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Abstract: The automated transport of cells can enable far-reaching cell culture research. However, to
date, such automated transport has been achieved with large pump systems that often come with
long fluidic connections and a large power consumption. Improvement is possible with space- and
energy-efficient piezoelectric micro diaphragm pumps, though a precondition for a successful use is
to enable transport with little to no mechanical stress on the cell suspension. This study evaluates the
impact of the microfluidic transport of cells with the piezoelectric micro diaphragm pump developed
by our group. It includes the investigation of different actuation signals. Therewith, we aim to
achieve optimal fluidic performance while maximizing the cell viability. The investigation of fluidic
properties proves a similar performance with a hybrid actuation signal that is a rectangular waveform
with sinusoidal flanks, compared to the fluidically optimal rectangular actuation. The comparison of
the cell transport with three actuation signals, sinusoidal, rectangular, and hybrid actuation shows
that the hybrid actuation causes less damage than the rectangular actuation. With a 5% reduction of
the cell viability it causes similar strain to the transport with sinusoidal actuation. Piezoelectric micro
diaphragm pumps with the fluidically efficient hybrid signal actuation are therefore an interesting
option for integrable microfluidic workflows.

Keywords: micro diaphragm pump; microfluidic; micro dosing; cell transport; automated cell
culture; passive spring valves

1. Introduction

The detailed experimental analysis of biological systems on a microscale is a common
subject of current research. Within the last 30 years, micro fluidic systems developed
rapidly and already offer solutions for various experimental setups [1,2]. Today, analysis
on aggressively scaled devices is possible. However, the sample transport either relies on
passive capillary forces or requires systems with bulky external pumps for active transport
that often have a high power consumption and are connected with long tubing, which
leads to a high dead volume [3–6]. The active transport in space-restricted situations, such
as in clinical environments, is even more challenging. The integration of micropumps can
offer a cost as well as an energy efficient on-chip solution for active sample transport.

Micropumps are not only of interest for the active transport in microfluidic setups,
but can also offer a possibility to improve three-dimensional (3D) bioprinting. This tech-
nique enables the generation of complex structures that are of interest in pharmaceutical
research, regenerative medicine, or the food industry [7,8]. For instance, the advantages
of 3D-cultures compared to 2D-cultures for pharmaceutical research are demonstrated in
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several studies [9–11] and an industrial use of 3D cultures in pharmaceutical research is
expected [7].

Bioprinting is widely researched as treatment of large skin injuries. In particular,
large skin lesions can lead to poor healing, infection, or hypertrophic scars [12,13]. The
state-of-the-art treatment is skin transplant from healthy areas. Even though meshing can
increase the area of a graft tremendously [14], it is often problematic to harvest sufficient
skin. Bioprinting of skin tissue is proposed as possible solution [15] including two main
approaches: the generations of grafts in vitro that are cultivated and implanted into the
wound and the in situ printing directly into the wound [16].

Fluid transport for the printing process can be more challenging for in situ printing
compared to laboratory configurations. Similar to analysis systems, laboratory printing
setups often rely on large pump systems. However, a printer used in a hospital environment
is easier to imagine as a handheld device with small weight and ergonomic geometry.
Hakimi et al. [17] present an in situ handheld skin printer. The device weighs less than
800 g and is able to print different cell materials, which allows for consecutive deposition of
dermal and epidermal layers. The printability on rough wound surfaces is already shown
in vivo.

Micro diaphragm pumps are a possible solution for active cell transport in the pre-
sented applications. There is a large amount of research conducted on micropumps and
several actuation mechanisms have emerged [18–20]. A common actuation principle is
piezoelectric actuation. It is popular due to its energy-efficiency, high attained forces,
large range of applicable frequencies, and precise control [21]. Another common pump
type is the electromagnetically actuated pump, which also allows for energy efficient
actuation [22].

Energy-efficiency and the possibility for low-cost production as well as small size [20]
make micropumps an ideal microfluidic actuator for cell transport, even in disposable
application. However, currently there is little information on the interaction of micropumps
with the dosed medium. In particular, cell solution is not usually transported and analysed.
The only work known to the authors that discusses cell transport with a micro diaphragm
pump describes the viability of cells after passage through an electromagnetic pump with
diffuser nozzle valves [23]. Yamahata et al. [23] show their pump to be well adapted for cell
transport, since the viability of both the tested Jurkat cells as well as the more delicate 5D10
hybridoma cells remains high after pumping. However, the fluidic performance of the
pump is lower than observed for other micropumps: the 33 × 22 mm2 pump can transport
400 µL/min and shows a blocking pressure of 12 mbar [24]. The low backpressure capability
is most likely partly caused by the diffuser nozzle valves. These valves additionally limit
bubble tolerance, though the pump is able to transport bubbles without backpressure due
to its compression ratio over 0.2 [24].

Even though a diffuser nozzle valve design is most likely less destructive for cells,
it limits the fluidic performance of a pump system. The backpressure capability, bubble
tolerance, and ability to transport fluids with a high viscosity such as bioinks can be
improved with passive valves, e.g., flap or spring valves. However, the impact of such
valves that constitute moving parts with sharp edges and a risk of squeezing the cells
between the valve and valve seat is unknown to date. To enable cell transport for in
situ bioprinting or on chip analysis application with high performance micropumps, we
investigated the influence of our piezoelectric micro diaphragm pumps with spring valves
on viable cell suspensions. The aim of the presented work is to examine the feasibility of
cell transport with a micropump including passive valves to enable future developments
of microfluidic devices with integrated automated fluid transport.

2. Materials and Methods

The pumps used for cell transport in this work are Fraunhofer EMFT’s stainless steel
pumps. A fluidic characterisation of the samples is conducted before and after the cell
transport experiments.



Micromachines 2021, 12, 1459 3 of 15

2.1. Piezoelectric Micro Diaphragm Pumps

A detailed evaluation of the pump type used in this work is given by Bußmann,
Durasiewicz et al. [25]. The devices have a diameter of 20 mm and a height of 1.5 mm. The
pumps consist of a stainless-steel pump body and a glued on piezoelectric disc actuator
(PIC 151, diameter of 16 mm; thickness of 200 µm). The pump body includes two passive
spring valves and the actuator diaphragm. All components are laser welded to the base
plate. The pump chamber has a diameter of 18 mm and a height of approximately 100 µm
to 150 µm, depending on the mechanical stress generated during the welding process and
the electric tension applied during the mounting process of the piezoceramic actuator. The
valves of the pump are 5 mm apart.

Fluid transport bases on the indirect piezoelectric effect (Figure 1). The exposure of the
piezoelectric ceramic to an alternating high voltage signal leads to an oscillatory diaphragm
movement. The resulting periodic expansion and reduction of the chamber volume in
combination with the flow restriction of the passive spring valves leads to a directed
fluid transport. The passive flap valves limit backflow and enable a high backpressure
capability as well as high bubble tolerance. Therefore, they are indispensable for the fluidic
performance of the micropump.
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Figure 1. Piezoelectric micro diaphragm pump. (a) Functional principle: A negative filed moves the bending actuator
upwards and sucks liquid through the passive inlet valve into the pump chamber. A positive electric field moves it towards
the chamber bottom and pushes the fluid through the outlet valve. Figure adapted from Bußmann et al. [25]. (b) Section of
the pump’s inlet valve including the spring valve and the valve seat that form the valve gap that is approximately 300 µm
long and in the open state of the valve 50 µm high.

2.1.1. Actuator Stroke Measurements

The actuator stroke is an important metric for micro membrane pumps. It is mea-
sured optically using a white light profilometer (Fries Research and Technology, Bergisch
Gladbach, Germany, sensor range: 3 mm, sensitivity: 30 nm). A voltage sweep is executed
ranging from 0.4 kV/mm to 2 kV/mm (amplifier SVR 500−3, piezosystem jena GmbH,
Jena, Germany) and the respecting actor positions are detected. The sweep is repeated
multiple times. Repetitive tests of the same pump show a measurement accuracy of 2 µm.

2.1.2. Fluidic Characterisation

The pumps are characterized with both air as well as deionised (DI) water at room
temperature. The actuation signal for these measurements is a sinusoidal alternating volt-
age from −0.4 kV/mm to 1.5 kV/mm, which equals −80 V to 300 V for the 200 µm thick
actuator. Water flow is measured with Coriflow sensors (Bronkhorst, Kamen, Germany
ML120V00: range 0.8 µL/min to 500 µL/min, accuracy: ±0.2% and Bronkhorst MINI
CORI-FLOW M14: range 0.5 mL/min to 167 mL/min, accuracy: ±0.2%). The backpressure
for both water and air characterisation is set with a pressure controller (Mensor, San Marcos,
TX, USA CPC3000: range −50 kPa to 200 kPa, accuracy: ±0.05 kPa). During water mea-
surements, the differential pressure over the pumps is measured with two piezoresistive
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pressure sensors (TDK Electronics, Munich, Germany, EPCOS Gauge pressure transducers
AKR 1.000 C40: range 0.0 kPa–10o kPa, accuracy: ±0.6 kPa).

When transporting liquid media, it is always possible that small bubbles occur and
the pump needs to be able to transport them through the chamber. We therefore test the
pump’s backpressure capability with air at actuation frequencies for liquid transport (30
and 60 Hz). The pressure is increased by 2.5 kPa until the flow reaches zero.

Water characterisation of the pumps includes the frequency dependant flow at a
constant pressure of 14 kPa in the range from 1 Hz to 50 Hz, the pressure dependant flow
in the range from 0 kPa to 50 kPa, and pressure dependant leakage in the range from 5 kPa
to 50 kPa.

2.1.3. Single Stroke Characterisation

We evaluate the pump’s single stroke volume with DI water in a gravimetric mea-
surement depicted in Figure 2. It is based on a setup introduced by Thalhofer et al. [26].
The inlet reservoir is placed on a precision scale (Sartorius, Göttingen, Germany, MC410S,
resolution 100 µg) with the inlet tube immersed free-hanging in the liquid at all times. The
pump, which is placed next to the balance, transports liquid from the inlet reservoir to the
outlet. The actuation signal is triggered using an automated protocol. The single stroke
signal is amplified with the SVR 500−3 (piezosystem jena GmbH, Jena, Germany). The
fluid reservoirs are covered with Nitto SWT 10+R to minimize drift caused by condensation
or evaporation.

Micromachines 2021, 12, x FOR PEER REVIEW 4 of 16 
 

 

water and air characterisation is set with a pressure controller (Mensor, San Marcos, TX, 

USA CPC3000: range −50 kPa to 200 kPa, accuracy: ±0.05 kPa). During water measure-

ments, the differential pressure over the pumps is measured with two piezoresistive pres-

sure sensors (TDK Electronics, Munich, Germany, EPCOS Gauge pressure transducers 

AKR 1.000 C40: range 0.0 kPa–10o kPa, accuracy: ±0.6 kPa). 

When transporting liquid media, it is always possible that small bubbles occur and 

the pump needs to be able to transport them through the chamber. We therefore test the 

pump’s backpressure capability with air at actuation frequencies for liquid transport (30 

and 60 Hz). The pressure is increased by 2.5 kPa until the flow reaches zero. 

Water characterisation of the pumps includes the frequency dependant flow at a con-

stant pressure of 14 kPa in the range from 1 Hz to 50 Hz, the pressure dependant flow in 

the range from 0 kPa to 50 kPa, and pressure dependant leakage in the range from 5 kPa 

to 50 kPa. 

2.1.3. Single Stroke Characterisation 

We evaluate the pump’s single stroke volume with DI water in a gravimetric meas-

urement depicted in Figure 2. It is based on a setup introduced by Thalhofer et al. [26]. 

The inlet reservoir is placed on a precision scale (Sartorius, Göttingen, Germany, MC410S, 

resolution 100 µg) with the inlet tube immersed free-hanging in the liquid at all times. The 

pump, which is placed next to the balance, transports liquid from the inlet reservoir to the 

outlet. The actuation signal is triggered using an automated protocol. The single stroke 

signal is amplified with the SVR 500−3 (piezosystem jena GmbH, Jena, Germany). The 

fluid reservoirs are covered with Nitto SWT 10+R to minimize drift caused by condensa-

tion or evaporation.  

  

Figure 2. (a) Experimental setup of the gravimetric measurement to determine the single stroke volume for different actu-

ation signals including a balance (I), the inlet reservoir (II), silicone tubing (III), the micro diaphragm pump (IV) driven 

with a piezo amplifier (V) and signal generator (VI), an outlet capillary (VII), and pressure equalized reservoir (VIII), as 

well as automated control and data acquisition (IX). (b) Setup of the cell transport experiments with an inlet- and outlet 

reservoir as well as the pump connected with silicone tubing. A picture of the two experimental setups is available in 

Figure A1 in Appendix A. 

 The weight of the outlet reservoir is detected before and after the dosage of one 

single stroke in order to calculate the dosed single stroke volume from the weight differ-

ence. The sampling frequency is 1 Hz and does not affect the measurement, since we de-

tect the total weight of a single stroke and do not depict the time dependant weight change 

during the stroke. To account for the drift of the balance, we perform five scale measure-

ments before a single pump stroke is performed with defined waveform and frequency. 

Figure 2. (a) Experimental setup of the gravimetric measurement to determine the single stroke volume for different
actuation signals including a balance (I), the inlet reservoir (II), silicone tubing (III), the micro diaphragm pump (IV) driven
with a piezo amplifier (V) and signal generator (VI), an outlet capillary (VII), and pressure equalized reservoir (VIII), as well
as automated control and data acquisition (IX). (b) Setup of the cell transport experiments with an inlet- and outlet reservoir
as well as the pump connected with silicone tubing. A picture of the two experimental setups is available in Figure A1 in
Appendix A.

The weight of the outlet reservoir is detected before and after the dosage of one single
stroke in order to calculate the dosed single stroke volume from the weight difference. The
sampling frequency is 1 Hz and does not affect the measurement, since we detect the total
weight of a single stroke and do not depict the time dependant weight change during the
stroke. To account for the drift of the balance, we perform five scale measurements before a
single pump stroke is performed with defined waveform and frequency. After an eight
seconds break, another five post-trigger scale measurements are recorded. The weight
difference before and after the pump stroke is evaluated and corrected for the average drift
that is calculated based on the five consecutive measurements before and after the trigger.
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2.2. Cell Transport

Experiments with cells are conducted with two different cell lines cultivated in sus-
pension culture: K-562 human chronic myeloid leukaemia cells [27] (DSMZ GmbH, Braun-
schweig, Germany; DSMZ no.: ACC 10) of approximately 17 µm diameter and Jurkat T
cell leukaemia cells [28] (DSMZ GmbH, Braunschweig, Germany; DSMZ no.: ACC 282) of
approximately 13 µm diameter.

For the transport experiments, harvested cells are washed and aliquoted in buffer
(autoMACS Running Buffer; Miltenyi Biotec B.V. & Co. KG; Bergisch Gladbach, Germany)
to approximately 6 × 104 cells/mL. Individual samples of 500 µL each are prepared in
reaction vessels. One sample of each culture bottle is set aside and not transported for
the negative control. Another sample is set aside as positive control and, before staining,
is treated with TritonTM X-100 (Merck KGaA, Darmstadt, Germany), which disrupts the
cells’ membrane. Cells are transported with five different actuation settings as indicated
in Table 1. Three individual samples are transported per setting and pump, leading to a
total of 15 samples per setting. Results are averaged over all transported samples for each
setting.

Table 1. Used actuation signals for the transport of cells. The waveforms are described in further detail in Section 3.1.2.

Waveform Frequency in Hz Abbreviation

Setting 1 Rectangular 15 Re_15

Setting 2 Sinusoidal 15 Sin_15

Setting 3 Rectangular with 60 Hz sinusoidal flanks (hybrid actuation) 15 Srs_15

Setting 4 Rectangular 60 Re_60

Setting 5 Sinusoidal 60 Sin_60

The experimental setup for the cell transport is depicted in Figure 2b. The pump’s
inlet and outlet are connected with the inlet and outlet reservoir using flexible tubing
with 4 cm length and 1.4 mm inner diameter. The inlet reservoir contains 500 µL of cell
solution. To assure sufficient resuspension of cells, each reservoir is agitated carefully prior
to transport that is completed in less than ten seconds. The cells are transported with the
desired setting and collected in a reaction vessel. The solution is pumped one single time
and not circulated or transported repeatedly. For cleaning, we passively flush the pumps
with 20 mL buffer (autoMACS Running Buffer; Miltenyi Biotec B.V. & Co. KG; Bergisch
Gladbach, Germany) between samples with different actuation signals. After flushing,
500 µL of rinsing solution are collected and analysed for the number of cells to assure that
the following sample is not influenced by remaining cells in the pump.

Propidium Iodide Cell Viability by Flow Cytometry

To evaluate the amount of intact and dead cells, samples are stained with propidium
iodide (PI) solution (Miltenyi Biotec B.V. & Co. KG; Bergisch Gladbach, Germany), a
nucleus staining agent that is not able to penetrate an intact membrane of viable cells. To
each sample, including the positive control and “Non-pumped” samples (negative control),
6 µL PI is added and incubated for 15 min. All samples are washed and distributed to a
96 well plate for automatic flow cytometry measurements with the MACS Quant Analyzer
10 Optical FlowCytometer (Miltenyi Biotec B.V. & Co. KG; Bergisch Gladbach, Germany).
To account for time effects, the positive and negative control are analysed both before and
after all other samples with no visible change.

The collected data are gated for single cells using the height versus forward scatter
area. The samples for a given actuation signal are averaged over all five pumps. For
comparison of two sample groups that include 15 individual samples with approximately
30,000 cells each, we use a two-tailed t-test with a p-value of 0.02.
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3. Results and Discussion

Cell transport with very limited available space is a challenging task. Both damage on
the cells caused by the pump as well as pump degradation due to cell transport are possible.
With a detailed experimental consideration, we intend to clarify possible influences and
provide the basis for further improvements.

3.1. Pump Characterisation

Micro diaphragm pump characterisation includes the evaluation of the general prop-
erties of the pump as well as an investigation of the single stroke with different actuation
mechanisms. The later generates information on the fluidic efficiency of each actuation and
allows us to adapt the actuation signal to a fluidically optimal transport with less influence
on the cells.

3.1.1. General Micro Diaphragm Pump Characterisation

To estimate the impact of cell transport on the diaphragm pump itself, all devices are
characterized prior to and after the cell transport. It is possible for cells to accumulate in
the pump chamber as well as in the dead volume around the valves and therefore lead to
a pump degradation. A change in stroke or passive as well as active flow characteristics
allows for better understanding of failure mechanisms.

The exact movement of the diaphragm is a crucial part of the pump’s functionality. A
typical stroke measurement is shown in Figure 3a, with the clear piezoelectric hysteresis.
The stroke height determines the stroke volume and therefore the achievable flow rate
of the system. The stroke measurement allows to detect mechanical constraints to the
actuator’s movement. The average total stroke after cell transport is 81.7 ± 3.9 µm and not
significantly changed compared to the initial average stroke of 82.4 ± 3.4 µm (Figure 3b).
These findings indicate that cells do not agglomerate in the chamber and block the actuator
movement.

Figure 3 shows the frequency dependant flow rate of the used steel micropumps. The
flow increases linearly with the frequency until dynamic damping effects in the chamber
become dominant and the curve plateaus. In the non-linear regime, the flow strongly
depends on the fluidic periphery [29]. Therefore, a performance comparison should take
place in the linear regime. The flow prior to cell transport experiments matches the
expectation based on former pump batches [25]. After cell transport, the average flow up
to 10 Hz is equal to the flow before the exposure to cell solution. The ability to achieve the
same flow at low frequencies indicates no significant change in the behaviour of the passive
flap valves. Low frequencies with sinusoidal actuation lead to a slow actuator movement
and therefore low pressure gradients. The valves are opened and closed comparatively
slowly with low force. A bad valve quality is therefore often visible in the low frequency
range. The assumption of constant valve performance before and after the cell transport
is substantiated by the leakage rates, which only changed for one out of six pumps. The
leakage rate at 50 kPa differential pressure of the pumps before cell transport is below
30 µL/min for all samples. After transport, it remains unchanged for all but one pump
that shows a drastically increased leakage rate of 260 µL/min. This increase is potentially
caused by fibres caught in the passive flap valves that were visible in the optical inspection
and probably transported into the pump during use outside of the clean room environment.
The leakage measurement always detects the leakage over both, the inlet as well as the
outlet valve. If only one valve is sufficiently tight, the overall leakage is small. Significant
backflow in active pump mode is still possible, if the other valve is leaking.
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Figure 3. Mechanical and fluidical characterization of the tested micro diaphragm pumps. (a) The actuator displacement
shows the typical piezoelectric hysteresis. Adapted from Bußmann et al. [25]. (b) There is no change in the total stroke
height before and after the cell transport. (c) The frequency-dependant flow rate with 14 kPa backpressure at −80/300 V
(corresponding to −0.4/1.5 kV/mm) sinusoidal actuation remains nearly unchanged in the linear regime, but changes for
high frequencies. The maximal achievable flow rate after cell transport is smaller. (d) Backpressure dependant flow rate at
−80/300 V sinusoidal actuation with 30 Hz.

For higher frequencies, the average flow decreases and the end of the linear region
is lower. A volume change in the chamber, due to agglomeration of cells or particles, is
a possible explanation for the detected change in the fluidic performance. Furthermore,
increased leakage through the passive flap valves can change the flow behaviour. However,
as described above, increased leakage has a large influence on the flow at small frequencies
and would be visible in the linear range.

The decrease in flow for higher frequencies after cell transport compared to the
initial performance is also visible in the backpressure measurements of the pumps. With
30 Hz, sinusoidal actuation, the flow at 0 kPa is approximately 3 mL/min lower after
the cell transport. The extrapolated blocking pressure however remains unchanged with
approximately 70 kPa before and after cell transport. This indicates the same stiffness of
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the actuator and therefore nor degradation of the ceramic itself or the adhesive connection
during the experiments.

3.1.2. Single Stroke Characterisation

The single stroke measurement with varying actuation signals allows to estimate the
fluidic efficiency of the transport. A single actuator stroke requires approximately 2 mJ
and single stroke power consumption of the pump itself (without driving electronics) is
independent of the waveform and frequency [25]. From the energy required for one pump
stroke and the volume transported per stroke, we can calculate the power consumption
per dosed volume. Since the energy per stroke is constant, it depends on the single stroke
volume that again depends on the actuation signal.

A perfectly rectangular actuation generates the fastest actuator movement and there-
fore the fastest pressure built-up. Consequently, the actuation of the passive flap valves
is rapid and backflow through insufficiently closed valves is minimized [30]. A lower
flank steepness, as is the case for sinusoidal actuation, leads to a slower pressure built-up
and slow opening and closing of the passive valves. It therefore allows a portion of the
transported fluid to move backwards through the valves [30]. A steeper flank therefore
leads to a higher stroke volume. However, the fast actuator movement also increases the
strain on both, the pump as well as the dosed medium, since it leads to high mechanical
stress in the piezoelectric actuator and increases the fluidic shear stress.

A trade-off between fluidic efficiency and strain on pump and medium can be a
hybrid actuation based on a rectangular waveform with sinusoidal flanks. Figure 4a shows
the resulting waveform in comparison to other waveforms: the hybrid signal is a mix
between a rectangular signal with a given frequency and a sinusoidal signal of a higher
frequency. In order to evaluate which flank is appropriate, we determined the single stroke
volume for several actuation frequencies with varying flanks. A frequency dependence
of the single stroke volume is expected due to fluidic damping in the chamber at higher
frequencies and flow rates. Figure 4b depicts the dependence of the single stroke volume
on the actuation frequency and flank steepness. The single stroke volume is reduced for
50 Hz actuation frequency compared to slower actuation, whereas it is independent of the
actuation frequency up to 20 Hz.
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actuation with 60 Hz sinusoidal flanks is a mix of the depicted 15 Hz rectangular waveform and the 60 Hz sinusoidal
waveform. (b) Single stroke volume transported by a micropump dependent on the actuation frequency and the steepness
of the sinusoidal flanks.

For all tested frequencies, the single stroke volume plateaus for sufficiently steep flanks.
The required flank steepness depends on the actuation frequency. While for actuation
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with 1 to 20 Hz, a flank steepness of approximately 60 Hz is sufficient, the single stroke
volume at 50 Hz only plateaus at steeper flanks of approximately 90 Hz. The results are
reproducible for all four evaluated pumps. These results indicate that the fluid transport
is as efficient with sufficiently steep flanks as it is with rectangular actuation, however,
the flank steepness needs to be comparatively high for higher actuation frequencies. The
resulting flow rate for specific waveforms is verified with the measurement of the frequency
dependant flow rate. Up to 25 Hz actuation frequency, the hybrid signal achieves the same
flow rate as the rectangular signal. The experimental results are presented in Figure A2 in
the Appendix B. Based on these findings, a 15 Hz hybrid signal with 60 Hz sinusoidal flank
is chosen as one of the signals used for cell transport. This allows to compare the impact
when the pump is actuated with sinusoidal, rectangular, or the hybrid signal.

3.2. Cell Transport

Viable cells are sensitive to their environment, and transport with a micro diaphragm
pump can damage them in different ways. A first important indicator to assess the fea-
sibility of cell transport with micro diaphragm pumps is the recovery rate of cells after
transport. Neither the total cell concentration nor the percentages of cells within the gate
deviate significantly between the negative control sample and the transported samples.
Cells therefore do not accumulate within the pump, which corresponds well to the results
of the electromechanical and fluidic characterisation of the pumps presented above.

3.2.1. Consideration of Effects Influencing the Cell Viability

Pumping can have a mechanical impact on the transported cells due to moving parts in
the flow path. For instance, cells can get caught in between the valve and its seat. However,
this scenario is unlikely: one pump stroke, and therefore one opening and closing motion
of the valves, transports approximately 10 µL of fluid. The total fluid volume between the
valve and its seat when the valve starts closing is calculated based on the valve geometry:
the surface of the valve seat of 0.23 mm2 and a valve opening of maximal 50 µm. It is
approximately 0.01 µL for each valve. Therefore, if we assume that the cells are uniformly
distributed and that all cells that are between the valve and its seat when the valve starts
closing get caught in the valve, this would only affect 0.2% of the transported cells. We
thus assume that the damage caused by hard-hard touch squeezing is neglectable.

It is also imaginable that cells become damaged when they come into contact with
sharp edges. In particular, the etched valve structure or the drilled inlet and outlet access
constitute such sharp edges. However, fluid flow around the cells causes fluidic drag thus
their fluidic resistance is high and the cells move towards the middle of the flow path.
Hence, the cells likely flow around the edges without contact. The effect is already shown
by Ozbey et al. [31] who observe cells moving towards the centre of the channel in laminar
flow.

A likely influence on the cell viability is the experienced fluidic shear stress. Studies
discuss the impact of shear on non-adherent cells and indicate that the size as well as
the deformability of a cell have an influence on its behaviour when subjected to shear
stress [31–33].

To generate a first understanding of the shear force the cells are subjected to when
passing through the pump, we consider the analytic description of a strongly simplified
model. We aim to compare the influence of specific geometries in the pump, e.g., chamber
and valves, as well as different actuation signals. We do not intend to give a quantitative
analysis of shear forces.

The valve as well as the pump chamber have a high aspect ratio: The valve seat is
300 µm long and the valve opens 50 µm; the pump chamber is approximately 100 µm
to 150 µm high (in the upwards position of the actuator) and we consider the distance
of 5000 µm between the two valve openings as the gap length. We assume laminar gap
flow in these geometries. Furthermore, for simplicity, we only consider the liquid medium
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itself and do not specifically calculate the velocity of the cells in this flow. This strong
simplification allows a first comparison of geometries and actuation signals.

The shear stress of the laminar flow is given by

σ = η
∂vx

∂z
(1)

with the viscosity of the liquid η and the flow velocity vx. Furthermore, the velocity profile
of the laminar gap flow is parabolic

vx(z) =
∆p

2ηLgap

(
hgapz− z2

)
(2)

and depends on the pressure difference ∆p, the gap length Lgap, the gap height hgap, and the
viscosity of the liquid η. When the pump is active, the movement of the actuator diaphragm
generates the pressure difference ∆p that drives the fluid through the gap and therewith
generates the fluidic shear forces. The maximal pressure that the bending actuator can
achieve is its blocking pressure. This pressure is generated when the actuator is subjected
to a rectangular actuation and the movement is extremely fast. Since the maximal pressure
occurs during this fast actuator displacement, the pressure peak is independent of the
actuation frequency for rectangular actuation. The maximal pressure difference depends
on the bending actuator’s geometry and used material and can be calculated with the
analytical model presented by Herz et al. [34].

For sinusoidal actuation, the voltage change and therewith the actuator movement
is considerably slower than for rectangular actuation. The time constant of the actuator
movement and the fluid movement through the passive valves therefore converge and the
maximal pressure peak decreases. Since the speed of actuator movement depends on the
actuation frequency for sinusoidal actuation, the generated pressure difference is also a
function of the actuation frequency. Similarly, for the hybrid signal, the maximal pressure
depends on the speed of the actuator’s movement and therefore on the sinusoidal flank
steepness of the signal. Based on the model by Herz et al. [34] the analytic description of
the pressure peak of the sinusoidal actuation can be derived. However, the equation cannot
be solved analytically and a numerical description will be part of future work. However,
the analytical model allows for a qualitative comparison that shows that the shear force
is maximal for rectangular actuation and minimal for sinusoidal actuation with a small
frequency. Due to the relation between the maximal pressure and the flank steepness, the
pressure difference and therewith the shear forces in this model are equal for sinusoidal
actuation with 60 Hz and the hybrid signal with 60 Hz sinusoidal flanks.

To identify the most relevant pump geometries, the shear stress in the valve and the
chamber are compared for rectangular actuation. For the simplified model, we assume gap
flow in the valve as well as in the pump chamber as described above. Furthermore, we
assume that the maximal pressure difference applies to both the chamber and the valve,
even if in reality the pressure is split.

σ =
∆p

2Lgap

(
hgap − 2z

)
(3)

σmax = σ|z=0 =
hgap

2Lgap
∆p (4)

Based on Equation (4) and the geometry of the flow path (the valve seat length Lvalve =
300 µm and valve opening hvalve = 50 µm, as well as pump chamber length Lchamber = 5000
µm and pump chamber height hchamber = 100 to 150 µm), the ratio of shear in the chamber
and the valve can be estimated with

σchamber
σvalve

=
Lvalve

Lchamber

hchamber
hvalve

(5)
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and is approximately 0.12 to 0.18. As can be seen from Formula (5), the ratio is independent
of the pressure difference. The estimation shows that the shear stress at the valve unit is
larger compared to the shear stress in the pump chamber. To further reduce the impact of
the pump on cells, it is thus necessary to adapt the valve geometry to reduce the occurring
shear stress in this area.

3.2.2. Viability of K-562 and Jurkat Cells after Transport

In this preliminary study, we only detect the immediate influence of the pump on the
cells, since we measure the percentage of intact cells compared to the negative control. The
influence of the transport on the long-term viability of the cells are not yet examined and
will be part of future studies.

Both cell types are impacted by the pumping process. For K-562 cells, the non-pumped
(negative) control samples contains 89.9 ± 2.6% intact cells; for Jurkat cells it contains
88.6 ± 5.2% intact cells. Figure 5 shows the change of the percentage of intact cells due
to transport with the micro diaphragm pump with different actuation signals. The mean
percentage of intact cells is slightly lower for all transported samples compared to the
non-pumped control and the decrease is significant with p ≤ 0.02.

Micromachines 2021, 12, x FOR PEER REVIEW 12 of 16 
 

 

 

Figure 5. Percentage of viable cells after gating for single cells in the control samples as well as in the transported cell 

solution for K-562 cells (a) and Jurkat cells (b). Data for each actuation type include 15 individual samples. 

The impact of the pump on Jurkat cells is more pronounced. The diameter of the two 

cell lines is similar, though the deformability is different. Since the deformability deter-

mines the path of the cell in the fluidic channel [32], the increased impact on Jurkat cells 

can among others be caused by a difference in the experienced fluidic shear stress. The 

largest decrease of intact cells occurs after transport with a rectangular actuation of 60 Hz, 

which is the most stressful actuation. It generates the fastest actuator movement, highest 

pressure peak and the highest overall flow. On average, 65.6 ± 10.3% of cells stay intact 

after this transport, nearly one quarter of cells less than the control. A similar large impact 

(no significant difference, p ≥ 0.05) is caused by rectangular actuation with only 15 Hz (68.0 

± 8.0%). As described above, the maximal pressure peak and therefore the maximal fluidic 

shear stress caused by the pressure peak that pushes fluid through the valve channel, do 

not depend on the applied frequency for rectangular actuation. The similar reduction of 

viable cells for 15 Hz and 60 Hz rectangular actuation indicates that this maximal shear 

stress has a significant influence on the transported cells. For both actuation frequencies, 

sinusoidal actuation causes less damage with 81.3 ± 7.6% intact cells for 15 Hz actuation 

and 72.3 ± 10.3% for 60 Hz. However, the sinusoidal actuation with a frequency of 60 Hz 

still stresses the cells and the impact is not significantly different to rectangular actuation 

(p ≥ 0.05). The influence of the transport with hybrid actuation (15 Hz rectangular actua-

tion with 60 Hz sinusoidal flanks) on the cells is very similar to the 15 Hz sinusoidal actu-

ation and the difference is not significant with p ≥ 0.05. According to the analytical model 

described above, the generated pressure peak and imposed shear are the same for the 

hybrid actuation and 60 Hz sinusoidal actuation, since the flank steepness of the two sig-

nals is equal. The different impact of the hybrid actuation and 60 Hz sinusoidal actuation 

indicate that not only the maximal experienced shear, but also the average overall flow 

rate impact the cells. The average flow is higher for the 60 Hz sinusoidal actuation than 

for the hybrid signal (Figure A2, Appendix B). 

Overall, the transport with 15 Hz hybrid signal has a similar impact on the cells as 

the transport with sinusoidal actuation (Figure 5) while maintaining the fluidic perfor-

mance of rectangular actuation as shown by the comparison of the single stroke volume 

as well as the flow characterisation presented in Figure A2, Appendix B. The hybrid actu-

ation therefore offers the possibility of efficient cell transport while minimizing the dam-

age. However, for both cell types, the impact is still significant with approximately 7.3 and 

4.6 percentage points less intact cells compared to the control sample for Jurkat and K-562 

Figure 5. Percentage of viable cells after gating for single cells in the control samples as well as in the transported cell
solution for K-562 cells (a) and Jurkat cells (b). Data for each actuation type include 15 individual samples.

The various actuation signals cause different damage of the K-562 cells. The largest
decrease of intact cells is caused by the actuation with 60 Hz and the use of sinusoidal
or rectangular actuation does not have a significance influence on the impact. With an
average of 75.4% intact cells, there are 14.5 percentage points less intact cells compared to
the non-pumped control. A significantly lower damage (p ≤ 0.02) is caused by sinusoidal
actuation with 15 Hz, which is the smoothest actuation. The mean percentage of intact
cells is 85.4 ± 4.6% and therefore only 4.5 percentage points lower than the non-pumped
control. The smaller impact can be due to the overall lower flow rate and thus reduced
shear force. Furthermore, the maximal speed of the diaphragm and therewith the maximal
pressure difference is decreased and evokes a smaller maximal pressure gradient. The
average damage caused by a rectangular actuation with 15 Hz shows, that the faster
actuator movement causes more damage. However, the difference is only significant with
p ≤ 0.05. As described above, for rectangular actuation, the maximal pressure difference
does not depend on the actuation frequency. Therefore, the analytical model cannot explain
the different impact of 60 Hz and 15 Hz rectangular actuation on the transported cells.
However, the average overall flow rate and thus average shear in the pump and periphery
are larger for 60 Hz actuation. The transport with the hybrid signal (15 Hz rectangular
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signal with 60 Hz sinusoidal flanks: srs_15) imposes a slower actuator movement compared
to 15 Hz rectangular actuation while maintaining the fluidic performance. The impact on
the cells is also slightly reduced, but the difference is not significant.

The impact of the pump on Jurkat cells is more pronounced. The diameter of the
two cell lines is similar, though the deformability is different. Since the deformability
determines the path of the cell in the fluidic channel [32], the increased impact on Jurkat
cells can among others be caused by a difference in the experienced fluidic shear stress.
The largest decrease of intact cells occurs after transport with a rectangular actuation of
60 Hz, which is the most stressful actuation. It generates the fastest actuator movement,
highest pressure peak and the highest overall flow. On average, 65.6 ± 10.3% of cells stay
intact after this transport, nearly one quarter of cells less than the control. A similar large
impact (no significant difference, p ≥ 0.05) is caused by rectangular actuation with only
15 Hz (68.0 ± 8.0%). As described above, the maximal pressure peak and therefore the
maximal fluidic shear stress caused by the pressure peak that pushes fluid through the
valve channel, do not depend on the applied frequency for rectangular actuation. The
similar reduction of viable cells for 15 Hz and 60 Hz rectangular actuation indicates that
this maximal shear stress has a significant influence on the transported cells. For both
actuation frequencies, sinusoidal actuation causes less damage with 81.3 ± 7.6% intact cells
for 15 Hz actuation and 72.3 ± 10.3% for 60 Hz. However, the sinusoidal actuation with
a frequency of 60 Hz still stresses the cells and the impact is not significantly different to
rectangular actuation (p≥ 0.05). The influence of the transport with hybrid actuation (15 Hz
rectangular actuation with 60 Hz sinusoidal flanks) on the cells is very similar to the 15 Hz
sinusoidal actuation and the difference is not significant with p ≥ 0.05. According to the
analytical model described above, the generated pressure peak and imposed shear are the
same for the hybrid actuation and 60 Hz sinusoidal actuation, since the flank steepness of
the two signals is equal. The different impact of the hybrid actuation and 60 Hz sinusoidal
actuation indicate that not only the maximal experienced shear, but also the average overall
flow rate impact the cells. The average flow is higher for the 60 Hz sinusoidal actuation
than for the hybrid signal (Figure A2, Appendix B).

Overall, the transport with 15 Hz hybrid signal has a similar impact on the cells as the
transport with sinusoidal actuation (Figure 5) while maintaining the fluidic performance
of rectangular actuation as shown by the comparison of the single stroke volume as well
as the flow characterisation presented in Figure A2, Appendix B. The hybrid actuation
therefore offers the possibility of efficient cell transport while minimizing the damage.
However, for both cell types, the impact is still significant with approximately 7.3 and
4.6 percentage points less intact cells compared to the control sample for Jurkat and K-562
cells respectively. It is thus necessary to further optimize the pump systems with respect to
the exact valve geometry, the pump chamber, as well as the inlet and outlet channel.

4. Conclusions

Overall, the standard characterisation of the pumps before and after cell transport
shows a small degradation but no complete loss of functionality. It is important to notice
that during the transportation experiments the pumps were not used in a cleanroom
environment and therefore not only exposed to cell solution but also to contamination
such as fibres. The optical examination of the valves did show fibres in several pumps.
Hence, it is not possible to distinguish degradation caused by cells from other influences
and further evaluations are necessary to assess possible pump degradation. In preliminary
experiments we plan to evaluate the particle resistance of the micro diaphragm pumps
with the transport of polystyrene particles, before we evaluate the influence of cells.

Furthermore, a more detailed investigation of the pump’s impact on the cells is
necessary. In this preliminary experiment, we only evaluated immediate damage to the
cells by staining. However, a long-term effect, e.g., reduced activity, is very likely. We
will therefore conduct further evaluation including cell activity assays and long-term
evaluation.
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Overall, the results on pump performance as well as the impact on the cells are very
promising. The impact on the cells can be further minimized with the optimization of the
pump’s geometry. The analytical estimation of shear forces in the pump shows higher
shear forces in the valve gap compared to the chamber. To reduce this shear stress, an
optimisation towards larger valve opening can be envisaged by a reduction of the stiffness
of the flap valve. Furthermore, shear stress can be reduced by adapting the channel size of
the inlet and outlet as well as the pump chamber geometry in terms of structure or height.
With those measures we expect to further limit the damage caused by the pump and enable
the development of improved and miniaturized transport systems.
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Appendix A

Experimental Setup for Cell Transport and Gravimetric Measurement

The setup for cell transport experiments (Figure A1a) is simple with the pump being
connected with flexible tubing with the inlet and outlet reservoir. The gravimetric setup
was evaluated in a preliminary setup as shown in Figure A1b. In this setup, the pump
transports liquid from the inlet reservoir on the balance towards an outlet next to it. The
actuation signal of the pump is verified with an oscilloscope. This setup was improved for
the experiments in this work as shown in Figure 2.
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Appendix B

Flow Characterisation with Different Actuation Waveforms

The mean frequency dependant flow rate of five pumps shows an influence of the
actuation waveform (Figure A2). The rectangular actuation and the hybrid actuation
(rectangular with 60 Hz sinusoidal flanks) show a similar flowrate up to 25 Hz actuation
frequency. For higher frequencies, the rectangular signal achieves clearly higher flow.
However, a rectangular actuation can damage the actuator ceramic especially during long
term use with liquid media, which is why the hybrid signal can be a good tradeoff. The
increase of flow rate compared to sinusoidal actuation is 16% for 15 Hz, which is the
frequency used for cell transport.

The periphery has an influence on the flowrate, especially for higher actuation fre-
quencies. Since the flow characterisation takes place in a large setup with comparatively
long tubes and sensors that depict a flow resistance, the real flow rate during cell transport
(with short tubes and no additional elements) is potentially even higher for the transport
with 60 Hz.
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Figure A2. Comparison of the fluidic performance of the tested micropump type with different
actuation signals. Frequency dependent flow rate at 14 kPa backpressure and an actuation amplitude
of −89/300 V. The compared waveforms are a rectangular wave, sinusoidal wave, and a hybrid
signal that consist of a rectangular waveform with 60 Hz sinusoidal flanks as has been used for cell
transport. The error bars depict the standard deviation of five individual pumps.

References
1. Kurniawan, Y.S. Micro Total Analysis System Application for Biomedicals: A Mini-Review. Biomed. J. Sci. Tech. Res. 2019, 12, 1–2.

[CrossRef]
2. Patabadige, D.E.W.; Jia, S.; Sibbitts, J.; Sadeghi, J.; Sellens, K.; Culbertson, C. Micro Total Analysis Systems: Fundamental

Advances and Applications. Anal. Chem. 2016, 88, 320–338. [CrossRef]
3. Bancroft, G.N.; Sikavitsas, V.I.; Mikos, A.G. Technical Note: Design of a Flow Perfusion Bioreactor System for Bone Tissue-

Engineering Applications. Tissue Eng. 2003, 9, 549–554. [CrossRef] [PubMed]
4. Khait, L.; Hecker, L.; Radnoti, D.; Birla, R.K. Micro-Perfusion for Cardiac Tissue Engineering: Development of a Bench-Top

System for the Culture of Primary Cardiac Cells. Ann. Biomed. Eng. 2008, 36, 713–725. [CrossRef]
5. Chung, B.G.; Flanagan, L.A.; Rhee, S.W.; Schwartz, P.H.; Lee, A.P.; Monuki, E.S.; Jeon, N.L. Human neural stem cell growth and

differentiation in a gradient-generating microfluidic device. Lab Chip 2005, 5, 401–406. [CrossRef]

http://doi.org/10.26717/BJSTR.2019.12.002294
http://doi.org/10.1021/acs.analchem.5b04310
http://doi.org/10.1089/107632703322066723
http://www.ncbi.nlm.nih.gov/pubmed/12857422
http://doi.org/10.1007/s10439-008-9459-2
http://doi.org/10.1039/b417651k


Micromachines 2021, 12, 1459 15 of 15

6. Tourovskaia, A.; Figueroa-Masot, X.; Folch, A. Differentiation-on-a-chip: A microfluidic platform for long-term cell culture
studies. Lab Chip 2005, 5, 14–19. [CrossRef]

7. Elemoso, A.; Shalunov, G.; Balakhovsky, Y.M.; Ostrovskiy, A.Y.; Khesuani, Y.D. 3D Bioprinting: The Roller Coaster Ride to
Commercialization. Int. J. Bioprint. 2020, 6, 301. [CrossRef]

8. Gu, Z.; Fu, J.; Lin, H.; He, Y. Development of 3D bioprinting: From printing methods to biomedical applications. Asian J. Pharm.
Sci. 2020, 15, 529–557. [CrossRef]

9. Ozbolat, I.T.; Peng, W.; Ozbolat, V. Application areas of 3D bioprinting. Drug Discov. Today 2016, 21, 1257–1271. [CrossRef]
10. Peng, W.; Unutmaz, D.; Ozbolat, I.T. Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics. Trends

Biotechnol. 2016, 34, 722–732. [CrossRef] [PubMed]
11. Peng, W.; Datta, P.; Ayan, B.; Ozbolat, V.; Sosnoski, D.; Ozbolat, I.T. 3D bioprinting for drug discovery and development in

pharmaceutics. Acta Biomater. 2017, 57, 26–46. [CrossRef]
12. Butzelaar, L.; Ulrich, M.; van der Molen, A.M.; Niessen, F.; Beelen, R. Currently known risk factors for hypertrophic skin scarring:

A review. J. Plast. Reconstr. Aesthetic Surg. 2016, 69, 163–169. [CrossRef]
13. Wang, Y.; Beekman, J.; Hew, J.; Jackson, S.; Issler-Fisher, A.C.; Parungao, R.; Lajevardi, S.S.; Li, Z.; Maitz, P.K. Burn injury:

Challenges and advances in burn wound healing, infection, pain and scarring. Adv. Drug Deliv. Rev. 2018, 123, 3–17. [CrossRef]
14. Henderson, J.; Arya, R.; Gillespie, P. Skin graft meshing, over-meshing and cross-meshing. Int. J. Surg. 2012, 10, 547–550.

[CrossRef]
15. Yan, W.-C.; Davoodi, P.; Vijayavenkataraman, S.; Tian, Y.; Ng, W.C.; Fuh, J.Y.; Robinson, K.S.; Wang, C.-H. 3D bioprinting of skin

tissue: From pre-processing to final product evaluation. Adv. Drug Deliv. Rev. 2018, 132, 270–295. [CrossRef] [PubMed]
16. Skardal, A.; Mack, D.; Kapetanovic, E.; Atala, A.; Jackson, J.D.; Yoo, J.; Soker, S. Bioprinted Amniotic Fluid-Derived Stem Cells

Accelerate Healing of Large Skin Wounds. Stem Cells Transl. Med. 2012, 1, 792–802. [CrossRef] [PubMed]
17. Hakimi, N.; Cheng, R.; Leng, L.; Sotoudehfar, M.; Ba, P.Q.; Bakhtyar, N.; Amini-Nik, S.; Jeschke, M.G.; Günther, A. Handheld skin

printer: In situ formation of planar biomaterials and tissues. Lab Chip 2018, 18, 1440–1451. [CrossRef] [PubMed]
18. Laser, D.J.; Santiago, J.G. A review of micropumps. J. Micromech. Microeng. 2004, 14, R35. [CrossRef]
19. Mohith, S.; Karanth, P.N.; Kulkarni, S. Recent trends in mechanical micropumps and their applications: A review. Mechatronics

2019, 60, 34–55. [CrossRef]
20. Bußmann, A.B.; Grünerbel, L.M.; Durasiewicz, C.P.; Thalhofer, T.A.; Wille, A.; Richter, M. Microdosing for drug delivery

application—A review. Sens. Actuators A Phys. 2021, 330, 112820. [CrossRef]
21. Lai, B.-K.; Kahn, H.; Phillips, S.M.; Heuer, A.H. A Comparison of PZT-Based and TiNi Shape Memory Alloy-Based MEMS

Microactuators. Ferroelectrics 2004, 306, 221–226. [CrossRef]
22. Shen, C.-Y.; Liu, H.-K. Innovative Composite PDMS Micropump with Electromagnetic Drive. Sens. Mater. 2010, 22, 85–100.
23. Yamahata, C.; Vandevyver, C.; Lacharme, F.; Izewska, P.; Vogel, H.; Freitag, R.; Gijs, M.A.M. Pumping of mammalian cells with a

nozzle-diffuser micropump. Lab Chip 2005, 5, 1083–1088. [CrossRef] [PubMed]
24. Yamahata, C.; Lotto, C.; Al-Assaf, E.; Gijs, M.A.M. A PMMA valveless micropump using electromagnetic actuation. Microfluid.

Nanofluid. 2005, 1, 197–207. [CrossRef]
25. Bußmann, A.B.; Durasiewicz, C.P.; Kibler, S.H.A.; Wald, C.K. Piezoelectric titanium based microfluidic pump and valves for

implantable medical applications. Sens. Actuators A Phys. 2021, 323, 112649. [CrossRef]
26. Thalhofer, T.; Bussmann, A.; Durasiewicz, C.; Hayden, O. Effect of Actuation Signal on Single Stroke Volume in Metal Micro

Diaphragm Pumps. In Actuator, Proceedings of the International Conference and Exhibition on New Actuator Systems and Applications,
online, February 2021; VDE Verlag GmbH: Berlin, Germany, 2021; pp. 1–4.

27. Drexler, H.G. Leukemia cell lines: In vitro models for the study of chronic myeloid leukemia. Leuk. Res. 1994, 18, 919–927.
[CrossRef]

28. Schneider, U.; Schwenk, H.-U.; Bornkamm, G. Characterization of EBV-genome negative “null” and “T” cell lines derived from
children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int. J. Cancer 1977, 19, 621–626.
[CrossRef]

29. Zengerle, R.; Geiger, W.; Richter, M.; Ulrich, J.; Kluge, S.; Richter, A. Transient measurements on miniaturized diaphragm pumps
in microfluid systems. Sens. Actuators A Phys. 1995, 47, 557–561. [CrossRef]

30. Jenke, C.; Kager, S.; Richter, M.; Kutter, C. Flow rate influencing effects of micropumps. Sens. Actuators A Phys. 2018, 276, 335–345.
[CrossRef]

31. Ozbey, A.; Karimzadehkhouei, M.; Kocaturk, N.M.; Bilir, S.E.; Kutlu, O.; Gozuacik, D.; Kosar, A. Inertial focusing of cancer cell
lines in curvilinear microchannels. Micro Nano Eng. 2019, 2, 53–63. [CrossRef]

32. Connolly, S.; McGourty, K.; Newport, D. The in vitro inertial positions and viability of cells in suspension under different in vivo
flow conditions. Sci. Rep. 2020, 10, 1711. [CrossRef] [PubMed]

33. Huber, D.; Oskooei, A.; i Solvas, X.C.; Demello, A.; Kaigala, G.V. Hydrodynamics in Cell Studies. Chem. Rev. 2018, 118, 2042–2079.
[CrossRef] [PubMed]

34. Herz, M.; Horsch, D.; Wachutka, G.; Lueth, T.C.; Richter, M. Design of ideal circular bending actuators for high performance
micropumps. Sens. Actuators A Phys. 2010, 163, 231–239. [CrossRef]

http://doi.org/10.1039/b405719h
http://doi.org/10.18063/ijb.v6i3.301
http://doi.org/10.1016/j.ajps.2019.11.003
http://doi.org/10.1016/j.drudis.2016.04.006
http://doi.org/10.1016/j.tibtech.2016.05.013
http://www.ncbi.nlm.nih.gov/pubmed/27296078
http://doi.org/10.1016/j.actbio.2017.05.025
http://doi.org/10.1016/j.bjps.2015.11.015
http://doi.org/10.1016/j.addr.2017.09.018
http://doi.org/10.1016/j.ijsu.2012.08.013
http://doi.org/10.1016/j.addr.2018.07.016
http://www.ncbi.nlm.nih.gov/pubmed/30055210
http://doi.org/10.5966/sctm.2012-0088
http://www.ncbi.nlm.nih.gov/pubmed/23197691
http://doi.org/10.1039/C7LC01236E
http://www.ncbi.nlm.nih.gov/pubmed/29662977
http://doi.org/10.1088/0960-1317/14/6/R01
http://doi.org/10.1016/j.mechatronics.2019.04.009
http://doi.org/10.1016/j.sna.2021.112820
http://doi.org/10.1080/00150190490460867
http://doi.org/10.1039/b504468e
http://www.ncbi.nlm.nih.gov/pubmed/16175264
http://doi.org/10.1007/s10404-004-0007-6
http://doi.org/10.1016/j.sna.2021.112649
http://doi.org/10.1016/0145-2126(94)90103-1
http://doi.org/10.1002/ijc.2910190505
http://doi.org/10.1016/0924-4247(94)00961-G
http://doi.org/10.1016/j.sna.2018.04.025
http://doi.org/10.1016/j.mne.2019.01.002
http://doi.org/10.1038/s41598-020-58161-w
http://www.ncbi.nlm.nih.gov/pubmed/32015362
http://doi.org/10.1021/acs.chemrev.7b00317
http://www.ncbi.nlm.nih.gov/pubmed/29420889
http://doi.org/10.1016/j.sna.2010.05.018

	Introduction 
	Materials and Methods 
	Piezoelectric Micro Diaphragm Pumps 
	Actuator Stroke Measurements 
	Fluidic Characterisation 
	Single Stroke Characterisation 

	Cell Transport 

	Results and Discussion 
	Pump Characterisation 
	General Micro Diaphragm Pump Characterisation 
	Single Stroke Characterisation 

	Cell Transport 
	Consideration of Effects Influencing the Cell Viability 
	Viability of K-562 and Jurkat Cells after Transport 


	Conclusions 
	
	
	References

