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Abstract: Background: Yttrium-90 radioembolization (RE) plays an important role in the treatment
of liver malignancies. Optimal patient selection is crucial for an effective and safe treatment. In this
study, we aim to validate the prognostic performance of a previously established random survival
forest (RSF) with an external validation cohort from a different national center. Furthermore, we
compare outcome prediction models with different established metrics. Methods: A previously
established RSF model, trained on a consecutive cohort of 366 patients who had received RE due to
primary or secondary liver tumor at a national center (center 1), was used to predict the outcome
of an independent consecutive cohort of 202 patients from a different national center (center 2)
and vice versa. Prognostic performance was evaluated using the concordance index (C-index) and
the integrated Brier score (IBS). The prognostic importance of designated baseline parameters was
measured with the minimal depth concept, and the influence on the predicted outcome was analyzed
with accumulated local effects plots. RSF values were compared to conventional cox proportional
hazards models in terms of C-index and IBS. Results: The established RSF model achieved a C-index
of 0.67 for center 2, comparable to the results obtained for center 1, which it was trained on (0.66).
The RSF model trained on center 2 achieved a C-index of 0.68 on center 2 data and 0.66 on center
1 data. CPH models showed comparable results on both cohorts, with C-index ranging from 0.68 to
0.72. IBS validation showed more differentiated results depending on which cohort was trained on
and which cohort was predicted (range: 0.08 to 0.20). Baseline cholinesterase was the most important
variable for survival prediction. Conclusion: The previously developed predictive RSF model was
successfully validated with an independent external cohort. C-index and IBS are suitable metrics to
compare outcome prediction models, with IBS showing more differentiated results. The findings
corroborate that survival after RE is critically determined by functional hepatic reserve and thus
baseline liver function should play a key role in patient selection.

Keywords: radioembolization; prediction; random survival forest; cholinesterase

1. Introduction

Liver-directed therapies such as radioembolization (RE) play an important role as an
alternative treatment option for patients with primary and secondary liver malignancies.
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Single-center cohorts and retrospective analyses indicate that in patients who are not
eligible for surgical resection or as salvage therapy in liver-limited or liver-dominant
disease, RE can prolong survival and improve quality of life [1–9]. Although large phase 3
randomized studies have provided disappointing results, as additional RE did not result in
a significant improvement in OS, compared with standard treatment alone [10–14], some
findings suggest that certain subgroups may benefit substantially from RE treatment [11,15].

Due to the highly variable outcomes after RE treatment and because RE is costly and
potentially harmful due to severe side effects, prudent and individual patient selection
plays a decisive role in therapy planning. This was recently underlined by an international
multidisciplinary expert panel, which focused on individual therapy planning and made
recommendations for the treatment concept [16]. A personalized dosimetry approach plays
a major role, as it has been shown that on the one hand a sufficiently high tumor dose and
on the other hand the damaging of healthy liver parenchyma due to too high extra tumoral
doses have a strong influence on the outcome after RE [17–20]. Among other things, the
panel stated that a mean absorbed dose for the nontumor liver of 40 Gy or less is considered
safe [16]. However, too rigid values should be used with caution in individual therapy
planning, as the functional hepatic reserve can vary greatly interindividual in patients who
are often intensively pretreated. Prognostic models incorporating hepatic liver function
can help to stratify patients eligible for RE and may support dosimetry planning and
estimation of individual risk. In previous studies, we have developed outcome prediction
models based on pretherapeutic characteristics (age, gender, primary tumor entity, hepatic
tumor burden, extrahepatic disease, baseline bilirubin, and cholinesterase (CHE) levels) of
a cohort of consecutive patients who had received RE due to primary or secondary liver
tumor at our national center. A multivariate Cox regression identified tumor entity, hepatic
tumor burden, presence of extrahepatic disease, and baseline level of CHE as independent
predictors of overall survival (OS) [21]. A machine-learning approach based on random
survival forests (RSF) extended and refined those results. The prognostic performance was
similar to the Cox proportional hazards (CPH) model and, in addition, revealed a strong
prognostic value for baseline CHE and bilirubin with a highly nonlinear influence for each
parameter [22]. The aim of the present work was to validate the results of the previous
studies on an independent cohort of another national center.

2. Materials and Methods
2.1. Patients

This retrospective study analyzed a previously published consecutive cohort of pa-
tients who underwent RE due to a primary or secondary liver malignancy at a single
national center (center 2) in a 4-year period [23] and compared it with a previously de-
scribed cohort of consecutive patients of another national center (center 1) [21]. The study
was approved by the local ethics committee. Written informed consent was waived due
to the retrospective nature. The selection of patients for RE was identical in both centers
and based on the presence of unresectable hepatocellular carcinoma (HCC), cholangio-
cellular carcinoma (CCC), or hepatic metastases and lack of further chemotherapeutic
options. Patients had to have a liver-predominant disease, preserved liver function, and
acceptable performance status (Eastern Cooperative Oncology Group (ECOG) performance
status ≤ 2).

According to the inclusion criteria of the previous studies [21,22], we included all
patients with the following pretherapeutic parameters recorded one day before the first RE
procedure: CHE and bilirubin levels in kU/L resp. mg/dL, sex, age, type of primary tumor,
hepatic tumor burden (assessed in three categories: <25%, 25–50%, >50%) on the basis
of pretherapeutic Gd-EOB-DTPA-enhanced MRI), and presence of extrahepatic disease,
defined as metastatic lymph nodes or other nonlife-limiting metastases.

Pretherapeutic angiography with the application of 99mTc-macroaggregated albumin
was performed to evaluate the particle distribution and to determine the extent of hep-
atopulmonary shunting by means of SPECT examination and planar scintigraphy. Aberrant
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or risk vessels for potential extrahepatic microsphere deposition were coilembolized. RE
was performed at a second session, as described in detail before [8,24]. Depending on
tumor distribution, 90Y resin microspheres (SIR-Spheres®, Sirtex Medical, Kane Cove,
Australia) were delivered selectively into the hepatic arteries in a single session (unilobar or
bilobar) or in two sessions as sequential treatment of each lobe 4–8 weeks apart (sequential
bilobar). The prescribed activity was calculated using the body surface area method. OS
was recorded, defined as the time from the date of the first RE procedure until the death
of the patient or last follow-up. Patients were censored at the time of the last follow-up if
their status could not be established.

2.2. Statistical Analysis
2.2.1. Independent Validation

An RSF [25] is an ensemble learning method that extends the random forest (RF)
method [26] to deal with right-censored, time-to-event data. During training, multiple
decision trees are grown with bootstrapped samples of the training data. A bootstrapped
sample includes 63% of the training data on average, and the remaining part is excluded
and called out-of-bag (OOB) data. At each node of a decision tree, a set of candidate
variables is selected. The candidate variable that maximizes the log-rank statistic in the
resulting daughter nodes is chosen for splitting. This process introduces randomness into
the learning process, known to improve ensemble learning. A decision tree grows until
reaching a saturation point or a predefined terminal node size. For survival data, the
trained RSF returns an estimated mortality rate for each individual adjusted to the number
of total events.

R, version 4.0.2 (https://www.R-project.org/, accessed on 1 July 2021) [27], was
used to conduct all statistical analyses. The previously established RSF model [22] was
implemented using the R package randomForestSRC [28] with the following settings:
ntree = 2000, nodesize = 5, and mtry = 3. First, the RSF model was trained on the entire
center 1 cohort and used to predict individual expected mortality for the independent
center 2 cohort. The OOB data that were unobserved by the model during training were
used to make unbiased predictions for the training data. In a second step, the RSF model
was trained with the entire center 2 cohort and used to predict the outcome for the center
1 cohort and its training data. Accordingly, CPH models were implemented with the R
package survival [29], trained, and used to predict outcomes.

To evaluate the prognostic performance and compare the survival models, the con-
cordance index (C-index) [30] and the integrated Brier score (IBS) [31] were calculated.
The C-index quantifies the capability of the model to correctly rank the survival times of
comparable pairs based on their predictions; 1 indicates perfect sorting and 0.5 random
sorting (larger values are better). The IBS calculates the integral of the mean squared
distance between the predicted survival probability and the at-risk indicator evaluated at
multiple time points. In contrast to the C-index, the IBS is a measure of calibration and
discrimination; 0 indicates perfect prediction (smaller values are better).

2.2.2. Feature Importance and Influence on Outcome

The structure of a trained RSF allows conclusions to be drawn about the importance
of a variable merely by its position within the survival trees. The minimal depth (MD) [32]
measures the average distance from the root to the node of the first split of the variable
across all trees. The feature importance of baseline parameters age, sex, primary tumor, hep-
atic tumor burden, presence of extrahepatic disease, values of bilirubin, and cholinesterase
was determined by measuring their MD.

Accumulated local effects (ALE) [33] and partial dependence (PD) plots [34] aim to
visualize the effects of single predictor variables on the outcome. While PD plots show
the marginal effect of one variable on the outcome and can be problematic for correlated
features, ALE plots are an unbiased and fast alternative [35]. ALE plots were constructed
for the correlated continuous variables CHE and bilirubin.

https://www.R-project.org/
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3. Results
3.1. Patients

In total, 202 patients (78 female; median age 66 years) at center 2 were included
in the analysis and compared with center 1 (n = 366). The cohorts were comparable in
age, sex, as well as baseline cholinesterase values. Median bilirubin values were slightly
lower in center 2 but similar in distribution. The most frequent tumor entity in both
groups was metastatic colorectal cancer, followed by hepatocellular carcinoma. There
were substantially fewer neuroendocrine tumors (NET) treated at center 2 (n = 4, 2.0%),
compared to center 1 (n = 51, 13.9%), and less patients with presence of extrahepatic disease
(n = 101, 50.0% vs. n = 253, 69.1%). Details are provided in Table 1. Observation time was
48.6 months for center 1 and 61.7 months for center 2. Median OS was higher in center
1 (11.4, 95%CI 9.7–14.2 vs. 7.9, 7.0–9.2 months) (Table 2). A subgroup analysis showed
that the marked difference in OS is most likely to be explained by the high proportion of
neuroendocrine tumors in center 1 (Figure 1), as these are known to have a better prognosis
even in advanced stages [36].

Table 1. Patient characteristics.

Characteristics Center 1
(n = 366)

Center 2
(n = 202)

Age (y) 64 (55.7–71.0) 66 (58.0–71.0)
Sex

Male 217 (59.3) 124 (61.4)
Female 149 (40.7) 78 (38.6)

Primary tumor
Colorectal cancer 128 (35.0) 81 (40.1)
Hepatocellular cancer 57 (15.6) 57 (28.2)
Neuroendocrine tumor 51 (13.9) 4 (2.0)
Metastatic breast cancer 40 (10.9) 28 (13.9)
Cholangiocarcinoma 35 (9.6) 5 (2.5)
Other 55 (15.0) 27 (13.4)

Hepatic tumor burden
25% 191 (52.2) 133 (65.8)
25–50% 140 (38.3) 53 (26.2)
50% 35 (9.6) 16 (7.9)

Extrahepatic disease
Yes 253 (69.1) 101 (50.0)
No 113 (30.9) 101 (50.0)

Baseline liver function
Bilirubin (mg/dL) 0.60 (0.50–0.90) 0.51 (0.35–0.78)
Cholinesterase (U/L) 6.35 (4.89–7.60) 5.88 (4.34–7.50)

Values presented are numbers (percentage) for categorical and median (interquartile range) for continuous variables.

Table 2. Overall survival.

Cohort Patients Events Median Survival (Months) 95% CI

Center 1 366 228 11.41 9.70–14.20
Center 2 202 199 7.91 7.07–9.24

3.2. Statistical Analysis
3.2.1. Independent Validation

The established RSF model achieved a C-index of 0.67 for predicting center 2, compa-
rable to center 1, in which it was trained on (0.66). The new RSF model trained on center
2 data achieved a C-index of 0.68 for center 2 and 0.66 for center 1. CPH models showed
similar results, no matter which cohort was trained on and which was predicted, with
C-index ranging from 0.68 to 0.72 (Table 3). IBS validation showed more differentiated
results depending on which cohort was trained on, and which cohort was predicted. The
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established RSF model, trained on center 1, showed a better performance in predicting
center 1 (0.08) than predicting center 2 (0.12). Vice versa, the same tendency was observed
but more pronounced. The RSF model trained on center 2 achieved an IBS of 0.05 for
predicting center 2 and 0.20 for predicting center 1. CPH models tended to show worse
prediction performance, compared to RSF models when using IBS for evaluation, achieving
scores from 0.08 to 0.18 (Table 3).
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Table 3. Predictive performance.

Model Training Prediction C-index IBS

RSF Center 1 Center 1 0.66 0.08
RSF Center 1 Center 2 0.67 0.12
RSF Center 2 Center 1 0.66 0.20
RSF Center 2 Center 2 0.68 0.05
CPH Center 1 Center 1 0.68 0.15
CPH Center 1 Center 2 0.69 0.12
CPH Center 2 Center 1 0.68 0.18
CPH Center 2 Center 2 0.72 0.08

Concordance index (C-index) and integrated Brier score (IBS) for survival prediction with random survival forest
(RSF) and Cox proportional hazards (CPH) model for center 1 and center 2.

3.2.2. Feature Importance

In line with the results of the initial RSF (center 1), baseline CHE (forest-averaged
minimal depth ± standard deviation, 1.0 ± 1.1) and bilirubin (1.9 ± 1.4) were the most
important variables for survival prediction for center 2. Differences between the models
were especially seen for extrahepatic disease, which had higher prognostic importance in
center 2 (1.9 ± 2.3), compared to the center 1 analysis (2.9 ± 2.3). Furthermore, primary
tumor and tumor burden had lower prognostic importance, compared to the center 1
analysis. Sex had the highest averaged minimal depth in both models, indicating low
prognostic importance. The calculated prognostic importance levels of pretherapeutic
variables for each center are illustrated and juxtaposed in Figure 2.
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Figure 2. Forest-averaged minimal depth (dots) of baseline parameters with standard deviation (line).
Smaller values correspond to the higher prognostic importance of variables.

3.2.3. Feature Importance on Predicted Outcome

Figures 3 and 4 show the ALE for pretherapeutic CHE and bilirubin levels. High CHE
levels were associated with a favorable prognosis in both cohorts and showed a very similar,
highly nonlinear trend. CHE levels below a threshold of 7.5 kU/L showed a strong increase
in expected mortality for both centers. Low bilirubin levels were associated with a favorable
prognosis in both cohorts. The bilirubin curves also exhibited an analogous course in both
centers at low values, while bilirubin values above 1 mg/dL showed differences in ALE
values for centers 1 and 2. However, the rug plot indicates very few observations of
bilirubin for this region and therefore can only be rated to a very limited extent.
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4. Discussion

We successfully validated the previously published RSF model to predict response
to RE on an independent external cohort. The C-index showed comparable prognostic
performance for all RSF models and both centers. The results were comparable to classical
CPH models. IBS showed the expected differences in performance between the prediction
of the training data set and an independent second data set, with the former performing
better. In addition, the IBS indicated the superiority of the RSF over the CPH model when
predicting the within-center cases. For the C-index, only the ranking of the predictions
matters, and this depends only on the covariate effects. For the IBS, the calibration also
matters, in our case, the baseline hazard, which was different in the two cohorts.

The results of the minimal depth analysis, which is a measure for the prognostic
performance of a variable, were very similar in both centers. In particular, the labora-
tory parameters CHE and bilirubin were the most important features, ahead of tumor
entity, tumor burden, or presence of extrahepatic tumor manifestation. Despite using two
completely independent cohorts for estimation, the ALE plots showed a nearly identical
functional shape of the covariate effect, demonstrating a nonlinear relationship between
baseline CHE and outcome. CHE < 7.5 kU/L was associated with a strong increase in
predicted mortality in both cohorts. The estimated bilirubin effect was also similar for
both cohorts at least at lower levels. The influence of higher levels cannot be conclusively
assessed because of the small number of patients with a bilirubin > 1 mg/dL in both
cohorts. However, a nonlinear relationship was also evident here. A review on RE-related
hepatotoxicity has shown that most RE studies use bilirubin, albumin, respectively, the
ALBI score calculated from these, alkaline phosphatase, aspartate aminotransferase, alanine
transaminase, and INR as pretherapeutic serum liver parameters for risk assessment and
patient selection [37,38]. CHE thus far has played a rather minor role, although individual
small retrospective studies suggest that it has a prognostic value in the treatment of liver
tumors, including in the therapy of HCC with sorafenib or chemoembolization [39–41].
CHE, in combination with albumin, is one of the most important indices of the protein
synthesis capacity of the liver [42]. Unlike albumin levels, which are influenced by various
factors such as inflammation, chronic kidney disease, or malnutrition, CHE is less subject
to fluctuations and therefore a reliable marker of liver function [43–45].

The fact that in two very heterogeneous cohorts with a different distribution in tumor
entity and burden, as well as EHD, the liver values are more influential in the predic-
tion of survival than any other variable, underlines how important liver function is for
clinically successful RE. Possible interpretations are that the effect reflects either a late
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tumor stage (high tumor burden, high number of already received, potentially hepatotoxic,
chemotherapies) with reduced liver function and consecutive poor prognosis and/or it
is the combination of low baseline liver function and then subsequent liver parenchymal
damage by RE. Regardless, when liver function is the limiting factor, RE at an advanced
stage with extensive liver involvement has little chance of providing a benefit on survival
but may be rather harmful. However, RE is often used as a last resort to offer patients any
treatment option in liver-dominant disease after all systemic therapies have been exhausted.
These patients make up large parts of study populations, which could explain the poor
results of prospective RE studies. This consideration is supported by the results of the
SORAMIC trial, where patients with good liver function without cirrhosis benefited most
from RE [11]. Perhaps the option of complementary RE should be considered much earlier
in the course of the liver-dominant disease, to achieve a better outcome of RE per se and
thus on OS. Overaggressive patient selection in advanced tumor disease should be avoided
and alternative systemic treatments or best supportive care considered for patients at risk.
Damm et al. determined a scoring system for patient selection that comprises hepatic tumor
load, CEA and CA19-9 serum levels, and Karnofsky index (TuCK-score) [46]. Late-stage
patients with high tumor burden, low-performance status, and high tumor activity, as
indicated by high tumor markers, will most likely not benefit from RE. Our results extend
these considerations with emphasis on liver function.

Another reason for the relevance of these findings is the growing evidence that
high tumor dose leads to better outcomes in RE. A post hoc analysis of the SARAH trial
and a competing prospective phase 2 cohort from another group demonstrated positive
correlations between survival and absorbed tumor dose in HCC [17,18]. Alsultan et al.
were able to confirm these observations in patients with metastatic colorectal cancer [20].
Moreover, variations in response rates after RE suggest a medical need to optimize dose
prescriptions [19]. However, high tumor doses are, in turn, associated with the risk of also
damaging tumor-free liver parenchyma. Recent study results on RE, e.g., in HCC, show
that liver toxicity remains a significant factor that negatively affects patient outcomes [11].
Previous reports have defined risk groups for post-RE liver toxicity even in noncirrhotic
patients with metastatic disease [38]. In this context, liver function values such as CHE
provide useful additional information on how far to escalate the doses and may be relevant
for future treatment algorithm decision trees.

The present study is not without limitations. The validation data set of 202 patients
is smaller than the initial cohort of center 1. It would certainly be interesting to test
our random survival forest on larger cohorts from further institutions. Still our results,
especially the results of the ALE plots, already indicate high generalizability. Furthermore,
the study populations are very heterogeneous regarding the different tumor entities and
thus expected survival, which doubtlessly leaves uncertainty in the reliability of the results
for individual patient groups. To achieve more specific results, further subgroup analyses
with even larger cohorts must be performed. Nevertheless, one of the key results of this
study was to show how important general factors such as liver function are, independent
of entity-specific characteristics. Another concern is that dosimetry was not considered in
the analysis, although it is becoming increasingly clear how important it is for treatment
response and side effects. Additionally, potentially important clinical factors such as
previous treatments or renal function were not included in the model. However, the
primary aim of this study was to validate the initial model with a special focus on the
importance of liver function. Further refinement of these models with the inclusion of
dosimetry is desirable.

5. Conclusions

This study successfully validated the previously published RSF model to predict
survival after RE with an independent external cohort. C-index and IBS are suitable metrics
to compare outcome prediction models, with IBS showing more differentiated results.
Our findings indicate that survival after RE is critically determined by functional hepatic
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reserve, and thus, liver function plays a key role in patient selection. In particular, baseline
levels of CHE may be useful to stratify patients eligible for RE and provide important
guidance in the decision-making process when weighing potential treatment options.
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