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Abstract: Research Highlights: The spatial distribution of trees results from several ecological
processes that can be difficult to measure. We applied a point process modelling approach that uses
the diameter and species of neighbouring trees to represent inter-tree interactions through repulsive
and attractive processes. Thinning treatments slightly influence the tree spatial distribution of trees in
white spruce plantations. Integrating this “spatialiser” into growth models could help improve stand
simulations following various thinning treatments over larger areas and longer periods. It could
also allow for the use of spatially explicit models when tree position is not available. Background
and Objectives: Tree spatial patterns result from several ecological processes and have important
implications in forest ecology and management. The use of spatial information can significantly
improve our understanding of forest structures. However, this implies intensive field work that is
rarely integrated into forest inventories. The aims of this study were to develop a spatial distribution
simulator of trees in white spruce plantations and to evaluate the influence of thinning treatments.
Materials and Methods: A point process modelling approach was used to represent inter-tree
interactions through repulsive and attractive process in white spruce (Picea glauca (Moench) Voss)
plantations in eastern Quebec, Canada, that had been commercially thinned five years ago. Balsam
fir (Abies balsamea (L.) Mill.) and hardwoods together can represent 30–40% of the basal area of these
plantations. Results: The diameter and species of each tree’s two closest neighbours were found
to be the most important predictors in explaining the observed distances between trees. Despite
the short period since thinning treatments, results showed that the treatment had slight significant
effects on tree interactions. However, their impact on the global spatial distribution of stands is quite
limited. Conclusions: Using only a few readily-available variables (species and diameter of trees),
this “spatialiser” will make it possible to assign spatial coordinates to trees and generate realistic
stand spatial structures even after various silvicultural treatments.

Keywords: spatial pattern modelling; point process model; thinning treatment; white spruce planta-
tion simulation; inter-tree interactions; nearest neighbour

1. Introduction

The distance between a tree and its closest neighbours has important implications
in forest ecology and management [1,2]. As forest dynamics (growth, mortality, and
recruitment) are influenced by competitive processes between neighbouring trees for access
to resources [3], the use of spatial information can significantly improve the understanding
of forest structure [4]. However, since obtaining tree spatial coordinates requires intensive
field work in addition to the usual field measurements (e.g., tree diameter, height, and
species), spatial variables are rarely integrated into forest inventories. Assigning spatial

Forests 2021, 12, 740. https://doi.org/10.3390/f12060740 https://www.mdpi.com/journal/forests

https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-3536-2971
https://orcid.org/0000-0003-1706-7909
https://orcid.org/0000-0002-4958-1868
https://doi.org/10.3390/f12060740
https://doi.org/10.3390/f12060740
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/f12060740
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f12060740?type=check_update&version=2


Forests 2021, 12, 740 2 of 20

coordinates to trees from non-spatialised inventories could be an interesting alternative to
measuring them in the field [5,6] but requires applying spatially explicit forest simulators to
either national forest inventory or management surveys. Otherwise, airborne or terrestrial
lidar scanners can produce spatial information with a high degree of precision [7]. Though
data acquisition remains expensive, constant cost reductions could increase its affordability
over time. Hence, variables determined using lidar could perhaps be used in growth
models and management plans.

Tree spatial patterns within stands result from several ecological processes [8]. First,
their observed distribution is conditioned by each species’ ability to disperse seeds [9] or
to reproduce vegetatively through suckers [10], sprouts [11], or layers [12]. Second, seed
germination and the growth of seedlings and suckers require suitable microsites and are
influenced by local competition with neighbouring trees, predation, and the amount of
available resources [13]. Third, tree mortality can disrupt canopy structure by creating
very small to large openings, thus affecting local light environment and competition [14].
All these processes contribute to tree- or stand-level spatial structure. These are, however,
difficult to study directly and often require long-term monitoring.

Statistical approaches such as point pattern analysis [15], regional analysis, and geo-
statistical modelling are often used to understand and model tree positions within a
stand [16,17]. Since the observed spatial structure is the result of many abiotic factors and
biological processes that affect trees during their lifetime, these observations can also be
mathematically analysed through statistical descriptions of current tree positions [18]. The
position of trees is affected by both repulsion and attraction processes through exclusion
and regeneration, respectively. Repulsion was first accounted for by pairwise interacting
point processes [6,19]. For more realism, attraction processes were then added through
interacting neighbour point processes [20]. These models can describe negative or positive
interactions between trees, as well as random, regular, and clustered patterns [18]. Stand
characteristics can be used to model these interactions [21] and these point processes to
generate spatial tree patterns and to simulate realistic stand structures [18,22].

Knowledge of tree spatial distribution within a stand can help understand tree growth
and guide silvicultural choices [6]. In addition, spatial distribution is a component of
structural complexity that is key to many compositional and functional roles played by
forests, such as habitats for wildlife [23,24]. In the province of Quebec, Canada, public
forest management must be ecosystem-based [25], with the objective to reduce the differ-
ences between natural and managed landscapes so that the harvest maintains ecosystem
structure and functions [26]. In natural stands, ecosystem dynamics are determined by nat-
ural processes and disturbances of various intensities (insect epidemics, fires, windthrow,
senescence, self-thinning, etc.) [27,28] that result in stands with heterogeneous and ir-
regular structures [29,30]. Important disturbances can also create stands with regular
structures. Compared to naturally driven dynamics, forest management through regu-
larly spaced harvests tends to unify stand internal structure. Logging deeply modified
the composition and structure of Eastern Canadian forests [31,32]. These changes are
generally larger in plantations, in which forest structure and dynamics are highly altered.
However, the current Eastern Canadian forest had long management history and it would
be incorrect to use it as a reference for its natural state [33]. In the Bas-Saint-Laurent
region (Quebec), balsam fir (Abies balsamea (L.) Mill.) and hardwoods now dominate
forests that were unmanaged in the past. However, the composition of these forests has
changed since their first harvesting [32]. Indeed, certain species such as eastern white cedar
(Thuja occidentalis L.), red spruce (Picea rubens Sarg.), white spruce (Picea glauca [Moench]
Voss), white pine (Pinus strobus L.), and red pine (Pinus resinosa Aiton) have become rar-
efied, and their decrease in abundance has become a biodiversity issue [34].

Applying ecosystem-based management guidelines requires adjusting silvicultural
interventions and understanding forest composition, structure, and functions at the patch,
stand, and landscape scales [35]. The conversion of some of the even-aged, managed forests
into irregular or uneven-aged stands has been proposed to reduce the differences between
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managed and unmanaged forests [28,29,36,37]. In addition to their wood production objec-
tive, treatments are meant to restore or maintain some of the declining species such as white
spruce [34]. Schütz [38] showed that stand conversion can be achieved through a distinct
succession of steps that include (1) modifying stand dynamics by altering competition,
(2) promoting long-lived species regeneration by creating local opening, (3) managing
structural development, and (4) repeating silvicultural interventions over time to create
and maintain an irregular/uneven-aged structure. However, the effects of these steps need
to be studied in the short and long term. In the Bas-Saint-Laurent region, the management
of a portion of the current even-aged stands will shift toward an irregular/uneven-aged
path. For this purpose, commercial thinning approaches of various intensities were tested.

The aim of this study was to develop a spatial distribution simulator of trees in white
spruce plantations that would work according to a point process approach in order to
generate a precise stand spatial structure and to integrate parameterised models for all
species. Our first objective was to analyse and to model local intra- and interspecific spatial
interactions. Our second objective was to evaluate the influence of thinning treatments
on spatial structure and then to use the “spatialiser” to simulate stands treated with
various thinning approaches and to determine how these treatments immediately affect
stand structure.

2. Materials and Methods
2.1. Study Site

The plantations used in this study are located in the eastern balsam fir–yellow birch
bioclimatic subdomain of the boreal mixed wood zone [39] in eastern Quebec, Canada. In
this area, forests are characterised by mixed stands of yellow birch (Betula alleghaniensis
Britton), balsam fir, white spruce, and eastern white cedar [40]. Some other hardwoods that
can be locally observed include trembling aspen (Populus tremuloides Michx.), paper birch
(Betula papyrifera Marshall), red maple (Acer rubrum L.), and sugar maple (Acer saccharum
Marshall). A total of 66 sample plots were used to model tree spatial distribution. These
plots are part of 2 commercial thinning trials that compare various treatments (TrT): a
thinning from below (TrT1/3), in which the smallest trees were cut while ensuring equal
spacing between the remaining trees; a crop tree release thinning (TrTCT), in which the
competition was removed 3 m around either 50 or 100 dominant trees per hectare [41]; and
a thinning with priority selection of balsam fir (TrTBF), in which all balsam fir trees were
harvested. Both experiments also included an untreated control (TrT0).

The first trial included 40 plots in 2 operational white spruce plantations. Plots
(15 × 30 m; area: 450 m2) were mainly composed of planted white spruce (78% stand basal
area) with a natural regeneration of white spruce at the sapling stage, balsam fir (21%), and
hardwood (1%). One of 3 commercial thinning treatments was randomly assigned to each
plot: (TrT0 (10 plots), TrT1/3 (10 plots), or TrTCT (20 plots).

The second trial included 26 plots (15 × 60 m; area: 900 m2) in 2 other operational
white spruce plantations. Despite some disparities among plots regarding tree density,
diameter structure, and species proportions, the plantations were mainly composed of
white spruce (89% of stand basal area), with a natural regeneration of white spruce at
the sapling stage, balsam fir (6%), and hardwood (5%). One of 4 commercial thinning
treatments was randomly assigned to each plot: TrT0 (5 plots), TrT1/3 (9 plots), TrTCT
(3 plots), or TrTBF (9 plots).

2.2. Data Acquisition

Considering the large area of the plots, the quantity of trees to be positioned, and the
difficulty of manually positioning them, the use of terrestrial lidar was preferred to obtain
the most precise spatial coordinates of all trees (including saplings). Terrestrial lidar is a
powerful technology for capturing the three-dimensional structure of forests with a high
level of precision [42,43]. All plots were scanned immediately after treatment with a Faro®

Focus 3D terrestrial laser scanner (TLS). Thirteen scans were done per plot to obtain full
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plot coverage and to minimise occlusion. Spherical targets (at least 3 seen from each scan
position) were placed throughout the plot and used for scan registration. These multiple
scans were then aligned to create a single 3-dimensional point cloud with the Faro® Scene
5.0 software (FARO Technologies, Rugby, Warwickshire, UK).

We used the point cloud to map the coordinates of each tree in each plot (Figure 1). To
do so, we imported the point clouds in the R programming environment [44]. We produced
a digital terrain model from the points with the lowest altitude and reconstructed the
ground surface with a Delaunay triangulation using the lidR package [45]. Then, we ex-
tracted a 20 cm slice of points centred at 1.30 m above the ground. To eliminate returns due
to the branches, the 20 cm slice was rasterised on the XY plan into 1 × 1 cm rasters. We took
advantage of the fact that rasters with points from a stem have a higher density than those
with branches to derive a threshold for cleaning the data from raster that did not contain
stems. The remaining points were clustered using density-based algorithms implemented
in the DBSCAN package [46]. Finally, we automatically adjusted a circle to the points
in the cluster to measure the diameter at breast height (DBH; measured at 1.3 m) and to
obtain the XY coordinates of all the trees with a DBH greater than 1 cm. We corrected some
DBH mis-adjustments (e.g., to add missing trees or delete clusters not belonging to trees)
following a manual visual validation. Since no efficient algorithms to recognise species
via TLS were available, species were conventionally tallied and then merged into 3 groups
(Gsp): white spruce (WS), balsam fir (BF), and merchantable hardwoods (HW). The HW
group included paper birch, yellow birch, sugar maple, red maple, ash (Fraxinus sp.), and
trembling aspen. Some rare species (e.g., eastern white cedar, Thuja occidentalis L.) and
non-commercial hardwoods (e.g., elderberry (Sambucus nigra ssp. canadensis (L.) R. Bolli),
rowan (Sorbus aucuparia L.), and speckled alder (Alnus incana ssp. rugosa (Du Roi) R.T.
Clausen)) were not considered in the analysis.

Figure 1. Tree map of the 3 groups of species for one of the 900 m2 plots of the second experiment.

A total of 10,696 trees were kept for the analysis. In order to deal with border effects,
we used all border trees (i.e., those located within 1.5 m of the plot edges) as neighbours to
calculate the distances between neighbours. These distances were also used to calculate
the Clark and Evans index [6,47] (Equation (1)), which describes the aggregation of trees
at the stand level. This index was calculated for each Gsp (RWS, RBF, and RHW) and all
trees (including saplings and merchantable trees) (Table 1). A value below 1 indicated a
tendency to cluster, a value close to 1 as associated with a random distribution, and a value
above 1 indicated a regular distribution.

RGsp =
Robs
Rtheo

with ∼


Robs =

∑N
i=1 ri
N

Rtheo = 1

2
√

N
Area

(1)

where N represents the number of trees for a given Gsp and ri is the distance between tree
i and its closest neighbour of the same Gsp.



Forests 2021, 12, 740 5 of 20

Table 1. Mean characteristics (minimum–maximum) of stands by treatment for all commercial species (total), white spruce, balsam fir, and hardwoods.

TrT0 (Control) TrTCT (Crop Tree Release Thinning)

Total White Spruce Balsam Fir Hardwoods Total White Spruce Balsam Fir Hardwoods

Quadratic diameter
(cm)

All trees 15.1 [11.8–17.2] 15.5 [13.3–17.5] 14.0 [8.8–21.6] 8.5 [5.5–13.5] 15.4 [13.4–18.4] 15.8 [14.2–18.2] 15.2 [7.8–22.9] 8.0 [5.3–10.8]
Saplings 6.4 [4.8–7.6] 6.7 [5.5–7.5] 5.9 [3.6–8.0] 5.3 [3.7–7.0] 7.0 [5.2–7.9] 7.2 [5.5–8.4] 6.4 [2.1–8.7] 6.0 [4.2–7.7]

Merchantable trees 16.8 [14.8–17.8] 16.7 [14.9–18.1] 16.3 [12.4–21.6] 14.5 [9.8–22.9] 16.6 [15.0–19.0] 16.4 [15.1–18.6] 17.6 [10.4–22.9] 12.6 [9.2–16.0]

Stand density
(trees per ha)

All trees 2247 [1544–3134] 1719 [951–2283] 360 [94–1054] 168 [0–886] 1994 [1166–2754] 1524 [827–2270] 377 [42–1317] 93 [0–497]
Saplings 537 [121–1715] 301 [55–714] 105 [0–219] 131 [0–781] 344 [67–801] 164 [28–333] 106 [0–532] 74 [0–436]

Merchantable trees 1702 [1364–2161] 1418 [806–2007] 255 [54–909] 37 [0–159] 1649 [1082–2098] 1360 [785–1937] 270 [21–785] 19 [0–121]

Stand basal area
(m2 per ha)

All trees 39.1 [34–45.4] 32.0 [17.7–42.9] 6.1 [0.9–24.7] 0.9 [0.0–5.3] 36.5 [29.1–44.0] 29.2 [20.5–38.5] 6.8 [0.4–21.0] 0.5 [0.0–2.5]
Saplings 1.5 [0.4–3.1] 1.0 [0.2–1.8] 0.3 [0.0–0.8] 0.2 [0.0–1.0] 1.3 [0.3–2.4] 0.7 [0.1–1.4] 0.4 [0.0–2.0] 0.2 [0.0–1.2]

Merchantable trees 37.7 [31.1–44.9] 31.1 [17.2–42.3] 5.9 [0.8–24.2] 0.7 [0.0–4.3] 35.3 [27.2–42.6] 28.5 [20–37.1] 6.5 [0.2–20.9] 0.3 [0.0–1.7]

Clark and Evans
aggregation index

All trees 1.23 [1.03–1.50] 1.34 [1.18–1.56] 0.90 [0.32–1.48] 0.94 [0.67–1.48] 1.32 [1.03–1.49] 1.36 [1.17–1.60] 0.93 [0.50–1.46] 0.74 [0.37–0.92]
Saplings 1.02 [0.83–1.19] 0.99 [0.82–1.34] 0.96 [0.55–1.28] 0.85 [0.69–0.95] 1.00 [0.26–1.52] 1.16 [0.88–1.35] 1.00 [0.32–1.42] 0.77 [0.43–1.02]

Merchantable trees 1.34 [1.19–1.51] 1.34 [1.17–1.54] 0.91 [0.51–1.34] 1.05 [0.65–1.46] 1.35 [1.14–1.52] 1.34 [1.14–1.57] 0.94 [0.47–1.48] 1.25 [0.70–1.74]

TrT1/3 (Thinning From Below) TrTBF (all Balsam Fir Trees are Harvested)

Total White Spruce Balsam Fir Hardwoods Total White Spruce Balsam Fir Hardwoods

Quadratic diameter
(cm)

All trees 15.8 [13.5–19.9] 16.0 [14.3–18.5] 16.4 [8.6–24.6] 9.0 [5.6–13.2] 14.3 [11.5–15.6] 14.8 [14–15.8] 13.1 [1.2–23.7] 11.4 [5.2–39.1]
Saplings 6.3 [5.0–7.5] 6.5 [5.5–7.7] 5.9 [4.4–7.2] 5.0 [3.5–7.9] 5.9 [5.5–7.0] 6.3 [5.5–7.4] 4.5 [1.2–8.4] 4.8 [2.2–6.7]

Merchantable trees 17.2 [14.9–20.9] 17.0 [14.8–19.2] 18.6 [10.5–24.6] 14.9 [11.6–23.5] 16.4 [14.7–18.2] 16.3 [15.0–18.0] 17.4 [14.1–23.7] 19.0 [11.7–47.8]

Stand density
(trees per ha)

All trees 1706 [1040–2585] 1345 [631–2178] 219 [0–1066] 141 [0–635] 2254 [1313–3892] 1809 [1053–2237] 106 [11–271] 339 [9–1662]
Saplings 341 [49–889] 181 [0–489] 55 [0–406] 105 [0–508] 657 [226–1755] 334 [200–458] 39 [0–109] 284 [9–1445]

Merchantable trees 1365 [686–2159] 1164 [580–2017] 165 [0–660] 36 [0–127] 1597 [890–2137] 1475 [749–1900] 67 [0–219] 55 [0–217]

Stand basal area
(m2 per ha)

All trees 31.9 [19.5–46.2] 26.2 [16.5–38.6] 4.8 [0.0–15.0] 0.9 [0.0–5.0] 34.6 [24.3–40.5] 31.2 [17.1–36.4] 1.6 [0.0–5.4] 1.7 [0.0–5.3]
Saplings 1.0 [0.1–2.0] 0.6 [0.0–1.5] 0.2 [0.0–1.5] 0.2 [0.0–0.9] 1.6 [0.9–4.1] 1.0 [0.7–1.5] 0.1 [0.0–0.4] 0.5 [0.0–2.8]

Merchantable trees 30.9 [18.4–45] 25.6 [16.3–37.5] 4.6 [0.0–15.0] 0.7 [0.0–4.5] 33.1 [23.1–36.4] 30.2 [16.4–35.2] 1.6 [0.0–5.3] 1.2 [0.0–3.9]

Clark and Evans
aggregation index

All trees 1.26 [1.00–1.55] 1.33 [0.98–1.60] 0.96 [0.67–1.33 0.77 [0.51–1.35] 1.22 [1.11–1.45] 1.31 [1.09–1.52] 0.74 [0.52–0.83] 0.72 [0.51–0.90]
Saplings 1.08 [0.68–1.56] 1.14 [0.95–1.39] 1.04 [0.64–1.51] 0.76 [0.46–0.90] 0.92 [0.74–1.13] 1.05 [0.87–1.24] 0.92 [0.27–1.44] 0.68 [0.43–0.90]

Merchantable trees 1.34 [1.02–1.55] 1.32 [1.04–1.60] 1.02 [0.69–1.33] 1.17 [0.34–2.33] 1.30 [1.10–1.49] 1.30 [1.01–1.50] 0.83 [0.48–1.25] 1.03 [0.82–1.13]
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Stand characteristics are summarized in Table 1. The variables used in this study and
their abbreviations are listed in Table 2.

Table 2. Definition and abbreviation of the variables used.

Category Variable Description

Plot-level TrT General notation of the sylvicultural treatment affecting the stand
TrT0 Control (no treatment)

TrTBF
Thinning with priority selection of balsam fir, in which all the balsam

fir are harvested

TrT1/3
Thinning from below, in which the smallest trees are cut while ensuring

equal spacing between the remaining trees

TrTCT

Crop tree release thinning to remove competition 3 m around a selected
number of crop trees on observed data (from 0 to 4.5 m on simulated

data)

Gsp General group notation for trees being regrouped by species (WS, BF,
HW, or total)

WS Group containing all white spruce (Picea glauca) trees
BF Group containing all balsam fir (Abies balsamea) trees

HW Group containing all commercial hardwood species (described in text)
Tot Group containing all the trees from WS, BF, and HW

NHaGsp Tree density per hectare for a given Gsp
RGsp Aggregation index for a given Gsp

Species-level NClusHaGsp
Number of clusters per hectare for a given Gsp (calculated using the

affinity propagation clustering method)
DistBF Closest distance between 2 BF trees inside a cluster

DistHW Closest distance between 2 HW trees inside a cluster
Tree-level T0 Target tree (i.e., tree to be positioned)

T1 Closest competitor tree to T0
T2 Second closest competitor tree to T0

DBHDiff Absolute difference in diameter at breast height between T0 and T1
MinDistComp Closest distance between two trees (where Competitor can be T1 or T2)

2.3. Modelling Spatial Stand Structure

We used a spatial distribution simulator to describe the spatial stand structure in
WS plantations. This simulator includes models at the tree level describing intra- and
interspecific interactions between neighbouring trees. These models are presented in the
following paragraphs.

For each model developed in this study, we tested a list of potential stand-level
explanatory variables including silvicultural treatment, aggregation index, and stand
density, as well as potential tree-level variables including DBH, Gsp, and interactions
between them. Variables that were highly correlated were excluded (variance inflation
factor (VIF) > 10 [48]).

We used the glm stats library of the R statistical programming environment [44] to fit
the models, and we selected variables using a backward elimination process based on the
corrected form of Akaike’s information criterion (AICc) [49].

2.3.1. Clark and Evans index

At the stand level, spatial structure can be summarised by the Clark and Evans index,
which provides a single value by Gsp following a linear model (Equation (2)).

RGsp = Xω+ ε (2)

where X is the design matrix of covariates, ω is the fixed-effect parameter vector to be
estimated, and ε is the error term.
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2.3.2. Spatial Interactions between Individual Trees

At the individual tree level, spatial structure was characterised on the basis of inter-
actions between neighbouring trees. We calculated the distance between a tree and its
neighbours by a nearest neighbour analysis using the RANN package [50], from which we
obtained the distance to the 2 closest neighbours (MinDistT1 and MinDistT2). Then, we
modelled these 2 distances as a function of the available inventory stand variables and of
those from the targeted tree and its 2 nearest neighbours. As these distances are continuous
and positive variables, we used a gamma regression model [51] (Equation (3)).

Y = eZγ + ε (3)

where Y is the distance to a neighbour (MinDistT1 or MinDistT2), Z is the design matrices
of covariates, γ is the fixed-effect parameter vector to be estimated, and ε is the error term.

2.3.3. Spatial Interactions within Species Groups

For Gsp with a RGsp ≥ 1, no intraspecific interaction was modelled. However, for those
Gsp that tended to form clusters (RGsp < 1), we first determined the number of clusters
observed in a stand using the method of affinity propagation clustering [52] (Figure 2).

Figure 2. Example of intraspecific clustering throughout a stand for (A) balsam fir and (B) hardwoods. All the trees within
a given cluster are connected by a set of lines of the same colour. The coloured surface was added afterward to facilitate the
viewing of clusters.

To describe these aggregations, we characterised 2 variables: the number of clusters
per Gsp per hectare (NClusHaGsp) and the distance between trees of the same Gsp within
a cluster. As NClusHaGsp is a count variable (positive and discrete), we chose a Poisson
regression model [51]. The general model equation form was similar to Equation (3), where
Y is the number of clusters per hectare and per Gsp (NClusHaGsp), Z is the covariate design
matrix, and γ the fixed effect parameter vector to be estimated.

Within a cluster, we computed the minimal distance between a tree and its closest
neighbour of the same Gsp (DistGsp). We calculated this distance by a nearest neighbour
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analysis using the RANN package [50]. Since DistGsp is a continuous and positive variable,
A gamma regression was choose to model DistGsp [51].

2.3.4. Model Validation

We used a repeated 5-fold cross validation to calculate the predictive accuracy of the
models [53]. The stands were randomly split into 5 subsets of equal size: the first four
were used to calibrate the model, and the fifth was used to validate it. The root mean
square error (RMSE) and the determination coefficient (R2) of the predictions were then
calculated using the validation subset. The process was repeated until all subsets were
used to validate the model. The random segregation of the plots into the subsets was
repeated 50 times. The validation result was the average of all the repetitions.

2.4. Spatial Stand Structure Simulation
2.4.1. Spatial Stand Structure Generator

After building these models, we developed a spatial stand structure generator (here-
after referred to as a “spatialiser”) to generate coordinates for a non-spatial inventory. This
“spatialiser” generates random coordinates that are evaluated to determine if positioning
is possible based on the inter- and intraspecies models presented above. To avoid edge
effects (i.e., trees close to the plot border having no competitors on the exterior side), the
simulated plot has to be embedded in a torus in order to keep the same plot area and have
no border effects. We followed these steps to generate a list of XY coordinates for each tree:

1. Trees were ordered by DBH.
2. For the Gsp where RGsp < 1, the number of clusters (NClusHaGsp) was calculated.
3. For all trees, we repeated the following steps, depending on Gsp.

• For trees with RGsp ≥ 1, we generated a random position, identified the 2 closest
competitors and, knowing the characteristics (Gsp and DBH) of the neighbours,
calculated the theoretical minimum distance with these 2 trees (i.e., MinDistT1
and MinDistT2). If the 2 measured distances were greater than the 2 theoretical
values, the point was kept as a potential valid position.

• For trees with RGsp < 1, if the number of trees of the same Gsp already positioned
was less than the predicted NClusHaGsp, the tree was positioned randomly. If
the number of trees of the same Gsp was greater than NClusHaGsp, we randomly
selected a tree of the same Gsp that was already positioned and used it as an
anchor for a cluster. From this anchor position, we generated a random point
around the anchor point at a distance equal to the modelled DistGsp. Finally, this
position was then evaluated in the same way as in the previous point, i.e., by
comparing the distances between the target tree and the 2 closest neighbours.

4. The generator could start from an empty stand. However, a plantation scheme
describing the spacing between planted trees and the presence of planting rows could
be used to place planted trees species in these positions. A thinning path could also
be added.

2.4.2. Performance Tests of the “Spatialiser”

In order to assess the effectiveness of the “spatialiser” to generate a realistic spatial
stand structure, we selected the 15 control plots from the dataset, simulated the tree
coordinates with the “spatialiser,” and then calculated the Clark and Evans index for
each Gsp.

We also simulated the same plots by assigning random coordinates to the trees (i.e., by
not considering the interactions between trees). Hence, we simulated the 15 control plots
in both methods (“spatialiser” vs. random) and calculated the Clark and Evans index for
each Gsp and both simulations. These simulations were repeated 100 times.
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Afterward, we performed an ANOVA to evaluate the difference between the index of
the 2 simulations (random vs. “spatialiser”). As a final step, we calculated the bias between
observed index and simulated index values.

2.4.3. Thinning Treatment Simulations

As TrTCT, TrT1/3, and TrTBF were used as independent variables in the models, the
“spatialiser” could directly simulate a recently thinned stand with one of these 3 thinning
treatments. However, the main use of the “spatialiser” (once it was integrated into the
growth model) was to simulate a realistic spatial tree distribution in WS plantations where
a thinning treatment could be applied. The applied treatment could be like those used in
this study or of another type.

To illustrate this application, we chose 2 interventions. The first was the TrTCT thinning
treatment already used in this study. The second was the creation of gaps. Gaps are carried
out operationally in certain cutblocks in eastern Quebec to create openings for wildlife.
The 2 selected treatments create openings in the stand that can promote regeneration by
seed trees, as well as recreate other stand attributes such structural diversity. As skidding
trails are an essential component of commercial thinning operations, they were added to
both simulations (about 33 m apart and 4 m wide).

The first treatment (TrTCT) aims to free the selected dominant trees from competition.
This treatment is the first step of a series of interventions aimed at changing the silviculture
path from even-aged to uneven-aged stands. It is characterized by two parameters: the
number of selected crop trees (50–100/ha) and the thinning radius around each tree (1–5 m).
We randomly selected the thinned trees among those of merchantable size within the stand,
with the only requirement being that 2 selected trees had to be at least 9 m apart.

The second treatment (Gap creation) aims to create larger openings in the stand canopy
in order to promote regeneration in the opening [54]. We performed this gap simulation
to evaluate the behaviour of the spatial model for a treatment in which the choices of the
number of gaps, their position in the stand, and their size are very important. In these
simulations, the gap positions were chosen randomly. However, in an operational context,
their choice should depend on the proximity of selected seed trees, the autecology of the
species to be regenerated, the autecology of competing or harmful species, and the position
of the skidding trails. The number of gaps varies from 1 to 4, and total gap area varies from
5% and 40% of the total stand area (i.e., 500–4000 m2).

To simulate the effect of these 2 treatments, we selected 15 un-thinned stands (TrT0)
in which we upscaled plot size to 1 hectare and positioned all trees with the “spatialiser.”
We then applied both treatments and calculated the Clark and Evans index for each Gsp
in these simulated plots. For each treatment, the simulation was repeated 100 times. We
performed an ANOVA to compare the means of the different groups obtained after the
simulations and to assess the impact of the treatment parameters on the spatial distribution
(i.e., the number of selected crop trees and thinning radius around each tree for TrTCT and
the number of gaps and total percentage of surface cut for gap creation).

3. Results
3.1. Modelling Spatial Stand Structure
3.1.1. Clark and Evans Index

The spatial distribution of WS tended to be regular (RWS = 1.34; Figure 3 and Table 3),
which was expected, given that the stands were plantations. Conversely, BF and HW
tended to form clusters, with HW following a stronger trend (RBF = 0.92 and RHW = 0.79;
Figure 3). The final model form for predicting the aggregation index was found to be:

RGsp =a0 + a1 × NHaGsp + a2 × NHatot + a3 × Gsp + a4 × TrT+

a5 × NHaGsp × Gsp + a6 × NHatot × TrT + ε
(4)

where a0–a6 are the parameter estimates for the fixed effects found in Table 3.
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Figure 3. Box plots of observed (dark grey bars) and predicted (light grey bars) values of the Clark and Evans aggre-
gation index, by species group (Gsp) and silvicultural treatment, for all trees. See Table 2 for definitions of Gsp and
treatment abbreviations.

Table 3. Parameters estimations (standard error) of the model selected to predict aggregation index
at the stand level (Equation (4)) (* (p < 0.05); ** (p < 0.001); *** (p < 0.0001)).

Coefficient Variable † RGsp

a0 (Intercept) 1.69069 (0.18456) ***

a1 NHaGsp 0.00022 (0.00007) **

a2 NHatot −0.00030 (0.00007) ***

a3
BF −0.04347 (0.11409)

HW −0.12414 (0.11901)

a4

TrTCT −0.47603 (0.23238) *
TrT1/3 −0.44839 (0.19339) *
TrTBF −0.91933 (0.23554) ***

a5
BF: NHaGsp −0.00030 (0.00011) **

HW: NHaGsp −0.00031 (0.00013) *

a6

TrTCT: NHatot 0.00020 (0.00010)
TrT1/3: NHatot 0.00017 (0.00009)
TrTBF: NHatot 0.00034 (0.00010) ***

† See Table 2 for variable definitions.

Fit statistics show that the proportion of total variation explained by the model (R2)
was 0.84 and that the RMSE was 0.12. The RMSE and R2 were 0.08 and 0.65 for RWS, 0.15
and 0.58 for RBF, and 0.14 and 0.64 for RHW, respectively.

For each species, the Clark and Evans index value was inversely proportional to the
total stand density (a2 = −0.00030; Table 3). At the species level, RWS was proportional to
WS tree density (a1 = 0.00022), whereas RBF and RHW were inversely proportional to BF
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and HW density (a5 = −0.00030 for BF and −0.00031 for HW). On average and compared
to the control plots, commercial thinning slightly decreased the aggregation index value,
making a regular distribution more random and a random distribution more aggregated.
The strongest effect was for TrTBF (a4 = −0.91933), followed by TrTCT (a4 = −0.47603), and
TrT1/3 (a4 = −0.44839. However, for TrTBF, the aggregation index significantly increased
with total density (a6 = 0.00034).

3.1.2. Spatial Interactions between Individual Trees

The final model form for MinDistT1 (the distance between a target tree and the first
competitor) is presented in Equation (5) (R2 = 0.38 and RMSE = 0.49).

log(MinDist T1) = b0+b1×RGsp+b2×DBHT0+b3×GspT0+b4×DBHT1+b5×GspT1+b6×NHaGsp+b7×NHatot+ε (5)

where b0–b7 are the parameter estimates for the fixed effects found in Table 4.

Table 4. Parameters estimations (standard error) of the models selected to predict the distance of the two nearest competitors
(Equations (5) and (6)) (* (p < 0.05); ** (p < 0.001); *** (p < 0.0001)).

Coefficient Variable † MinDistT1 MinDistT2

b0 (Intercept) −0.46104 (0.04497) *** 0.11132 (0.03626) **

b1 RGsp 0.60337 (0.03083) *** 0.36470 (0.02402) ***

b2 DBHT0 0.00018 (0.00001) *** 0.00012 (0.00001) ***

b3
BFT0 −0.07628 (0.02564) ** −0.09724 (0.01971) ***

HWT0 −0.22557 (0.02938) *** −0.17750 (0.02261) ***

b4 DBHT1 0.00015 (0.00001) *** 0.00010 (0.00001) ***

b5
BFT1 −0.19511 (0.01360) *** −0.10188 (0.01071) ***

HWT1 −0.27708 (0.01469) *** −0.15679 (0.01151) ***

b6 NHaGsp −0.00008 (0.00002) *** −0.00011 (0.00001) ***

b7 NHatot −0.00011 (0.00001) *** −0.00007 (0.00001) ***

b8 DBHT2 0.00007 (0.00001) ***

b9
BFT2 −0.08173 (0.01148) ***

HWT2 −0.11974 (0.01253) ***

b10

TrTCT 0.02701 (0.00948) **
TrT1/3 0.04731 (0.00964) ***
TrTBF 0.01166 (0.00979)

† See Table 2 for variable definitions.

We observed that the minimum distance between the target trees and the first competi-
tor increased with the aggregation index (b1 = 0.60337; Table 4) and with the DBH of the
target tree and its closest neighbour (T0: b2 = 0.00018 and T1: b4 = 0.00015). The distance
was smaller for HW or BF, and the effect was greater for HW (T0: b3 = −0.22557 and T1:
b5 = −0.27708). The greater the total density and the density of trees of the same Gsp as the
target tree, the smaller the distance (NHaGsp: b6 = −0.00008 and NHatot: b7 = −0.00011).

The final model form for MinDistT2 (the distance between a target tree and the second-
closest competitor) is presented in Equation (6) (R2 = 0.32 and RMSE = 0.56).

log(MinDist T2) = b0+b1×RGsp+b2×DBHT0+b3×GspT0+b4×DBHT1+b5×GspT1+b6×NHaGsp+b7×NHatot
+b8×DBHT2+b9×GspT2+b10×TrT + ε

(6)

where b0–b10 are the parameter estimates for the fixed effects found in Table 4.
Similar results to MinDistT1 were observed for MinDistT2 (Table 4), except that this dis-

tance was also positively influenced by the DBHT2 of the second competitor (b8 = 0.00007)
and negatively influenced when T2 was part of the HW or BF Gsp, with a more important
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effect for HW (T2: b9 = −0.11974). In addition, the TrT1/3 and TrTCT thinning treatments
both increased MinDistT2 (TrT1/3: b10 = 0.04731 and TrTCT: b10 = 0.02701).

3.1.3. Spatial Interactions within Species Groups

As RWS was superior to 1, we only modelled intraspecific interaction for BF and HW.
The number of clusters per hectare and per species was predicted by Equation (7) (R2 = 0.41,
RMSE = 1.7):

log
(
NClusHaGsp

)
= c0 + c1 × Gsp + c8 × TrT + c11 × Gsp × TrT + ε (7)

where c0, c1, c8, and c11 are the parameter estimates for the fixed effects found in Table 5.

Table 5. Parameters estimations (standard error) of the models selected to predict intra-species spatial distribution
(Equations (7)–(9)). (* p < 0.05; ** p < 0.001; *** p < 0.0001).

Coefficient Variable † NClusHaGsp DistBF DistHW

c0 (Intercept) 3.56105 (0.07538) *** 0.49974 (0.10200) *** 0.85028 (0.31248) **

c1 HW 0.42423 (0.09695) ***

c2 DBHDiff 0.00113 (0.00041) **

c3 DBHT0 0.00287 (0.00066) ***

c4 DBHT1 0.00109 (0.00031) *** 0.00215 (0.00070) *

c5 R 0.94840 (0.09473) *** 1.24419 (0.16511) ***

c6 NHaGsp −0.00107 (0.00006) *** −0.00279 (0.00039) ***

c7 NHatot −0.00022 (0.00011) *

c8

TrTCT −0.14880 (0.12912) 0.04792 (0.05024)
TrT1/3 −0.31400 (0.10601) ** 0.12117 (0.05391) *
TrTBF −0.12706 (0.10144) 0.16893 (0.07865) *

c9
DBHT0:
DBHT1

−0.00002 (0.00001) *

c10
NHatot:
NHaGsp

5.6e-07 (0.00000) ***

c11

HW: TrTCT 0.15866 (0.16286)
HW: TrT1/3 0.32693 (0.13133) *
HW: TrTBF 0.32710 (0.12721) *

† See Table 2 for variable definitions.

The number of clusters per hectare was greater for HW (c1 = 0.42423; Table 5), with
an average value of 30 clusters for BF and 57 for HW for all treatments. TrT1/3 was the
only thinning treatment that significantly reduced the number of clusters (c8 = −0.31400)
compared to the control treatment, but this was only for BF, since the interaction between
HW and TrT1/3 (c11 = 0.32693) negated this effect for HW. The interaction HW with TrTBF
(c11 = −0.32710), for its part, indicated that there were more HW clusters in this treatment
than in the control.

The shape parameters of the gamma distribution for minimal distance between trees
of the same species within a cluster were 1.204 for BF and 0.959 for HW, while the scale
parameters were 0.357 for BF and 0.403 for HW. For BF, the final model for predicting the
minimal distance is presented in Equation (8) (R2 = 0.19, RMSE = 3.22):

log(DistBF) = c0 + c2 × DBHdiff + c4 × DBHT1 + c5 × RGsp + c6 × NHaGsp + c8 × TrT + ε (8)

where c0, c2, c4, c5, c6, and c8 are the parameter estimates for the fixed effects found in
Table 5.

The final model is slightly different for HW (Equation (9), R2 = 0.25, RMSE = 2.39):
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log(DistHW) = c0 + c3 × DBHT0 + c4 × DBHT1 + c5 × RGsp + c6 × NHaGsp + c7 × NHatot + c9 × DBHT0 × DBHT1 + c10
×NHaGspNHatot + ε

(9)

where c0, c3, c4, c5, c6, c7, c9, and c10 are the parameter estimates for the fixed effects found
in Table 5.

Inside a cluster, the distance between two trees of the same species increased as the
DBH of the closest neighbour increased (c4 = 0.00109 for BF and c4 = 0.00215 for HW;
Table 5). The DBH of the target tree also had a positive effect for HW (c3 = 0.00287). For
BF, the larger the difference in DBH between two neighbour trees, the larger the distance
between the two trees (c2 = 0.00113), whereas for HW, the higher the DBHT0:DBHT1 ratio,
the shorter the distance between the two trees (c9 = −0.00002). The distance between two
trees of the same Gsp was smaller when the density of the Gsp was high (c6 = −0.00107 for
BF and c6 = −0.00279 for HW). For HW, this distance was also reduced in stands with a
high density (c7 = −0.00022).

For BF, the TrT1/3 and TrTBF treatments increased the minimal distance between two
trees compared to the control (c8 = 0.12117 for TtT1/3 and 0.16893 for TrTBF; Table 5).

3.2. Spatial Stand Structure Simulation
3.2.1. Performance Tests of the “Spatialiser”

Based on the Clark and Evans index calculated after the simulations, we observed that
the “spatialiser” worked better than randomly assigning coordinates to trees to generate a
realistic spatial stand distribution (Figure 4). We measured the correlation and bias between
observed and simulated data. On average, for the “spatialiser,” R2 was 0.63 and RMSE was
0.19, whereas for the random simulations, R2 was 0.01 and RMSE was 0.30. However, we
observed disparities between Gsp (Figure 4). For WS, R2 was 0.29 and RMSE was 0.18 with
the “spatialiser,” (R2 = 0.01 and RMSE = 0.36 for the random simulations); for BF, R2 was
0.28 and RMSE was 0.18 with the “spatialiser” (R2 = 0.02 and RMSE = 0.31 for the random
simulations). For HW, R2 was 0.69 and RMSE was 0.21 with the “spatialiser” (R2 = 0.10
and RMSE = 0.43 for the random simulations).

3.2.2. Thinning Treatment Simulations

Figure 5 presents the results of one simulation over a 1-hectare area before treatment
and after applying either the TrTCT or gap creation treatment.

With the TrTCT treatment, an increase of the thinning radius around each tree and the
number of trees freed from competition significantly affected the aggregation index value.
The link between the aggregation index and these two parameters was negative, except in
WS, for which there were slight positive effects on the number of crop trees (RWS = 0.0001
for the number of crop trees and −0.0158 for thinning radius, RBF = −0.0004 for the number
of crop trees and −0.0026 for thinning radius, and RHW = −0.0002 for the number of crop
trees and −0.0136 for thinning radius). These negative parameters indicated that greater
treatment intensity decreased the aggregation index value. However, the effect on spatial
structure at the stand level was very limited (Figure 6A).
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Figure 4. Comparison between Clark and Evans indexes observed for the 3 species groups (Gsp: see Table 2 for definitions)
and the indexes predicted from the “spatialiser” simulations and from random simulations.

Figure 5. Example of simulations on a 1-hectare area for (A) initial spatial stand structure; (B) TrTCT: 80 crop trees (orange
dots) selected per hectare, with a 3 m thinning radius over all sides; and (C) gap creation (3 gaps; cut area: 30% of the total).
The vertical spaces visible on plots (B,C) are skidding trails, which essential for commercial thinning operations.
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Figure 6. Variation of the Clark and Evans aggregation index for each species group (Gsp) after simulating (A) the number
of crop trees selected per hectare, with various clearance distances (thinning radii) around each tree, and (B) the proportion
of the total area that was cut, with a variable number of gaps. See Table 2 for definitions of Gsp and treatment abbreviations.

With gap creation treatment, increases in both the number of gaps and the total
percentage of the area that was cut had significant effects on the aggregation index value.
The link was positive with the number of gaps but negative with the percentage of the
surface cut (RWS = 0.0001 for the number of crop trees and −0.6415 for the percentage of
surface cut, RBF = 0.0044 for the number of crop trees and −0.3965 for the percentage of
surface cut, and RHW = 0.0040 for the number of crop trees and −0.3049 for the percentage
of surface cut). Despite its significance, the effect of the number of gaps was found to be
very small at the stand scale. By comparison, increasing the cut surface had a much greater
effect on stand spatial structure, especially for WS (Figure 6B).
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4. Discussion
4.1. Modelling Spatial Stand Structure

A stand’s spatial structure results from interactions between trees; it is one of the
most important ecological characteristics influencing its development. In plantations,
human actions such as (initial spacing and thinning) can be added and modify these
processes. The model we developed describes local intra- and interspecific interactions
and links point patterns with ecological/silvicultural processes. Despite the absence of
precise biological information such as crown characteristics, which are known to strongly
influence the behaviour between two closely located trees, it was possible to develop a
“spatialiser” that can reproduce attractive behaviours among trees of the same species
and repulsive behaviours among trees that are too close. Choi et al. [55] showed that
adding more detailed competition variables provided only slightly better predictions of
spatial patterns for hardwoods. In addition, in most situations where data are limited
to standard inventories (e.g., species, DBH, and height), the “spatialiser” would need to
rely on allometric relationships to predict the needed crown attributes [56]. This would
generate a source of uncertainty and error propagation. Hence, coupling a “spatialiser”
to standard inventory data could be an interesting alternative to measuring the location
of trees in the field and would allow for the use of models working with spatially explicit
plantation growth simulators. The spatial information could also be used to calculate
structural habitat characteristics and shed light on the stand community structure and
relative abundance of animal species [57].

Some limitations and simplifications of this spatial simulator should be considered.
The models were calibrated on plantations that have less complex structures than natu-
ral stands, even if plantations in eastern Quebec have a high proportion of regeneration
by other species [58]. In addition, we chose to group all the different hardwood species
together and to remove some species of coniferous very rarely present as well as non-
commercial species from the analysis. These species, however, could have a significant
effect on competition or be of great interest to understand the diversity of species. Ad-
ditionally, saplings and merchant trees were studied together. However, saplings are
generally present in large numbers, whereas merchant trees are the result of competition
over a longer term. These differences could be reflected in the spatial distribution of these
two groups (Table 1). However, despite these limitations, the combination of tree-scale
models considering DBH and species of neighbouring trees, as well as a plot-scale model
describing the type of aggregation of a species, seems flexible enough to adapt to different
types of stands.

4.2. Spatial Interactions between Individual Trees

The construction of the “spatialiser” using several models has the advantage of
allowing for a direct interpretation of inter- and intraspecific interactions. At the stand
level, the Clark and Evans aggregation index (R) [47] showed that in the studied plantations,
WS had a regular structure while BF and HW tended to aggregate. For the planted WS
seedlings, this was expected. However, for the WS saplings that were naturally established
later on, the structure was more aggregated (Table 1). The Clark and Evans index that was
chosen here is a simple and easy to measure variable for analysing the spatial behaviour of
a species at the plot scale. The simulator models were of the tree scale. The unique value of
the index then allowed us to simply assess the results of the simulation at the plot level. In
order to apply the simulation approach to other types of stands with more species involved
or used as surrogate measures to quantify biodiversity, some other indexes could be used
to describe or validate the stand spatial structure [59].

The grouping of hardwood species in our analysis prevented us from examining the
behaviour of each individual hardwood species. Some of these, such as paper birch, tended
to aggregate. In the case of aspen, vegetative reproduction by suckering could explain
its tendency to group [10]. Other species, such as red maple and sugar maple, appear to
be less aggregated, although red maple can form clusters in cases where it forms stump
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sprouts [60]. Both BF and HW tended to aggregate; however, the observed clusters were
different. For BF, clusters were fewer, but they tended to include both merchantable-sized
trees and saplings. For HW, clusters were smaller, more numerous, and consisted mainly
of saplings.

Currently, in the Bas-Saint-Laurent region, natural stands are mainly dominated by
BF and HW, to the detriment of WS [58]. In plantations, BF and HW can represent up to
25% of the trees. In order to limit competition and to favour the growth of WS, a species
that is becoming rarefied [34], good knowledge regarding this species’ spatial behaviour
and natural regeneration, as well as the development of competing species, is needed. The
tendency to BF and HW to cluster can help managers choose approaches that limit their
spread to the detriment of WS when they prescribe clearing, precommercial thinning, or
commercial thinning treatments.

4.3. Thinning Treatment Simulations

At the tree level, species and DBH were the most important parameters influencing the
distribution of BF and HW. At the stand scale, however, thinning caused only slight changes
in the aggregation index, except for TrTBF. This was normal, because the purpose of these
treatments was to reduce competition in order to increase mean tree wood production. In
addition, TrTCT could be considered as a first step to convert plantation structure from
regular/even-aged to irregular/uneven-aged if the objective is to reduce the differences
between natural and managed forests [61]. However, after five years, this treatment
had no significant effect on diameter distribution or spatial structure. Dupont-Leduc [61]
suggested that a five-year interval is probably too short to observe such differences. The lack
of structural change may also suggest that the thinning intensity of the TrTCT treatment was
not sufficient or too evenly applied [61]. Indeed, for the two other thinning treatments, cuts
were only done around 50–100 dominant trees with a clearance limited between 2.5 and 3 m
(TrTCT) or mainly with the aim of promoting dominated trees (TrT1/3). Nevertheless, TrTCT
could also allow for the long-term development of seed trees and thus the maintenance
of WS rather than its replacement by BF. Though it is unclear whether the small observed
differences in stand structure compared to the control will be conserved or will evolve in
time, the reduction of the number of trees per hectare and of competition could help trees
to grow faster and create more heterogeneous forests. Gauthier et al. [62] showed that with
a TrT1/3 thinning, stand structural heterogeneity increased 10 years after the harvest as a
result of the better growth of bigger trees and retention of saplings. However, according
to Schütz [29], many entries are necessary for the conversion effect to become apparent
from regular/even-aged stands to irregular/uneven-aged stands. Thus, several years of
stand monitoring will be required to evaluate the real long-term impact of these anthropic
disturbances [63].

The “spatialiser” can be used to generate control stands with localised trees where
“silvicultural“ treatments can be simulated. This would allow for the evaluation of the
chosen approach’s effectiveness and the testing of silvicultural treatments [64]. Such an
exercise suggests that, for example, TrTCT could be applied with a larger clearance distance
around targeted trees, since simulations showed that the current TrTCT treatment had a
fairly limited impact and that a rather large clearance around trees was needed to modify
the spatial distribution at the stand scale. Hence, to emulate natural disturbances, the
treatment should create larger gaps. According to the simulations, the creation of larger
gaps (e.g., cut area: 5–40% of the total) could be another effective approach to modify stand
spatial structure. However, for both these examples, the thinning effect was observed
directly after application. An evaluation of the long-term effectiveness of the chosen
approach is also required. To do this, the “spatialiser” could be harnessed for a growth
model and help forecast evolution at both the individual tree and stand scales.
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5. Conclusions

This study shows that the spatial structure of WS plantations in eastern Quebec,
Canada can be modelled and simulated. The diameter and species of the neighbour trees
were the most important factors that explained the observed distances between trees.
A point process model proved effective at representing inter-tree interactions through
repulsive and attractive processes. Analysing all hardwood species in a single group limits
the understanding of each species’ spatial behaviour. However, since BF and hardwoods
together could represent 30–40% of a stand’s basal area, the models allow for the better
understanding of their interactions with WS.

Our results showed that thinning treatments can have slightly significant and short-
term effects on spatial structure. If the objective is to convert to another stand structure type,
linking this “spatialiser” to growth models would allow for the simulation of treatments
over larger areas and longer periods. It would also allow for parameters to be modified in
order to evaluate the effectiveness of the chosen approach. Thus, silvicultural treatments
could be adjusted to better reach management objectives.
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