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Abstract—5G networks have emerged as the only viable
solution to accomplish a satisfying performance level for various
types of services, where each of them has very challenging traffic
requirements. One of those services are ultra-reliable low-latency
communications (URLLC), which are characterized by the strin-
gent demand to deliver packets within a very short time with
high reliability. Besides being successfully transmitted, the data
must be processed as well. To maximize the number of users the
network can serve, the interplay of the different resources must
be understood and adequate resource allocation schemes must be
devised. In this paper, we consider the joint allocation of uplink
and downlink radio access network (RAN) and edge computing
resources such that the traffic requirements of individual users
are met and the network utility is maximized for different types of
fairness. To this end, an optimization problem for the general case
of α-fairness is formulated and its properties are explored. For
the special cases of no fairness, proportional fairness, minimum
potential delay fairness, and max-min fairness, polynomial-time
allocation approximation algorithms are proposed. Using data
from real traces, it is shown that the performance deviation of
these approaches from the continuous optimum (upper bound)
rarely exceeds 2%.

Index Terms—5G, URLLC, α-fairness, resource allocation.

I. INTRODUCTION

Currently, three main types of services are provided by 5G
networks: massive machine-type communications (mMTC),
enhanced mobile broadband (eMBB), and ultra-reliable low-
latency communications (URLLC). For eMBB services, very
high data rates with high spectral efficiency are needed [2].
Low energy consumption and the support of a high number of
devices are required by mMTC services [3]. Finally, URLLC
services necessitate extremely low latencies and the support
for high mobility and availability [4]. The latter service type
is our focus in this paper.

Examples of URLLC services are applications like au-
tonomous driving, remote surgery, or remote monitoring and
control [5]. The main requirement for these services is the
ability to deliver packets with very high reliability within a
short time (on the order of ms), which is quite challenging.
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Besides being transmitted, those data need to be processed
and often a response needs to be returned to the initial sender
within a given latency. This impedes handling the data even
further. Lastly, given the constrained network resources in
the radio access network (RAN) and the edge and the ever-
increasing number of devices competing for those resources,
the challenge becomes even more complicated. For the afore-
mentioned URLLC services, it is not only essential to comply
with these strict requirements, but, given their nature, any
violation of the specifications may bring a severe risk to human
lives. Thus, enabling the impeccable operation of URLLC
services is paramount.

In cellular networks, where the channel characteristics of
users show dynamic behavior over time due to mobility and
processes like shadowing, facilitating this flawless operation is
particularly challenging. To provide the needed data rates in
the up- and downlink, as well as to provide a sufficient amount
of processing resources, an appropriate resource allocation
scheme is needed on the transmission side, i.e., the RAN,
and on the analyst side, i.e., the edge computing resources.
Furthermore, to increase the revenue and utilization of the
system, the operator needs to allocate these resources in an
efficient way such that as many users as possible can be served.

The joint allocation of two types of resources, i.e., RAN
and edge computing resources, where the uplink and downlink
RAN resources are separated, renders the development of
efficient allocation schemes quite challenging. The reason
for this complexity of the problem is that one resource can
compensate for the other, meaning that, e.g., the assignment
of fewer uplink RAN resources (implying a higher uplink
transmission delay) can be compensated by the allocation
of more computing resources (implying a lower processing
delay). This compensation is not possible if the allocation
approach separates the various resources, as for example done
in [6], where the demands of each user are specified separately
in terms of RAN, computing, and storage resources.

Two important questions come up related to the joint allo-
cation of uplink/downlink network and edge cloud resources
that provides fairness among the users:

• Firstly, what is the policy that allows achieving different
types of fairness with a joint allocation of uplink and
downlink RAN as well as edge computing resources,
while all the relevant traffic requirements are fulfilled?

• Secondly, how does the maximal tolerable latency that is
set for the entire process of transmitting the data from and
to a user, including the processing at the edge, influence
the overall utility?

To answer the previous questions, we formulate an optimiza-
tion problem, where the aim is to provide α-fairness while
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TABLE I: List of Acronyms

BS Base Station CQI Channel Quality Indicator
CRV constrained rate variability eMBB enhanced Mobile Broadband
gNodeB Next Generation Node B MCS Modulation and Coding Scheme
MEAR Minimum Expected Achieved Rate mMTC massive Machine-Type Communication
NUM Network Utility Maximization PRB Phyiscal Resource Block
QoS Quality of Service RAN Radio Access Network
RR Round-Robin SB subband
SCS Subcarrier Spacing SINR Signal-to-Interference-Plus-Noise-Ratio
SLA Service Level Agreement SotA State of the Art
URLLC Ultra Reliable Low Latency Communication WB wideband

fulfilling the maximum delay requirements for every user
and meeting the resource constraints on the uplink/downlink
RAN and the edge computing side. After analyzing this
optimization problem regarding its solvability, we specifically
contemplate the four main types of fairness, i.e., throughput
maximization (no fairness), proportional fairness, minimum
potential delay fairness, and max-min fairness, and propose
polynomial-time approximation algorithms. We work with
very realistic assumptions in this paper, e.g., we assume that a
user experiences different channel gains over different channel
resources (blocks), irrespective on how close the resources
are in the frequency dimension. As the results indicate how
resources should be allocated to increase the total network
utility while providing certain types of fairness, they are
especially important for the network operator. Additionally, the
results are valuable in order to get an idea of the interplay of
the assignment of different separated resources while a delay
constraint is active. There are two key messages of this paper:
First, the integer nonlinear optimization problem for α-fair
resource allocation that is generally unbounded in time can be
solved close to optimality using the solution of the continuous
relaxation embedded in appropriate algorithms. Second, only
for α = 0 the overall system throughput decreases with a
tighter delay constraint. For all other types of fairness, no
dependence of the system throughput on the delay constraint
was observed. Specifically, our main contributions are:

• We formulate the optimization problem of jointly allocat-
ing uplink and downlink RAN and computing resources
as a network utility maximization (NUM) problem for
vehicular users within the same cell and solve the integer-
relaxed version for general α.

• As the original integer problem is NP-hard, we propose
polynomial-time approximation algorithms that provide
near-optimal performance for the cases α = 0, α = 1,
α = 2, and α → ∞.

• Using data from real measurements, we evaluate our ap-
proach and provide some interesting engineering insights.

The remainder of this work is structured as follows: We
discuss some related work in this field in Section II. These
elaborations are succeeded by the introduction of the system
model and the formulation of the optimization problem in
Section III. In Section IV, we analyze the properties of
the optimization problem, whereas approximation algorithms
for the four fairness cases are proposed in Section V. The
performance of the algorithms is evaluated in Section VI.
Finally, Section VII concludes this paper. A summary of the
acronyms used throughout this paper is given in Table I, while
the symbols are listed in Table II.

II. RELATED WORK

In [7], the authors consider a two-level network architecture
comprising a lower-level RAN with edge computing resources
as well as an upper-level transport network with central
cloud computing resources. They investigate a network slicing
process for the three types of services in 5G where they
especially examine the partitioning ratios between the lower-
and upper-level resources for the service types. While they
constrain their optimization problem with a maximum delay
requirement for the services, their objective is to minimize
an over-provisioning ratio defined as the ratio of the required
delay divided by the achieved delay. Moreover, since the
authors consider slices as the unit of allocation, the granularity
of the units is much larger than in the present work. A work
that is concerned with uplink communication of URLLC traffic
is [8]. However, the authors neither formulate an optimization
problem nor do they consider the processing of the data;
instead, two protocols for connection-less transmission of
URLLC traffic are assessed.

Further, the work in [9] considers the optimal allocation
of transmission attempts and communication channels for
URLLC traffic in a cellular system. Two optimization prob-
lems for the resource allocation are formulated: in the first
scenario, the number of transmission attempt assignments is
fixed before starting the transmission, whereas it is adaptive
in the second scenario. While [9] is also concerned with
reducing the required resources, the setup and the objective
are different from our work, and providing fairness is not one
of the aims. To meet the latency and reliability requirements
of URLLC traffic, the authors in [10] propose a periodic
resource allocation scheme. While minimizing the needed
network resources, i.e., choosing the best modulation and
coding scheme (MCS) when considering retransmissions and
the latency and reliability constraints, the scope of [10] is
limited due to the assumption of a factory environment, which
implies that channel conditions are not significantly changing
over time. Furthermore, the objective does again not include
providing any fairness.

Other related works are [11], [12]. In [11], three objectives
similar to the present paper are considered: maximize the
total throughput in the network, provide proportional fairness,
and achieve max-min fairness. There are some important
differences between this work and [11] though. In [11], the
primary goal is to provide a given constant data rate to
everyone and then reallocate the unused resources to the users
according to the respective fairness policies. Besides, while the
setup in our work is related to URLLC traffic, the target of [11]



TABLE II: List of Symbols

α fairness value, α ∈ [ 0,∞) β slack variable, equal to 1− α
∆{u,d} uplink/downlink packet size E exponential cone, defined in (8)
fα
i (Iu,i, Id,i, mi) utility function of user i, defined in (2) g slack variable, objective function for the opti-

mization problem in epigraph form
ΓP (x) generalized logarithm for the n-dimensional

power cone Pn
ζ , defined in (22)

ΓQ(x) generalized logarithm for the n-dimensional
quadratic cone Qn, defined in (21)

γ{u,d},i uplink/downlink RAN data rate of user i, de-
fined in (3)

I{u,d}, I{u,d},i, I{u,d},ij uplink/downlink PRB allocation matrix, vector
of user i, indicator of user i for PRB j

J{u,d}, J{u,d},i, J{u,d},ij uplink/downlink integer PRB allocation matrix,
vector of user i, indicator of user i for PRB j

K{u,d} number of available uplink/downlink PRBs

K set of all PRBs L number of available edge computing resources
λa roots of the characteristic polynomial of a Hes-

sian matrix
Λ(w) logarithmic barrier function for the optimization

problem defined in (19)
m, mi edge computing resource allocation vector, in-

dicator of user i
N number of users in the system

n, ni integer edge computing resource allocation vec-
tor, indicator of user i

p processing rate of one edge computing unit

Φ{u,d}, Φ{u,d},i, Φ{u,d},ij uplink/downlink data rate matrix, vector of
user i, indicator of user i for PRB j

Pn
ζ n-dimensional power cone, defined in (7)

Qn
r n-dimensional rotated quadratic cone, defined

in (6)
s, s1i, s2i, s3i slack variable vector with entries ski corre-

sponding to uplink (k = 1), processing (k = 2),
and downlink (k = 3) rate of users i, defined
in (9f)-(9h)

S helper set, {1, 2, 3} ti(Iu,i, Id,i, mi) delay of user i in up-/downlink scenario, see (5)
Tmax maximum allowed delay a packet can experi-

ence
u, uki slack variable vector with entries uki bounding

an expression including the corresponding ski
U set of all users

are users with eMBB traffic and satisfying the requirements
of users with URLLC traffic is more challenging. Lastly, the
authors of [11] only consider a one-dimensional allocation
problem, as they assume that the channel conditions are equal
across all PRBs.

There exist a lot of works focusing on the joint allocation of
resources to eMBB and URLLC users [13]–[19]. In particular,
the authors in [16] aim to provide long-term proportional
fairness to eMBB users in the downlink, while simultaneously
fulfilling the latency and reliability demands of URLLC users.
Although they jointly consider eMBB and URLLC users, their
resource allocation scheme is in fact a two-step process. First,
downlink RAN resources are allocated with the objective of
providing proportional fairness to the eMBB users. Thereafter,
the demands of the URLLC users are considered and RAN
resources are reallocated to fulfill the delay requirements
of URLLC users. While the presented approach uses very
strict assumptions regarding the latency, it lacks realistic
assumptions regarding the channel conditions, i.e., varying
channel quality indicator (CQI) values across PRBs in the
frequency domain. Furthermore, only one type of fairness, i.e.,
proportional fairness, is considered and the processing of the
data is not included in the system model. A similar approach
of puncturing and providing proportional fairness is taken by
the authors of [17]. Their objective function, however, benefits
from a risk measure that counteracts the reallocation of PRBs
belonging to users with sparse resources. In [19], the objective
is to maximize the minimum expected achieved rate (MEAR)
of eMBB users while instantaneously providing the resources
to URLLC users’ requests. The authors show that their ap-
proach outperforms other State of the Art (SotA) solutions in
terms of MEAR and fairness. Similar to the work in [16], the
authors in [18] aim to maximize the utility of eMBB users
while fulfilling the latency requirements of URLLC users.
They again consider puncturing, i.e., the reallocation of RAN

resources, for fulfilling the demands of URLLC users and use
three different loss models (linear, convex, and threshold) for
modeling the influence of puncturing on the eMBB user utility
maximization. Despite developing three scheduling policies for
the different loss models, providing fairness to the users is not
a goal. Furthermore, in [18], it is assumed that all URLLC
users can be served.

Finally, different questions on URLLC RAN resource allo-
cation are analyzed by the authors of [20]. An optimization
problem where the sum over users satisfying their service
level agreement (SLA) is maximized is defined, however,
no solution to the problem but just an analysis of its NP-
hardness is provided. Besides, the authors of [20] address
the research question of deciding whether a given set of
users can be scheduled such that their SLAs are fulfilled. A
feasible resource allocation that is attained in polynomial time
is provided by the authors. However, per-PRB rates are either
zero or a fixed number, which is a simplifying assumption
compared to the channel modeling in our work where we take
real CQI measurements to determine per-PRB rates. Moreover,
the given solution is not optimal.

III. PROBLEM FORMULATION

In this section, first, the system model will be introduced in
detail and important parameters are defined. Based on these
elaborations, the optimization problem that is associated with
the contemplated setup is mathematically stated.

A. System Model

With the possibility of network slicing in 5G [21], dedicated
network resources can be allocated to users requiring the same
service quality, e.g., users with URLLC type of traffic that
have the same reliability and latency demands. In 5G, PRBs
are used as the unit of allocation on a per-slot basis [22]. Over



Channel Quality

Fig. 1: Illustration of the system model.

the course of this work, we assume that the considered users
are situated in the coverage area of a 5G macro base station
(gNodeB) operating in the sub-6 GHz band. All users require
the same service quality. The focus is set on the uplink and
downlink communication and we assume that the processing
of the data is executed at the edge, which is collocated with
the base station (BS).

The system consists of a single BS, multiple users contained
in the set U , and edge computing resources (Fig. 1). There
are N users simultaneously requesting a service by sending
a packet to the BS, where the inquiry is handled. Afterward,
each user is receiving a response that is sent from the BS. To
enable the communication, Ku and Kd PRBs are available
in the uplink and downlink RAN, respectively. The set of all
PRBs is denoted as K. Moreover, there are L edge computing
resources accessible at the BS to process the information.

We assume that the channel conditions change over time,
i.e., they vary from one radio frame to another. Furthermore,
the channel conditions differ across the PRBs for a single
user even within the same frame. Because of the time-varying
nature of the channels and the mobility of the users, the per-
PRB CQI (which is a function of the signal-to-interference-
plus-noise-ratio (SINR)) changes from one radio frame to
another. The CQI can take 15 different values [22]. Finally, the
per-PRB CQI sets, depending on the used MCS, the per-PRB
rate for a user. Thus, scheduling must be conducted across two
dimensions, time and frequency.

The process of transmitting and processing the packets must
be carried out within a maximum time of Tmax, as we are
considering URLLC traffic in this paper.1 Hence, every user
must be allocated at least one PRB as well as one edge
computing resource, since otherwise the user cannot fulfill its
delay constraint. Naturally, a PRB and also an edge computing
resource can only be allocated to one user and the resource
can either be fully allocated or left unassigned.

Finally, due to the consideration of services that are orga-
nized in small packets, we assume that the packet sizes ∆{u,d}
are fixed [23]. Furthermore, packets are generated for each
user at the beginning of each radio frame, i.e., the number of
transmitted packets is fixed.

1While the requirement for ultra-high reliability for URLLC traffic is to
transmit the packets successfully within the maximum latency in more than
99% of the attempts, here we are even more conservative and require that
the procedure must be executed within the deadline every time. In case a less
strict reliability criterion should be modeled, the delay constraint changes to
P
(

∆u
γu,i

+ ∆u
mip

+ ∆d
γd,i

≤ TMax

)
≥ 1 − ϵ, where ϵ denotes the outage

probability that one wants to allow. Therefore, 1− ϵ denotes the reliability.

B. Optimization Problem Formulation

The objective of this work is to maximize the overall network
utility while guaranteeing that all users satisfy their traffic
requirements and taking into account the constrained RAN
and edge computing resources. The focus is set on providing
α-fairness, in the same spirit as the NUM approach [24]. We
thus can formulate the following optimization problem:

max
Iu,Id,m

N∑
i=1

fα
i (Iu,i, Id,i, mi) (1a)

s.t.
∆u

γu,i
+

∆u

mip
+

∆d

γd,i
≤ Tmax, ∀i ∈ U , (1b)

N∑
i=1

mi ≤ L, (1c)

N∑
i=1

I{u,d},ij ≤ 1, ∀j ∈ K, (1d)

K{u,d}∑
j=1

I{u,d},ij ≥ 1, ∀i ∈ U , (1e)

I{u,d},ij ∈ {0, 1}, ∀i ∈ U , j ∈ K, (1f)
mi ∈ N \ {0}, ∀i ∈ U , (1g)

where

fα
i (Iu,i, Id,i, mi) =

=

{
1

1−α

(
γ1−α
u,i + (mip)

1−α
+ γ1−α

d,i

)
, α ̸= 1

log (γu,i) + log (mip) + log (γd,i) , α = 1
, (2)

and
γ{u,d},i =

∑K{u,d}

j=1
I{u,d},ijΦ{u,d},ij (3)

describes the uplink/downlink RAN data rate of user i. The
decision variable I{u,d} = {I{u,d},ij} denotes the N×K{u,d}
PRB allocation matrix in a given radio frame. This means that
if I{u,d},ij = 1, then PRB j is allocated to user i in that frame.
The data rates user i would experience when being allocated
PRB j in the uplink and downlink, respectively, are contained
in the N × K{u,d} matrix Φ{u,d} = {Φ{u,d},ij}. These data
rates are deduced from the CQI values given for each user.
The number of allocated edge computing resources for user
i is given by the N × 1 decision variable m = {mi} and
the amount of information sent or received by each user is
denoted by ∆{u,d}. Finally, the static variable p stands for the
processing rate that one edge computing resource can provide.

The objective (1a) maximizes the overall utility for general
α ∈ [0,∞). Note that the special values α = 0, α = 1, α = 2,
and α → ∞ correspond to the cases of no fairness (throughput
maximization), proportional fairness, minimum potential delay
fairness, and max-min fairness. Clearly, since three resource
parts are allocated, they all affect the overall gained utility.
The first and third term in (2) (both for α ̸= 1 and α = 1)
corresponds to the utility from assigning uplink or downlink
RAN resources to user i, whereas the second term denotes
the utility obtained from allocating a fraction of the edge
computing resources.

The maximum tolerable latency for every user is described
by constraint (1b). Constraint (1c) captures the finite amount



of available computing resources. Constraint (1d) merely in-
dicates that every block can be assigned to at most one user,
whereas (1e) dictates that every user must receive at least one
PRB both in the uplink and downlink. Lastly, the integer nature
of the decision variables is described by (1f) and (1g), where
the latter constraint includes the minimum number of one edge
computing resource that needs to be assigned to every user.

IV. ANALYSIS

The previously introduced optimization problem belongs to
the class of Integer Nonlinear Programs, which are generally
known to be NP-hard [25]. Hence, approximation algorithms
are needed to obtain a solution to (1).

The procedure that we follow in this paper comprises
two main steps. First, we relax the integer nature of the
decision variables and allow them to be continuous. Next, the
transformed optimization problem is shown to be convex and
solvable in polynomial time under these conditions. As the
second step, in Section V, we propose special approximation
algorithms to obtain an integer solution to the aforementioned
optimization problem.

We continue with the first step of showing the convexity
of (1) when I{u,d},ij ∈ [0, 1] and mi ∈ [1,∞). Since the
constraints (1c)-(1g) are linear inequalities, they are apparently
convex. To prove the concavity of the objective function, the
concavity of fα

i (Iu,i, Id,i, mi) needs to be shown, as the sum
of concave functions is a concave function itself. We have:

Lemma 1. The function fα
i (Iu,i, Id,i, mi) is concave.

Proof. The gradient of fα
i (Iu,i, Id,i, mi) for α ̸= 1 is

∇fα
i (Iu,i, Id,i, mi) =

[
Φu,i1γ

−α
u,i . . . Φu,iKu

γ−α
u,i

p(mip)
−α Φd,i1γ

−α
d,i . . . Φd,iKd

γ−α
d,i

]T
.

Next, the Hessian matrix of fα
i (Iu,i, Id,i, mi) for α ̸= 1 is

calculated as

∇2fα
i (Iu,i, Id,i, mi) =

= −α



Φ2
u,i1/γα+1

u,i . . . Φu,i1Φu,iKu/γα+1
u,i

...
. . .

...
Φu,iKuΦu,i1/γα+1

u,i . . . Φ2
u,iKu/γα+1

u,i

0 . . . 0
0 . . . 0
...

. . .
...

0 . . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

p2
/(mip)

α+1 0 . . . 0
0 Φ2

d,i1/γα+1
d,i . . . Φd,i1Φd,iKd/γα+1

d,i

...
...

. . .
...

0 Φd,iKd
Φd,i1/γα+1

d,i . . . Φ2
d,iKd/γα+1

d,i


.

Then, the characteristic polynomial of ∇2fα
i (Iu,i, Id,i, mi)

for α ̸= 1 is computed as

det(∇2fα
i (Iu,i, Id,i, mi)− λI) =

= (−1)Ku+Kd−1 ∗ λKu+Kd−2
(
αp2(mip)

−α−1 + λ
)

∗
(
λ2 + α2γ−α−1

u,i γ−α−1
d,i

(
Φ2

u,i1Φ
2
d,i1 + · · ·+Φ2

u,iKu
Φ2

d,iKd

)
+ λα

(
Φ2

u,i1γ
−α−1
u,i + · · ·+Φ2

u,iKu
γ−α−1
u,i

+Φ2
d,i1γ

−α−1
d,i + · · ·+Φ2

d,iKd
γ−α−1
d,i

))
,

where I denotes the identity matrix in the corresponding di-
mension and λ denote eigenvalues. For α ̸= 1, the eigenvalues
of the Hessian ∇2fα

i (Iu,i, Id,i, mi) are determined as
λ1, ..., λKu+Kd−2 = 0,

λKu+Kd−1 = −αγ−α−1
u,i

(
Φ2

u,i1 + · · ·+Φ2
u,iKu

)
,

λKu+Kd
= −αγ−α−1

d,i

(
Φ2

d,i1 + · · ·+Φ2
d,iKd

)
,

λKu+Kd+1 = −αp2(mip)
−α−1.

The proof for α = 1 is omitted here, as it follows the exact
same proposition as for α ̸= 1. Conclusively, the Hessian
∇2fα

i (Iu,i, Id,i, mi) is negative semidefinite for any α as all
eigenvalues of the Hessian are less than or equal to 0 and thus
the function fα

i (Iu,i, Id,i, mi) is concave for all α.

Next, the characteristics of (1b) are explored. We have:

Lemma 2. Constraint (1b) is convex.

Proof. We denote the left-hand side of (1b) as

ti(Iu,i, Id,i, mi) =
∆u

Ku∑
j=1

Iu,ijΦu,ij

+
∆u

mip
+

∆d

Kd∑
j=1

Id,ijΦd,ij

=
∆u

γu,i
+

∆u

mip
+

∆d

γd,i
. (5)

Calculating the gradient of ti(Iu,i, Id,i, mi) leads to

∇ti(Iu,i, Id,i, mi) =
[
−∆uΦu,i1

γ2
u,i

. . .
−∆uΦu,iKu

γ2
u,i

−∆u

m2
ip

−∆dΦd,i1

γ2
d,i

. . .
−∆dΦd,iKd

γ2
d,i

]T
.

For the Hessian of ti(Iu,i, Id,i, mi), we have

∇2ti(Iu,i, Id,i, mi) =

=



2∆uΦ
2
u,i1/γ3

u,i . . . 2∆uΦu,i1Φu,iKu/γ3
u,i

...
. . .

...
2∆uΦu,iKuΦu,i1/γ3

u,i . . . 2∆uΦ
2
u,iKu/γ3

u,i

0 . . . 0
0 . . . 0
...

. . .
...

0 . . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

2∆u/m3
ip 0 . . . 0

0 2∆dΦ
2
d,i1/γ3

d,i . . . 2∆dΦd,i1Φd,iKd/γ3
d,i

...
...

. . .
...

0 2∆dΦd,iKd
Φd,i1/γ3

d,i . . . 2∆dΦ
2
d,iKd/γ3

d,i


.

For the determinant of ∇2ti(Iu,i, Id,i, mi)− λI, we get

det(∇2ti(Iu,i, Id,i, mi)− λI) =
(−1)Ku+Kd−1λKu+Kd−2

(
2∆um

−3
i p−1 + λ

)



∗
(
λ2 + 4∆u∆dγ

−2
u,iγ

−2
d,i

(
Φ2

u,i1Φ
2
d,i1 + · · ·+Φ2

u,iKu
Φ2

d,iKd

)
+ 2λ

(
∆uγ

−2
u,i

(
Φ2

u,i1 + · · ·+Φ2
u,iKu

)
+∆dγ

−2
d,i

(
Φ2

d,i1 + · · ·+Φ2
d,iKd

)))
.

Lastly, the eigenvalues of the Hessian ∇2ti(Iu,i, Id,i, mi) can
be found as

λ1, ..., λKu+Kd−2 = 0,

λKu+Kd−1 = 2∆uγ
−3
u,i

(
Φ2

u,i1 + · · ·+Φ2
u,iKu

)
,

λKu+Kd
= 2∆dγ

−3
d,i

(
Φ2

d,i1 + · · ·+Φ2
d,iKd

)
,

λKu+Kd+1 = 2∆um
−3
i p−1.

Thus, the Hessian ∇2ti(Iu,i, Id,i, mi) is positive semidefinite
and the function ti(Iu,i, Id,i, mi) is convex, as all the eigen-
values of the Hessian are greater than or equal to zero.

Theorem 3. The integer relaxed optimization problem (1) is
a convex optimization problem.

Proof. Given the linearity of (1c)-(1g) as well as Lemmas 1
and 2 proves that (1) is a convex optimization problem.

For the next main step of proving the polynomial-time
solvability of the integer-relaxed optimization problem, (1) is
rewritten into a convex optimization problem with generalized
inequality constraints. For the following derivations, we define
the n-dimensional rotated quadratic cone as
Qn

r =
{
x ∈ Rn | 2x1x2 ≥ x2

3 + · · ·+ x2
n, x1, x2 ≥ 0

}
. (6)

Additionally, the n-dimensional power cone parameterized by
a real number ζ ∈ [0, 1] is specified as

Pn
ζ =

{
x ∈ Rn |xζ

1x
1−ζ
2 ≥

√
x2
3 + · · ·+ x2

n, x1, x2 ≥ 0

}
(7)

and the exponential cone as

E =
{
x ∈ R3 |x1 ≥ x2e

x3/x2 , x1, x2 > 0
}

. (8)
As a first step, we introduce the slack variables ski, k ∈ S =

{1, 2, 3}, i ∈ U , and write the relaxed optimization problem
in epigraph form2, such that it reads as

min
g, Iu, Id,m, s

g (9a)

s.t. −
N∑
i=1

hα
i (s1i, s2i, s3i, g) ≤ 0, (9b)

∆u

s1i
+

∆u

s2i
+

∆d

s3i
− Tmax ≤ 0, ∀i ∈ U , (9c)

(1c), (1d), (1e),
0 ≤ I{u,d},ij ≤ 1, ∀i ∈ U , j ∈ K, (9d)
1−mi ≤ 0, ∀i ∈ U , (9e)

s1i =

Ku∑
j=1

Iu,ijΦu,ij , ∀i ∈ U , (9f)

s2i = mip, ∀i ∈ U , (9g)

s3i =

Kd∑
j=1

Id,ijΦd,ij , ∀i ∈ U , (9h)

2The epigraph form is an equivalent form of a standard form optimization
problem which has a linear objective function that can be introduced at the
cost of an additional constraint and an additional scalar decision variable [26].

where

hα
i (s1i, s2i, s3i, g) ={

1
1−α

(
s1−α
1i + s1−α

2i + s1−α
3i

)
+ g, α ̸= 1

log (s1i) + log (s2i) + log (s3i) + g, α = 1
. (10)

We continue with the introduction of conic inequalities3 for
the constraints (9b) and (9c).

Lemma 4. The constraint (9c) can be written as
3∑

k=1

uki ≤ Tmax, (11a)

(uki, ski; ∆k) ∈ Q3
r, ∀k ∈ S, (11b)

where ∆k = ∆u for k = {1, 2} and ∆k = ∆d for k = 3.

Proof. Constraint (11b) is by definition transformed to

ukiski ≥
√
∆2

k, uki, ski ≥ 0.
Dividing this term by ski and extracting the root leads to

uki ≥
∆k

ski
, uki ≥ 0, ski ≥ 0,

from where it can be observed that
3∑

k=1

∆k

ski
≤ Tmax.

Due to the positiveness of ∆k and ski, which follows from
the constraints (9d) and (9e), the constraints uki, ski ≥ 0 that
are introduced with this reformulation are always met.

By setting β = 1− α and using the slack variable uki, we
transform the constraint (9b) to the constraints (13a)-(13d) for
the cases α ∈ (0, 1) and α ∈ (1,∞). Bringing the sum over
sβki to the right-hand side of the inequality results in

−g ≤ 1

β

3∑
k=1

N∑
i=1

sβki, (12)

which can be converted into

(12) =



−gβ ≤
3∑

k=1

N∑
i=1

uki,

uki ≤ sβki, ∀k ∈ S, i ∈ U ; α ∈ (0, 1)

g |β| ≥
3∑

k=1

N∑
i=1

uki,

uki ≥ sβki, ∀k ∈ S, i ∈ U ; α ∈ (1,∞)

.

(13a)

(13b)

(13c)

(13d)
We start with the case α ∈ (0, 1), i.e., β ∈ (0, 1).

Lemma 5. The constraint (13b) can be written as
(ski, 1; uki) ∈ P3

β . (14)

Proof. By definition, the expression (14) is equivalent to

sβki1
1−β ≥

√
u2
ki, ski ≥ 0,

which simplifies to
sβki ≥ uki, ski ≥ 0,

by extracting the root and dropping the factor 1. Due to the
constraints (9d) and (9e), the additional constraint ski ≥ 0 is
again fulfilled.

3A conic inequality has the general form x ∈ K, where K is a pointed
and closed convex cone with non-empty interior in Rn [27].



Now, we proceed with the case α ∈ (1,∞), which implies
that β ∈ (−∞, 0).

Lemma 6. The constraint (13d) can be written as
(uki, ski; 1) ∈ P3

1/(1−β). (15)

Proof. The expression (15) is by definition converted into
u
1/(1−β)
ki s

−β/(1−β)
ki ≥

√
12, uki ≥ 0, ski ≥ 0,

which simplifies to
uki ≥ sβki, uki ≥ 0, ski ≥ 0,

when taking the entire expression to the power of (1−β) and
multiplying both sides of the inequality by sβki. Due to the
positiveness of ski, implied by (9d) and (9e), the additional
constraints uki ≥ 0 and ski ≥ 0 are always met.

As a last step, we contemplate the case α = 1. Then, (9b)
must be reformulated to

−g ≤
3∑

k=1

N∑
i=1

log ski, (16)

by bringing the sum over the logarithms to the right-hand side
of the inequality. Inequality (16) can be written as

−g ≤
3∑

k=1

N∑
i=1

uki, (17a)

uki ≤ log ski, ∀k ∈ S, i ∈ U , (17b)
by introducing the slack variable uki again.

Lemma 7. Constraint (17b) can be reformulated as
(ski, 1, uki) ∈ E . (18)

Proof. By definition, (18) is equivalent to
ski ≥ 1 ∗ euki/1, ski > 0,

where we take the logarithm on both sides and write it as
log ski ≥ uki, ski > 0.

Due to the constraints defined in (1e), (9d), and (9e), the
additional constraint ski > 0 that is introduced with this
reformulation is fulfilled.

Theorem 8. The integer-relaxed version of the optimization
problem (1) can be written as a convex optimization problem
with generalized inequality constraints.

Proof. Given the fact that (9b) is linear for α = 0 as well as
Lemmas 4, 5, 6, and 7 concludes the proof.

With the preceding derivations, the optimization problem (1)
reads for any α ∈ [0,∞), written in its integer-relaxed version
as a convex optimization problem with generalized inequality
constraints, as:

min
g, Iu, Id,m, s,u

g (19a)

s.t. −
N∑
i=1

eαi (s1i, s2i, s3i, u1i, u2i, u3i, g) ≤ 0,

(19b)
(1c), (1d), (1e), (9d), (9e),
(9f), (9g), (9h), (11),

where

(19b) ≡


(9b), α = 0

(13a), (14), ∀k ∈ S, i ∈ U , 0 < α < 1

(17a), (18), ∀k ∈ S, i ∈ U , α = 1

(13c), (15), ∀k ∈ S, i ∈ U , α > 1

. (20)

We define the following generalized logarithms and note
their degrees for the final verification of the polynomial-time
solvability of the optimization problem stated in (19). Further
information on the generalized logarithm can be found in
Section 11.6 of [26]. For the n-dimensional rotated quadratic
cone Qn

r , a generalized logarithm can be designed as

ΓQ(x) = log

(
x2
1 −

n∑
i=2

x2
i

)
, (21)

which is the generalized logarithm for an ordinary quadratic
cone, cf. [26]. Since the rotated n-dimensional quadratic cone
can be written as an ordinary quadratic cone by a rotation of
coordinates, ΓQ(x) is also valid for the rotated n-dimensional
quadratic cone Qn

r . The degree of a generalized logarithm
can be calculated as θΓ = ∇Γ(x)Tx, cf. [26]. Therefore,
the degree of the function ΓQ(x) is 2. Furthermore, for
the n-dimensional power cone Pn

ζ , we define a generalized
logarithm as

ΓP(x) = log

(
x2ζ
1 x

(2−2ζ)
2 −

n∑
i=3

x2
i

)
+

(1− ζ) log(x1) + ζ log(x2), (22)
as introduced in [28]. Its degree is 3. For the exponential cone
E , we define the generalized logarithm as [28]

ΓP(x) = log

(
x2 log

(
x1

x2

)
− x3

)
+ log x1 + log x2, (23)

and note its degree as 3. Lastly, note that a slack variable that
is attached to the system of equality constraints can be inserted
for every linear inequality constraint of the optimization. The
corresponding generalized logarithm for these slack variables
has degree 1, as the slack variable needs to be in R+. With
the preceding definitions of the generalized logarithms, a
logarithmic barrier function4 Λ(w) can be given as

Λ(w) = −
Z∑

c=1

Γc(w),

domΛ = {w | fc(w) ≺Kc 0, c = 1, ..., Z},
where Z = (7+2Ku+2Kd)N+2+Ku+Kd for α = 0 and
Z = (10+2Ku+2Kd)N+2+Ku+Kd for α ̸= 0. The vector
w is composed of the vectorized matrices Iu and Id as well
as the vectors m, s = {ski}, and u = {uki}. The function
Γc(w) denotes the generalized logarithms defined above for
each generalized inequality constraint fc(w) in the convex
optimization problem with generalized inequalities given in
(19). As a logarithmic barrier function can be defined for the

4A barrier function is a function that represents the feasible set of an
optimization problem. The domain of the barrier function is this feasible set.
The barrier function is greater or equal to zero in the interior of the feasible
set while it approaches infinity as the input approaches the boundary of the
feasible set. It is used to incorporate inequality constraints of an optimization
problem in the objective function such that the barrier method can be applied
to solve the problem. [26]



optimization problem, the barrier method can be applied to
solve the problem.

In the following, a complexity analysis that is based on the
property of self-concordance is given5.

Lemma 9. The logarithmic barrier function Λ(w) is self-
concordant.

Proof. First, note that the sum of self-concordant functions
is again self-concordant [26]. Hence, the logarithmic barrier
for the positive orthant defined by all slack variables corre-
sponding to linear inequalities is a self-concordant function,
because − log x is self-concordant. The logarithmic barriers
established using the generalized logarithms defined in (21)-
(23) are self-concordant as well; see Section 11.6 in [26] and
Sections 2.4 and 3.1 in [28]. This concludes the proof.

Lemma 10. The number of total Newton steps6 excluding the
initial centering step for solving (19) using the Barrier method
can be bounded by [26]

TBarrier =

⌈
log(θ̄/(t(0)ϵ))

logµ

⌉
∗(

θ̄(µ− 1− logµ)

χ
+ log2 log2(1/ϵ)

)
. (24)

Proof. Given the fact that (19a) is linear and using Lemma 9,
the objective of the Barrier method, i.e., the function tg +
Λ(w), is self-concordant. Given the additional properties that
this function is closed and the sublevel sets of the optimization
problem (19) are bounded leads to (24).

In (24), t(0) > 0 is the initial value of the algorithm
parameter t of the barrier method, the parameter µ > 1 is
an algorithm parameter of the barrier method, and ϵ > 0 is
the specified tolerance of the barrier method, see Algorithm
11.1 in [26]. The parameter χ is a constant that depends on
the backtracking parameters κ and τ , Alg. 9.2 in [26], which
is used for line search in Newton’s method. It is given as

1

χ
=

20− 8κ

κτ(1− 2κ)2
.

Finally, θ̄ stands for the sum of the degrees of the general-
ized logarithms Γc, which for the contemplated problem is
calculated as

θ̄ =

{
(10 + 2Ku + 2Kd)N + 2 +Ku +Kd, α = 0

(19 + 2Ku + 2Kd)N + 2 +Ku +Kd, α ̸= 0
.

(25)

Theorem 11. The complexity of solving the optimization
problem (19) in terms of Newton steps is

TBarrier = O (log ((Ku +Kd)N/ϵ) ∗
((Ku +Kd)N + log2 log2 (1/ϵ))) . (26)

Proof. Plugging (25) into (24) and simplifying this term leads
to the bound given in (26).

5A convex function f : R → R is called self-concordant if it fulfills the
inequality |f ′′′(x)|≤ 2f ′′(x)3/2 for all x ∈ domf [26]. For a more thorough
discussion on self-concordance, see Section 9.6 in [26].

6The vector ∆xnt = −∇2f(x)−1∇f(x) denotes the Newton step for f
at x, for x ∈ dom f [26]. The Newton step is used in Newton’s method,
which is an iterative multidimensional search method used in optimizations.

The order of growth of (26) is a function of n log n and of
log(1/ϵ), which is a desirable complexity for these types of
problems.

V. CONVERSION ALGORITHMS

In the previous section, it was shown that the integer-relaxed
optimization problem can be solved optimally in polynomial
time. However, the obtained allocation allows the assignment
of arbitrary fractions of resources, which breaks the natural
limitation that only integer parts of RAN and edge computing
resources can be allocated. Hence, we developed specific
approximation algorithms for obtaining an integer solution to
the optimization problem for the particular values of α = 0,
α = 1, α = 2, and α → ∞. These algorithms rely on
converting the continuous solution to an integer resource
allocation. The reason for investigating these special α-values
is described as follows: On the one hand, the guaranteed delay
(constraint (1b)) is of interest to the individual users to fulfill
their quality of service (QoS) requirements. On the other hand,
the α-fairness is of interest to the network operator, as the
allocation problem is a NUM. The specific α-values thereby
offer the possibility to advertise different network properties.
In detail, for α = 0, the users are guaranteed a maximum
delay, but if they experience good channel conditions, they
might experience much better performance. For α = 1, no user
is punished for its channel conditions, i.e., other users’ channel
conditions have no influence on the experienced performance
if there are no constraints [29], while for α → ∞, users
with bad channel conditions are favored such that every user
experiences roughly the same QoS. Lastly, for α = 2, the
overall delay is minimized, which implies that a minimum
amount of resources is used.

Subsequently, first, the conversion algorithm for the edge
computing resource allocation is presented. Afterward, the
algorithms for the specific fairness cases are introduced.
Throughout the following subsections, J{u,d} indicates the
N × K{u,d} RAN allocation matrix with entries J{u,d},ij ∈
{0, 1} and n denotes the N × 1 edge computing resource
allocation vector with entries ni ∈ N \ {0}. The variables
I{u,d} and m are their continuous equivalents.

A. Conversion Algorithm for Edge Computing Resources

Simple mathematical rounding is conducted to convert the
continuous edge computing resource allocation to an integer
assignment. To prevent an allocation of more or less than
L computing resources, a limit check is performed after
rounding. The user with a continuous allocation value closest
above ⋆.5, where ⋆ denotes an arbitrary integer, is assigned
one computing resource less than it would have received
by mathematical rounding if more than L edge computing
resources were allocated. This procedure is executed until L
edge computing resources are assigned. Likewise, the users
closest below ⋆.5 will receive one more resource until L
resources are assigned if less than L resources are allocated
after the rounding. Algorithm 1 summarizes the outlined
approach. Its complexity is O(N), i.e., it is linear.



Algorithm 1 Integer Edge Computing Resource Allocation
Input: N , L, m
Output: n

1: function ECRALLOC(N , L, m)
2: for all mi do
3: ni = ⌊mi + 0.5⌋
4: end for

5: if
N∑
i=1

ni > L (Case 1 (C1)) then

6: l = 1, k = 0, create empty list w.

7: else if
N∑
i=1

ni < L (Case 2 (C2)) then

8: l = −1, k = 0, create empty list w.
9: end if

10: while
N∑
i=1

ni > L (C1) or
N∑
i=1

ni < L (C2) do

11: for i = 1 to N do
12: if i /∈ w then
13: ri = mi mod ⌊mi⌋ − 0.5
14: if ri ∈]0, l[ (C1) or ri ∈]l, 0[ (C2) then
15: l = ri, k = i
16: end if
17: end if
18: end for

19: nk =

{
⌊mi⌋, (C1)

⌈mi⌉, (C2)
, attach k to list w.

20: end while
21: return n
22: end function

B. No Fairness

In the case α = 0 (throughput maximization), when neglecting
all constraints, every PRB would be assigned to the user with
the highest CQI value across that PRB. Moreover, as each
edge computing resource offers the same processing rate and
hence contributes in the same way to the objective no matter
to which user the resource is assigned, the allocation of the
edge computing resources could be done randomly. However,
each user must fulfill the delay constraint (1b), meaning that
its packet must be sent and processed and a response must
be received within the maximum time Tmax. Thus, users
experiencing worse channel conditions are allocated more
computing resources such that the number of necessary PRB
allocations for that user is minimized because allocations of
PRBs to users with low CQI values negatively impact the
maximization of the overall objective.

The approximation algorithm for α = 0 can be explained as
follows: First, all users are allocated enough edge computing
and RAN resources such that they can fulfill their delay
constraints, see lines 2 to 24 from Algorithm 2. This is done
using the continuous allocations I{u,d} and m. Note that when
finding the optimal solution to the continuous problem only
L − N edge computing resources are allocated. Afterward,
one “extra” resource is assigned to each user during the
conversion process, such that the integer edge computing
resource allocation per user is at least as high as the continuous
allocation. This ensures the feasibility of the integer solution.

Algorithm 2 Integer Resource Allocation for α = 0

Input: N , Ku, Kd, L, m, Iu, Id, Φu, Φd

Output: n, Ju, Jd

1: function ALLOCA0(N , Ku, Kd, L, m, Iu, Id, Φu, Φd)
2: n = ECRALLOC(N,L−N,m) + 1
3: Ju = 0, Jd = 0
4: for i = 1 to N do
5: Calculate w{u,d},i =

∑K{u,d}
j=1 I{u,d},ijΦ{u,d},ij .

6: end for
7: Create list z with users i ordered
8: s.t. ∆u/wu,i + ∆d/wd,i is decreasing.
9: while list z is non-empty do

10: for user i in list z do
11: for uplink u and downlink d do
12: Find argmax

j
I{u,d},ijΦ{u,d},ij .

13: if ∃ more than one j then
14: Choose randomly between those j.
15: end if
16: Allocate PRB j to user i,
17: update J{u,d},j and set I{u,d},j = 0.
18: end for
19: Calculate delay δi using ni and Ju,i, Jd,i.
20: if δi ≤ Tmax then
21: Remove user i from list z.
22: end if
23: end for
24: end while
25: for all non-allocated uplink/downlink PRBs k do
26: Find argmax

i
Φ{u,d},ik.

27: Allocate PRB k to user i and update J{u,d},k.
28: end for
29: return n, Ju, Jd

30: end function

For the RAN resource allocation, users are ordered such that
those who were assigned the scarcest amount of continuous
resources get their fixed integer allocation for complying with
the delay constraint first.7 Afterwards, the remaining PRBs are
assigned to the users experiencing the best channel conditions.
The procedure is recapitulated in Algorithm 2. The complexity
of this algorithm is O(N +Ku +Kd).

C. Proportional Fairness

Unconstrained proportional fairness is characterized as the as-
signment where every user gets the same amount of resources,
independent of the channel conditions it is experiencing (as-
suming the same CQI for all PRBs of a user). Mathematically,
this can be explained as follows: for α = 1, the pure objective
is to maximize the sum of the natural logarithms of the
RAN data and edge processing rates. The natural logarithm
is characterized by the fact that its output value increases by
a constant number whenever the argument of the logarithm

7The described procedure for the allocation of the edge computing resources
as well as the assignment of the RAN resources needed to fulfill the delay
constraint applies to the approximation algorithms for all four types of fairness
considered in this work.



Algorithm 3 Integer Resource Allocation for α = 1

Input: N , Ku, Kd, L, m, Iu, Id, Φu, Φd

Output: n, Ju, Jd

1: function ALLOCA1(N , Ku, Kd, L, m, Iu, Id, Φu, Φd)
2: Follow lines 2 to 24 from Algorithm 2.
3: for i = 1 to N do
4: Calculate w{u,d},i =

∑K{u,d}
j=1 J{u,d},ij .

5: end for
6: Create lists z{u,d} with users i ordered
7: s.t. w{u,d},i is increasing.
8: for all non-allocated uplink/downlink PRBs k do
9: Take z{u,d}(1), find

10: argmin
k

(
max

i

(
Φ{u,d},ik

)
− Φ{u,d},z{u,d}(1)k

)
.

11: Allocate PRB k to user z{u,d}(1)
12: and update J{u,d},k.
13: Set w{u,d},z{u,d}(1) =

∑K{u,d}
j=1 J{u,d},z{u,d}(1)j .

14: Reorder list z with users i
15: s.t. w{u,d},i is increasing.
16: end for
17: return n, Ju, Jd

18: end function

doubles. This implies that the objective value increases by
the same amount irrespective of which user can double its
resources. Conclusively, this provokes that every user should
receive the same amount of resources since it is more costly
(in terms of resources) to double the resources of a user who
already has 6 PRBs than to double the resources of a user who
only got assigned 2 PRBs.

In case the assumption of equal CQI values for all PRBs of a
user does not hold, i.e., a user experiences very different chan-
nel conditions over the frequency range, the overall objective
is still sensitive to these channel conditions. This means that
a user should be allocated the PRBs for which he experiences
the best channel conditions, even if the amount of PRBs should
still be roughly the same for all users. These insights lead to
the design of Algorithm 3. Thereby, again, first, the required
resources for fulfilling the delay constraint are allocated and
then the proportional fairness aim is followed when assigning
the remaining PRBs. The allocation of the remaining RAN
resources is done one after the other, where users are consid-
ered following an ordered list which is created according to
a weight metric representing proportional fairness (see line 4
of Algorithm 3). Note that the remaining uplink and downlink
resources can be handled independently, as their contribution
to the overall objective value is combined with the sum of
the uplink and downlink data rate a user is experiencing. This
means that an allocation in the uplink does not influence the
downlink objective values after fulfilling the delay constraint.8

The complexity of Algorithm 3 is O(N +Ku +Kd).

D. Minimum Potential Delay Fairness

For the α = 2 scenario, the prefactor in the objective (2)
turns into −1, transforming the maximization problem into a

8This fact also applies to the approximation algorithms for the cases α = 2
and α → ∞.

minimization problem. Furthermore, the exponent of the RAN
data rate and the edge processing rate of each user turns into
−1 as well, leading to the minimization of the reciprocals of
these rates. Comparing this objective function with the left-
hand side of the delay constraint (1b), it is observable that the
two functions are the same, with the only difference being the
missing packet size ∆{u,d} in the objective function. Since
the packet sizes are equal for all users, they are, however, just
a constant not influencing the optimization. To minimize the
overall system delay, the knowledge of all RAN assignment
combinations is needed. Since this knowledge is nonexistent
when applying the approximation algorithm, the focus of the
developed algorithm is to minimize the maximum experienced
delay by any user. The algorithm for α = 2 works in the exact
same way as Algorithm 3, with the only two differences being
the weight formulas representing the fairness, i.e., the equation
in line 4 reads as

w{u,d},i =

K{u,d}∑
j=1

J{u,d},ijΦ{u,d},ij ,

and the equation in line 13 is

w{u,d},z{u,d}(1) =

K{u,d}∑
j=1

J{u,d},z{u,d}(1)jΦ{u,d},z{u,d}(1)j .

E. Max-Min Fairness

Unconstrained max-min fairness, i.e., α → ∞, corresponds
to the minimization of the sum of the reciprocals of the data
and processing rates raised to the power of a large positive
number. Once each user’s data and processing rates are equal
to each other, this minimization is achieved. This means that
the edge computing resources are split equally among the users
and the PRBs are allocated such that the difference between
the users’ data rates is minimized while the minimum data
rate any user is experiencing is maximized. When a delay
constraint is introduced, resources are allocated such that every
user fulfills its constraint, which implies that the minimum data
rate achieved by any user might decrease and the differences
between the users’ data rates might increase. The redistribution
might also lead to a larger imbalance between the users’
processing rates. The algorithm adjusted for α → ∞ follows
the same concept as the approximation algorithms for the
other special fairness cases. Again, the weight formulas in
Algorithm 3 are the only factors that need to be adjusted to get
the algorithm for max-min fairness. In that sense, the equation
in line 4 is given as

w{u,d},i =

K{u,d}∑
j=1

J{u,d},ijΦ{u,d},ij

|1−α|

,

and the equation in line 13 reads as

w{u,d},z{u,d}(1) =

=

K{u,d}∑
j=1

J{u,d},z{u,d}(1)jΦ{u,d},z{u,d}(1),j

|1−α|

.



VI. PERFORMANCE EVALUATION

In the penultimate section of this work, we first describe
our simulation setup and introduce the benchmarks. This is
followed by an evaluation of the different fairness cases and
analyses on the effect of fairness on the system throughput as
well as the fairness scores of individual users.9

A. Simulation Setup

A 5G trace with data measured in the Republic of Ireland was
used as input to the simulations. A detailed description of the
traces can be found in [30], and a statistical analysis is given
in [31]. The CQI with 15 levels is the parameter of interest
from the trace, which specifies a user’s experienced rate in a
radio frame. The corresponding data rates per CQI are given in
Table III. The measurements were conducted for a single user,
but on various days, for different applications, and when the
user was static or moving around. Only measurements where
the user was moving were picked for the simulations in order
to mimic the dynamic nature of the users.

Since there is only one CQI value given per time step
in each measurement, the per-PRB CQI values were derived
from the measured CQI value, denoted CQI, by generating
a population of CQI values in {CQI − 1, ..., CQI + 1} or
{CQI − 3, ..., CQI + 3}, respectively. Thereby, the mean
value of the population is equal to the measured indicator
CQI and the amounts of values per CQI were uniformly
distributed when possible. In case the range of CQI values
would exceed the technically possible range of CQI values, a
biased distribution (larger amount of CQI values close to the
boundary of the possible range) with the mean being CQI was
used in order to still adequately represent the measurement. In
case the CQI value was 1 or 15, no population was generated
since CQI values of 0 and 16 are impossible and hence the
population’s mean would not have been equal to CQI. The
values from the population were then randomly assigned to
the PRBs in the frequency range. Various measurements were
taken to mimic various users.

The simulation parameters used in this evaluation are sum-
marized in Table IV. Note that the presented mathematical
analysis and subsequent evaluations are oblivious to the chosen
subcarrier spacing (SCS). Only the achievable data rates
dependent on the SCS do influence the achievable latencies,
however, both for the optimal allocation and the assignment
attained with the approximation algorithms. For all types of
fairness, simulation data were gathered for different combi-
nations of maximum latencies and user numbers as well as
for the CQI populations with small and large variance. The
simulations were conducted in MATLAB R2022b. To solve the
optimization problems, CVX [32] together with Mosek [33]
was used. In all cases, the solutions from the approximation
algorithms are compared to the continuous (cont.) optimum
obtained by solving the relaxed optimization problem, i.e.,

9Corresponding to footnote 1, it is noted here that insignificant changes
were observed when relaxing the reliability requirement from 100% to
99.999%. Due to the nature of the considered vehicular applications in this
work, any further reduction in the required reliability would pose serious risks
on human lives, which is the reason why no further reductions are considered.

an upper bound. This procedure is followed since an integer
optimum satisfying our accuracy requirements could not be
found due to the NP-hardness of the integer optimization
problem. Although the continuous allocation (allowing for
arbitrary splitting of PRBs) is infeasible in reality, it gives
a good indication of the performance of our algorithms.

B. Benchmarks

In total, besides the upper bound, our heuristics are compared
to four different benchmarks. The first one is the Round-Robin
(RR) principle [34]. This means all users are allocated one
computing resource and one uplink and downlink PRB in each
iteration. The PRBs are allocated one after another from the
lowest to the highest frequency and independent of the users’
channel conditions. Once a user fulfills its delay constraint,
it will not be assigned any more resources until every user
complies with its latency target. Thereafter, the remaining
computing and RAN resources are allocated one by one to
all users, until no resources are available anymore. The sec-
ond benchmark policy provides a constrained rate variability
(CRV) [12], where every user’s PRB share corresponds to the
fraction of the reciprocal of its experienced data rate divided by
the sum of all reciprocals of the users’ experienced data rates.
Since in [12] it is assumed that the CQI value reported for
one user is valid for the entire frequency range, the average
CQI over a user’s CQI values Φ{u,d},i is taken as input to
the allocation algorithm for all the user’s PRBs. After the
allocation of the PRBs according to the presented algorithm,
the performance is measured based on the actual experienced
CQI distributions Φ{u,d}. Lastly, the assumption that one
CQI value is reported per PRB reflects possible developments
within the scope of 6G. The current 5G standards support
either a wideband (WB) or a subband (SB) CQI reporting,
where the width of the SB depends on the used bandwidth part
size [22]. Thus, we compare the results from our heuristics for
three different CQI input granularities (per-PRB CQI, SB CQI
(8 PRBs), and WB CQI). Note that the resource allocation
is done based on the various input types, the performance
is however evaluated given the exact experienced per-PRB
channel conditions. With this comparison, the potential of a
more granular CQI reporting is shown.

C. Results for No Fairness (Throughput Maximization)

In Fig. 2a), the average objective value is shown for every
possible combination of the number of users N and the
delay constraint Tmax for the CQI input with large variance.
Thereby, and also in all following average plots, the averages
are taken over 100 measurement points. Moreover, the average
system througput, i.e., the data rates gained by RAN resource
allocation, is depicted in Fig. 3a) for selected scenarios of
both CQI distributions. For the bechmarks where only limited
channel state information is available during the allocation, it
can happen that the delay constraint is not fulfilled. In this
case, the average is taken only over the valid measurement
points. When analyzing the objective values (and also the
system throughputs) for a specific number of users, it is
observable that the average value decreases when tightening



TABLE III: Per-PRB rates for different CQIs [11]

CQI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R (kbps) 48 73.6 121.9 192.2 282 378 474.2 712 772.2 874.8 1063.6 1249.6 1448.4 1640.6 1778.4

TABLE IV: Simulation Parameters

subcarrier spacing (SCS) 30 kHz
slot duration 0.5 ms
number of uplink PRBs (Ku) 80
number of downlink PRBs (Kd) 100
number of edge computing resources (L) 120
processing rate per edge computing resources (p) 500 kbps
uplink packet size (∆u) 6 kbit
downlink packet size (∆d) 4 kbit
number of users (N ) {5, 8, 10}
maximum latency (Tmax) {3, 5, 10} ms

the delay constraint. This was especially detectable for the
CQI population with a small variance. The reason for this
reduction can be explained by the allocation of more PRBs to
users that are experiencing worse channel conditions, which
is needed to fulfill their latency requirements. Additionally, it
is observable that the algorithm outperforms the RR as well
as the CRV scheme by far and is very close to the average
continuous optimum. A more granular CQI reporting leads to a
better objective value and system throughput, as the PRBs can
be utilized more efficiently. Moreover, regarding the number
of invalid measurement points, three things were seen. For the
CRV scheme, all delay constraints could be fulfilled. Although
the algorithm uses a WB CQI value, the allocation rule ensures
a kind of fairness among the users such that all of them
receive enough PRBs. In case of WB and SB CQI reporting,
on average, 45.8 or 33.8 delay constraint violations out of 100
simulations could be observed due to the mismatch between
the experienced and the reported CQI values. Especially for
the CQI distribution with large variance, a lot of constraint
violations could be detected. When comparing the average
values for the CQI populations with small and large variance
for a specific scenario, it was noticeable that the average
objective value (and also the system throughput) is higher
for the case where users experience higher variance in their
CQI values. This can be explained by the fact that users
who experience a bad average CQI value sometimes still have
comparably good channel conditions if they experience larger
variances in their CQI distribution.

The deviation of the objective value from the algorithm to
the continuous optimum (upper bound) is shown for different
CQI inputs for four exemplary scenarios in Fig. 4. Two
conclusions can be drawn from this plot. Firstly, the deviation
from the continuous optimum decreases with an increasing
delay constraint Tmax, as fewer PRBs need to be allocated
to users with bad channel conditions with increasing Tmax,
which also leads to fewer allocations of split PRBs in the
continuous assignment. Secondly, in most cases, the deviation
for a scenario with a large variance of the CQI population is
less than for a scenario with a small variance. In case there
is a large variance in the per-user CQI populations, also the
different CQI values per PRB have a larger variance, which
almost leads to an integer solution when solving the relaxed
optimization problem with continuous decision variables. The
second observation is also reflected when comparing the max-
imum and average deviations among 100 data points among

all scenarios for α = 0; the maximum deviation for the small
variance input is 1.79% (average: 0.47%), while it is 0.99%
(average: 0.17%) for the large variance input. These values
prove the very good performance of our algorithm in the no
fairness case.

D. Results for Proportional Fairness

When looking at the average objective value and at the average
system throughput in Fig. 2b) and Fig. 3b) for various scenar-
ios, it is observable that all benchmarks are again outperformed
by the approximation algorithm. Due to the similarity of the
objectives of the RR principle and the proportional fairness,
the results from the RR scheme are much closer to the
algorithm objective values and to the optimal objectives than
for α = 0. The reason for this behavior is the allocation of
the same amount of resources to all users in the proportional
fair case. This is very similar to the RR principle, where
all the users are assigned one resource after another until no
resources are available anymore. Because users get assigned
the resources where the difference between the data rate they
experience and the maximum experienced data rate of any
user for a PRB is the smallest, the approximation algorithm
for proportional fairness still outperforms the benchmark al-
gorithm. Due to the introduced fairness, only very few delay
constraint violations could be observed for WB and SB CQI
reporting. Again, a more precise CQI report leads to a better
utility and system throughput.

Another observation from Fig. 3b) is that the system
throughput does not depend on the delay constraint. Further-
more, also no influence of the number of present users in
the network on the system throughput could be detected. The
throughput depends, however, on the variance of the CQI
values, i.e., the average system throughput is larger for CQI
values with a larger variance due to the same reasons as in
the no fairness case.

Finally, from the deviation plot in Fig. 5, it is recognizable
that the approximation algorithm performs worse for CQI
inputs with large variance. The reason for this deterioration
is characteristic to proportional fairness, which is achieved
easiest in case all CQI values of a single user are the same.
Moreover, in our simulations, the algorithm performs worse
if fewer users are present. For the case of 5 users, a lot of
PRBs are split among these users in the continuous solution
in order to achieve the same data rate for every user. In case
there are more users, the amount of splitted PRBs decreases,
as the variance of the CQI values of one PRB increases,
which leads to a more integer-like solution of the continuous
optimization problem. Still, our algorithm for α = 1 exhibits
an excellent performance. The maximum deviation to the
continuous optimum among 100 data points and all scenarios
is 0.14% (CQIs with small variance) or 0.32% (CQIs with
large variance), respectively, whereas the average deviation is
only 0.04% (CQIs with small variance) or 0.13% (CQIs with
large variance).



Fig. 2: Average objective values for no fairness (α = 0), proportional fairness (α = 1), minimum potential delay fairness
(α = 2), and max-min fairness (α = 12) for CQI∈ {CQI − 3, ..., CQI + 3}.

E. Results for Minimum Potential Delay Fairness

From the average objective values depicted in Fig. 2c), it is
discernible that the special approximation algorithm for α = 2
surpasses all benchmarks, as was the case for α = 0 and
α = 1. Since a larger α-value corresponds to a more regular
distribution of the resources, no delay constraint violations
were observed in any of the results. It is observable that the
RR principle outperforms both the result achieved with the
heuristic and WB CQI input as well as the CRV scheme.
To minimize the maximum delay, it is beneficial to allocate
PRBs to the users which benefit most, i.e., the users which will
experience the best data rates. However, Fig. 2c) shows that
this is very hard given the limited channel state information,
especially in case of strongly varying channel conditions, as
then many transmission errors can occur or the potentially
good channel cannot be fully utilized. When evaluating the
average system throughputs, no dependence on the maximum
acceptable delay was observable. They depend, however, on
the number of users that are present in the system, which can
be seen in Fig. 3c). The reason for this dependence is the
objective of the approximation algorithm, i.e., minimizing the
maximum encountered delay. In case more users are present,
a user with bad channel conditions gets less PRBs, as the
resources are shared among more users, which in the end leads
to higher system throughput. Once more, for the same reasons
as in the previous two fairness cases, the system throughput
is larger in case the experienced channel conditions show a
larger variance.

In most cases, the objective value obtained with the approxi-
mation algorithm is very close to the upper bound, see Fig. 6.
However, for the measurements 15 to 18, some outliers are
detectable in the deviation plot. The reason for these outliers

is the presence of a user who is experiencing very bad channel
conditions compared to the other users. Due to the slightly
changed objective of the approximation algorithm, there are
certainly resource allocations possible where the objective
value can be maximized, i.e., the overall system delay is
minimized, compared to the minimization of the maximum
encountered delay by any user. This applies especially in case
there are users whose data rates are a lot worse than all other
users’ data rates. The cost for this objective maximization is
an increased delay experienced by the user with bad channel
conditions. It is noticeable that the impact of this user with bad
channel conditions gets smaller the higher the number of users
in the network is. Furthermore, it can be seen that the variance
of the CQI inputs does not have an influence on the deviation
from the optimum for the delay minimization algorithm.
Despite the aforementioned drawback, it can be concluded that
the performance of the approximation algorithm for minimum
potential delay fairness is still very good, as the maximum
observed deviation from the continuous optimum is 11.62%
(CQI ± 1) or 11.41% (CQI ± 3), while the average deviation
among 100 data points and across all scenarios is only 1.59%
(CQI ± 1) or 1.92% (CQI ± 3).

F. Results for Max-Min Fairness

Finally, also for the max-min fairness, satisfying evaluation
results were obtained. The highest possible α that allowed for
acceptable simulation outcomes was α = 12. Higher values
lead to numerical issues during the optimization process of
the solver. The channel-agnostic RR scheme performs very
poor in the presence of a user with bad channel conditions,
which highly influences the average objective values depicted
in Fig. 2d). This is not the case for the CRV algorithm, as it is



Fig. 3: Average system throughputs for no fairness (α = 0), proportional fairness (α = 1), minimum potential delay fairness
(α = 2), and max-min fairness (α = 12) for selected scenarios.

Fig. 4: Deviation of the objective value from the cont. optimum
for different CQI inputs for α = 0 and N = 8.

Fig. 5: Deviation of the objective value from the cont. optimum
for different CQI inputs for α = 1 and Tmax = 10 ms.

based on reported CQI values. Nevertheless, both benchmark
algorithms are outperformed by the proposed heuristic solu-
tion. In the deviation plot in Fig. 7, it is observable that also
the approximation algorithm shows a much larger deviation

Fig. 6: Deviation of the objective value from the cont. optimum
for different CQI inputs for α = 2 and Tmax = 3 ms.

in case of the presence of a user with very bad channel
conditions (measurements 15 and 16) than for other inputs.
The reason for this observation is that α = 12 is only an
approximation of α → ∞. Therefore, the presented results
are only an approximation of the max-min fairness. When
comparing the minimum data rate that any user is encountering
in the optimal continuous solution and in the solution from
the algorithm, it was perceivable that this data rate is larger in
the solution from the algorithm. Thus, the algorithm actually
provides a better solution in the sense of max-min fairness.
However, since α = 12 is not perfectly equal to max-min
fairness, there are allocation scenarios where the minimum
data rate a user is experiencing is worse than observed in
the algorithm solution but the overall objective value is still
better. Concluding, this implies that the degraded performance
of the approximation algorithm is only detectable due to the
approximation of α → ∞ and will diminish the greater α gets.



TABLE VI: Per-user utilities (fairness scores) per α-value (fairness) of a selected simulation run for N = 5, Tmax = 3 ms,
and CQI ± 3 for the continuous optimum, the heuristic, and the RR scheme

User 1 User 2 User 3 User 4 User 5 User 1 User 2 User 3 User 4 User 5 User 1 User 2 User 3 User 4 User 5
0
[
104

]
5.99 11.36 11.32 5.70 2.04 6.17 15.89 6.94 5.61 1.71 5.54 6.68 6.58 4.06 4.78

1 29.93 30.21 30.21 28.83 29.77 29.94 30.08 30.11 28.79 29.68 29.35 29.79 29.75 28.53 28.96
2
[
10−4

]
-1.57 -1.52 -1.52 -1.82 -1.61 -1.63 -1.62 -1.63 -1.65 -1.65 -1.77 -1.61 -1.62 -2.23 -1.97

12
[
10−46

]
-1.22 -1.22 -1.22 -1.23 -1.22 -1.23 -1.23 -1.23 -1.23 -1.23 -1.23 -1.96 -1.96 -1.32 -1.28

Continuous Optimum Heuristic RR scheme
α-value

Per-User
Utility

Fig. 7: Deviation of the objective value from the cont. optimum
for different CQI inputs for α = 12 and Tmax = 5 ms.

Note that the influence of this approximation also decreases
with an increasing number of users (less influence of a user’s
bad channel conditions), as could be observed for the case of
minimum potential delay fairness (see Fig. 7). Furthermore,
it is detectable that a CQI population with large variance
leads to a lower deviation from the optimum, as a larger CQI
variance allows for an integer-like solution of the continuous
optimization problem.

For the case of max-min fairness, the system throughput
again increases with the number of users that are present in
the system. The rationale behind this observation is the same
as for the minimum potential delay fairness. Moreover, as
before (α = 12), no connection between the delay constraint
and the system throughput could be observed and the system
throughput is again higher for CQI inputs with larger variance.

Even though the maximum deviation from the algorithm
to the upper bound among 100 data points and across all
scenarios is 7.20% (CQIs with small variance) or 1.47% (CQIs
with large variance), the average deviation is only 0.1% (CQIs
with small variance) or 0.03% (CQIs with large variance),
which certifies the excellent performance of the approximation
algorithm.

G. Effect of Fairness on the System Throughput

In the penultimate subsection of the performance evaluation,
the influence of the fairness metric on the overall system
throughput is shortly evaluated. To this end, the plots in Fig. 3
can be compared. It is observable that the system throughput
decreases with an increasing amount of fairness that is in-
troduced, i.e., with an increasing α. This is also reflected by
the average system throughputs per fairness and CQI input
distribution, which are given in Table V. Additionally, it is

TABLE V: Average system throughput per α-value (fairness)
for the continuous optimum and the heuristic

0 1 2 12
Continuous Optimum 3.06 2.69 2.58 2.51

Heuristic 3.04 2.68 2.48 2.48
Continuous Optimum 3.15 2.97 2.88 2.85

Heuristic 3.14 2.91 2.78 2.78

CQI ± 1

CQI ± 3

Sys. TP [105 bps]
α-value

perceivable that the algorithms perform well compared to
the continuous optimum also in terms of the overall system
throughput, which again certifies the very good performance
of all algorithms.

H. Fairness among Different Users

In the last evaluation subsection, we provide insights on the
per-user utility distributions, i.e., their achieved fairness scores.
To this end, for one simulation run of a specific scenario
configuration, all users’ utilites are summmarized in Table VI.
As expected, for α = 0, the utilities are very diverse and reflect
the experienced channel conditions of the users. Since the RR
scheme is agnostic to these channel conditions, our approach
outperforms this scheme by far, which can for example be
seen when comparing the utilities of user 2 for both solution
approaches. For higher α-values, the single utilities get closer
to each other, as the resources are distributed such that all
users experience the same data rate. Overall, it is observable
that the users’ utilities achieved with the heuristic are close
to the continuous optimum users’ utilities and larger than the
ones from the RR scheme.

VII. CONCLUSION

In this paper, we addressed the problem of jointly allocat-
ing uplink and downlink RAN as well as edge computing
resources to URLLC users so that their latency requirement
is met, while simultaneously providing α-fairness. For the
special cases α = 0 (no fairness, i.e., throughput maxi-
mization), α = 1 (proportional fairness), α = 2 (minimum
potential delay fairness), and α → ∞ (max-min fairness)
we developed approximation algorithms with polynomial-time
complexity. We have shown that their performance is very
close to the optimum and that they considerably outperform
the well-known RR as well as another SotA allocation scheme.
Simulation results were obtained with input parameters taken
from real datasets. For future research questions, we are going
to implement the developed algorithms on a 5G testbed to
evaluate the performance in a practical setup and we also plan
to consider even more enhanced scenarios, e.g., including data
storage and backhaul communication links.
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