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Abstract: In this work, we designed, developed, characterized, and investigated a new chelator and
its bifunctional derivative for 89Zr labeling and PET-imaging. In a preliminary study, we synthesized
two hexadentate chelators named AAZTHAS and AAZTHAG, based on the seven-membered hetero-
cycle AMPED (6-amino-6-methylperhydro-1,4-diazepine) with the aim to increase the rigidity of the
89Zr complex by using N-methyl-N-(hydroxy)succinamide or N-methyl-N-(hydroxy)glutaramide
pendant arms attached to the cyclic structure. N-methylhydroxamate groups are the donor groups
chosen to efficiently coordinate 89Zr. After in vitro stability tests, we selected the chelator with longer
arms, AAZTHAG, as the best complexing agent for 89Zr presenting a stability of 86.4 ± 5.5% in
human serum (HS) for at least 72 h. Small animal PET/CT static scans acquired at different time
points (up to 24 h) and ex vivo organ distribution studies were then carried out in healthy nude
mice (n = 3) to investigate the stability and biodistribution in vivo of this new 89Zr-based complex.
High stability in vivo, with low accumulation of free 89Zr in bones and kidneys, was measured.
Furthermore, an activated ester functionalized version of AAZTHAG was synthesized to allow the
conjugation with biomolecules such as antibodies. The bifunctional chelator was then conjugated
to the human anti-HER2 monoclonal antibody Trastuzumab (Tz) as a proof of principle test of
conjugation to biologically active molecules. The final 89Zr labeled compound was characterized via
radio-HPLC and SDS-PAGE followed by autoradiography, and its stability in different solutions was
assessed for at least 4 days.

Keywords: zirconium-89; polydentate chelators; hydroxamates; PET-imaging; labeling

1. Introduction

A rapidly expanding number of radionuclides with a variety of half-lives, emission
types, and energies for the application of radionuclide imaging are routinely produced.
When choosing the most suitable radionuclide for a certain application, one should not
only consider the decay properties and availability of the radionuclide, but it is also of
great importance that the physical half-life of the radionuclide matches the biological
half-life of the vector molecule [1,2]. This biological half-life can be in the range of minutes
(small organic molecules), hours (peptides, antibody fragments), or even days (full-size
monoclonal antibodies). Longer-lived radioisotopes should be selected when an extended
time is required to achieve optimal target-to-background ratios, expressed as the ratio
between the accumulation of the radiotracer in the target tissue and the accumulation in
muscle (as background organ). For diagnostic purposes, a radionuclide with relatively
limited energy (100–200 KeV) and a high average path (typical γ rays) that can be detected
by a detector near the patient is required. After the decay, the nuclide should lead to a low
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activity isotope that can be easily eliminated from the organism. Radioisotopes such as
68Ga, 18F, 64Cu, 44Sc, or 89Zr reflect these characteristics. One of the most important aspects
of the development of metal-based PET probes is achieving a stable complexation of the
radiometal to avoid its release in the blood pool, and to allow the delivery to a specific
target in the body guaranteeing good diagnostic results. The study and development of
new chelating ligands for commonly used radioisotopes is nowadays more focused on a
series of cyclic, cross-bridged, and acyclic ligands that can lead to more stable and inert
complexes with 68Ga, 44Sc, 89Zr, and 64Cu [3]. The well-known AAZTA chelator has already
proven to be an interesting ligand for several metal ions due to the thermodynamically
stable complexes formed with it [4,5]. In the past years, AAZTA-like derivatives have
been synthesized for the successful complexation of 68Ga such as the recent PIDAZTA
chelator and the CyAAZTA chelator [6,7]. Moreover, AAZTA was also used for preclinical
PET application based on 44Sc radioisotope demonstrating the suitability of this chelating
agent for the preparation of Sc-based radiopharmaceuticals [8,9]. Zirconium-89 (89Zr) is
a second-row transition metal, and its potential application in PET imaging with 89Zr-
based antibodies tracers was first demonstrated in 1992 [10]. Due to its long half-life
(t1/2 = 78.4 h), the development of new radiotracers based on 89Zr has increased in recent
years. In particular, zirconium-89 perfectly supports the development of radiotracers for
immuno-PET that utilize immunoglobulin G (IgG) antibodies as targeting vectors, which
require long periods (days to weeks) to fully accumulate at the target site in vivo [11].
Due to the fact that immunoPET has become the method of choice for imaging not only
tumors but also immune cells, immune checkpoints, and inflammatory processes, the
radiochemistry of Zr-89 and complexation strategies to use this radioisotope has driven the
design and development of new chelators [12]. The main oxidation state of zirconium in
aqueous solutions is +4 and for this reason, Zr(IV) (ionic radius = 0.84 Å) can be classified
as a hard Lewis acid, and it is ideally complexed by hard Lewis bases, e.g., oxygen donor
groups [13]. Since this tetravalent cation usually forms 6- and 8-coordinate complexes,
nowadays the development of new ligands for 89Zr is based on the use of hexa and oc-
tadentate chelators with hydroxamate functional groups. The hydroxamate moiety is one
of the best bidentate chelating groups forming a five-membered chelating ring around hard
metal ions such as Zr4+ or Fe3+. From potentiometric studies, it was demonstrated that
N-methylhydroxamate derivatives show improved coordination abilities to form stable
Zr(IV)-complexes. Considering the similarities of Zr(IV) with Fe(III), the development of
89Zr chelators is commonly based on the natural complexes of Fe(III) [14]. Siderophores
are high-affinity natural Fe(III)-chelating compounds designed to transport iron across cell
membranes: they are amongst the strongest soluble Fe(III) binding agents known contain-
ing catecholates, hydroxamates, or (α-hydroxy-) carboxylates donor groups [15,16]. Thus,
in the past years, new chelators for 89Zr have been developed containing hydroxamates,
catecholates, and hydroxypyridinones coordinating groups [17]. Antibody radiolabeling
with 89Zr is typically performed using the Desferrioxamine B (DFO) chelator, an FDA ap-
proved siderophore bearing three hydroxamate groups involved in the coordination of the
metal [18]. However, the high flexibility of this linear chelator accounts for the inadequate
stability of the 89Zr-DFO complex and has pushed the development of novel chelators
based on macrocyclic structures able to form more inert complexes [19,20]. Moreover, since
Zr(IV) can accommodate up to eight donors in its coordination sphere and DFO occupies
only six coordination sites, octadentate non-macrocyclic chelators have also been designed
and developed [21–23]. In particular, the octadentate version of the DFO chelator, the
so-called DFO*, has been developed. Two different functionalized versions of this chelator
were synthesized, conjugated with a monoclonal antibody, and tested in vivo showing
a lower 89Zr bone uptake over the DFO conjugate [24]. Nowadays, the development of
radiotracers for PET imaging is focused on the use of antibodies or antibodies fragments as
carriers. Working with antibodies or their derivatives requests to take into account several
issues: (i) antibodies are often pH-sensitive as well as heat-sensitive biomolecules; therefore,
all reaction steps must be carried out in a reasonable pH range (4–9) and at controlled
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temperatures (e.g., 25, 37 ◦C), to prevent both the formation of irreversible c-structure
tetramers and denaturing of the antibody; (ii) during the radiolabeling reactions, due to
the sensitivity of antibodies to acidic pH values, it is necessary to work with neutralized
solutions prior to radiolabeling [25]; (iii) the radiometal complex has to be stable enough
over the time to achieve accumulation of the probe within the target tissue and allowing
internalization after binding to the target antigen. In that case, a positron emitter is needed
that residualizes in the target cell after internalization, like in the case of 89Zr, to enable
imaging at optimal contrast. In this study, we synthesized and characterized two hexaden-
tate AMPED-based ligands for 89Zr complexation investigating their in vitro and in vivo
stability. A functionalized derivative of the most promising one was also synthesized and
characterized to allow the conjugation with a humanized antibody and the subsequent
89Zr labeling. The stability of the radiolabeled immunoconjugate was then tested in vitro.

2. Results and Discussion
2.1. Ligand Synthesis

In this work, we developed two hexadentate chelators for zirconium-89 starting
from the heterocyclic structure of the triamine AMPED by insertion of three bidentate N-
methylhydroxamate coordinating groups. The 6-amino-6-methyl-1,4-diazepine (AMPED)
scaffold was synthesized using the established protocol via the double nitro-Mannich reac-
tion between N,N-dibenzylethylenediamine, formaldehyde, and nitroethane, followed by
simultaneous hydrogenation of the nitro group and hydrogenolysis of the benzyl moieties
with H2 and Pd/C [4]. The pendant arm was synthesized following a reported proce-
dure starting from O-benzyl-hydroxylamine [26]. Briefly, O-benzyl-hydroxylamine was
protected with benzyl chloroformate, N-methylated with methyl iodide, deprotected at
the nitrogen with hydrobromic acid (33% in AcOH), and finally acylated by succinic or
glutaric anhydride to form the C4 or C5 carbon chains, respectively. The two different
pendant arms were then coupled to the AMPED cycle by forming amide bonds using
HATU (1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hex-
afluorophosphate) activator and DIPEA (N,N-diisopropylethylamine) to obtain O-benzyl
protected AAZTHAS and AAZTHAG ligands as shown in Figure 1. AAZTHAS and
AAZTHAG differ for the length of the spacers between the AMPED scaffold and the
N-methylhydroxamate groups (succinic and glutaric moieties, respectively), based on pre-
vious studies where only a succinic spacer was used between the tetraazacyclotetradecane
scaffold and the N-methylhydroxamate donors [20]. Furthermore, a recent paper by Klasen
et al. reported a functionalized version of the chelator called AAZTHAS with the shorter
spacer between the chelating units and the AMPED scaffold, showing a lower stability in
human serum and PBS even when conjugated to a mAb [27]. As already mentioned in the
introduction, the choice of a cyclic-based structure to hold the hydroxamate pendant arms
relies on the higher rigidity given by this kind of scaffold to the final complex. In fact, it
is reported in the literature that AMPED-based ligands are able to form stable complexes
with various metal ions, being a good alternative for the development of tracers for PET
imaging [8]. The final chelators were then obtained after hydrogenolysis of the O-benzyl
groups. Labeling with 89Zr and stability tests in different solutions and human serum
(Table 1) showed that 89Zr-AAZTHAG is more stable than 89Zr-AAZTHAS, therefore, the
bifunctional AAZTHAG-C5-OH chelator bearing a tetrafluorophenol (TFP) activated ester
to allow the conjugation with biomolecules via amide linkage was then synthesized. The
higher stability of the tracer with longer arms highlights the quality of our design and
confirms what was reported by Klasen et al. [27].
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symmetry of the ligand avoiding the generation of stereocentres. Thus, the synthesis of 
the 6-methylpentanoate-AMPED derivative was performed as reported by Manzoni and 
colleagues, and then the amino groups were acylated by the N-(benzyloxy)-N-methylglu-
taric acid moieties using HATU activator and DIPEA as discussed earlier for the synthesis 
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Figure 1. Brief synthesis scheme of AAZTHAS and AAZTHAG chelators. (a) 5-((benzyloxy)(methyl)
amino)-2,5-dioxopentanoic acid (n = 2), (b) 6-((benzyloxy)(methyl)amino)-2,6-dioxohexanoic acid
(n = 3).

Table 1. In vitro stability analysis of 89Zr-AAZTHAS, 89Zr-AAZTHAG and 89Zr-AAZTHAG-C5-Tz.
All the complexes were incubated at 37 ◦C in formulation buffer (3 mM gentisic acid + 0.25 M
NaOAc, pH = 5.5), human serum and EDTA 50 mM solution. Two µL of each radiolabeled complex
were spotted onto: (a) a thin-layer chromatography strip (TLC) eluted using elution solution 2;
89Zr-AAZTHAS/89Zr-AAZTHAG migrate along the TLC strip (Rf = 0.9), while free 89Zr remains
at the origin (Rf = 0.0); (b) an instant thin-layer chromatography strip (iTLC) eluted using elution
solution 1; free 89Zr migrates along the iTLC strip (Rf = 0.9), while 89Zr-AAZTHAG-C5-Tz remains at
the origin (Rf = 0.0). Data are expressed as % of 89Zr complexed over total activity measured (89Zr
complexed + free 89Zr).

89Zr Tracer
Incubation

Solution Day 0 Day 1 Day 2 Day 3 Day 4

AAZTHAS

Formulation
buffer

HS
EDTA

71.0
71.0
15.1

63.3
76.8
1.0

62.3
59.2
1.6

41.4

1.5

n.a. 1

n.a.
n.a.

AAZTHAG

Formulation
buffer

HS
EDTA

91.5 ± 10.6
92.0 ± 11.3
30.6 ± 30.3

83.0 ± 6.5
77.7 ± 18.6

4.4 ± 3.9

78.1 ± 13.8
76.9 ± 15.4

2.4 ± 0.1

73.0 ± 5.2
86.4± 5.5
3.2 ± 2.6

n.a.
n.a.
n.a.

AAZTHAG-
C5-Tz

Formulation
buffer

HS
EDTA

n.a.
n.a.
n.a.

100.0
99.5
22.3

99.6
98.0
20.0

99.5
96.0
18.6

98.8
95.4

8

1 Not applicable.

2.2. Prodution of AAZTHAG-C5-Tz

Briefly, the AMPED scaffold bearing the three N-hydroxy-N-methylglutaramide pen-
dant arms and an activated pentanoic acid group in 6-position of the cycle was synthesized
with the aim to conjugate it to the biological carriers. The 6-position of the functional
group is either due to easier synthetic access, as the cyclization was carried out using
methyl 6-nitrohexanoate, or due to stereochemical and steric considerations, since the
groups placed in this position should prevent any steric influence with the metal and
retain the symmetry of the ligand avoiding the generation of stereocentres. Thus, the
synthesis of the 6-methylpentanoate-AMPED derivative was performed as reported by
Manzoni and colleagues, and then the amino groups were acylated by the N-(benzyloxy)-
N-methylglutaric acid moieties using HATU activator and DIPEA as discussed earlier
for the synthesis of AAZTHAG [28]. The final AAZTHAG-C5-OH ligand was obtained
after LiOH mediated hydrolysis of the methyl ester followed by hydrogenolysis of the
O-benzyl groups and semi-preparative HPLC-MS purification. The conjugation of the
ligand to the –NH2 groups of Lys residues of the antibody requires the activation of the
carboxylic acid group. We choose to activate it by forming a tetrafluorophenol ester using
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TFP and EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), as TFP is more stable than
N-hydroxysuccinimide group in basic conditions such as those used for the conjugation
reaction to antibodies [29]. Briefly, as shown in Figure 2, it was first necessary to protect
the hydroxamate groups of the pendant arms by complexing Fe(III) as already reported
for the conjugation of mAbs with 89Zr via a tetrafluorophenol-N-succinyl-Fe-desferal es-
ter [30]. Then, the activated ester of the complex, Fe-AAZTHAG-C5-OTFP, was formed by
adding TFP/EDC as activators and conjugated to Trastuzumab (Herceptin®, Tz) in buffer
NaHCO3 at pH = 9 at different temperatures (37–40 ◦C), times (30 min up to 24 h) and
Ab concentrations (1.0 up to 8.0 mg/mL). The optimal conjugation conditions resulted
in a conjugation reaction carried out at 40 ◦C, for 24 h and with a concentration of Ab of
8.0 mg/mL. These conditions differ from the protocol of Verel et al. since the reaction time
is longer and the temperature slightly higher, in agreement with procedures reported by
other authors [30]. In general, the yield of the conjugation step could be dependent on
several parameters, such as the nature of the protein used, the incubation time, temperature,
concentration of protein, concentration of chelator, and organic solvent used. Furthermore,
the steric hindrance could play a role in this reaction: a semi-rigid chelator would most
likely have a higher steric hindrance than the acyclic desferrioxamine B reported in the
protocol from Verel and colleagues, reducing the reaction rate. Thus, in the present case, the
reaction conditions were optimized to obtain a good recovery of the immunoconjugated
product. Then, Fe(III) was removed from the tracer by transchelation reaction with EDTA
at pH 4.4. We optimized this step avoiding the use of concentrated H2SO4 by carrying out
the acidification with a buffer exchange using a solution of 0.25 M sodium acetate + gentisic
acid 3 mM pH = 5.5 (called formulation buffer), and then adding EDTA at a concentration
of 67.4 mM, as reported elsewhere [30]. The buffer exchange also allowed the purification
of the product from the activated complex. The mixture was purified using PD-10 columns
with formulation buffer that contains gentisic acid as a scavenger to avoid the radiolysis
effect due to γ radiation, produced by 89Zr decay, and responsible for the oxidation of
some protein sites, which might cause degradation of antibody structure with possible
impairment of biological functions [31,32].

2.3. Determination of Chelator-to-Protein Ratio

The ratio between numbers of chelators AAZTHAG-C5-OH per molecule of Tz was
measured indirectly via metal loading measurement carried out using ICP-MS. To this pur-
pose, the cold natZr-AAZTHAG-C5-Tz was synthesized by reaction of the final chelator-Tz
conjugate with natZr and purified on a PD-10 column. The complex was then subjected to
both Bradford assay [A] and ICP-MS measurements [B] to determine protein and metal con-
centrations, respectively. Average values of 2.51 ± 0.04 × 10−7 M and 9.34 ± 0.03 × 10−8 M
were obtained for [A] and [B], respectively. Then, the average number of chelators per Ab
calculated as [A]/[B], resulted to be 2.6.
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Figure 2. Synthesis scheme of 89Zr-AAZTHAG-C5-Tz.

2.4. Radiolabeling and Characterization of AAZTHAG-C5-Tz

All labeling reactions were carried out following the procedure reported by Yusufi
and colleagues, with slight modifications [33]. The products were then purified by a PD-10
column with formulation buffer as eluent and characterized with SEC-HPLC with γ and
UV-VIS detectors. Since the concentration of the antibody can have a significant role
during labeling reactions, we optimized the labeling protocol at different concentrations of
the immunoconjugated compound. Thus, a radiolabeling yield (RCY) of 60 ± 15% with
a specific activity of 7.1 ± 2.5 GBq/µmol was reached using a protein concentration of
8.0 mg/mL. The labeling yield was calculated using the formula:

RCY% =
final activity (µCi)

initial activity (µCi)
∗ 100

After conjugation, labeling and purification, the product 89Zr-AAZTHAG-C5-Tz was
analyzed with SEC-radio-HPLC (Figure 3) and compared to Tz to show the successful
conjugation and labeling of the tracer.
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Figure 3. HPLC-SEC chromatogram of (a) Trastuzumab; (b) 89Zr-AAZTHAG-C5-Tz. UV–Vis: tr = 9.40 min; activity:
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of the product. The radioactivity peak has the same retention time as the UV–Vis peak (the small delay between the two
peaks is due to the sequential setup of the UV and radioactive detectors), proving that the antibody is conjugated to the
ligand and that 89Zr is complexed by the ligand-antibody conjugate.

In addition, SDS-PAGE and autoradiography analysis confirmed the integrity of the
radiotracer and the association of the radioactivity with the band correspondent to the
Trastuzumab (Figure S3).

2.5. In Vitro Stability Studies

Stability studies were performed on 89Zr labeled AAZTHAS and AAZTHAG to test
the effect of the pendant arm length on complex stability. The stability of the two 89Zr-
complexes was investigated by radio-TLC after incubation for 72 h at 37 ◦C in formulation
buffer, EDTA 5 mM (1000-fold excess), and human serum (HS). The percentage of 89Zr
complexed measured in HS and in formulation buffer after 72 h for 89Zr-AAZTHAG was
87 ± 5%, and 73 ± 5%, respectively, indicating good in vitro stability of the compound.
The stability was higher than that obtained for 89Zr-AAZTHAS equal to 46% in HS and
42% in the formulation buffer. These results suggested poor stability of the complex
89Zr-AAZTHAS showing a release of the radioisotope; furthermore, the complex tends to
precipitate over time probably due to interaction with blood pool proteins. Based on these
results, we carried on the study using the glutaramide derivative, since the longer length
of the pendant arms resulted in a more stable 89Zr-complex.

In human serum, the amount of 89Zr associated with 89Zr-AAZTHAG after 3 days
was 86.4 ± 5.5%. Based on these preliminary results, we also tested the stability of 89Zr-
AAZTHAG in vivo (see Section 2.6). Then, the stability of the immunoconjugate derivative,
89Zr-AAZTHAG-C5-Tz, was also studied in vitro, showing a high percentage of Zr-89
retained by the complex for at least 4 days of incubation, both in formulation buffer and HS.
These findings confirmed that even when functionalized and conjugated to a biomolecule
(e.g., mAb) the chelator AAZTHAG can stably complex the Zr-89 isotope, even better than
the correspondent non-functionalized version.
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2.6. In Vivo Studies with 89Zr-AAZTHAG

Based on the good preliminary in vitro stability results, we investigated the behavior
of 89Zr-AAZTHAG in vivo in healthy female nude mice (n = 3) by acquiring PET/CT
images at six different time points (30 min, 3 h, 6 h, 9 h, 12 h, and 24 h), and mice were
then sacrificed 24 h p.i. to perform a biodistribution study. In Figure 4 below are reported
the PET/CT images at the six time points, where a hepatobiliary and renal excretion is
visible. Moreover, since a very low amount of Zr-89 has been released from the complex, a
low signal in bones was visualized during the PET acquisition, indicating good stability
in vivo, comparable to other compounds reported in the literature [21].
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From a comparison between the biodistribution data of 89Zr-AAZTHAG and those
described by Deri et al., on the HOPO chelator (Figure S4), it can be inferred that 89Zr-
AAZTHAG presents higher stability and favorable low accumulation in selected organs
such as liver, intestine, heart, muscle, bladder, and kidneys when compared to DFO, and a
similar accumulation in femur and kidneys when compared to HOPO [21].

2.7. Ex Vivo Studies

Tracer accumulation results (Figure 5 and Figure S5) show high in vivo stability of the
labeled complex 89Zr-AAZTHAG, as demonstrated by the low 89Zr accumulation measured
in the femur (0.193 ± 0.108% ID/g), kidneys (0.575 ± 0.199% ID/g), and other organs at
24 h p.i. These results are comparable to those reported in the literature for in vivo stability
studies of desferrioxamine (DFO) and another alternative chelator for Zr-89, the so-called
HOPO chelator [21]. According to the PET images, our biodistribution data confirm the
fast hepatobiliary/renal excretion of the labeled ligand due to the low molecular weight
(558.63 Da) [34]. Although a “naked” and negatively charged 89Zr-chelate complex does
not persist in vivo long enough to encounter a challenge to its structural integrity compared
to a conjugated version, nevertheless, the results obtained show a stable 89Zr-complex once
conjugated with a biomolecule. As already reported above, the functionalized version of
this chelator was afterwards synthesized and conjugated to Tz, as a proof of concept. No
damage occurred to the structure of the monoclonal antibody Trastuzumab once conjugated
and radiolabeled with 89Zr, as confirmed by SDS-PAGE + autoradiography analysis and
by stability analysis in vitro over time.
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3. Materials and Methods
3.1. General

All chemicals were purchased from Sigma-Aldrich (Saint Louis, MI, USA) or Alfa
Aesar (Heysham, UK) unless otherwise stated and were used without further purification.
The 1H and 13C NMR spectra were recorded using a Bruker Advance III 500 MHz (11.4 T)
spectrometer equipped with 5 mm PABBO probes and a BVT-3000 temperature control
unit. Chemical shifts δ are reported relative to TMS and were referenced using the residual
proton solvent resonances. HPLC analyses and mass spectra were performed on a Waters
HPLC-MS system equipped with a Waters 1525 binary pump. Analytical measurements
were carried out on a Waters XTerra MS C18 (5 µm 4.6 × 100 mm) and on a Waters C18
XTerra Prep (5 µm 19 × 50 mm) for preparative purposes. Electrospray ionization mass
spectra (ESI MS) were recorded using an SQD 3100 Mass Detector (Waters), operating in
positive or negative ion mode, with 1% v/v formic acid in methanol as the carrier solvent.
The concentration of Trastuzumab and the immunoconjugated tracer (before labeling) were
measured with an IMPLEN NanoPhotometer P330 (IMPLEN). For the purification of the
final tracer before and after the labeling reaction, a PD-10 desalting column (Sephadex
G-25 resin, GE Healthcare Life Sciences, London, UK) was used using a buffer solution
of gentisic acid (2,5-dihydroxybenzoic acid) 3 mM + 0.25 M sodium acetate, pH = 5.5
(formulation buffer) as eluent. The immunoconjugated tracer (before and after labeling)
was characterized by a Prominence HPLC system (Shimadzu, Kyoto, Japan) with a Photo
Diode Array detector (Shimadzu) and a GABI Star γ detector (Raytest, Straubenhardt,
Germany) with an SEC column Yarra 3 µm SEC-3000 (Phenomenex, Torrance, CA, USA)
and isocratic elution with a PBS buffer (pH = 6.8) and a flow rate of 1 mL/min. The
radiotracer was further characterized by SDS-PAGE in non-reducing conditions loading
20 µg of sample in each well, running the gel for 90 min at 100 V. The gel was stained using
Coomassie Blue staining solution, followed by autoradiography measurement performed
by exposing the gel to phosphorimaging plates (Fujifilm, Fuji, Tokyo, Japan) for 24 h.
Read-out of the plate was performed with a Phosphor-imager (CR35 BIO, Dürr-Biomedical,
Miami, FL, USA), and the radioactive signals associated with the bands corresponding to
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the intact tracer on the autoradiography images were analyzed using AIDA Image analyzer
software. The 89Zr used during the labeling experiments was purchased from Perkin Elmer
(Skovlunde, Denmark). The activity during experiments was measured with a Capintec
CRC® 15 R dose calibrator. Radiochemical yields (RCYs) were determined by radio-TLC
using different elution solutions (Elution solution 1: 0.1 M sodium citrate pH = 5; Elution
solution 2: ACN/H2O 7:3) and either TLC silica gel 60 plates (Merck Millipore, Burlington,
MA, USA) or instant thin-layer chromatographic stripes (iTLC, Agilent). The stripes were
read-out using a radio-TLC-scanner (Bioscan, Eckert and Ziegler, Brussels, Belgium) and
data were analyzed by the Bio-Chrom Lite software. PET/CT scans of animals were
performed using an Inveon Small Animal PET/CT scanner (Siemens, Knoxville, TN, USA).
During ex vivo experiments, the activity accumulation in specific organs was measured
using a γ-counter (Perkin Elmer).

3.2. Synthesis of AAZTHAS

The N-methyl-N-(benzyloxy)succinamide [26] protected arm (102 mg, 0.43 mmol,
4 eq) was dissolved in DMF (2 mL) and DIPEA (77 µL, 0.43 mmol, 4 eq) was added. The
mixture was reacted for 5 min and then HATU (164 mg, 0.43 mmol, 4 eq) was added to
activate the carboxylic acid. After 15 min, a solution of AMPED [4] (14 mg, 0.11 mmol,
1 eq) in MeOH was added dropwise and the mixture was reacted overnight at room
temperature [20]. Then, AcOEt (+HCl 0.1 M) was added to the mixture and after 2 h
the product was extracted in the organic phase, separated, dried, and evaporated under
vacuum. The mixture was dissolved in MeOH to perform a hydrogenolysis reaction with
Pd/C (10%) in an H2 atmosphere for 4 h under strong stirring. The mixture was then
filtered on Celite® 500 and washed well with MeOH. The final mixture was then purified
with a preparative HPLC-MS with the following method: Flow: 20 mL/min H2O (+0.1%
TFA)/MeOH; 0–3 min: from 5 to 40% B; 3–15 min: from 40 to 80% B; 15–16 min: from
80 to 100% B; 16–20 min: 100% B; 20–21 min from 100 to 5% B. The product (15 mg) was
obtained in 27.3% yield. 1H NMR (Figure S6) (D2O, 500 MHz) δ(ppm): 1.29 (s, 3H, CH3-
cycle), 2.52–2.72 (m, 3 × 4H, -CH2CH2CONOH), 3.40–3.86 (m, 4 × 2H, cycle), 3.13 (s, 9H,
-CONCH3). 13C NMR (Figure S7) (D2O, 500 MHz) δ(ppm): 20.88 (CH3-cycle), 27.13–27.53
(-CH2CH2CONOH), 31.3–31.4 (-CH2CH2CONOH), 35.9 (-CONCH3), 48.94 (C-cycle), 46.43-
57.97 (cycle), 162.78–163.07 (-NHCOCH2-), 174.22- 174.71 (-CONOH). MS ESI+ m/z: 516.25
(C21H36N6O9 calculated), 517.53 [M + H]+ observed.

3.3. Synthesis of AAZTHAG

N-methyl-N-(benzyloxy)glutaramide [26] protected arm (106 mg, 0.43 mmol, 4 eq)
was dissolved in DMF (2 mL) and DIPEA (77 µL, 0.43 mmol, 4 eq) was added. The mixture
was reacted for 5 min and then HATU (164 mg, 0.43 mmol, 4 eq) was added to activate
the carboxylic acid. After 15 min, a solution of AMPED [4] (14 mg, 0.11 mmol, 1 eq) in
MeOH was added dropwise and the mixture was reacted overnight at room tempera-
ture [20]. Then AcOEt (+HCl 0.1 M) was added to the mixture and after 2 h the product
was extracted in the organic phase, separated, dried, and evaporated under vacuum. The
mixture was dissolved in MeOH to perform a hydrogenolysis reaction with Pd/C (10%) in
an H2 atmosphere for 4 h under strong stirring. The mixture was then filtered on Celite®

500 and washed well with MeOH. The final mixture was then purified with a prepara-
tive HPLC-MS with the following method: Flow: 20 mL/min H2O (+0.1% TFA)/MeOH;
0–3 min: from 5 to 40% B; 3–15 min: from 40 to 80% B; 15–16 min: from 80 to 100%
B; 16–20 min: 100% B; 20–21 min from 100 to 5% B. The product (13 mg) was obtained
in 20% yield. 1H NMR (Figure S8) (D2O, 500 MHz) δ(ppm): 1.41 (s, 3H, CH3-cycle),
1.88 (m, 3 × 2H -CH2CH2CH2CONOH), 2.45–2.56 (m, 3 × 4H, -CH2CH2CH2CONOH),
3.28 (s, 9H, -CONCH3), 3.60–4.20 (m, 4 × 2H, cycle). 13C NMR (Figure S9) (D2O, 500
MHz) δ(ppm): 20.27 (CH3-cycle), 20.85–21.55 (-CH2CH2CH2CONOH), 30.78–31.43 (-
CH2CH2CH2CONOH), 32.11–32.41 (-CH2CH2CH2CONOH), 36.94 (-CONCH3), 49.15 (C-



Molecules 2021, 26, 5819 11 of 16

cycle), 46.29–58.30 (cycle), 162.90–163.20 (-NHCOCH2-), 174.98–175.42 (-CONOH). MS ESI+

m/z: 558.30 (C24H42N6O9 calculated), 559.64 [M + H]+ observed.

3.4. Synthesis of AAZTHAG-C5-Tz
3.4.1. AAZTHAG-C5OH

The N-methyl-N-(benzyloxy)glutaramide [26] (88 mg, 0.35 mmol, 4 eq) was dissolved
in DMF (1.8 mL) and DIPEA (60 µL, 0.35 mmol, 4 eq) was added. The mixture was reacted
for 5 min and then HATU (133 mg, 0.35 mmol, 4 eq) was added to activate the carboxylic
acid. After 15 min a solution of the functionalized AMPED [28] (20 mg, 0.087 mmol,
1 eq) in MeOH was added dropwise and the mixture was reacted overnight at room
temperature [20]. Then AcOEt (+HCl 0.1 M) was added to the mixture and after 2 h
the product was extracted in the organic phase, separated, dried, and evaporated under
vacuum to obtain the intermediate compound I1 (Figure S2). The mixture was dissolved
in MeOH adding a 5 mM solution of LiOH in MeOH/H2O and reacted overnight. The
pH was adjusted to pH = 3 and the solvent was evaporated under reduced pressure. The
product was washed with 10 mL of CH2Cl2 (×2), dried, filtered and the solvent was
evaporated under reduced pressure to give 42 mg of the intermediate I2 (Figure S2). After
hydrogenolysis reaction with Pd/C (10%) in an H2 atmosphere for 4 h under strong stirring,
the final mixture was filtered on Celite® 500 and then purified with a preparative HPLC-MS
with the following method: Flow: 20 mL/min H2O (+0.1% TFA)/MeOH; 0–3 min: from 5 to
40% B; 3–15 min: from 40 to 80% B; 15–16 min: from 80 to 100% B; 16–20 min: 100% B; 20–21
min from 100 to 5% B. The product (6 mg) was obtained in 10% yield. 1H NMR (Figure S10)
(D2O, 500 MHz) δ(ppm): 1.35 (d, 2H, -CγH2-), 1.50 (m, 2H -CδH2),1.59 (m, 2H, -CβH2-),
2.25 (m, 3 × 2H, -CH2CH2CH2CONOH), 2.41 (m, 2H, -CαH2COOH), 2.53 (m, 3 × 4H,
-CH2CH2CH2CONOH), 3.25 (s, 3 × 3H, -CONCH3), 3.38–3.91 (m, 4 × 2H, cycle). 13C
NMR (Figure S11) (D2O, 500 MHz) δ (ppm): 20.28 (-CγH2-), 22.04 (-CH2CH2CH2CONOH),
24.31 (-CβH2-), 30.88 (-CH2CH2CH2CONOH), 31.39–32.4 (-CH2CH2CH2CONOH), 32.84–
32.92 (-CαH2-), 33.4 (-CδH2-), 35.93 (-CONCH3), 46.48–55.17 (AAZTA cycle), 174.9–175
(-COCH2CH2CH2CONOH), 175.46–176.14 (-CH2CH2CH2CONOH), 178.70 (-COOH). MS
ESI+ m/z: 644.34 (C28H48N6O11 calculated), 645.73 [M + H]+ observed.

3.4.2. AAZTHAG-C5-OTFP

According to Verel and colleagues [35], 19 µL of a 41 mM solution of AAZTHAG-C5-
OH were mixed with 170 µL of 0.9% NaCl (+0.1 M Na2CO3) and to this solution, 6.1 µL
of FeCl3 140 mM in 0.1% HCl was added to give a final concentration of AAZTHAG-
C5-OH of 4 mM. After 30 min at room temperature under stirring the compound was
freeze-dried. 0.78 µmol of the obtained Fe-AAZTHAG-C5-OH were dissolved in 170 µL of
ACN/H2O and to this solution a 200 mg/mL ACN solution of TFP (17.1 µL, 20.6 µmol,
26.4 eq) and EDC (6.9 mg, 36.1 µmol, 43.3 eq) was added, pH = 5.8–6, carrying out to the
formation of a brown-orange precipitate. The mixture was sonicated for 30 min at room
temperature, and then the precipitate was washed with ACN/H2O and dried to obtain the
Fe-AAZTHAG-C5-OTFP.

3.4.3. AAZTHAG-C5-Tz

The chelator was then conjugated with Trastuzumab (Herceptin®) as follows. Briefly,
a 21 mg/mL solution of Tz in PBS buffer (pH = 6.8) underwent a buffer exchange with
a NaHCO3 buffer (pH = 9) using a 100 kDa Amicon Ultra 0.5 mL centrifugal filter unit
(Merck Millipore). The concentration was then adjusted to 8 mg/mL and afterwards a
5 mM DMSO solution of Fe-AAZTHAG-C5-OTFP (5 eq) was added. The solution was kept
in the dark and allowed to react under soft stirring for 24 h at 40 ◦C. The final solution
underwent an additional buffer exchange step with an Amicon Ultra centrifugal filter
(Merck) and formulation buffer (pH = 4.4) and then a 67.4 mM solution of EDTA (50 eq)
was added. The demetallation reaction was carried out at 40 ◦C for 1 h. The product
was then purified using a PD-10 column and formulation buffer (pH = 5.5). The antibody
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recovery after conjugation (up to 80%) was calculated comparing the initial and final
concentration of the carrier species measured with the Nanophotometer as reported below:

Ab recovery (%) =
[Ab]f
[Ab]i

∗ 100

3.5. Radiolabeling Experiments

AAZTHAS, AAZTHAG, and AAZTHAG-C5-Tz were labeled with 89Zr (Perkin Elmer)
as reported elsewhere [33] and radiochemical purity (RCY) after PD-10 purification assessed
by radio-HPLC and by radio-TLC.

3.5.1. Synthesis of 89Zr-AAZTHAS and 89Zr-AAZTHAG

The labeling reactions were performed with a ratio of 80 µg of the compound to
1 mCi 89Zr in 100 µL oxalic acid 1 M (eventually adjusting the volume with oxalic acid 1 M).
The 89Zr-oxalate solution was first neutralized with 45 µL of Na2CO3 2M and incubated
for 3 min at room temperature, and then 155 µL of HEPES (pH = 7.0) was added. Either
AAZTHAS or AAZTHAG was added to the solution and the pH was adjusted with 350 µL
of HEPES buffer to pH = 7.0. The solution was incubated at 37 ◦C for 30 min and RCYs
were afterwards calculated by radio-TLC (Elution solution 2). The products were purified
using a Sep-Pak Alumina N Plus Light cartridges preconditioned with 5 mL of 0.9% NaCl
solution and then eluted with 1.5 mL of 0.9% NaCl solution.

3.5.2. Synthesis of 89Zr-AAZTHAG-C5-Tz

Three different concentrations of the immunoconjugated product (1.0, 2.0, and 5.0 mg/mL)
were tested. The labeling reactions were performed with a ratio of 500 µg of AAZTHAG-
C5-Tz to 1 mCi 89Zr in 100 µL oxalic acid 1 M (eventually adjusting the volume with oxalic
acid 1 M). The 89Zr-oxalate solution was first neutralized with 45 µL of Na2CO3 2 M and
incubated for 3 min at room temperature, and then 155 µL of HEPES (pH = 7.0) was added.
At this point, the AAZTHAG-C5-Tz was added to the solution and the pH was adjusted
with 350 µL of HEPES buffer to pH = 7.0. The solution was incubated at 37 ◦C for 30 min
and the product was purified using a PD-10 desalting column with formulation buffer,
collecting the eluate in different fractions of about 700 µL (20 drops). RCY was calculated
by radio-TLC (Elution solution 1). The product was then characterized by SEC-HPLC with
isocratic elution using PBS buffer (pH = 6.8) as solvent.

3.6. In Vitro Stability Studies

After the purification step and analysis of the radioactive complex via radio-HPLC,
the stability assessment of the complex at different time points and in different solutions
was carried out. 89Zr-AAZTHAS and 89Zr-AAZTHAG were dissolved in formulation
buffer, EDTA 5 mM, and human serum in 1:5 v/v ratio and were incubated at 37 ◦C up
to 96 h. At each time point the stability was evaluated by radio-TLC (Elution solution 2)
using TLC silica gel 60 plates (Merck Millipore).89Zr-AAZTHAG-C5-Tz was dissolved in
formulation buffer, EDTA 5 mM and human serum in 1:5 v/v ratio and was incubated at
37 ◦C up to 96 h. At each time point the stability was evaluated by radio-iTLC (Elution
solution 1) using an instant thin-layer chromatographic strip (iTLC, Agilent).

3.7. Determination of Chelator-to-Protein Ratio

The metal loading of the conjugate was determined by complexing 0.5 mg of AAZTHAG-
C5-OH with NatZr(IV) (ZrCl4, 162 µg, 0.9 eq), for 30 min at room temperature. After
lyophilization, NatZr-AAZTHAG-C5-OH was dissolved in 170 µL of ACN/H2O and to
this solution, 17.1 µL of a 200 mg/mL ACN solution of TFP (20.6 µmol, 26.4 eq) and
6.9 mg of EDC (36.1 µmol, 43.3 eq) were added (pH = 5.8–6.0) and carried out until the
formation of a brown-orange precipitate. The mixture was sonicated for 30 min at room
temperature, and the precipitate was washed with ACN/H2O and dried to obtain the
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NatZr-AAZTHAG-C5-OTFP. The product was then conjugated with Trastuzumab. To a
NaHCO3 buffer solution of Tz (pH = 9.0) a 5 mM DMSO solution of NatZr-AAZTHAG-C5-
OTFP (5 eq) was added and was reacted at 40 ◦C for 24 h under soft stirring and kept in
the dark. The conjugate was then purified using a PD-10 column and formulation buffer
(pH = 5.5) and the collected fractions were then subjected to both a Bradford assay [A]
to determine the protein concentration and to ICP-MS measurements [B] to determine
the metal concentrations. Regarding ICP-MS experiments, the fractions were digested
with HNO3 (69% w/w) for 3 h at 65 ◦C in an ultrasonic bath. After the completion of the
mineralization run and the cooling to room temperature, the content was transferred into a
marked flask using HNO3 1%. Metal quantification was measured by inductively coupled
plasma-mass spectrometry (ICP-MS, Thermo Optek X Series 2).

3.8. Animal Studies

3.8.1. In Vivo Studies with 89Zr-AAZTHAG

In order to study the biodistribution and the in vivo stability of the 89Zr-AAZTHAG,
8 weeks old pathogen-free female athymic Nude-Foxn1nu/nu mice (Charles River Lab-
oratories, Sulzfeld, Germany) (n = 3) were injected via a catheter in the tail vein with
2.9 ± 0.1 MBq of 89Zr-AAZTHAG in 300 µL NaCl 0.9% solution, and imaged at different
time points (30 min, 3 h, 6 h, 9 h, 12 h, 24 h) via PET/CT static acquisition using an Inveon
Small Animal PET/CT scanner (Siemens, Knoxville, TN, USA).

3.8.2. Ex Vivo Tracer Accumulation Analysis

Biodistribution studies were also performed to assess the in vivo distribution of the
89Zr-AAZTHAG complex and evaluate its in vivo stability. After sacrifice, the mice by
anesthesia, blood, and other selected organs were collected, weighed, and the activity was
measured by a γ-counter. The tracer accumulation in selected organs was expressed as a
percentage of injected dose per gram of tissue (%ID/g).

4. Conclusions

New pseudo-macrocyclic ligands for 89Zr complexation for PET imaging were synthe-
sized, in particular, two non-functionalized chelators, AAZTHAS and AAZTHAG, and one
functionalized for conjugation to biomolecules, AAZTHAG-C5-OTFP. All three chelators
are based on N-methylhydroxamate coordination groups accordingly to the coordination
sphere of Zr4+. Preliminary labeling and in vitro stability studies were performed, focused
on testing the effect of the length of the spacer arms in the AAZHTAS and AAZTHAG
chelators. The initial hypothesis was that longer pendant arms would better coordinate
the Zr-89 isotope, leading to a more stable complex over time. In fact, while the complex
89Zr-AAZTHAS precipitates when incubated in HS, the chelator AAZTHAG formed an
89Zr-complex stable in HS for at least 4 h. Very recent work from Klasen and colleagues,
which showed low stability both in PBS ad human serum of the functionalized version
of AAZTHAS conjugated to a mAb, supports our results [27]. A functionalized version
of the AAZTHAG chelator was then synthesized since it was confirmed that a longer
spacer arm leads to a more stable 89Zr-complex. The protocol used for the conjugation
reaction between the ligand and the antibody was optimized with the aim to increase
both reaction and labeling yield, avoiding the biomolecules to be subjected to strong re-
action conditions. The optimized procedure allowed to obtain a final RCY of 41% after
the labeling reaction of AAZTHAG-C5-Tz. Based on the obtained results, future work
can be directed towards two main lines: (1) focusing on a direct conjugation approach of
the chelator to the biomolecule avoiding the “protection/deprotection” steps consisting
of the Fe(III) complexation and EDTA transchelation reactions. This can be obtained, for
example, by modifying the functional group from a carboxylic acid to isothiocyanate or
maleimide groups. In fact, the introduction of these functional groups could reduce the
time of the conjugation/labeling procedure being a valid alternative for the conjugation
reaction with mAb [1,18,36]. (2) Another modification that could be applied to the ligand
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is the introduction of a fourth pendant arm leading to an octadentate chelator that could
be, together with the use of cyclic chelators, the key to produce a highly stable complex
as recently reported for the DFO derivative DFO* [2,37] For this purpose, a new synthetic
strategy must be planned.

Supplementary Materials: The following are available online. Figure S1: Synthesis scheme of
AAZTHAS and AAZTHAG, Figure S2: Synthesis scheme of AAZTHAG-C5-OH, Figure S3: SDS-
PAGE and autoradiography of 89Zr-AAZTHAG-C5-Tz, Figure S4: Comparison between biodistri-
bution data of 89Zr-AAZTHAG with 89Zr-DFO and 89Zr-HOPO, Table S5: Biodistribution data of
89Zr-AAZTHAG, Figures S6–S11: 1H and 13C NMR spectra of final ligands.
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