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Bayesian Inverse

■ Let Θ ∈ Rd and Y ∈ Rm represent the parameter and the data space respectively.

■ For θ ∈ Θ, the noisy observations y ∈ Y can be expressed as:

y = f(θ) + η

where η is the noise term.
■ Based on noise term, calculate the likelihood (p(y|θ)). For η ∼ N (0, Γ)

p(y|θ) = exp
(

−1
2 ||Γ−1/2(y − f(θ))||2

)
■ Using Bayes theorem, evaluate the posterior (p(θ|y))

p(θ|y) = p(y|θ)p(θ)
p(y)

■ TODO: Sample from p(θ|y)
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MCMC computationaly expensive model

■ Sample from a density function which is computationally expensive.

■ Becomes challenging for complicated domain/ high-dimensional problems

■ Gradient based methods (HMC, NUTS etc.) can help

□ Need Gradient
□ Gradient evaluation is needed at multiple points =⇒ Infeasible for computationally

expensive models

■ Task: Alleviate this issue using Multi-fidelity.
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Multi-fidelity

■ Supoose we are given ordered set of
models as:

F = {f1, f2, · · · , fL}

where, fi : Rd → R is the ith model

■ The models are ordered in:

□ Ascending order of computational
intensity or cost of getting results or

□ Decreasing error

■ In multi-fidelity methods, we try to solve
given problem in hand by transferring
maximum workload to lower fidelity
models

Er
ro
r

Co
st
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Flowchart

Create surrogate Generate proposals

Samples Accept /reject
using

Intermediate
 sample
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Multi-fidelity implementation1

■ High fidelity function contains features
from the low-fidelity function and some
additional new features.

■ Write high-fidelity function as composite
function

fh(θ) = g(fl(θ), θ)

■ Some information is carried over from
the low-fidelity function

■ In this work, we use Gaussian Process
for g

fl
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1Perdikaris, Paris, et al. ”Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.” Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 473.2198 (2017): 20160751.
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Gaussian Process 2

■ Gaussian Process is a bayesian model

■ Assume prior
f ∼ N (0, K)

■ Prediction at X∗ after observing data (X, y) with
noise σ2

p(f∗|y, θ, θ∗) ∼ N (µ̂, Σ̂)
µ̂ = K(θ∗, θ)[K(θ, θ) + σ2IN ]−1y

Σ̂ = K(θ∗, θ∗)
− K(θ∗, θ)[K(θ, θ) + σ2IN ]−1K(θ, θ∗)

■ Kernel hyperparameters (λ) can be trained by
maximizing likelihood
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2Rasmussen, Carl Edward. ”Gaussian processes in machine learning.”
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Multi-fidelity in GP implementation

■ Expand the kernel 1:

K(θ, θ′) = Kδ(θ, θ′; λ1) + Kρ(θ, θ′; λ2)Kf (fl(θ), fl(θ′); λ3)

■ Variation to include derivative term by using lag term to mimic derivative 3:

fh(θ) = g(fl(θ), fl(θ − τ), fl(θ + τ), θ)

■ Adaptively add points where gain of information (I) is maximized, which corresponds to
finding maximum posterior variance:

Xnew = arg max
θ∈Ω

I = arg max
θ∈Ω

Σ̂

1Perdikaris, Paris, et al. ”Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.” Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 473.2198 (2017): 20160751.

3Lee, Seungjoon, et al. ”Linking Gaussian process regression with data-driven manifold embeddings for nonlinear data
fusion.” Interface focus 9.3 (2019): 20180083.
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Example: Adaptivity

Kislaya Ravi | Multi-fidelity No-U-Turn Sampling | 28/02/2023 9



Outline

1 Problem Statement

2 Multi-fidelity

3 No-U-Turn Sampling

4 Numerical Result

5 Conclusion

Kislaya Ravi | Multi-fidelity No-U-Turn Sampling | 28/02/2023 9



Hamilton Monte Carlo 4

■ Gradient based method to incorporate some geometrical information.

■ Introduce a momentum term r representing kinetic energy (K(r) = 1
2r · r) and

represent log of the target density (L(θ) = log p(θ)). The Hamiltonian can be defined as
H(θ, r) = K(r) − L(θ)

■ Sample from the joint canonical distribution p(θ, r) ∝ exp(−H(θ, r))
■ For the (i + 1)th sample:

□ Randomly sample r ∼ N (0, Id)
□ Solve the Hamiltonian system for some time steps to propose a new point (θ̃, r̃)
□ Accept/Reject based on Metropolis-Hasting criterion α = min

[
0, H(θ, r) − H(θ̃, r̃)

]

■ Issues:

□ What is the time integration technique ? → Leap-frog method
□ What should be the step size? → Dual Averaging
□ How long should we perform the fictious time integration?

4R. Neal. ”Handbook of Markov Chain Monte Carlo”, chapter 5: MCMC Using Hamiltonian Dynamics. CRC Press, 2011.
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No-U-Turn Sampling 5

■ Stopping criterion : Stop fictious time stepping when U-turn is observed:

(θ − θ̃) · r̃ < 0

■ Sample in both directions of the momentum (r and −r) by building a balanced tree and
avoiding repetitive calculations.

■ Select the next point using slice sampling.
■ For the (i + 1)th sample :

□ Randomly sample r ∼ N (0, Id)
□ Draw a number from uniform distribution ∆ ∼ U [0, p(θi, p)]
□ Solve the Hamiltonian system until U-turn and create a set of explored states.
□ Select the states that satisfy the criterion exp(H(θ′, r′)) < ∆
□ Select one of the states from the above based on uniform distribution which become next

sample.

5Hoffman, Matthew D., and Andrew Gelman. ”The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian
Monte Carlo.” J. Mach. Learn. Res. 15.1 (2014): 1593-1623.
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5Hoffman, Matthew D., and Andrew Gelman. ”The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian
Monte Carlo.” J. Mach. Learn. Res. 15.1 (2014): 1593-1623.
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No-U-Turn Sampling 5

■ Stopping criterion : Stop fictious time stepping when U-turn is observed:

(θ − θ̃) · r̃ < 0
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Multi-fidelity No-U-Turn Sampling
■ We can directly sample from the multi-fidelity surrogate

□ Surrogate is cheap to evaluate
□ Gradient is available

■ But, the samples obtained the not invariant for the highest fidelity models.

■ We follow the approach of Delayed acceptance 6

6Christen, J. Andrés, and Colin Fox. "Markov chain Monte Carlo using an approximation." Journal of Computational and
Graphical statistics 14.4 (2005): 795-810.
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Multi-fidelity No-U-Turn Sampling
■ Notation:

□ ps(θ, r) : Canonical density generated using the surrogate.
□ πL(θ) : Target density function generated using highest fidelity model.

■ For the (i + 1)th sample:

□ Randomly sample r ∼ N (0, Id)
□ Generate a proposal using NUTS (θ̃, r̃)
□ Accept/Reject based using delayed rejection

αMFNUTS(θ̃|θ) = min

1,
min

{
1, ps(θ,r)

ps(θ̃,r̃)

}
πL(θ̃)

min
{

1, ps(θ̃,r̃)
ps(θ,r)

}
πL(θ)


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Rosenbrock function
π1(θ1, θ2) = exp(−12(θ2 − θ2

1 − 1)2 + (θ1 − 1)2)
π2(θ1, θ2) = exp(−15(θ2 − θ2

1)2 + (θ1 − 1)2)
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GP surrogate using 50 high-fidelity points and 200 low-fidelity points.
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Rosenbrock: Samples
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Rosenbrock: mESS vs Computational cost

103 104 105

Number of high fidelity evaluations

102

m
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S
S

MFNUTS Metropolis-Hastings HMC NUTS
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8 dimensional correlated Gaussian

HF function: 8 dimensional correlated gaussian with zero mean
LF function: 8 dimensional gaussian with identity matrix as covariance
GP surrogate using 100 high-fidelity and 500 low-fidelity evaluations
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8-d Gaussian: mESS vs Computational cost

103 104 105

Number of high fidelity evaluations
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Steady state groundwater flow

■ Let us consider a two-dimensional
zero-dirichlet steady state groundwater
flow problem with source term S(X)
and diffusion coefficient κ(X)

∂

∂X

(
κ(X) ∂u

∂X

)
= S(X)

■ For this problem, we consider constant
κ(X) = 1 and following source term

S(X) =
N∑

i=1
Si(X) =

N∑
i=1

θiN (µi, σ2
i )
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Steady state groundwater flow
■ Infer the intensity of source term θ given

the observations u(x) at nine probe points
marked by orange dots.

■ Data is generated by solving the PDE
using θ = {0.75, 1.25, 0.8, 1.2} and adding
gaussian noise with standard deviation
0.01.

■ PDE is solved using open source FEM
solver FEniCS7

■ LF mesh size 8 × 8, HF mesh size 64 × 64
■ GP surrogate 70 high-fidelity and 450

low-fidelity evaluations
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7M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes and G. N.
Wells. The FEniCS Project Version 1.5, Archive of Numerical Software 3 (2015).
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Samples
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Mean of samples is [0.87, 1.25, 0.92, 1.25]
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mESS vs Computational cost
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Conclusion

■ MF-NUTS outperforms traditional single fidelity methods.

■ We were able to save considerable computational resources by delegating the gradient
evaluation to the surrogate.

■ The performance of the method depends upon the accuracy of the surrogate.

■ One can also use other surrogates.

■ Delayed Rejection can be added to further improve the effective sample size.

■ Code : https://github.com/KislayaRavi/MuDaFuGP
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Thank You!
Questions and Feedbacks
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