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Simple Summary: Osteosarcoma (OS) is a highly heterogenous cancer, making the identification
of genetic driving factors difficult. Genetic factors, such as heritable mutations of Rb1 and TP53,
are associated with an increased risk of OS. We previously generated pigs carrying a mutated TP53
gene, which develop OS at high frequency. RNA sequencing and allelic expression imbalance
analysis identified an amplification of YAP1 involved in p53- dependent OS progression. The
inactivation of YAP1 inhibits proliferation, migration, and invasion, and leads to the silencing of
TP63 and reconstruction of p16 expression in p53-deficient porcine OS cells. This study confirms the
importance of p53/YAP1 network in cancer.

Abstract: Osteosarcoma (OS) is a primary bone malignancy that mainly occurs during adolescent
growth, suggesting that bone growth plays an important role in the aetiology of the disease. Genetic
factors, such as heritable mutations of Rb1 and TP53, are associated with an increased risk of OS. Iden-
tifying driver mutations for OS has been challenging due to the complexity of bone growth-related
pathways and the extensive intra-tumoral heterogeneity of this cancer. We previously generated
pigs carrying a mutated TP53 gene, which develop OS at high frequency. RNA sequencing and
allele expression imbalance (AEI) analysis of OS and matched healthy control samples revealed a
highly significant AEI (p = 2.14 × 10−39) for SNPs in the BIRC3-YAP1 locus on pig chromosome 9.
Analysis of copy number variation showed that YAP1 amplification is associated with the AEI and
the progression of OS. Accordingly, the inactivation of YAP1 inhibits proliferation, migration, and
invasion, and leads to the silencing of TP63 and reconstruction of p16 expression in p53-deficient
porcine OS cells. Increased p16 mRNA expression correlated with lower methylation of its pro-
moter. Altogether, our study provides molecular evidence for the role of YAP1 amplification in the
progression of p53-dependent OS.

Keywords: YAP1; TP53; TP63; p16; allelic expression imbalance; copy number variation; bone
cancer; pig

1. Introduction

Osteosarcoma (OS) is the most common form of primary bone cancer, mainly found in
young people with the second highest incidence group being over the age of 50 [1]. OS is a
highly aggressive cancer for which there have been no major therapeutic improvements
over the last decades [2,3]. The five-year overall survival rates are 69% and 23% for primary
and metastatic OS respectively [4]. Risk factors for OS include rapid bone growth [5],
gender [6], a tall stature [6], and radiation as a source for secondary OS [7,8].

High heterogeneity of OS hinders the identification of driver mutations and therapeu-
tic target genes. Genome-wide somatic alterations in OS include mutations and chromoso-
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mal lesions, such as structural and copy number variations in TP53 [9–11] and Rb1 [9,12],
alternative lengthening of telomeres, and an aberrant epigenetic pattern [9,13–18].

Germline TP53 mutations predispose for developing different types of cancers in-
cluding OS in Li- Fraumeni syndrome patients [19,20]. In mice, p53-deficiency leads to
OS at low frequency, however conditional activation of p53 mutation such as R172H in
osteoblasts has increased the aggressiveness of the disease [21,22].

We have generated genetically engineered pigs with a Cre-inducible oncogenic flTP53R167H

mutation, homologous to the human hotspot mutation TP53R175H, a structural mutation with
oncogenic function [23,24]. The flTP53R167H heterozygous and homozygous pigs carrying the
uninduced allele frequently develop OS in long bones and skull. The porcine OS showed similar
features to human OS, such as tumour cells with a highly abnormal karyotype, nuclei with
atypical mitotic figures, and increased resistance to radiation [25].

To identify the genetic factors which contribute to the OS development in the flTP53R167H

pigs, we have carried out RNA sequencing and allele expression imbalance (AEI) analysis. The
AEI quantifies the stoichiometric difference in the expression of the two alleles of a genetic
locus [26–28] or two haplotypes of a diploid individual which can be distinguished at heterozy-
gous variation sites [29]. Compared to gene expression analysis, AEI has the advantage of using
two alleles of one gene within individuals and thus better controlling the genetic background
and environmental effects, and therefore can sensitively and accurately detect the genetic and
epigenetic differences in highly heterocellular samples such as tumors [30,31]. AEI has been
applied to detect driver mutations in various human cancers including colorectal and breast
cancer [32,33].

2. Material and Methods
2.1. Animals

OS (n = 48) samples were collected from ten (8 male and 2 female) flTP53R167H/R167H

reached sexual mature and 24 (13 male and 11 female) flTP53R167H/+ pigs aged 7–32 months.
All animal experiments were approved by the Government of Upper Bavaria (permit
number 55.2-1-54-2532-6-13) and performed according to the German Animal Welfare Act
and European Union Normative for Care and Use of Experimental Animals.

2.2. Necropsy Examination and Tumour Analysis

Pigs were humanely killed and examined by complete necropsy at the Tiergesund-
heitsdienst Bayern (Bavarian Animal Health Service). In total, 48 OS and matched healthy
bone samples from hetero- and homozygous flTP53R167H pigs were analysed, as previously
described [34].

2.3. Next-Generation RNA Sequencing

Briefly, ten mg of OS and matched healthy samples was used for total RNA extraction
using Zymo Direct-zol RNA MiniPrep kit (Zymo Research, Freiburg, Germany) according
to the manufacturer’s instructions. The quality and quantity of RNA samples was measured
using an Agilent RNA 6000 Nano kit (Agilent, Waldbronn, Germany) on a 2100 Bioanalyzer
(Agilent) and a Nanodrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA,
USA). The RNA integrity values (RIN) ranged from 7.6 to 9.0. 400 ng total RNA was used
for library preparation with the TruSeq RNA Library Preparation Kit v2 (Illumina, San
Diego, CA, USA) according to the manufacturer’s instructions, as described in our earlier
study [35]. Libraries were sequenced with a HiSeq2500 sequencing system (Illumina)
to produce 100-base-paired end reads for 17 samples. An average of 56 million reads
per sample was generated. Reads were pseudoaligned against an index of the porcine
transcriptome (Sscrofa 11.1; Ensembl release 91, Hinxton, UK) and quantified using kallisto
(version 0.43.1, Nicolas L Bray et al., Pasadena, CA, USA) [36]. The differential expression
of transcripts was quantified using a likelihood-ratio test implemented in the R package
sleuth (version 0.29.0, Hadley Wickham and Jenny Bryan, Auckland, New Zealand) [37].
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Hierarchical clusters and heat maps for genes with the most pronounced different levels of
expression were generated using the heatmap.2-function of the R package gplots [38].

For allele expression imbalance analysis, variant calling based on STAR alignments
was performed according to GATK [39] best practice recommendations for RNAseq [40,41].
The GATK tool Split N Cigar Reads was used to split reads into exons and remove false
variants resulting from overhangs. This step included reassignment of the STAR alignment
mapping qualities. GATK recalibration of base scores was based on the Ensembl release
83 variant database. Variant calling was carried out using GATK Haplotype Caller with the
don’t Used Soft Clipped Bases option. GATK Variant Filtration was applied to clusters of
at least 3 SNPs within a window of 35 bases between them with the following parameters:
Fisher strand value (FS) > 30.0 and a quality by depth value (QD) < 2.0. The probability
of allelic imbalance for each SNP was calculated based on the number of references and
alternate allele reads in heterozygous animals using a two-sided binomial test. p values
were adjusted for false discovery rate (q value) to take account of multiple testing.

2.4. Gene Set Enrichment Analysis

Gene set enrichment analysis was performed using GSEA software (version 2.2.4,
Tamayo et al., San Diego, CA, USA) [42]. The log2 fold change, adjusted p-value, and the
Human Genome Organisation (HUGO) gene symbols were used to generate a pre-ranked
file as input for the GSEA Preranked tool. Enrichment analysis was performed using the
following specifications: classic enrichment statistics, 1000 permutations and hallmark
gene sets from Molecular Signatures Database (MSigDB) (version 6.1, Tamayo et al., San
Diego, CA, USA) [43].

2.5. Quantitative Real-Time RT-PCR

Breifly, 200 ng total RNA was used for cDNA synthesis using the Superscript IV
(Thermo Fisher, Waltham, MA, USA) according to the manufacturer’s instructions. The
detailed description of the qRT-PCR was previously described [35]. The relative expression
was normalised to GAPDH expression and statistically compared using Students t-test. All
primer sequences used in the study are shown in Table S1.

2.6. Pyrosequencing

Pyrosequencing assays were designed using PyroMark Assay Design 2.0 software
(Qiagen, Düsseldorf, Germany). Thereby, 500 ng genomic DNA was bisulfite-converted
with the EZ DNA Methylation-Direct kit (Zymo Research, Irvine, CA, USA) according to
the manufacturer’s instructions. A detailed description of pyrosequencing was previously
provided [35].

2.7. Droplet Digital PCR (ddPCR)

Genomic DNA was digested with HindIII (NEB, Frankfurt am Main, Germany) using
3 U/µg DNA. The detailed description of the ddPCR was previously described [44].
Reagents and equipment were from Bio-Rad Laboratories (Hercules, CA, USA) unless
otherwise specified.

YAP1 promoter copy number was determined using the fluorescence-labelled YAP1-1
probe (5′FAM-cgcgggagggtttaagtgg-BHQ3′) and primers YAP1-F1 (5′-tgttacaggtaccattgtgctc
ca-3′) and YAP1-R1 (5′-cagtccccgggaaaggttg-3′) amplifying a 182 bp fragment. YAP1 exon
2 copy number was determined using the fluorescence labelled YAP1-2 probe (5′FAM-
ttctagcgtttgcaaacata-BHQ3′) with primers YAP1-F2 (5′-agataacataggataggtct-3′) and YAP1-
R2 (5′-tgcagagaatgcatagttt-3′) amplifying a 147 bp fragment. YAP1- 3′UTR copy number
was determined using the fluorescence-labelled YAP1-3 probe (5′FAM-ttgcgaccttctggccaata-
BHQ3′) and primers YAP1-F3 (5′-ccctcaggtagactgcattc-3′) and YAP1-R3 (5′-gaaagaatcttgctgg
acgtt-3′) amplifying a 138 bp fragment. Porcine GAPDH was used as reference [44]. Primers
and probes were from Eurofins Genomic.
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2.8. Western Analysis

Protein was isolated using T-PER Tissue Protein Extraction Reagent (Thermo Scientific)
and Western analysis was carried out using iBind Western System (Thermo Scientific) ac-
cording to the manufacturers’ instructions. Pig YAP1 was detected using polyclonal rabbit
anti-YAP1 ARP50530 (diluted 1:1000) and horseradish peroxidase (HRP) labelled anti-rabbit
sc-2004 (diluted 1:2000). GAPDH was detected using mouse monoclonal anti-GAPDH
#G8795 (diluted 1:3000) and rabbit anti-mouse IgG H&L (HRP) ab6728 (diluted 1:5000).

2.9. Immunohistochemistry

Immunohistochemistry was performed as described previously [44]. OS samples
(n = 6) from flTP53R167H homozygous pigs were fixed in 4% formalin and decalcified
in Osteosoft® (Merck, Darmstadt, Germany). Four-micrometer sections were air-dried
for 10 min at 60 ◦C on a glass slide. Antigen demasking was performed using the heat
retrieval procedure (20 min, citrate buffer pH 6, pressure cooker in microwave medium
intensity). Sections were stained with biotinylated rabbit anti-YAP1 antibody (diluted 1:200;
ARP50530_P050, Aviva System Biology Cooperation, San Diego, CA, USA) and binding
visualized with the avidin-peroxidase solution (ABC kit, Vector, Darmstadt, Germany)
followed by DAB staining (Vector). Sections were lightly counterstained with haematoxylin
(Merc, Darmstadt, Germany). Pig duodenum sections were used as a positive control. No
incubation with primary antibody was used as a negative control.

2.10. Generation of sgRNA Construct

SgRNA construct targeting the ATG site in pig YAP1 was generated by cloning the
gRNA oligonucleotides (gRNA_YAP1_1F:5′-GAGGCAGAAACCATGGATCC-3′; gRNA_Y
AP1_1R: 5′-GGATCCATGGTTTCTGCCTC-3′) into pX330-U6-Chimeric_BB-CBh- SpCas9
vector (Addgene plasmid # 42230; http:/n2t.net/addgene:4223O;RRID:Addgene_42230,
accessed on 25 September 2020), which was digested with BbsI restriction enzyme, and
cotransfected into pig flTP53R167H OS cells.

2.11. Immunofluorescence Assay

Porcine OS cells (YAP1−/−/flTP53R167H and flTP53R167H/GFP control) were plated on
6 well plates, cultivated till 80% confluency. For fixation, the cells were washed twice
with PBS and incubated for 15 min at room temperature in Fixative. Afterward, the
cells were washed two times with TBST, permeabilised for 20 min at room temperature
with permeabilisation buffer, and blocked for 60 min with 5% BSA. The primary Ki67
antibody (diluted 1:200, MA5-14520, Invitrogen, Waltham, CA, USA) was incubated at
4 ◦C overnight, afterwards the secondary antibody (Goat Anti-rabbit IgG (H+L) Alexa
Fluor Plus 488, diluted 1:300; A32731, Invitrogen) was added and incubated for 60 min
at room temperature. 300 nM DAPI (D9564, Sigma) was incubated for 10 min at room
temperature (protected from the light). The signal detection was performed under a
fluorescence microscope.

2.12. Proliferation Assay

Porcine flTP53R167H OS cells were transfected with gRNA_YAP1 construct by elec-
troporation using the EMC830 electroporation system (BTX). GFP vector was used as a
control. Cells were selected by using 200 ng/µL of puromycin for 2 days. After selection
and single-cell clone picking, 5 × 105 YAP1−/−/flTP53R167H OS cells were plated on 6-well
plates (3 times for each assay). Cells were counted after 24 h, 48 h, 72 h, 96 h, and 120 h of
incubation using an automated cell counter (Invitrogen).

2.13. Migration and Invasion Assay

For the migration assays, 1 × 105 OS cells (GFP control, YAP1−/−/flTP53R167H) were
plated in the upper chambers of 24-well 8.0 µm transwell inserts (Corning Inc.). For
invasion assay, 1 × 105 cells were plated in 10% Matrigel-coated 24-well 8.0 µm transwell

http:/n2t.net/addgene:4223O;RRID:Addgene_42230
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inserts (Corning Inc, Corning, NK, USA) Medium with FCS was added at the bottom
of each transwell. For migration and invasion, chambers were incubated for 24 h. The
medium was removed from 24-well plates and transwell inserts, cells were fixed with
methanol and stained with Crystal Violet, washed six times with water, and air-dried
overnight. Images were taken by a microscope camera, migration/invasion, and the total
number of cells was counted. Each experiment was conducted in triplicate.

2.14. Availability of Data and Materials

This study utilised porcine reference genome 11.1 assembly which is publicly available
from the NCBI assembly database.

The RNA sequencing data has been deposited at the European Nucleotide Archive
(ENA) of EMBL-EBI (https://www.ebi.ac.uk/ena/, accessed on 24 February 2019) under
primary accession number PRJEB30086. All other data generated during this study are
included in this article and its additional files.

3. Results

3.1. Frequency of OS in flTP53R167H Pigs

A total of 39 flTP53R167H/+ heterozygous and ten flTP53R167H/R167H homozygous pigs
were examined by necropsy. Out of 29 heterozygous animals, 18 developed bone tumours
by the age of 36 months and 10 out of 10 homozygous pigs by the age of 16 months,
all of which were classified histologically as osteoblastic osteosarcomas, as previously
described [34].

3.2. Genome-Wide Allelic Expression Imbalance Analysis of OS

To identify the transcriptome changes in OS, we first compared RNA sequencing
data between OS (n = 8) and matched healthy bones from flTP53R167H/R167H homozygous
pigs. This analysis didn’t identify any significantly differentially expressed genes (DEGs)
after multi-comparison testing (Figure S1). We concluded that the high heterogeneity of
OS limited the identification of DEGs and therefore decided to perform allele expression
imbalance (AEI) analysis.

In total, we identified 9657 heterozygous SNPs, of which 144 (p < 5.18 × 10−6,
Bonferroni-adjusted significance threshold) showed AEI in OS samples. The most sig-
nificant AEI (p < 2.73 × 10−19) was found for eight SNPs located on pig chromosomes 6,
9, 14 and 16 (Figure 1A, Table 1). Of these, the SNP:33044172A/G located in the 3′UTR
of BIRC3 (Figure 1B) showed the greatest AEI = 0.78 in OS (p = 2.14 × 10−39). In the
neighbourhood of BIRC3 is YAP1; both genes are transcribed in the sense direction. YAP1
is an evolutionary conserved transcription cofactor of the Hippo pathway, which regulates
the development of organs and is deregulated in many human cancers [45]. Because
of the functional relevance, our further analyses focused on the BIRC3-YAP1 locus. By
pyrosequencing, we confirmed AEI for the SNP:33044172A/G (0.74 ± 0.12 vs. 0.4 ± 0.05;
p = 1.35 × 10−9; Figure 1C) in a larger cohort (n = 48) of OS samples. Next, we aimed to
identify the underlying mechanism by which OS achieved the AEI at this SNP. AEI might be
linked to DNA polymorphism or associated with DNA methylation in regulatory regions,
or resulting from copy number variations (CNV) in the target gene. The presence of DNA
regulatory polymorphisms was searched in BIRC3 (−2000 bp upstream of transcription
start site (TSS) on GenBank sequence XM_013979324) and YAP1 (GenBank XM_021062706)
promoter regions in OS (n = 8) and adjacent healthy bone samples from flTP53R167H/R167H

homozygous pigs. No polymorphism linked to the AEI of 9:33044172 SNP in the analysed
promoter regions was found. Subsequently, CpG islands (CGI) (−379 bp to +42 bp) and
(–297 bp and +65 bp) were identified in the promoters of BIRC3 and YAP1, respectively.
Pyrosequencing of five CpG sites at BIRC3 CGI and eight CpG sites at YAP1 CGI revealed
similar DNA methylation (<10% for BIRC3 and <5% for YAP1) in OS (n = 48) and matched
healthy bone samples from flTP53R167H pigs (Figure S2). Moreover, the presence of CNVs
was analysed using three digital droplet PCR (ddPCR) probes hybridising to the pro-

https://www.ebi.ac.uk/ena/
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moter, internal exon and 3′UTR in both genes. No CNV in BIRC3 in analysed OS (n = 48)
was found.
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Figure 1. Genome-wide allelic expression imbalance analysis in osteosarcoma. (A) A Manhattan plot
showing the result of the genome-wide allelic imbalance analysis. The most significant SNPs were
found on pig chromosomes 6, 9, 14 and 16. (B) Schematic genomic structure of the YAP1-BIRC3 locus
on chromosome 9 in pigs. The blue arrow indicates the position of the 9:33044172 A/G SNP in the
3′UTR of BIRC3. (C) cDNA pyrosequencing result for the SNP 9:33044172 A/G in osteosarcoma (os,
n = 48) and matched healthy bone (b) samples collected from flTP53R167H pigs. To test analysis the
validity of the pyrosequencing assay, we used DNA samples (n = 5) extracted from wild-type pigs.
*** p < 0.001.

Table 1. The DNA variants showing the most significant allelic expression imbalance in OS.

Chr Position Gene
Allele Healthy Bone Osteosarcoma

p Value
Ref Alt Het No Proportion Het No Proportion

6 13574601 SF3B3 T C 2 0.55 4 0.32 2.73 × 10−19

6 18911317 HERPUD1 C T 2 0.45 4 0.69 1.88 × 10−41

6 94787078 RRAGC A T 3 0.74 5 0.42 5.38 × 10−21

9 33085822 TMEM123 A AG 3 0.34 4 0.78 1.11 × 10−43

9 33045115 BIRC3 T G 3 0.36 6 0.71 2.17 × 10−31

9 33044172 BIRC3 G A 3 0.41 5 0.78 2.14 × 10−39

14 72198674 SRGN AT A 2 0.27 4 0.43 4.52 × 10−29

16 71982561 TNIP1 T G 2 0.46 4 0.31 3.74 × 10−27

In the YAP1, copy number ranged from 1 to 68 and was highly associated (n = 48;
p = 1.76 × 10−8) with the AEI of 9:33044172A/G SNP (Figure 2A). The increased copy
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number of YAP1 correlated with higher expression of the 9:33044172 A allele. Two copies
of the YAP1 were observed in wild-type and healthy bone samples of flTP53R167H pigs. The
expression of the 9:33044172 A allele (Figure 2B) and copy number of YAP1 (Figure 2C)
were positively correlated with the size (ranged 1.5–18 cm) of pig OS. Quantitative PCR
(qPCR) and western blot analyses revealed an increased mRNA (n = 48; 1.8- fold, p < 0.01;
Figure 2D) and protein (n = 16; 7.7- fold, p < 0.0001; Figure 2E) expression in OS compared
to adjacent healthy bone samples. The immunostaining showed that YAP1 protein is
expressed in the nucleus of pig OS (Figure 2F, Figure S3). Remarkable, no significant differ-
ential YAP1 mRNA expression in the RNA sequencing study was found. A detailed analysis
of RNA sequencing data showed only 1.8- fold expression difference of YAP1 between the
OS and healthy bone samples, which was below the two-fold threshold applied.
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Figure 2. YAP1 amplification in p53 deficient osteosarcoma. (A) Point plot showing the correlation between 9:33044172
A allele expression and YAP1 copy number. Gray and red points show expression of A allele in bone and OS samples,
respectively. Blue points show the measurements in wild-type samples. (B) Point plot showing the correlation between
9:33044172 A allele expression and OS (n = 48) size. (C) Point plot showing the correlation between YAP1 copy number and
OS (n = 48) size. (D) Quantitative PCR of YAP1 mRNA expression in wild type (wt, n = 5) bones, as well as OS (n = 48) and
matched healthy bone samples from flTP53R167H pigs. (E) Representative Western blot showing YAP1 expression in wild
type bone, OS and healthy bone samples from flTP53R167H pigs. The uncropped Western blots have been shown in Figure
S4. (F) Immunohistochemistry staining showing the nuclear location of YAP1 in sections of osteosarcoma from flTP53R167H

pigs. Control samples show staining without the first antibody. Scale bars- 100 µm. (** p < 0.01)

Together, these results suggested that the YAP1 amplification is responsible for the AEI
of 9:33044172 A/G SNP and plays an important role in the growth of OS in flTP53R167H pigs.

3.3. YAP1 Deficiency Affects the Functional Properties of flTP53R167H OS Cells

To explore the functional impact of YAP1 knockout on p53-dependent bone tumorige-
nesis, a CRISPR-Cas9 system was used for targeting the ATG site of YAP1 in OS primary
cells from flTP53R167H homozygous pigs. Sanger sequencing of the edited OS cells revealed
a deletion of 22 nucleotides (+1bp to 22bp; GenBank NC_010451) (Figure 3A), which re-
sulted in a loss of YAP1 expression (Figure 3B). The YAP1−/−/flTP53R167H OS cells showed
rounded cell morphology (Figure 3C) compared to normal spindle-shaped OS morphology,
reduced proliferation (Figure 3D), migration (Figure 3E,F), invasion (Figure 3E,G), and
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Ki67 expression (Figure 3H,I) compared to flTP53R167H OS cells. These data confirmed the
importance of YAP1 expression for the p53-dependent progression of OS.
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Figure 3. In vitro functional analysis of YAP1 deficiency in p53 deficient primary osteosarcoma cells.
(A) Sequence analysis showing the result of CRISPR/Cas9 editing of YAP1 in pig OS cells. (B) Western
blot showing the lack of YAP1 protein in the edited flTP53R167H OS cells. (C) Representative micro-
scopic view showing the morphology of YAP1−/−/flTP53R167H OS cells. As a control, flTP53R167H OS
cells were transfected with the GFP control vector (left scale bars, 400µm; right scale bars, 200 µm)
(D) Proliferation result for YAP1−/−/flTP53R167H and flTP53R167H OS cells. (E) Representative micro-
scopic images showing a difference in migration and invasion between YAP1−/−/flTP53R167H and
flTP53R167H OS cells (scale bars, 200 µm). Quantitative measurement of migration (F) and invasion
(G). (H) Immunofluorescence staining for Ki67 and DAPI in YAP1−/−/flTP53R167H and flTP53R167H

OS cells. (I) Quantification rates of the Ki67 positive cells. * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.4. YAP1 Deficiency Leads to Upregulation of p16 and Rb1 and Downregulation of TP63 in
flTP53R167H OS Cells

Further, the effect of YAP1 deficiency on the expression of tumorigenesis-related
genes (Rb1, WRAP53, TP53INP1, p14, p16, TP63, TP73) was studied. RT-PCR and qRT-
PCR analyses revealed upregulation of p16 and Rb1 (2- fold) and downregulation of
TP63 in YAP1−/−/flTP53R167H compared to flTP53R167H pig OS cells (Figure 4A,B). The
downregulation of p63 was confirmed by Western blot (Figure 4C). In summary, the
flTP53R167H OS cells expressed TP63 but not p16, while the knockout of YAP1 resulted in
the silencing of p63 and reconstruction of p16 (Figure 4A,C).
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OS cells.

We then investigated whether the upregulation of p16 and Rb1 in YAP1−/−/flTP53R167H

primary OS cells is associated with DNA methylation in the promoter regions of these genes.
Using in silico analysis, genomic regions up to −2000bp from the putative transcription
start site (TSS) were analysed and CGI at position−132bp to +108bp (GenBank NC_010443)
in p16, and at position −210bp to −65bp (GenBank NC_010453) in Rb1 promoters were
identified. Within these CGIs, methylation at 8 CpG sites in p16 and 9 CpG sites in Rb1
promoters in YAP1−/−/flTP53R167H (n = 3) and flTP53R167H pig OS (n = 3) cell lines was
measured by pyrosequencing. For p16, 6 of 8 CpG sites showed significantly (p < 0.05) lower
methylation in YAP1−/−/flTP53R167H compared to flTP53R167H pig OS cells (Figure 5A).
Specifically, lower methylation was found at the CpG2 site (25% vs. 33%), CpG3 (6%
vs. 59%), CpG4 (17% v 49%), CpG6 (42% vs. 49%), CpG7 (27% vs. 83%), and CpG8
(57% vs. 91%). For Rb1, the observed methylation differences were only slightly lower in
YAP1−/−/flTP53R167H compared to flTP53R167H pig OS cells (Figure 5B). The methylation of
the p16 promoter appeared to be correlated with its gene expression in YAP1−/−/flTP53R167H

OS cells.
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4. Discussion

Several next-generation sequencing studies have been performed to identify driver
mutations in human OS [9,46,47]. These studies have detected either well-known cancer
driver genes such as TP53, RB1, BRCA1, PTEN, ATRX, or likely passenger mutations [48].

In this work, we utilised the allele-specific expression analysis to reduce the impact
of the tumoral heterogeneity on the gene expression and demonstrated the role of YAP1
amplification in OS progression in p53-deficient pigs. The YAP1 amplification led to
an overexpression of nuclear YAP1 and correlated with OS progression. This finding is
consistent with studies showing an increased expression of YAP1 associated with poor
prognosis and chemical resistance in human OS [49,50]. Notably, the downregulation of
YAP1 reduced the oncogenic potential of human OS cells [16,51].

Multiple mechanisms, such as the TEAD1 signalling pathway [52], an overexpression
of Hedgehog (Hh) [51], suppression by miR-1285-3p [53], and circFAT1 [54] are involved
in the regulation of YAP1 in tumours. Here, we show that YAP1 expression is associated
with its gene amplification in p53-dependent OS. The amplification of YAP1 has been
detected in different cancers including medulloblastoma [55], metastatic brain cancer [56]
and oesophageal squamous cell carcinoma [57]. The coregulation of p53 and YAP1 has been
reported in pancreatic cancer (PDAC) where p53-deficiency promoted YAP1 activity [58,59].
Moreover, YAP1 deletion blocked PDAC initiation driven by KRAS and p53 mutations [60].
In this study, we showed that YAP1 deficiency reduces the tumorigenic potential of p53
deficient OS cells.

We recently identified a mutant R167H-∆152p53 isoform in flTP53R167H pigs, which
is overexpressed in OS [34]. The cooperative role for the p53 pathway and YAP1 in
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mediating the tumorigenesis has been reported, reviewed in [61]. YAP1 interacts with
mutant p53, including the R175H mutation and induces the expression of several pro-
oncogenic genes [62]. Also, the nuclear localisation and activity of YAP1 are dependent on
p53. While tumours with wild-type TP53 showed a lack of YAP1 nuclear localisation in
pancreatic cancer [58], a loss of p53 in mutant KRASG12D lung cancer leads to increased
YAP1 nuclear localisation [63]. We showed a high activity of nuclear YAP1 in OS from
flTP53R167H pigs. Importantly, the nuclear YAP1 localisation is negatively associated with
survival in OS patients [50]. These findings suggest an interaction between mutant p53
isoform and YAP1 in pig OS.

YAP1 physically interacts with p53 family members, p63, p73 [61], and regulates the
p53/Rb1/p16 dependent cellular senescence [64]. The ∆Np63 isoform regulates transloca-
tion of YAP1 in squamous carcinoma [65] and in response to DNA damage. YAP1 functions
also as a transcriptional coactivator of p73-mediated apoptosis [66]. In line with this data,
we found that knockout of YAP1 silences p63 and upregulates p16 in p53-deficient OS
cells. In addition, YAP1 deletion reduced the p16 promoter methylation. YAP1 functions
as a key transcriptional regulator of multiple metabolic pathways including the synthesis
of compounds such as S-adenosyl methionine (SAM) needed for DNA methylation. A
previous study showed that YAP1 deletion downregulated SAM in primary pancreatic
tumour cells [59].

5. Conclusions

Given the difficulties in restoring the wild-type function of p53 in cancer, YAP1 is
potentially the central target for drug development to treat the oncogenic YAP/Hippo-
p53 signalling. However, the complex interaction between p53 family members and
YAP/Hippo pathway is still not fully understood. Recent studies have proven the impor-
tance of genetically engineered pigs as an animal model in oncology [67–70]. By using
flTP53R167H pigs, we identified the role of YAP1 in the progression of p53- dependent OS.
This study confirms the importance of p53/YAP1 network in cancer.
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