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Simple Summary: Tumor-specific biomarkers in liquid biopsies provide useful tools for detection of
tumors, monitoring of tumor responses and prediction of outcomes. Nearly all malignant solid tumor
cells, but not normal cells, present the major stress-inducible Heat shock protein 70 (Hsp70) on their
cell surface and actively release it into the blood in small extracellular vesicles. Therefore, vesicular
Hsp70 might serve as a biomarker for viable tumor cells. Presently, no validated test system is
available that allows the quantification of vesicular Hsp70 in the blood. Based on two Hsp70-specific
monoclonal antibodies, we have developed the complete (comp)Hsp70 ELISA that provides a highly
sensitive and reliable tool for measuring both, free and vesicular Hsp70 in the circulation of tumor
patients. Hsp70 levels in the blood reflect the presence and risk characteristics of tumors and their
membrane-Hsp70 status, and might be predictive for therapeutic responses.

Abstract: In contrast to normal cells, tumor cells of multiple entities overexpress the Heat shock
protein 70 (Hsp70) not only in the cytosol, but also present it on their plasma membrane in a tumor-
specific manner. Furthermore, membrane Hsp70-positive tumor cells actively release Hsp70 in small
extracellular vesicles with biophysical characteristics of exosomes. Due to conformational changes of
Hsp70 in a lipid environment, most commercially available antibodies fail to detect membrane-bound
and vesicular Hsp70. To fill this gap and to assess the role of vesicular Hsp70 in circulation as a
potential tumor biomarker, we established the novel complete (comp)Hsp70 sandwich ELISA, using
two monoclonal antibodies (mAbs), that is able to recognize both free and lipid-associated Hsp70 on
the cell surface of viable tumor cells and on small extracellular vesicles. The epitopes of the mAbs
cmHsp70.1 (aa 451–461) and cmHsp70.2 (aa 614–623) that are conserved among different species
reside in the substrate-binding domain of Hsp70 with measured affinities of 0.42 nM and 0.44 nM,
respectively. Validation of the compHsp70 ELISA revealed a high intra- and inter-assay precision,
linearity in a concentration range of 1.56 to 25 ng/mL, high recovery rates of spiked liposomal Hsp70
(>84%), comparable values between human serum and plasma samples and no interference by food
intake or age of the donors. Hsp70 concentrations in the circulation of patients with glioblastoma,
squamous cell or adeno non-small cell lung carcinoma (NSCLC) at diagnosis were significantly
higher than those of healthy donors. Hsp70 concentrations dropped concomitantly with a decrease
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in viable tumor mass upon irradiation of patients with approximately 20 Gy (range 18–22.5 Gy)
and after completion of radiotherapy (60–70 Gy). In summary, the compHsp70 ELISA presented
herein provides a sensitive and reliable tool for measuring free and vesicular Hsp70 in liquid biopsies
of tumor patients, levels of which can be used as a tumor-specific biomarker, for risk assessment
(i.e., differentiation of grade III vs. IV adeno NSCLC) and monitoring of therapeutic outcomes.

Keywords: Hsp70; sandwich ELISA; liquid biopsy; tumor biomarker; small extracellular vesicles;
prediction; response monitoring; non-small cell lung carcinoma (NSCLC); glioblastoma

1. Introduction

Lung cancer is a major cause of cancer-related deaths and the second most common
cancer in men and women, worldwide [1]. Due to its nonspecific symptoms, lung cancer
is frequently diagnosed at a late disease stage [2]. A relevant proportion of patients with
locally advanced or metastasized tumors does not show an improvement in progression-
free and overall survival following radical surgery, simultaneous chemo- and radiotherapy
or/and immune checkpoint inhibitors [3,4]. Like NSCLC, glioblastoma multiforme (GBM)
is a devastating disease of the central nervous system with symptoms that present at
a late disease stage. Despite multimodal treatment strategies consisting of surgery, ra-
diotherapy and a temozolomide-based chemotherapy, overall survival remains poor at
15–18 months [5]. These examples underline the high medical need for tumor-specific
biomarkers that improve the detection of tumors and the monitoring of therapeutic re-
sponses. The development of such biomarkers in liquid biopsies will increase therapeutic
success and the life expectancy of patients with highly aggressive tumors, since blood
samples can be taken repeatedly and thereby monitoring of tumor responses—as deter-
mined by a drop/increase in circulating Hsp70—can be intensified which would result
in a faster therapy adaptation. Another challenge in clinical practice is the potential side
effects of image-guided medical diagnosis. The availability of a minimally invasive method
such as blood sampling for assessing the presence of tumor-specific biomarkers in liquid
biopsies will have a broad applicability and will be well tolerated. Herein, we present an
ELISA-based quantification of free and vesicular Hsp70 (HSPA1A) as a reliable approach
for detecting tumors and monitoring therapeutic responses.

Members of the 70 kDa chaperone family support folding of nascent polypeptides,
prevent protein aggregation and assist transport of proteins across membranes [6,7], and
they reside in nearly all subcellular compartments of nucleated cells [8]. The importance of
Hsp70 is documented by its high abundance, evolutionary conserved amino acid (aa) se-
quence [9,10] and functional similarities such as maintenance of protein homeostasis across
different species [11]. Transgenic rodent models have revealed that Hsp70 of Drosophila
melanogaster can substitute the activity of murine Hsp70 [12–14], and human Hsp70 ex-
pressed in myocardial cells of transgenic rats can protect the heart from ischemic stress
in vivo [15].

In contrast to normal cells, tumor cells frequently overexpress the major stress-
inducible Hsp70 [16] in the cytosol and present it on the plasma membrane in a tumor-
specific manner [17]. A global profiling of cell surface-bound proteins revealed a high
abundancy of HSP70 and other intracellular chaperone families, such as GRP78, HSP60,
HSP54 and HSP27, on the plasma membrane of different tumor cells [18]. It is assumed that
Hsp70 trafficking to the plasma membrane is enabled by a non-ER/Golgi, alternative endo-
lysosomal pathway [19]. Since major changes in extracellular salt concentrations and pH
fail to deplete Hsp70 from the plasma membrane, a (trans-) membrane receptor mediated
anchorage of Hsp70 is highly unlikely. Lipid profiling and artificial lipid copellation assays
revealed that Hsp70 directly interacts with glycosphingolipids such as globoyltriaosylce-
ramide (Gb3), which localize in cholesterol-rich microdomains (rafts) in the membrane of
tumor cells [19]. Since normal cells lack these tumor-specific lipids in their plasma mem-



Cancers 2021, 13, 3706 3 of 24

brane, Hsp70 resides strictly in the cytosol of normal cells, and small extracellular vesicles
released from normal cells remain membrane Hsp70-negative. Following stress such as
sublethal heat or cytostatic drugs the synthesis of Hsp70 increases also in normal cells, but
Hsp70 does not translocate to the plasma membrane, which is a prerequisite for Hsp70-
positive extracellular vesicles [20]. In tumor cells, stress triggers an interaction of Hsp70
with the apoptosis-related membrane lipid component phosphatidylserine (PS). Based on
its negative charge PS enables an insertion of Hsp70 in artificial lipid vesicles [21,22].

An Hsp70 membrane positivity has been found in numerous different tumor en-
tities [23], including lung, head and neck, colorectal, pancreas, breast carcinomas and
hematological malignancies [24,25]. Tumor cells presenting Hsp70 on their plasma mem-
brane are more resistant to radiotherapy and chemotherapy compared to their membrane
Hsp70-negative counterparts [26]. After exposure to environmental stress, the synthesis
and membrane expression of Hsp70 is further upregulated in tumor cells. A high Hsp70
content contributes to an aggressive tumor phenotype, mediates protection against apop-
tosis, promotes invasion/migration and mediates resistance to standard therapies [27].
Mouse models revealed that metastases exhibit a higher membrane Hsp70 density than
primary tumors [28] and pre-malignant lesions, and early stage tumors show a lower mem-
brane Hsp70 expression than malignant esophageal adeno carcinoma (Ms in resubmission).
Moreover, viable tumor cells expressing Hsp70 on their plasma membrane actively release
small extracellular vesicles with biophysical properties of exosomes, whereas free Hsp70
predominantly originates from dying cells [29–31]. Since small extracellular vesicles are
created by a double invagination, the protein content on their surfaces reflects that of the tu-
mor cell membrane from which they originate [32]. As a result, membrane Hsp70-positive
tumor cells release extracellular vesicles presenting Hsp70 on their surface [31], and the
lumen of these vesicles contains proteins of the tumor cytosol, but not of the ER [33].

We have previously shown that circulating Hsp70 levels in patients with tumors are
significantly higher than in patients with inflammation or healthy donors [34]. Therefore,
based on the Hsp70 levels in the circulation, inflammatory diseases can be distinguished
from cancer. A high Hsp70 serum content correlates with an increased malignancy and
resistance to chemo- and radiotherapy [25,35–37]. The precise detection of the viable tumor
mass requires the measurement of vesicular Hsp70, which is actively released by viable
tumor cells. Commercially available Hsp70 ELISA systems only detect free Hsp70 in aque-
ous solutions, but not vesicular Hsp70 in serum or plasma because an interaction of Hsp70
with lipids i.e., PS, Gb3, sphingolipids induces conformational changes in Hsp70 [38,39].
The novel compHsp70 sandwich ELISA is based on two mAbs, cmHsp70.1 and cmHsp70.2,
recognizing conserved epitopes in the C-terminal substrate binding domain of inducible
Hsp70 [40,41] and allowing a specific and sensitive quantification of both, free and vesicular
Hsp70 in the blood of patients with cancer.

2. Materials and Methods

If not indicated otherwise all reagents were obtained from Sigma-Aldrich, St Louis,
MO, USA.

2.1. Uniprot Analysis

Inter-species comparison of the 8-mer (aa 454–461) and 10-mer (aa 614–623) sequences
of Hsc70 (HSPA8) and Hsp70 (HSPA1A) in humans were compared to the respective
sequence of Hsp70 in mouse, rat, dog, bovine, horse, pig and zebrafish by UniProtKB
2021_03 analysis. For cats, only the sequence of HSPA2 is available.

2.2. Recombinant Hsp70

Human recombinant Hsp70 protein was produced in an optimized SF9 insect cell
line (Orbigen, San Diego, CA, USA). Briefly, SF9 cells were transfected with baculovirus
carrying the cDNA encoding for human Hsp70, which was fused with an N-terminal
poly-His-tag (Orbigen). After transfection, His-tagged Hsp70 was isolated from cell lysates
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by loading on a His-Trap nickel sepharose column using an Äkta Purifier liquid chromate-
graphy system (GE Healthcare, Chalfont St. Giles, UK). His-tagged Hsp70 was eluted by
increasing imidazole concentrations in a saline buffer (20 mM sodium phosphate, 0.5 M
NaCl, 0.5 M imidazole, pH 7.4; all Sigma-Aldrich) and pooled from different fractions.
After subsequent desalting and re-buffering using PD-10 columns (GE Healthcare) the
Hsp70 protein yield was determined using a bichinchoninic acid (BCA) protein kit (Pierce,
Thermo Fisher Scientific, Rockford, IL, USA). Hsp70 aliquots of 50 µg/mL were stored
at −80 ◦C.

2.3. Microscale Thermophoresis-Based Affinity Measurements

Binding affinity of the rodent cmHsp70.1 and cmHsp70.2 monoclonal antibodies
(mAbs) to Hsp70 protein was determined using the Microscale Thermophoresis (MST)
technique [42,43]. For MST measurements, gradual thermophoretic changes of a constant
concentration of FITC-labeled cmHsp70.1 and cmHsp70.2 mAbs (multimmune GmbH,
Munich, Germany) were incubated for 10 min with rising concentrations of recombinant
Hsp70 protein (range 0.000148 nM to 11.8 nM) and analyzed on the Monolith NT.115
(NanoTemper Technologies GmbH, Munich, Germany).

2.4. Western Blot and Dot Blot Analysis

Tumor cells were lysed in radioimmunoprecipitation assay (RIPA)-buffer containing
50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA, 1% v/v Triton-x-100, 0.1% w/v
sodium dodecyl sulfate (SDS), 0.5% w/v sodium deoxycholate (all Sigma-Aldrich) and
protease inhibitor cocktail (Roche, Basel, Switzerland). The protein content was determined
using the BCA protein assay kit (Thermo Fisher Scientific, Waltham, MA, USA). Equal
amounts of recombinant Hsp70 protein (50 ng) as well as lysates of U87 glioblastoma
cells (50 µg) were subjected to SDS-PAGE, transferred to nitrocellulose membranes (GE
Healthcare Life Sciences, Chicago, IL, USA), blocked in 5% w/v skimmed milk and incu-
bated with the following Hsp70 antibodies (4.8 µg/mL, each): cmHsp70.1 (multimmune
GmbH), cmHsp70.2 (multimmune GmbH), hHSP70/HSPA1A Clone 998953 (R&D Systems,
Inc., Minneapolis, MN, USA) and hHSP70/HSPA1A Clone 242707 (R&D Systems, Inc.)
and β-actin (A2228; Sigma-Aldrich). As secondary antibodies, horseradish-peroxidase
(HRP)-conjugated anti-mouse (P0260, 1:2000; Dako-Agilent, Santa Clara, CA, USA) and
anti-rat (P0450; 1:1000; Dako-Agilent) antibodies were used. For dot blot analysis, different
amounts (100 ng, 10 ng, 1 ng 0.1 ng in a volume of 2 µL PBS; Life Technologies, Carlsbad,
CA, USA) of BSA (Sigma-Aldrich) and HSP proteins (Hsp27, SPR-118; Hsp60, SPR-104;
Hsp70, SPR-103; Hsc70, SPR-106; StressMarq Biosciences Inc., Victoria BC, Canada) were
spotted on nitrocellulose membranes and incubated with the antibodies, as described
above. Immune complexes were detected by Pierce ECL Western Kit (Thermo Fisher
Scientific) and imaged digitally (ChemiDoc Touch Imaging System, BioRad, Hercules, CA,
USA). Fiji software was used for quantification of the Western blot signals.

2.5. Peptide SPOT Synthesis and Analysis

An array of consecutive 14-mer peptides with 12-residue overlap, covering the amino
acid (aa) sequence 382–641 of human Hsp70, was synthesized according to the SPOT
method, as previously described [44,45], on a Gly-PEG500-derivatised cellulose mem-
brane using a MultiPep RS instrument (Intavis, Cologne, Germany). After N-terminal
acetylation and de-protection of the peptide side chains, the membrane was treated with
Membrane-Blocking Solution (MBS) containing 10% v/v Western blocking reagent (Roche
Diagnostics, Mannheim, Germany) and washed with MBS. After incubation with 5 µg/mL
cmHsp70.2 in MBS for 1 h at room temperature and washing with MBS, an incubation with
a HRP-conjugated anti-rat antibody (P0450; 1:1000 in MBS; Dako-Agilent) was performed,
followed by a staining with 3,3′-diaminobenzidine (SigmaFASTTM, Sigma-Aldrich).
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2.6. Cell Culture

The human lung carcinoma cell line A549 (adenocarcinoma alveolar basal epithelial
cells, ATCC® CCL-185™) was cultured in RPMI1640 Medium (Sigma-Aldrich) and the
human colon carcinoma cell line HCT116 (ATCC® CCL-247™) was cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM; Sigma-Aldrich), both supplemented with 10% heat-
inactivated fetal bovine serum (FBS; Sigma-Aldrich), 2 mM L-glutamine (Sigma-Aldrich),
1 mM sodium pyruvate and antibiotics (100 IU/mL penicillin and 100 mg/mL streptomycin;
Sigma-Aldrich) and cultured at 37 ◦C with 5% v/v CO2 in a humidified atmosphere.
Tumor cell lines were routinely monitored for mycoplasma contaminations (MycoAlert
Mycoplasma Detection Kit; Lonza, Basel, Switzerland), and only mycoplasma-negative
cells were used for analysis. All experiments were performed in the exponential growth
phase on day 2 after seeding.

2.7. Flow Cytometry

Cells (300,000) were harvested, washed twice in ice cold flow cytometry buffer (phos-
phate buffered saline (PBS; Life Technologies, containing 10% v/v FBS, Sigma-Aldrich)
and incubated with the FITC-labeled cmHsp70.1, cmHsp70.2, hHSP70/HSPA1A Clone
998953 and hHSP70/HSPA1A Clone 242707 for 30 min in the dark on ice. Prior to ac-
quisition, unbound antibody was removed by a second washing step. Propidium iodine
(PI, Merck, Darmstadt, Germany) was added (1 µg/mL) directly before analysis and only
viable (PI-negative) cells gated upon and analyzed on a FACSCalibur™ flow cytometer
(BD Biosciences, Franklin Lakes, NJ, USA). Isotype-matched control antibodies were used
as respective negative controls.

2.8. Hsp70 Containing Artificial Lipid Vesicles

Unilamellar artificial lipid microvesicles were freshly prepared for each experiment
and used as ‘model’ for small extracellular vesicles. Briefly, 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS;
both Avanti Polar Lipids, Alabaster, AL, USA), dissolved in chloroform, were mixed in a
molar ratio of 8:2 and dried under a stream of nitrogen gas. Dried lipids were dissolved
in 25 mM Tris/HCl pH 7.4 and 250 mM NaCl (1 mL/10 mg of lipid) and incubated for
1.5 h at room temperature. The lipid suspension was forced through a lipid extruder
(Avanti Polar Lipids, Alabaster, AL, USA) equipped with a 100 nm polycarbonate filter
15 times in order to generate unilamellar artificial liposomes (final concentration 1 mg/mL
in 1 mM Bis/Tris buffer, pH 7.4, Sigma-Aldrich). Recombinant Hsp70 (1 mg/mL) was
incubated with the lipid solution for 30 min at room temperature. After adding of ultrapure
H2O, Hsp70-containing lipids were ultra-centrifuged at 200,000× g at 4 ◦C for 2 h and
pellets were subsequently resuspended in PBS (Life Technologies). Hsp70-containing and
Hsp70-free control lipid vesicles were used within 24 h after preparation. The presence
of Hsp70 protein in the pellet fraction, but not in the supernatant, confirmed the binding
of Hsp70 to lipid vesicles. The size and uniformity of the lipid vesicles were analyzed by
dynamic light scattering (Zetasizer NanoS; Malvern Instruments, Malvern, UK).

2.9. Collection of Human Plasma and Serum Samples

Blood samples (7.5 mL each) were taken from healthy donors (n = 108), and patients
with non-small cell lung cancer (NSCLC; n = 166) and glioblastoma multiforme (n = 34).
Blood samples were also collected from patients with lung cancer at diagnosis (n = 80),
during radiotherapy (after 20 Gy; n = 58) and after finishing radiotherapy (after 60–70 Gy;
n = 56). All study participants provided informed, written consent. Approval of the study
was obtained by the local ethical committees of the Klinikum rechts der Isar, Technical
University of Munich. Plasma was prepared from EDTA blood (S-Monovette, Sarstedt,
Nümbrecht, Germany) by centrifugation at 1500× g for 15 min at room temperature. Serum
was obtained after clotting of the blood for 30 min at room temperature in a serum separator
tube with clotting activator (S-Monovette, Sarstedt, Nümbrecht, Germany), followed by
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centrifugation at 750× g for 10 min. Serum and plasma were stored in aliquots (150 µL)
at −80 ◦C. To test the influence of food intake as a potential interference factor, serum
samples were collected from healthy human individuals before and 2 h after intake of a
high fat diet.

2.10. Biotinylation of the Detection Antibody

The cmHsp70.1 monoclonal antibody and its corresponding control antibody, hHSP70/
HSPA1A (Clone 242707), were biotinylated using EZ-link sulfo-NHS-LC-biotin (Thermo,
Rockford, IL, USA). After adjustment of the carbonate-buffer to pH 8.5, the antibody
solution was incubated with a 40-fold molar excess of NHS-LC-biotin for 1 h at room
temperature. The remaining free biotin was removed using Zeba spin desalting columns
(Thermo Fisher Scientific, Waltham, MA, USA). Protein concentrations of the antibodies
were determined using the BCA protein kit (Pierce, Thermo, Rockford, IL, USA) following
the manufacturer’s recommendations.

2.11. compHsp70 Sandwich ELISA

96-well MaxiSorp Nunc-Immuno plates (Thermo, Rochester, NY, USA) were coated
overnight by incubating with 1 µg/mL cmHsp70.2 (multimmune GmbH) in sodium car-
bonate buffer (0.1 M sodium carbonate, 0.1 M sodium hydrogen carbonate, pH 9.6; Sigma-
Aldrich). After washing with PBS (Life Technologies) supplemented with 0.05% Tween-20
(Calbiochem, Merck, Darmstadt, Germany), nonspecific binding was blocked by incubation
with liquid plate sealer (Candor Bioscience GmbH, Wangen i. Allgäu, Germany) for 30 min
at room temperature. Following another washing step, serum or plasma samples diluted in
StabilZyme Select Stabilizer (Diarect GmbH, Freiburg i. Breisgau, Germany), were added
to the wells and incubated for 30 min at room temperature. An eight-point concentration
standard curve of Hsp70 protein (0–100 ng/mL) diluted in StabilZyme Select Stabilizer
(Diarect GmbH, Freiburg i. Breisgau, Germany) was included in each assay. After another
washing step, wells were incubated with 200 ng/mL of the biotinylated cmHsp70.1 (multi-
mmune GmbH, Munich, Germany) in HRP-Protector (Candor Bioscience GmbH, Wangen
i. Allgäu, Germany) for 30 min at room temperature. Following a final washing step,
57 ng/mL horseradish peroxidase (HRP)-conjugated streptavidin (Senova GmbH, Weimar,
Germany), dissolved in HRP-Protector (Candor Bioscience GmbH, Wangen i. Allgäu, Ger-
many) was added for 30 min at room temperature. Colorimetric analysis was facilitated by
adding a substrate reagent (BioFX TMB Super Sensitive One Component HRP Microwell
Substrate, Surmodics, Inc., Eden Prairie, MN, USA) for 15 min at room temperature. The
colorimetric reaction was stopped by adding 2 N H2SO4 and absorbance read at 450 nm,
corrected by absorbance at 570 nm, in a Microplate Reader (VICTOR X4 Multilabel Plate
Reader, PerkinElmer, Waltham, MA, USA). As a control, soluble Hsp70 concentrations were
measured using the DuoSet® IC Human/Mouse/Rat Total Hsp70 ELISA (R&D Systems,
Minneapolis, MN, USA) following the manufacturer’s protocol. A comHsp70 ELISA kit is
currently under development by DRG Instruments GmbH, Marburg, Germany.

2.12. Isolation of Exosomes from EDTA Blood and Supernatants of Tumor Cells

Plasma isolated from EDTA blood (25 mL) was centrifuged (Thermoscientific Heraeus
Megafuge 16R) with 4800× g for 30 min at 4 ◦C to remove cell debris. Then plasma was
diluted 1:1 in ice-cold PBS (Life Technologies) and filtered through a 0.22 µm sterile filter
(TPP) and ultracentrifuged (Sorvall discovery M120) at 150,000× g for 8 h. After one
washing step in PBS and another ultracentrifugation for 4 h the pellet containing exosomes
were resuspended in PBS and protein content was evaluated by the BCA-based protein
assay. Exosomes were isolated from cell culture supernatants of 60–70% confluent tumor
cell lines, as described above. The amount of Hsp70 derived from exosomes of the FBS in
fresh medium was subtracted. Size and uniformity of the exosomes were characterized by
dynamic light scattering on a Zetasizer NanoS instrument (Malvern Instruments, Malvern,
UK) and by their protein content was determined by Western blot analysis using antibodies
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directed against β-actin (A228; Sigma-Aldrich), Hsp70 and Grp75 (SPS-825; StressMarq
Biosciences Inc.).

2.13. Validation of the compHsp70 ELISA

To determine intra-assay precision, 36 different control sera were run twice on a 96-
well ELISA plate. Inter-assay precision was assessed by running 39 serum samples in
duplicates on three different 96-well ELISA plates. The concentration of each sample was
determined, and the coefficient of variation (CV) was calculated using the ratio of standard
deviation divided by the mean value. The Limit of Detection (LoD) was calculated in
42 blank samples and 42 samples with the lowest concentration of recombinant Hsp70
(1.56 ng/mL) according to the Clinical Laboratory Standards Institute (CLSI) guideline
EP17-A, as described by Armbruster & Pry [46]. The Limit of Blank (LoB) was calculated as
follows: LoB = meanblank + 1.645 (SDblank) and the Limit of Detection (LoD) was calculated
according to the following equation: LoD = LoB + 1.645 (SDlow concentration sample). When
1.645 SD was used, no more than 5% of the values are less than the LoB. LoD is considered
verified if it meets this criterion. Recombinant Hsp70 and Hsp70 in artificial lipid vesicles
were measured in buffer and plasma of healthy donors. Recovery in plasma was assessed
by spiking defined amounts of Hsp70 or Hsp70-containing vesicles in StabilZyme Select
Stabilizer (Diarect GmbH, Freiburg i. Breisgau, Germany) into the plasma of healthy
volunteers at a dilution of 1:5. The basal Hsp70 concentrations of the plasma into which
the Hsp70 standards were spiked were subtracted from the values after spiking.

2.14. Statistical Tests

Data of all groups were compared using one-way analysis of variances (ANOVA) with
Tukey test for multiple comparisons (RStudio). The pairwise comparison of groups was
performed using a two-sided t-test (MS Excel), as recommended by our medical statistician.

3. Results
3.1. Epitope Mapping of the cmHsp70.1 and cmHsp70.2 Monoclonal Antibodies (mAbs)

Free Hsp70 in the circulation of tumor patients predominantly originates from dy-
ing cells, whereas exosomal Hsp70 is actively released by viable tumor cells. Currently
available Hsp70 ELISA systems are unable to quantify the amount of exosomal Hsp70 in
serum and plasma samples due to their inability to recognize an altered conformation of
lipid-bound Hsp70. Consequently, we have established a novel compHsp70 sandwich
ELISA, which is based on the cmHsp70.1 and cmHsp70.2 mAbs. Epitope mapping of
two antibodies using SPOT analysis [40,44,45] revealed that the recognition sites of both
antibodies are localized within the C-terminal substrate binding domain of Hsp70. The
predominant linear sequences of the antibody epitopes of the cmHsp70.1 and cmHsp70.2
mAbs are N-L-L-G-R-F-E-L-S-G (aa 454–461) [40] and A-G-G-P-G-P-G-G-F-G (aa 614–623,
as determined in the present study), respectively. A comparative inter-species analysis
of the complete aa sequence of the major-stress inducible Hsp70 (HSPA1A) using the
UniProt database in different species shows homologies of the human sequence with ca-
nine, rat, mouse and drosophila of 99%, 97% and 76%, respectively. The 8-mer epitope
of the cmHsp70.1 mAb (aa 454–461; N-L-L-G-R-F-E-L) in the HSPA1A sequence is 100%
identical in human, mouse, rat, dog, bovine, horse and pig, whereas a single aa exchange is
present in the respective sequence of human Hsp70 (HSPA1A) and the highly homologous
human Hsc70 (HSPA8) (aa 458; R to K). This aa exchange is also present in the HSPA1A
epitope sequence of zebrafish. Since the sequence of feline HSPA1A is not available, human
HSPA1A was compared to feline HSPA2, which shows two aa exchanges at positions
458 (R to K) and 460 (E to D). The inter-species similarities of the 10-mer sequence of the
cmHsp70.2 mAb (aa 614–623; A-G-G-P-G-P-G-G-F-G) containing the antibody epitope was
100% conserved in human and pig, but there are 2 aa exchanges at positions 616 and 619
in human versus mouse and rat (G to A and P to A, respectively). The aa exchange at
position 619 is also present in the relevant Hsp70 sequence of dog, bovine and horse. The
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10-mer sequence of human HSPA1A differs in 3 positions to that of feline HSPA2 (aa 615,
aa 620, aa 623) and in 5 positions in HSPA1A of human versus zebrafish (aa 614, aa 617,
aa 618, aa 619, aa 622) (Table 1). All documented exchanges in the different species are
conservative and nonpolar [47,48]. The epitope similarities of the cmHsp70.1 and Hsp70.2
mAbs indicates that, in addition to humans, the compHsp70 ELISA system is likely to
be capable of measuring free and exosomal Hsp70 in the blood of different mammalian
species, including dog, bovine, horse and pig.

Table 1. Comparison of Hsc70 (HSPA8) and Hsp70 (HSPA1A) and inter-species comparison of the 8-mer (aa 454–461) and
10-mer (aa 614–623) sequences of Hsp70 (HSPA1A) in humans and different other species based on the UniProt database.
The given HSP70 sequences contain the epitopes of the cmHsp70.1 and cmHsp70.2 mAbs. (*) For feline Hsp70, only the aa
sequence of HSPA2 is available. Amino acid (aa) exchanges are marked in grey.

Species UniProt ID
HSP70 Names Total aa Epitope of cmHsp70.1 (8-mer)

aa Sequence
Epitope of cmHsp70.2 (10-mer)

aa Sequence

Human P11142
HSPA8, Hsc70 646 N L L G K F E L

454–461
A G G M P G G M P G

614–623

Human P0DMV8
HSPA1A, Hsp70 641 N L L G R F E L

454–461
A G G P G P G G F G

614–623

Mouse Q61696
HSPA1A, Hsp70 641 N L L G R F E L

454–461
A G A P G A G G F G

614–623

Rat P0DMW0
HSPA1A, Hsp70 641 N L L G R F E L

454–461
A G A P G A G G F G

614–623

Dog Q7YQC6
HSPA1A, Hsp70 641 N L L G R F E L

454–461
A G G P G A G G F G

614–623

Bovine Q27975
HSPA1A, Hsp70 641 N L L G R F E L

454–461
A G G P G A G G F G

614–623

Horse F7DW69
HSPA1A, Hsp70 641 N L L G R F E L

454–461
A G G P G A G G F G

614–623

Pig P34930
HSPA1A, Hsp70 641 N L L G R F E L

454–461
A G G P G P G G F G

614–623

Cat M3W8G1
HSPA2 *, Hsp70.2 639 N L L G K F D L

457–463
Q G G P G G G G S G

615–624

Zebrafish B0S610
HSPA1A, Hsp70 643 N L L G K F E L

456–463
Q G G M P A G G C G

614–623

3.2. Affinities of cmHsp70.1 and cmHsp70.2 mAbs to Recombinant Hsp70 Protein

The KD values of the cmHsp70.1 and cmHsp70.2 mAbs to recombinant Hsp70 protein,
as determined by Microscale Thermophoresis (MST) measurements, were 0.42 nM and
0.44 nM, respectively (Figure 1a,b).
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3.3. Binding Characteristics and Specificities of Hsp70 Antibodies to Recombinant Hsp70 Protein,
Tumor Cell Lysates and Lipid-Bound Hsp70 Protein

The binding characteristics of the cmHsp70.1 and cmHsp70.2 mAbs with respect
to their capacity to detect free and lipid-bound Hsp70 were compared with those of
two commercially available Hsp70 control antibodies (ctrl Hsp70A, ctrl Hsp70B) using
Western and dot blot analysis of HSP proteins and flow cytometric analysis of viable,
membrane Hsp70-positive tumor cells. As shown in Figure 2a, all tested antibodies
detected recombinant Hsp70 protein (50 ng) and Hsp70 in tumor cell lysates (50 µg),
as determined by Western blot analysis. In contrast to the other antibodies ctrl Hsp70B
antibody detects in addition to Hsp70 (72kDa) also Hsc70 (73 kDa) as shown by a faint band
at 73 kDa. To determine the capacity of the different Hsp70 antibodies to detect membrane-
bound or liposomal Hsp70, flow cytometric analyses were performed using viable A549
(adenocarcinoma alveolar basal epithelial cells) and HCT116 (colon carcinoma) cells. Tumor
cells were incubated with equal amounts of FITC labeled cmHsp70.1, cmHsp70.2, ctrl
Hsp70A and ctrl Hsp70B antibodies; isotype-matched control antibodies served as negative
controls. A representative FACS analysis is shown in Figure 2b. A positive cell surface
staining using the antibodies cmHsp70.1 and cmHsp70.2 was detected in viable A549
(81.7 ± 6.6% vs. 80.0 ± 6.9%; n = 3) and HCT116 cells (90.5 ± 3.7% vs. 93.1 ± 4.5; n = 3).
In contrast, the ctrl Hsp70A and ctrl Hsp70B antibodies failed to detect membrane-bound
Hsp70 on the cell surface of either tumor cell line. Peripheral blood lymphocytes (PBL) of
healthy human donors (n = 5) exhibited no Hsp70 surface staining either with cmHsp70.1
(2.1 ± 1.4%) or cmHsp70.2 (1.5 ± 1.8%) mAbs. A representative example of a cell surface
staining of viable PBL with cmHsp70.1 and cmHsp70.2 is illustrated in Figure 2b.

Specificity of the antibodies was tested by dot blot analysis using bovine serum
albumin (BSA), Hsp27, Hsp60, Hsp70 and Hsc70 proteins at different concentrations
ranging from 100 ng to 0.1 ng against cmHsp70.1/2 and ctrl Hsp70A/B antibodies. In line
with the data of the Western blot, the dot blot analysis demonstrates that cmHsp70.1/2 and
ctrl Hsp70A antibodies specifically detect Hsp70, and do not cross-react with BSA or other
HSPs such as Hsp27, Hsp60 or the highly homologous Hsc70. In contrast, the ctrl Hsp70B
antibody reacts with both Hsc70 and Hsp70 at the two highest protein concentrations
(100 ng, 0.1 ng) (Figure 2c).
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(c)

Figure 2

Figure 2. Western blot of recombinant Hsp70 protein and tumor cell lysates, flow cytometric analysis of membrane-bound
Hsp70 on viable tumor cells, and dot blot analysis using BSA, recombinant Hsp27, Hsp60, Hsp70, Hsc70 as target proteins.
(a) Hsp70 protein and lysates of tumor cells were subjected to an SDS gel and blots were stained with cmHsp70.1, cmHsp70.2,
ctrl Hsp70A and ctrl Hsp70B antibodies. Representative immunoblots of recombinant Hsp70 (upper, 72 kDa) and tumor cell
lysates (lower) representing Hsp70 (72 kDa), Hsc70 (73 kDa) and β-actin (40 kDa) as a loading control are shown. Molecular
weight markers are indicating 70 kDa and 40 kDa. Detailed information about Western blot can be found at Supplementary
Materials. (b) Detection of membrane-bound Hsp70 on A549, HCT116 cell lines by flow cytometry using the cmHsp70.1,
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cmHsp70.2, ctrl Hsp70A and ctrl Hsp70B antibodies (white histograms). Staining with the respective isotype-matched
control antibodies is represented by grey histograms. As a control, PBL of healthy donors were stained with cmHsp70.1 and
cmHsp70.2 mAb. The numbers in the histograms indicate the proportion of Hsp70 positively stained cells. (c) Dot blot
analysis of BSA, recombinant Hsp27, Hsp60, Hsp70 and Hsc70 (100 ng, 10 ng, 1 ng, 0.1 ng) using cmHsp70.1, cmHsp70.2
and ctrl Hsp70B antibodies.

3.4. Calibration Curve and Inter- and Intra-Assay Precision of the compHsp70 ELISA Using
cmHsp70.1 and cmHsp70.2 mAbs

Since the cmHsp70.1 and cmHsp70.2 mAbs are able to bind both, free and membrane-
bound Hsp70, these antibodies were used to develop the compHsp70 sandwich ELISA.
Comparative analysis revealed that cmHsp70.2 mAb qualifies best as the coating antibody
and the cmHsp70.1 mAb as the detection antibody. An eight-point standard calibration
curve (0 to 100 ng/mL) was established using purified Hsp70 protein. A representative
calibration curve (0 to 100 ng/mL), its regression equation, and the coefficient of determi-
nation (R2 value) are illustrated in Figure 3. In 42 independent ELISA experiments, the
standard curve showed a high reproducibility with R2 values ranging between 0.974 and
1.000. The highest concentration of the standard (100 ng/mL) typically yielded a mean OD
of 2.26 ± 0.33 arbitrary units (a.u.). The linearity of the compHsp70 ELISA remains stable
within a concentration range of 1.56–25.00 ng/mL.
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The X-axis and Y-axis represent the OD (a.u.) and the Hsp70 protein concentration (ng/mL), respectively.

The intra-assay precision coefficients of variation (CV) ranged between 0.02% and
12.50%, as determined by analyzing 36 different serum samples in duplicate. The inter-assay
precision coefficient (CV) varied between 0.38% and 7.34%, as determined by analyzing
39 serum samples in duplicate in three independent ELISA experiments (Table 2).

Table 2. Assay performance of the compHsp70 ELISA.

Parameters Performance Mean Values

Linear range (ng/mL) 1.56–25.00

Intra-assay precision (% CV) 0.02–12.50 3.82%

Inter-assay precision (% CV) 0.38–7.34 3.64%

Recovery of Hsp70 (%)
buffer (2.5 ng)/plasma (15 ng) 105 ± 1/92 ± 9

Limit of Detection (LoD, ng/mL) 4.37

The recovery rates were determined after spiking different concentrations of recombi-
nant Hsp70 protein into buffer and plasma samples of healthy volunteers. After spiking
2.5 ng/mL Hsp70 into buffer, the recovery rate by the compHsp70 ELISA was 105 ± 1%.
After spiking 15 ng/mL Hsp70 into plasma samples, the recovery rate was 92 ± 9%.
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In the latter setting, the intrinsic Hsp70 content of the plasma sample was subtracted
from the measured value. To further characterize the compHsp70 ELISA, the Limit of
Detection (LoD), as calculated by using the equation LoD = LoB (Limit of Blank) + 1.645
(SDlow concentration sample), was determined to be 4.37 ng/mL (Table 2).

3.5. Recovery of Spiked Liposomal Hsp70 Using cmHsp70.1 and Ctrl Hsp70A mAbs as
Detection Antibodies

To evaluate the capacity of cmHsp70.1 and ctrl Hsp70A mAbs to detect lipid-bound
Hsp70 in the compHsp70 ELISA, artificially manufactured liposomes loaded with Hsp70
were prepared as artificial extracellular vesicle surrogates. Hsp70-loaded artificial lipo-
somes (liposomal Hsp70: 500 ng/mL) were spiked into the serum of healthy volunteers
and cmHsp70.2 mAb was used as a coating antibody in the ELISA. The recovery of li-
posomal Hsp70 using cmHsp70.1 and ctrl HSP70A mAbs as detection antibodies was
421.8 ± 34.6 ng/mL (black bar) and 113.2 ± 6.6 ng/mL (grey bar), respectively (Figure 4a),
which corresponds to recovery rates of 84.4 ± 9.9% (black bar) and 22.7 ± 1.3% (grey bar),
respectively (Figure 4b). These data indicate that the recovery of lipid-bound Hsp70 by
the cmHsp70.1 mAb was nearly four-fold higher than that of the ctrl Hsp70A mAb when
used as a detection antibody. The ctrl Hsp70B mAb was unable to detect any liposomal
Hsp70 when used as a detection antibody in an identical experimental setting. The ctrl
Hsp70A and ctrl Hsp70B mAbs also did not function as effective coating antibodies in the
compHsp70 ELISA.
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Figure 4. Detection and recovery of liposomal Hsp70 in serum. Quantification (a) and recovery (b) of lipid-bound Hsp70 in
artificial lipid vesicles (liposomal Hsp70: 500 ng/mL), as determined by the sandwich Hsp70 ELISA using the cmHsp70.2
mAb as a coating antibody, and cmHsp70.1 and ctrl Hsp70A mAbs as detection antibodies. The data represent mean values
of three independent experiments, *** p < 0.001, a two-sided t-test was used.

3.6. Impact of Interference Factors on Hsp70 Levels in the Blood Determined by the
compHsp70 ELISA

To investigate the robustness of the data obtained with the compHsp70 ELISA using
cmHsp70.2 mAb for coating and cmHsp70.1 mAb for detecting, serum and plasma samples
from 13 healthy volunteers were collected. As shown in Figure 5a, Hsp70 concentrations
measured in the plasma and serum by the compHsp70 ELISA were not significantly differ-
ent. These data indicate that the compHsp70 ELISA can measure free and vesicular Hsp70
in both plasma and serum samples. To determine the influence of food intake on the detec-
tion of Hsp70 in the blood, serum samples were taken from 17 healthy individuals before
and 2 h after an intake of a high fat diet. In all cases, serum Hsp70 concentrations before
and after food intake were the same (Figure 5b). Since the age of the donors might have an
impact on the Hsp70 concentrations in the circulation, plasma samples of 108 volunteers
in different age groups ranging from 21–77 years (Table 3) were analyzed. As shown in
Figure 5c, there was no significant correlation between plasma Hsp70 concentrations and
the age of the donors, as determined using the Pearson correlation test (R2 = 0.0781).
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concentrations in patients with HGG (91.8 ± 21.3 ng/mL) and NSCLC (332.2 ± 37.9 ng/mL) 
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Receiver Operating Characteristic (ROC) curve analysis compared serum Hsp70 concen-
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Figure 5. Interference factors potentially influencing the Hsp70 concentrations measured by the
compHsp70 ELISA. (a) Comparison of the Hsp70 concentrations in plasma and serum. Plasma (black
bars) and serum (grey bars) from 13 healthy individuals were taken at the same time. (b) Hsp70
concentrations in the serum of 17 healthy individuals taken before (black bars) and 2 h after a high
fat diet (grey bars). (c) Hsp70 concentration of 108 healthy volunteers in different age groups ranging
from 21–77 years. Characteristics of the healthy donors are summarized in Table 3. A Pearson
correlation test was performed.

3.7. Comparative Analysis of Hsp70 Concentrations in the Blood and Exosomes of Cancer Patients
and Healthy Donors

In a first clinical evaluation, serum Hsp70 concentrations in patients with non-small
cell lung carcinoma (NSCLC; n = 166) and high grade gliomas (HGG; n = 34; 26 primary,
8 relapse) were determined using the compHsp70 ELISA and compared to those in healthy
volunteers (n = 108). The assay was compared with samples of the same matrici. Serum
samples of healthy donors were diluted 1:5 in dilution buffer, whereas serum samples of
tumor patients with high Hsp70 levels were diluted 1:20. The mean serum Hsp70 con-
centrations in patients with HGG (91.8 ± 21.3 ng/mL) and NSCLC (332.2 ± 37.9 ng/mL)
were significantly higher than those in healthy volunteers (35.1 ± 4.0 ng/mL; Figure 6a).
Receiver Operating Characteristic (ROC) curve analysis compared serum Hsp70 concen-
trations of healthy individuals with those of NSCLC and HGG patients (Figure 6b). The
Area Under the Curve (AUC), the CI 95% value, the sensitivity and the specificity for a
cut-off value was 114 ng/mL for NSCLC and 6 ng/mL for HGG patients, as determined by
calculating the Youden-Index (Table 3). For validation, the assay was performed by at least
five skilled operators, on different days and with at least three different reagent lots.
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Table 3. Characteristics and mean Hsp70 concentrations of healthy donors and patients with NSCLC
and HGG. Used abbreviations in the Table: Area Under the Curve (AUC); Male (M); Female (F);
Confidence Interval (CI); high grade glioma (HGG); Non-small cell lung cancer (NSCLC); Receiver
Operating Characteristic (ROC); Standard Deviation (SD); Standard Error of the Mean (SEM). A
two-sided t-test was used.

Parameters Healthy Donors NSCLC HGG

Number (n) 108 166 34

Gender (m/f) 51/57 109/51 28/6

Age Mean 43 67 59

Range 21–77 41–91 21–84

SD 16 10 14

Median 44 67 60

compHsp70 ELISA Mean Hsp70 (ng/mL) 35.06 332.19 91.82

SEM 3.99 37.90 21.28

ROC AUC (CI 95%) 0.88 0.62

p-value <0.00001 0.03

Sensitivity (%) 68 91

Specificity (%) 94 33

Threshold (ng/mL) 114 6

The lower specificity in HGG vs. NSCLC could be explained by lower values of Hsp70
in HGG caused by the blood brain barrier, which limits the transport of vesicular Hsp70
into the circulation.

Patients with NSCLC were classified according to their histology (squamous cell
carcinoma, adeno carcinoma) and tumor stage (stage I to IV). Mean Hsp70 concentrations
were given in tumor subgroups containing more than 4 patients (Table 4).

Table 4. Histology, tumor stage and mean Hsp70 values of squamous cell and adeno non-small cell
lung cancer (NSCLC) patients. Data uncertainty is given as Standard Error of the Mean (SEM). An
asterisk marks statistically significant differences between NSCLC stage III and IV, as determined by
the one-way analysis of variance (ANOVA) with the Tukey test for multiple comparisons in RStudio;
* p < 0.05.

Histology Stage Number of Cases (n) compHsp70 ELISA
Hsp70 (ng/mL)

Squamous cell carcinoma I 2

Squamous cell carcinoma II 4

Squamous cell carcinoma III 59 234.4 ± 29.2

Squamous cell carcinoma IV 12 321.2 ± 68.8

Squamous cell carcinoma Not specified 5 249.9 ± 64.4

Adeno carcinoma I 1

Adeno carcinoma II 1

Adeno carcinoma III 24 260.3 ± 75.3

Adeno carcinoma IV 29 561.3 ± 173.4 *

Adeno carcinoma Not specified 2

Not otherwise specified Not specified 27 336.1 ± 65.0
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Compared to healthy individuals (35 ± 3.99 ng/mL; n = 108), serum Hsp70 levels
were significantly higher in patients with stage III and IV squamous cell carcinoma of the
lung (234.4 ± 29.2 ng/mL and 321.2 ± 68.8 ng/mL, respectively) as well as in patients
with stage III and IV adeno lung carcinoma (260.3 ± 75.3 ng/mL and 561.3 ± 173.4 ng/mL,
respectively). For both tumor entities, Hsp70 concentrations were higher in patients
with stage IV disease than those with stage III disease (* p < 0.05). Furthermore, Hsp70
concentrations were higher in patients with adeno than squamous cell carcinoma histology,
although these differences did not reach statistical significance (Figure 6c).

In addition to measuring circulating Hsp70 concentrations in tumor patients at diag-
nosis, Hsp70 levels were determined in responding patients with NSCLC before, during
and after completion of radiotherapy. Blood samples were collected from patients before
radiotherapy, during radiotherapy (after approximately 20 Gy; range 18–22.5 Gy) and
directly after completion of radiotherapy (60–70 Gy). Hsp70 concentrations before radio-
therapy (494.1 ± 72.2 ng/mL; n = 80), during radiotherapy (310.5 ± 36.8 ng/mL; n = 58)
and after completion of radiotherapy (380.0 ± 51.8 ng/mL; n = 56) were significantly
higher than those of healthy individuals (35.1 ± 3.99 ng/mL; n = 108) when measured
using the compHsp70 ELISA (Figure 6d). After receiving a radiation dose of approxi-
mately 20 Gy (range 18–22.5 Gy) Hsp70 levels dropped significantly from 494.1 ± 72.2 to
310.5 ± 36.8 ng/mL. After completion of radiotherapy (60–70 Gy) the Hsp70 concentration
was 380.0 ± 51.8 ng/mL. Hsp70 values measured with a control Hsp70 ELISA that only
detects free Hsp70 were significantly lower and did not differ in the course of therapy
(NSCLC before RT: 4.5 ± 1.3 ng/mL; n = 80; during RT: 3.5 ± 1.0 ng/mL; n = 58; after RT:
3.8 ± 1.2 ng/mL; n = 56).

The Hsp70 content was also assessed comparatively in exosomes isolated from
the EDTA-blood of a healthy human donor, a tumor patient with squamous cell carci-
noma (Figure 6e) and the supernatant of a tumor cell line grown at a 60–70% confluency
(Figure 6f). Size and purity of plasma-derived exosomes was demonstrated by size distri-
bution intensity measurements (Figure 6e, upper). Dynamic light scattering measurements
revealed comparable patterns in the size distribution of exosomes of a healthy human
donor and a tumor patient. The size of the main particle fraction was determined as
88 ± 48 nm with an intensity of 86.5% of the total particle content in the healthy donor,
which was accompanied by a second peak at 14 ± 4 nm at an intensity of 13.5%. For the
tumor patient, the size distribution revealed peaks at 86 ± 38 nm (intensity 84%) and a
second peak at 12 ± 3 nm (intensity of 14%) (Figure 6e, upper). The exosomal Hsp70
levels measured with the compHsp70 ELISA were more than five-fold higher in the tumor
patient compared to the healthy human donor (Figure 6e, lower). The ctrl Hsp70 ELISA
neither detected any significant amounts of exosomal Hsp70 in the plasma of the tumor
patient nor of the healthy human donor (Figure 6e). Similar results were obtained with
exosomes derived from the supernatant of a tumor cell line. The compHsp70 ELISA, but
not the control ELISA was able to detect exosomal Hsp70 derived from the supernatant
of membrane Hsp70-positive tumor cells grown at a 60–70% confluency. As expected, the
exosomal fraction contained only cytosolic proteins (β-actin, Hsp70 determined by ELISA),
whereas the corresponding tumor cell lysate contained cytosolic (β-actin) and ER-residing
(Grp75) proteins.
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Figure 6. Serum and exosomal Hsp70 concentrations in healthy donors and tumor patients. (a) Serum Hsp70 concentrations
in healthy individuals (n = 108), patients with NSCLC (n = 166) and HGG (n = 34), as measured using the compHsp70
ELISA. Significantly higher Hsp70 levels were found in both tumor patient cohorts compared to healthy controls (* p < 0.05,
*** p < 0.001, Mann-Whitney U Test). (b) ROC curve analysis using the data shown in (a). (c) Serum Hsp70 concentrations
in squamous cell carcinoma patients stage III (234.4 ± 29.2 ng/mL; n = 59) and IV (321.2 ± 68.8 ng/mL; n = 12) as well
as adeno carcinoma patients stage III (260.3 ± 75.3 ng/mL; n = 24) and IV (561.3 ± 173.4 ng/mL; n = 29) compared to
Hsp70 levels of healthy individuals (35.1 ± 3.99 ng/mL; n = 108) (p < 0.001, two-sided t-test). Differences in serum Hsp70
concentrations in adeno carcinoma stage III and IV were significantly different (* p < 0.05; ANOVA Tukey test) (d) Serum
Hsp70 concentrations in patients before radiotherapy (Before RT; 494.1 ± 72.2 ng/mL; n = 80), during radiotherapy (During
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RT; 310.5 ± 36.8 ng/mL; after approximately 20 Gy; n = 58) and after radiotherapy (After RT; 380.0 ± 51.8 ng/mL; n = 56),
compared to healthy individuals (Healthy; 35.1 ± 4.0 ng/mL; n = 108), as measured by the compHsp70 ELISA (*** p < 0.001,
t-test). Following a dose of approximately 20 Gy (range 18–22.5 Gy), the Hsp70 levels dropped significantly from 494.1
± 72.2 to 310.5 ± 36.8 ng/mL (* p < 0.05, t-test). For pairwise comparisons, two-sided t-test was applied, for comparison
of all groups, ANOVA Tukey test was used. (e) Hsp70 content in exosomes isolated from the plasma of a healthy control
donor, a tumor patient, as determined by the compHsp70 ELISA and a control (ctrl) Hsp70 ELISA that only detects free
Hsp70. Size and purity of the plasma-derived exosomes from the plasma was determined by dynamic light scattering. (f)
Hsp70 content in exosomes isolated from the supernatant of tumor cells, as determined by the compHsp70 ELISA and a
control (ctrl) Hsp70 ELISA and protein content in tumor cell lysates and exosomes, as determined by Western blot analysis.
Detailed information about Western blot can be found at Supplementary Materials.

4. Discussion

Liquid biomarkers detecting tumor-derived factors (e.g., proteins, small extracellular
vesicles, circulating tumor DNA, circulating tumor cells or circulating microRNAs) have
the potential to improve tumor detection, diagnosis, prognosis, and the prediction of
therapeutic responses [49,50]. Another advantage of liquid biopsies is the possibility of a
repeated sample collection using a minimally invasive method. Circulating biomarkers
could provide clinically relevant information about the pathophysiology of the tumor, re-
sponse to radio- and/or chemotherapies, and insight into the risk of developing metastatic
disease and/or relapse, in real-time. Therefore, liquid biomarkers might enable a more
accurate patient stratification and better-tailored therapy decisions. Presently, only a few
circulating protein-based biomarkers with relatively low specificities (e.g., cytokeratin
19 fragment (CYFRA 21-1, specificity 76%), carcinoma embryonic antigen (CEA, speci-
ficity 52%), carbohydrate antigen 125 (CA125, specificity 52%), carbohydrate antigen 153
(CA153), carbohydrate antigen 199 (CA199) and neuron-specific enolase (NSE, specificity
22%)) have been incorporated into clinical practice for NSCLC [51–56]. However, as single
markers their prognostic value is controversially discussed, and their use is often limited
to certain tumor subtypes [57].

This study has established a novel compHsp70 sandwich ELISA, which is based
on two monoclonal antibodies that can be produced in unlimited amounts with a high
quality and a reproducible specificity and sensitivity. The Hsp70 values derived with a
previously established Hsp70 ELISA system based on only one monoclonal antibody and a
polyclonal rabbit antiserum were generally lower and due to variations in the polyclonal
Hsp70 rabbit antiserum the values were not stable. Both monoclonal antibodies cmHsp70.1
and cmHsp70.2 are able to detect free and vesicular Hsp70. Free Hsp70 predominantly
origins from dying tumor cells, whereas Hsp70 in small extracellular vesicles is actively
released by a large variety of highly aggressive, membrane Hsp70-positive viable tumor
cells [31]. Vesicular Hsp70 might therefore be a valuable biomarker for determining the
viable tumor mass at diagnosis and during or after therapy in different tumor entities.
Most commercially available Hsp70 ELISA systems are validated only for the detection
of free Hsp70 in aqueous solutions. The compHsp70 ELISA allows the quantification of
tumor-derived Hsp70 in serum and plasma with high precision and linearity in a clinically
relevant concentration range. The specificity of the ELISA is documented by the fact
that both compHsp70 ELISA antibodies only detect the major-stress inducible Hsp70
(HSPA1A), but do not cross-react with other HSP proteins such as Hsp27, Hsp60 or its
highly homologous constitutively expressed family member, Hsc70 (HSPA8). Due to a high
inter-species homology, the epitopes of the two Hsp70 ELISA antibodies are conserved in
different species and therefore, the compHsp70 ELISA might qualify to measure circulating
Hsp70 in different species.

An impact of different factors such as lifestyle, age and gender on levels measured by
the comHsp70 ELISA was excluded as the analysis of serum and plasma samples of 108
healthy individuals in different age groups before and after intake of a high fat diet did not
reveal any significant correlations.
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Compared to healthy individuals, patients with late-stage squamous cell and adeno
carcinoma of the lung and gliomas revealed significantly higher Hsp70 levels in the circu-
lation at diagnosis. Since a major part (approximately 100-fold more than free Hsp70) of
extracellular Hsp70 originates from small extracellular vesicles and since the compHsp70
ELISA was shown to reliably detect spiked liposomal Hsp70 with a high sensitivity in
the blood, it is very likely that elevated Hsp70 levels in the circulation of patients reflect
the viable tumor mass. These data are in line with other studies reporting on elevated
levels of chaperone-containing vesicles in tumor patients. Extracellular vesicles of un-
stressed and stressed tumors fulfill many different tasks including mediating cytotoxic
anti-cancer immune responses [58,59], increasing tumor cell motility and growth, eliciting
tumor-specific immunity, promoting angiogenesis [60,61], inducing Th17 cells, eliciting
NK cell mediated immunity [62,63] and transferring therapy resistance [64]. In our study,
significantly higher Hsp70 levels were detected in patients with squamous cell carcinoma
of the lung (p < 0.001) and glioblastoma (p < 0.03) compared to healthy individuals. HGG
Hsp70 was also detectable in the liquor of patients, but at low levels. Moreover, the Hsp70
levels increase with higher tumor stages and thereby might serve as a biomarker for risk
assessment. Subsequent receiver operating characteristic (ROC) curve analysis allowed
a discrimination of Hsp70 serum levels in lung and brain cancer patients and healthy
individuals. Given that, in addition to lung and brain tumors, membrane-Hsp70 is also
present on the plasma membrane of a large variety of different other tumor types from
which it is released into the extracellular milieu, it is reasonable to assume that extracellular
Hsp70 might serve as a universal tumor biomarker in a broad range of cancer entities.

As previously reported [34,65], blood Hsp70 levels correlate with the intracellular
Hsp70 levels and match the membrane-Hsp70 status of the tumor cells from which they
originate. In this study, we observed a significant decrease in the extracellular Hsp70 levels
in patients with lung carcinoma during (after approximately 20 Gy) and after completion
of radiotherapy (60–70 Gy). In contrast, no significant drop in Hsp70 values was detected
after radiotherapy when a commercial Hsp70 ELISA was used, and the values measured
with the novel compHsp70 ELISA were approximately more than 100-fold higher. The
decrease in circulating Hsp70 in the peripheral blood of responding tumor patients likely
indicates a reduction in viable tumor mass in response to ionizing radiation. The minor, but
not significant, increase of Hsp70 after completion of radiotherapy most likely attributes
to an increased presence of free Hsp70 in the circulation derived from dying tumor cells
and radiation-induced inflammation. To demonstrate that the circulating Hsp70 in tumor
patients, which is detected by the compHsp70 ELISA originates from exosomes we isolated
extracellular vesicles from a tumor patient, the supernatant of a membrane Hsp70-positive
tumor cell line and a healthy control donor. Size distribution and protein content character-
ized the isolated extracellular vesicles as exosomes. A comparison of the Hsp70 content
in isolated exosomes revealed more than five-fold higher Hsp70 levels in plasma-derived
exosomes of a tumor patient compared to that of a healthy individual. Hsp70 can be
measured with the compHsp70 ELISA also in the exosomal fraction derived from the cell
culture medium of the membrane Hsp70-positive tumor cell line. As a control, no Hsp70 is
detected in any of the exosomal fractions with a control Hsp70 ELISA, which is known to
react only with free Hsp70.

In line with our findings, a prospective clinical study including patients with solid
tumors (breast and NSCLC) has demonstrated exosomal Hsp70 levels to inversely correlate
with therapeutic response [66]. In this study, a protocol that allows the isolation of small
extracellular vesicles from plasma samples of patients for a molecular characterization of
exosomal proteins was established. However, the complexity and time-consuming nature
of isolating these vesicles limits its clinical application. The simultaneous evaluation of free
and exosomal Hsp70 in serum and plasma of tumor patients using the compHsp70 ELISA
might provide valuable and actionable clinical information for predicting therapeutic
outcome in the future.
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Herein, we demonstrate that exosomal Hsp70 levels might qualify for estimating
the clinical response to radiotherapy in lung carcinomas with adeno and squamous cell
histologies, since patients who responded to radiotherapy showed a drop in exosomal
Hsp70 levels. In previous studies we could show that exosomal Hsp70 values correlate with
the gross tumor volume [65] and a combined assessment of Hsp70 and the hypoxia-related
marker osteopontin is superior in predicting clinical responses in NSCLC patients [67].
Therefore, monitoring the dynamics of Hsp70 together with other tumor biomarkers in
circulation during therapy might allow a faster therapy adaptation and thereby contribute
to a better outcome. Interference with isocitrate dehydrogenase (IDH) provides a promising
strategy in the treatment of HGG. Preclinical studies demonstrated that inhibitors of mutant
IDH-1 and IDH-2 prevent the accumulation of the oncometabolite d-2-hydroxyglutarate
(2-HG) in HGG [68]. Vorasidenib (AG-881) inhibits the production of 2-HG in glioma
tissue by >97% in an orthotopic glioma mouse model [69]. In a case report, treatment
with ivosidenib showed an improved seizure control and radiographic stable disease in a
glioblastoma patient for more than 4 years [70]. An IDH1 (R132H)-specific peptide vaccine
(IDH-1-vac) inducing a tumor-specific T helper cell response demonstrated efficacy in
IDH-1(R132H)+ tumors in preclinical models and a first-in-man clinical trial [71].

Since extracellular Hsp70 serves as a surrogate for the Hsp70 membrane status of
the tumor, theranostic approaches [72] targeting membrane Hsp70-positive tumors using
antibodies, immune effector cells [73] and other approaches based on targeting membrane-
Hsp70 could be based on the data derived with the compHsp70 ELISA. Despite promising
results, longitudinal follow-up studies with different patient cohorts are necessary to fully
evaluate and validate the clinical value of using the compHsp70 ELISA for monitoring
tumor recurrence and metastasis and for the correlation of exosomal Hsp70 levels with
progression-free survival (PFS) and overall survival (OS) in cancer patients. The prognostic
value can be further increased by combining the data on exosomal Hsp70 with that of other
biomarkers in liquid biopsies such as circulating free tumor cell DNA and/or mircoRNA
that have been found to be informative for prediction of responses to EFGR inhibitor
therapies in NSCLC. However, a major limitation of these biomarkers are false negative
results, which are caused by different factors including the low signal-to-noise ratio and the
short half-life (<1.5 h) of the circulating DNA/RNA [74]. When soluble Hsp70 is used as a
biomarker tumor progression can be assessed because Hsp70 is predominantly released
by viable tumor cells, and therefore Hsp70 might serve as biomarker for the viable tumor
mass [65]. Furthermore, the half-life of the circulation of Hsp70 (particularly under stress
conditions) is much longer (in the range of 7 h) than that of ctDNA (<1.5 h) [75]. In this
regard, soluble Hsp70 provides a relatively stable tumor biomarker in the blood, which
enables the assessment of the viable tumor mass, and therefore might be able to predict
tumor responses.

This hypothesis is in line with a report of Tomita et al., which has shown that the
combined monitoring of CYFRA 21-1 and CEA, as relevant biomarkers in patients with
NSCLC, improves prognostic relevance [76].

5. Conclusions

The novel compHsp70 ELISA presented herein provides a reliable and robust tool to
quantify free and vesicular Hsp70 in the serum and plasma of cancer patients, levels of
which might reflect the presence and risk characteristics of tumors, their membrane-Hsp70
status and therapeutic response.
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