be discussed within three
dedicated subsections.

10.1.1. Noise Immunity

The Monte Carlo simulation results in terms of the different figures of merit shown in
the tables of the supplementary material clearly indicate that the AdaNN, HTRNN, ML,
IDIM-OLS, -WLS, -IRLS and -TLS methods are not robust to the presence of noise in the
joint-position signal and its temporal derivatives, especially when the sampling rate is
“high”, as is for instance the case in MCS-TX40-1-1–MCS-TX40-4-5. On a theoretical point
of view, this stems from the noise-induced correlation between the observation matrix W
and the vector of sampled torque errors ε, yielding E(W>ε) 6= 0. It should be emphasized
that since the torque noise is purely additive, it does not affect the statistical consistency of
the estimates, but rather their statistical efficiency. This can be demonstrated by noticing
the similarity between the results of MCS-TX40-1-4, MCS-TX40-4-4 and MCS-RV2SQ-1-
4, (c.f. supplementary material, Section 11), where the joint torque noise level is set to
στ = 10−1 N·m, with that of MCS-TX40-1-2, MCS-TX40-4-2 and MCS-RV2SQ-1-2 (c.f.
supplementary material, Section 11), where the torque noise is set to be twice as low. It
should also be noted in practice that a low torque signal-to-noise ratio (SNR) could also
imply that the trajectories are not exciting enough or that the hardware is not well designed.
The most critical noise is, actually, that corrupting the joint angle readings as it significantly
contributes to the bias of the IDIM-LS methods. The influence of noise in the joint angle
measurements is made visible within the experiments described in the first three rows
of Table 1, namely in [MCS-TX40-1-1, MCS-TX40-1-2, MCS-TX40-1-3], [MCS-TX40-4-1,
MCS-TX40-4-2, MCS-TX40-4-3], and [MCS-RV2SQ-1-1, MCS-RV2SQ-1-2, MCS-RV2SQ-1-3].
Within these experiments, the robots are actually tracking the same excitation trajectories,
with the same control laws and initial parameter estimates, but with three different orders
of magnitude in terms of joint position noise, namely σq = 10−4 rad, σq = 10−3 rad
and σq = 10−2 rad. Although the first noise level within these experiments is consistent
with observations made on actual robots, it should be emphasized that the last two noise
levels, are here only provided for indicative purposes. In practice, re-injecting such signals
into the low-level control loop of a robot would in turn result in substantial noise in
the control signals—as shown by the degraded values of the dτ figure of merit obtained
for σq = 10−3 rad and σq = 10−2 rad—eventually leading to poor control performance.
The experimental results suggest that without data-filtering, the AdaNN, HTRNN, ML,
IDIM-OLS, -WLS, -IRLS and -TLS methods provide biased estimates that poorly – or at
least improperly – match the objective values, although the enhanced robustness of ML,
IDIM-WLS and IDIM-IRLS compared to AdaNN, HTRNN, IDIM-OLS and -TLS should
be noted. In any case, it appears that performing a tailor-made data-filtering based on a
zero-shift forward-backward Butterworth filter significantly improves the results. This
can be explained by the fact that filtering turns the noisy observation matrix W into a
noise-free matrix denoted by Wn f . Loosely speaking, this breaks the correlation between
W and the vector ε of sampled errors. It is here worth pointing out that the use of simple
forward low-pass filters generally leads to strongly biased estimates. This is justified in [7]
by the fact that the phase shift induced by such filters is not accounted for in the IDM
and is, therefore, considered to be a modeling error yielding W 6= Wn f . The DIDIM,
CLIE and CLOE methods appear to be robust in general to the measurement noise in the
joint position signal. This is usually expected since the DDM simulation step occurring in
DIDIM, IDIM-IV, CLOE and the IDM simulation occurring in CLIE are noiseless. Please
note that although IDIM-IV can also be considered to be robust to noise as suggested in
particular by the results of MCS-TX40-4-1 and MCS-TX40-4-2, it tends to fail when the
noise level is unreasonably high, as is for example the case in MCS-TX40-4-3 or MCS-TX40-
4-2. These observations are consistent with those published in [6]. It should moreover be
highlighted that when the sampling rate is high, typically above 500 Hz on a robot, there
might actually be a strong correlation between the measured samples, resulting in poor
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conditioning of the observation matrix and consequently biased parameter estimates. In
practice, sub-sampling the signal helps breaking this correlation. Nevertheless, this should
be executed carefully as the high-frequency components of the signal tend to alias during
the process. Filtering the signal before sub-sampling, or in other words performing parallel
decimation, helps mitigating this effect. The reader is redirected toward [111] for a more
detailed discussion on the topic. The influence of parallel decimation is clearly visible on
the results of MCS-TX40-4-1–MCS-TX40-4-5, in the corresponding FOM tables, where one
may observe a homogenization of the performance of the different methods with, however,
the notable exception of the Kalman filters (this specific point will be addressed in more
details within Section 10.1.2 of this paper). Although the performance is already satisfactory
for IDIM-IV and even good for DIDIM in the case of standard joint position noise levels
(typically σq = 10−4 rad and σq = 10−3 rad), it should be noted that parallel decimation
has a positive influence over the condition number of the Jacobian in OE algorithms as
pointed in the discussion of [12].

10.1.2. Estimation Accuracy

The results of the three Monte Carlo Simulation (MCS) experiments indicate that
the DIDIM and IDIM-IV methods generally tend to provide the most accurate parameter
estimates, and accordingly the best torque tracking performance in the context of standard
joint position noise levels (i.e., MCS-RV2SQ-1-1, MCS-RV2SQ-1-2, MCS-TX40-1-1, MCS-
TX40-1-2, MCS-TX40-4-1 and MCS-TX40-4-2 in the supplementary material). Note that
by accuracy, we here refer to the error βerr between the estimated parameter vector β̂ and
the reference βre f used for experiment data generation. This is visible in the experiment
reports, provided alongside with this paper (c.f. Section 11). One may of course argue that
these performances are noticeably similar to that of AdaNN, HTRNN, IDIM-OLS, -WLS,
-IRLS, ML with filtered or decimated data as well as CLIE and—to a lower extent—CLOE.
Interestingly, IDIM-IV and DIDIM does not perform as well on the real RV2SQ robot
although the resulting torque tracking performance remains satisfactory as shown in the
attached experiment reports. This can be explained by the rather constraining hypothesis
made during the simulation experiments, namely that the control law is well known and
that these are not model errors (e.g., friction or coupling). One may also notice that CLIE
provides better results than CLOE, which can be mainly explained by the lack of sensitivity
of the simulated joint positions and velocities against parameters’ variations due to the
control. When developing a controller, the following approximation q ≈ qd is expected
which means that the controller must be robust enough against parameters’ variations.
This result agrees with those published in [5]. Please note that when badly initialized or in
the presence of modeling errors, iterative methods such as IDIM-IV, DIDIM, CLIE, CLOE,
NKF or AdaNN usually fail to converge to the objective values as the internal DDM or IDM
simulation process converge to an inconsistent state. In practice, a reasonable initialization
value for the parameters can be obtained from a modern CAD software or from filtered
IDIM-OLS. Although AdaNN and IDIM-OLS are asymptotically equivalent, one may note
that the results in chapters 2.1 and 22.1 of the attached experiment reports suggest that AdaNN
is less efficient than IDIM-OLS – statistically speaking – as the variance of the AdaNN
estimate appears to be at least one order of magnitude higher than that of the IDIM-OLS
estimate. Finally, although the NKF identification methods provide good results in the case
of the TX40 robot with undecimated data (c.f. Table MCS-TX40-1-1), the performance of the
estimator sharply deteriorates when fed with decimated or sub-sampled data (c.f. Table
MCS-TX40-4-1 and Table MCS-RV2SQ-1-1). Nevertheless, Kalman filtering techniques
generally tend—as with the CLOE method—to suffer from the same lack of sensitivity
with respect to parameters’ variations since the controller of the simulated robot is robust
against these variations as demonstrated in [7].
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10.1.3. Convergence and Computational Complexity

The convergence of the DIDIM iterative process is fast, similar to IDIM-IV, with an
average computation time of 1 second, as a result of 4 (resp. 3) iterations on average
and as many model simulations. This is consistent with the results of [6,43]. Please
note that this is approximately five times higher than IDIM-OLS, which can be explained
by the process of DDM integration occurring during the simulation step within DIDIM
and IDIM-IV. As expected, physically consistent identification methods, based on semi-
defined programming algorithms, take about three times longer than their unconstrained
counterparts, which is consistent with the performance of current SDP solvers (in our case
CVX with MOSEK) and aligned with the results of [92]. It is worth noting that the number
of iterations—and hence model recalculation—required by PC-IDIM-IV and PC-DIDIM
are similar, in the case of proper convergence, to that of the unconstrained IDIM-IV and
DIDIM, respectively. The computation time of CLIE and CLOE is generally about one
order of magnitude higher than the unconstrained IDIM-IV and DIDIM, which is not really
surprising considering the large number E(dNsim) of DDM simulations required to evaluate
the Jacobian at the current estimates (c.f. the different FOM tables). Again, this is consistent
with the computation time given in [5]. A careful reader will probably notice that the
computation time does not scale linearly with the number of samples, in particular when
making use of parallel decimation. This observation is a direct consequence of the fact that
model simulation, within IDIM-IV, DIDIM, CLIE, and CLOE is carried out at the controller
frequency, namely fc = 5 kHz. In the case of CLIE, CLOE, and ML, the sensitivity function
in the Levenberg–Marquardt optimization routine can be computed in parallel, thereby
further increasing the execution speed. In our case, these computations were distributed
on 12 parallel threads, which was made possible thanks to the Matlab parallel computing
toolbox. Unlike the other methods, the time taken by the NKF to find a solution scales
linearly with the number of samples. In the case of sigma-point Kalman filters, the whole
distribution of prior estimates must be propagated through the nonlinear DDM. In our
case, considering the set of 52 base parameters and the 12-dimensional robot state vector, a
total of 129 sigma-points must be propagated through the DDM at each filter iteration. To
speed up the computations, we took the decision to distribute the burden on four different
threads. Finally, the sample propagation loop was compiled into a mex file to further
accelerate the execution speed. In this manner, the time ratio between an EKF execution
and a UKF execution could be reduced to 4.

10.2. General Discussion and Perspectives

The present discussion is somehow related to the Epilogue of [66] where the author
gives an insightful presentation on what can be considered to be ‘good’, ‘bad’ or ‘optimal’.
Even though the underlying goal of benchmarking is to find the best identification method,
a black and white answer can seldom be obtained. Indeed, if the choice of a method often
depends on the circumstances of identification, namely how the dynamic parameters of a
robot can be identified, it may sometimes depend on the final objectives of identification,
or in other words why these parameters are being identified. Based on the different Monte
Carlo simulations performed in this paper, the IDIM-IV and DIDIM methods seem to
be the most appealing for offline identification, as they converge quickly, do not require
custom data-filtering, combine the inverse and direct dynamic models and are well-suited
to the enforcement of physical constraints through semi-definite programming. Since
the dynamic models are validated simultaneously, a complete robot simulator can be
obtained, making it possible to design an accurate model-based control. Besides the fact
that these algorithms are difficult to implement in real-time control loops—thereby raising
serious issues regarding their implementation in adaptive control strategies—their main
limitations directly stems from the need for a precise knowledge of the robot’s low-level
control characteristics. This dependence is clearly observable when comparing the MCS
results—where the control law is assumed to be perfectly known—and that obtained
with the real systems. In practice, the incomplete knowledge regarding the true nature
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of the implemented low-level control loops has tangible consequences on the behavior of
the internal dynamic simulation routine of IDIM-IV and DIDIM, and more generally of
CLIE, CLOE and NKF. This in turn induces a bias in the parameter estimates and may
even in the worst case lead to a divergence in the identification process, as the behavior
of the simulation routine no longer matches that of the real system. Please note that
this statement can be refined by distinguishing between the ideal case where a good
prior knowledge of the low-level control structure and gains is available, the case where
only the control structure is known, and the case where neither the control structure
nor the gains are known. In practice, knowing the structure of a controller makes it
possible to identify its gains, as exposed in [52]. The fact that IDIM-OLS, -WLS, -TLS,
ML, AdaNN and HTRNN do not require any prior knowledge of the low-level control
characteristics, and that their performance does not depend on any initial estimate or
tuning coefficients, makes them fairly easy to implement and therefore attractive to the
practitioner. It is also worth mentioning that NKF, IDIM-OLS and WLS are, or can be
formulated recursively and are therefore suitable for implementation in real-time adaptive
control loops. As already pointed out in [7], the main drawback of Kalman filtering
techniques in the context of parameter identification seems to be their extreme sensitivity
to the initial values of a set of adjustment parameters, and in particular to the values
of the initial process-noise and measurement-noise covariance. In practice, the tuning
process proves to be tedious although the computed torque approach would deserve
to be further investigated. Therefore, in case the objective of identification is not the
offline refinement of CAD parameters values for reliable simulation purpose, but rather
consists of developing robust controllers based on an online rough estimation of the robot
inertial parameters, the IDIM-OLS, -WLS and NKF methods, appear to be suitable choices.
It should be noted that a more detailed study of the effects of different amplitudes or
statistical distributions of noise, resulting for example from higher quantization errors—i.e.,
lower sensor resolutions—would be relevant and is here considered to be future work. In
terms of sampling rate, most current robot controllers operate in the 1 kHz range, which is
generally sufficient to obtain good approximations of joint speeds and accelerations. Below
100 Hz, special care must be taken since the calculation of joint velocities and accelerations
is no longer reliable enough. In this context, interpolation methods or the use of IDIM-IV
or OE methods, based on DDM simulations—which can be considered to be a kind of data
interpolation—should be preferred. The previous observations can be summarized in the
form of a flow diagram in Figure 11. Multiple improvement of BIRDy are currently being
investigated, with a focus on enhancing the scalability of the benchmark. We indeed noticed
that the current symbolic model generation engine, based on the MuPad symbolic kernel
could take considerable time to generate identification model of robots with more than
7-DOF (we so far tested the generation routine with up to 9 DOF). We moreover noticed a
strong correlation of the performance of the symbolic toolbox with the version of Matlab.
Several approaches are currently being explored to tackle this issue, including the use of
other symbolic kernels such as that of Wolfram Mathematica or the open-source SymPy,
also used in the OpenSYMORO+ toolbox from [112,113]. Besides these issues, future
developments of BIRDy will mainly consist of generalizing the process of identification-
model computation using the Unified Robot Description Format (URDF) rather than DH
parameters, considering the use of modern highly efficient dynamic libraries such as the
Rigid Body Dynamics Library (RBDL [114]) or the Kinematics and Dynamics Library
(KDL [115]) for model numerical simulation and eventually the inclusion of additional
sensor modalities in the process of robot identification, such as accelerometers, gyroscopes
or force sensors. On a longer time scale, the possibility of identifying parallel manipulators
such as the Stewart platforms or floating-base robots such as humanoid robots (as for
instance performed in [116,117]) will also be explored.
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Figure 11. Decision process for parameter identification algorithm selection. Physical consistency of the estimates can be
enforced using SDP within the algorithms displayed in red. Methods in bold caption are, or can potentially be formulated
in a recursive manner which makes them capable of running in a real-time control loop.

11. Conclusions and Future Works

In this paper, a sample of the most popular approaches to inertial parameter identifi-
cation for fixed-based robotic systems is evaluated and benchmarked. These methods are
IDIM-OLS, IDIM-WLS, IDIM-IRLS, IDIM-TLS, ML, IDIM-IV, DIDIM, CLIE, CLOE, EKF,
SREKF, UKF, SRUKF, CDKF, SRCDKF, AdaNN, HTRNN, PC-IDIM-OLS, PC-IDIM-WLS,
PC-IDIM-IRLS, PC-DIDIM and PC-IDIM-IV. First presented and discussed in a theoret-
ical manner, each method is then implemented and evaluated experimentally within a
dedicated framework, named BIRDy, which was specifically developed for this purpose.
BIRDy features a complete identification pipeline, allowing one to generate the kinematic
and dynamic models of a given robot, to compute a trajectory that excites its dynamic
parameters, to simulate the system’s behavior along this trajectory, collect experimental
data under well-defined conditions, proceed to parameter identification using a pool of
dedicated algorithms and eventually to compare the identification performances using a
set of suitable metrics. In this work, we used BIRDy to perform Monte Carlo simulations
on two models of 6-DoF industrial robot manipulators, namely the Staubli TX40 and the
Mitsubishi RV2SQ. Experiments were also carried out on the real robots, thereby providing
helpful insight on the influence of multiple factors, including prior knowledge of the
control architecture, sampling frequency, or friction model. The results allow us to provide
a set of general guidelines based on quantitative arguments regarding the applicability
of a given identification method to a particular experimental context. Future works will
mainly consist of extending our study to physically consistent parameter identification
algorithms and, in the long run, to the context of parallel and floating-base robots such as
humanoids. Multiple improvements of BIRDy are currently being discussed in order to
address these issues.
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The following abbreviations are used in this manuscript:

AdaNN Adaline Neural Network
SMU Set Membership Uncertainty
IDIM Inverse Dynamics Identification Model
WLS Weighted Least-Squares
TLS Total Least-Squares
DIDIM Direct and Inverse Dynamics Identification Model
CLOE Closed-Loop Output Error
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
CDKF Central Difference Kalman Filter
SPKF Sigma-Point Kalman Filter
NKF Nonlinear Kalman Filter
DoF Degrees of Freedom
DDM Direct Dynamic Model
FOM Figure Of Merit
PC Physically Consistent
HTRNN Hopfield-Tank Recurrent Neural Network
SDP Semi-Definite Programming
OLS Ordinary Least-Squares
IRLS Iteratively Reweighted Least-Squares
GTLS Generalized Total Least-Square
IV Instrumental Variables
CLIE Closed-Loop Input Error
SREKF Square-Root Extended Kalman Filter
SRUKF Square-Root Unscented Kalman Filter
SRCDKF Square-Root Central Difference Kalman Filter
ML Maximum Likelihood
PF Particle Filter
CoM Center of Mass
IDM Inverse Dynamic Model
MCS Monte Carlo Simulation
LMI Linear Matrix Inequality

Appendix A. List of Implemented Identification Methods

Table A1. Overview of the different identification methods implemented in this work.

Least-Squares OLS, WLS, TLS, IRLS

Output Error CLIE, CLOE, DIDIM

Kalman Filters EKF, SREKF, UKF, SRUKF, CDKF, SRCDKF

Neural Networks AdaNN, HTRNN

Other IDIM-IV, ML

Physically Consistent PC-OLS, PC-WLS, PC-IRLS, PC-IV, PC-DIDIM
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