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Abstract: Electric vehicles are shaping the future of the automotive industry. The traction battery
is one of the most important components of electric cars. To ensure that the battery operates safely,
it is essential to physically and electrically separate the cells facing each other. Coating a cell with
varnish helps achieve this goal. Current studies use a destructive method on a sampling basis, the
cross-cut test, to investigate the coating quality. In this paper, we present a fast, nondestructive and
inline alternative based on hyperspectral imaging and artificial intelligence. Therefore, battery cells
are measured with hyperspectral cameras in the visible and near-infrared (VNIR and NIR) parts of
the electromagnetic spectrum before and after cleaning then coated and finally subjected to cross-cut
test to estimate coating adhesion. During the cross-cut test, the cell coating is destroyed. This work
aims to replace cross-cut tests with hyperspectral imaging (HSI) and machine learning to achieve
continuous quality control, protect the environment, and save costs. Therefore, machine learning
models (logistic regression, random forest, and support vector machines) are used to predict cross-cut
test results based on hyperspectral data. We show that it is possible to predict with an accuracy
of ~75% whether problems with coating adhesion will occur. Hyperspectral measurements in the
near-infrared part of the spectrum yielded the best results. The results show that the method is
suitable for automated quality control and process control in battery cell coating, but still needs to be
improved to achieve higher accuracies.

Keywords: coating adhesion; battery cells; hyperspectral imaging; machine learning; AI; prediction

1. Introduction

Recently, the automotive industry has been shifting away from internal combustion
engines to electric vehicles. There is limited know-how regarding the manufacturing
technologies required to produce new hybrid and electric vehicles [1]. In particular, the
low level of expertise hinders the detection of deviations in quality. Increased and active
process assurance based on test systems is needed to identify defects [2]. Undetected
defects could end up in the customer’s hands, resulting in breakdown, and in the worst
case, harming people and the environment.

The production of electric drive trains therefore requires inspection processes inte-
grated into the process to detect quality deviations. Artificial intelligence algorithms have
the advantage that they independently learn dependencies and characteristics from existing
data. In comparison, traditional data processing algorithms require manual programming,
which is a disadvantage in the production of electric drive systems [3].

In addition, in electric motors, the lithium-ion traction battery is an equally important
component. However, the use of lithium-ion cells in electric vehicles poses new challenges.
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Cells facing each other need to be physically and electrically separated to ensure safe
battery operation [4]. Isolation coating helps meet this challenge. A varnish physically and
electrically separates two adjacent cells. The traditional production process inspects coating
adhesion cyclically using a cross-cut test according to DIN EN ISO 2409 [5]. However, the
cell coating is destroyed in this process, which increases production costs and squanders
rare raw material resources. Moreover, the test is performed by a person, which makes the
result highly subjective. In addition, the test is time-consuming and can only be performed
on a sampling basis, which means that bad cells that were not tested can potentially be
integrated into vehicles. To circumvent these problems, this paper presents a method
that allows fast, objective, and non-destructing testing of coating adhesion. The cell
surface is scanned by hyperspectral imaging (HSI). The high-dimensional HSI raw data are
then evaluated by machine learning. Coating adhesion is assumed to be affected by the
battery surface properties, and differences in surface properties are reflected in the spectral
properties of the surface, which can be measured by HSI. Based on these approaches, it
is impossible to assess how other factors affect coating adhesion, e.g., during the coating
process itself. Therefore, reliably predicting the cross-cut classes seems unlikely.

HSI makes it possible to simultaneously measure the spectrally and laterally resolved
reflectance properties of the samples under study. In a hyperspectral measurement, a
complete spectrum in the wavelength range under investigation is obtained for each point
on the surface of the sample examined. The resulting dataset is usually referred to as a
hypercube. The wavelength range is not limited to the visible part of the spectrum, but can
be extended into the ultraviolet, the near-infrared, and even into the mid-infrared parts.
Originally developed for remote sensing [6], the HSI has now found use in many other
applications, such as in agriculture, recycling, medicine, and pharmaceuticals [7–10].

2. State of the Art

As already explained in Section 1, quality evaluation can be supported by machine
learning. The field offers enormous benefits, especially in the production of the electric
powertrain, where access to expert knowledge is very limited. Due to this fact, in the
following sections, we will summarize the literature that deals with the detection of
quality deviations using optical sensors and failure classification using machine learning
algorithms. The focus is placed on the production of electric drive systems. At the end of
this section, a scientific gap is then derived for the present publication.

In the context of electric drive production, Weigelt et al. presented a method for
checking the ultrasonic crimp connection of a stator. In addition to the winding assembly,
the process of contacting the wire ends with cable lugs offers a greater potential for
optimization. However, multiple factors make it difficult to control the contacting process of
ultrasonic crimping. The authors presented an image-based convolutional neural network
(CNN), which makes it possible to visually inspect and predict the connection quality.
CNN helped achieve inspection accuracy of 91% [11].

Mayr et al. dealt with welding defect detection of hairpin pairs. At first, they sought
to predict the weld quality based on machine parameters. Then, they compared different
algorithms such as support vector machine [12], random forest [13], k-nearest-neighbor [14]
and artificial neural networks [15]. In addition to predicting the weld seam quality based
on machine parameters, the authors detected weld defects using a camera and a CNN
technique. Depending on the failure class, an accuracy between 61% and 91% could be
achieved [16].

In the field of hairpin welding, Vater et al. investigated how to detect welding defects
using an optical system. The authors used both grayscale images and 3D scans. However,
a significant added value for production is only created if, in addition to the detection of
the quality deviation, automatic reworking can be implemented. To this end, an additional
rework concept is defined, which is selected based on prescriptive analysis. With the
3D scans serving as input variables and the self-developed CNN, the authors achieved
detection accuracy of 99.58% [17].
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Huber presented a nondestructive optical method for detecting quality deviations
on battery separators. He used a decision tree to classify the quality deviation. The test
method was implemented in a test bench [4].

Since there is already a good summary of machine detection of quality deviations in
the production of the electric drive, we will not go into further detail [18]. In summary,
optically detecting production defects and classifying them machine learning has great
potential. However, since there are no studies regarding coating adhesion detection and
cross-cut prediction to date, this method will be described below.

3. Materials and Methods

This section presents the relevant methodology for predicting the cross-cut test results,
and therefore the coating adhesion on a laser-structured metal surface. Relevant points are
illustrated in Figure 1, which is based on the CRISP-DM (CRoss Industry Standard Process
for Data Mining) [19].
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Figure 1. Six stages of CRISP-DM.

The components of this process model are presented and explained in detail in the
following sections, starting with business understanding in clockwise order. In the first
stage, objectives and requirements are concretized. The data understanding phase then
provides an initial overview of the generated data and assesses its quality. In the third
step, the data is preprocessed to achieve higher algorithm accuracies. During the modeling
phase, an algorithm suitable for predicting the cross-cut test results is developed and then
evaluated. In the last phase, the obtained findings are processed. In the following sections,
these steps will be presented in more detail with respect to the use case considered in
this paper.

3.1. Business Understanding

This section first introduces the current and the desired production process. The
procedure of the cross-cut test is then explained.

As already described in Section 1, the lithium-ion cells are coated with a varnish to
isolate the opposing cells both physically and electrically. The production process used for
this consists of four steps, whereby the first two production steps involve cleaning the cell
surface. In the first step, the cells are structured and cleaned using a laser. This process
removes electrolyte residues, which remain on the cell surface. Due to the filling process,
the battery cells are partially contaminated with electrolyte, which results in low adhesion
of the applied varnish. Subsequently, small particles still present on the cell surface are
removed using plasma cleaning. Afterwards, the isolating varnish is coated on the cell
and the cell coating is cured by UV radiation. A cross-cut test according to DIN EN ISO
2409 [5] is currently used to check the coating adhesion. However, the disadvantage of this
method include the destruction of the cell coating. As described in Section 1, this incurs
high costs and squanders resources. For this reason, nondestructive test methods should
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be developed for predicting the cross-cut test results of coating adhesion. The production
process aimed at is explained in the following passage:

The first production step involves examining the cell surface using HSI, which enables
the detection and localization of electrolyte residues. Laser cleaning and structuring and a
higher laser power could be used in areas of increased electrolyte contamination to remove
the electrolyte. In the subsequent step, as already explained, the surface is fine cleaned by
plasma cleaning. Following this, the cell surface is examined again for electrolyte residues
using HSI. Since, as described above, the adhesion of the coating depends on the electrolyte
contamination, the data of the HSI measurement shall be used to predict the cross-cut test
results, and therefore an estimation of the coating adhesion. Finally, the cell is coated as
explained above and the coating is cured. The advantage of the intended method is the
possible integration of a nondestructive testing method into the manufacturing process,
and therefore, a good automation capability through the use of the corresponding camera
technology, whereby 100% inspection can be performed during production.

3.2. Cross-Cut Test

The cross-cut test can be used to estimate the adhesion of a single- or multi-layer
coating to the respective substrate. This method involves assessing how the tested coating
behaves under injury and shear stress. As shown in Figure 2, a set of parallel cuts are made
down to the substrate using a cutter knife. These are then crossed by six cuts arranged in
a perpendicular orientation. After the surface has been scored, it is cleaned using a soft
brush. An adhesive tape is then applied to the cuts under slight pressure and removed in a
uniform peeling motion. This grid cut is assessed by visual inspection against reference
images. A distinction is made between cross-cut class 0 (good adhesion) and 4 (poor
adhesion). A detailed overview and description of the classes can be found in ISO 2409:
2013 [5].

Coatings 2021, 11, x FOR PEER REVIEW 4 of 14 
 

 

2409 [5] is currently used to check the coating adhesion. However, the disadvantage of 
this method include the destruction of the cell coating. As described in Section 1, this 
incurs high costs and squanders resources. For this reason, nondestructive test methods 
should be developed for predicting the cross-cut test results of coating adhesion. The 
production process aimed at is explained in the following passage: 

The first production step involves examining the cell surface using HSI, which 
enables the detection and localization of electrolyte residues. Laser cleaning and 
structuring and a higher laser power could be used in areas of increased electrolyte 
contamination to remove the electrolyte. In the subsequent step, as already explained, the 
surface is fine cleaned by plasma cleaning. Following this, the cell surface is examined 
again for electrolyte residues using HSI. Since, as described above, the adhesion of the 
coating depends on the electrolyte contamination, the data of the HSI measurement shall 
be used to predict the cross-cut test results, and therefore an estimation of the coating 
adhesion. Finally, the cell is coated as explained above and the coating is cured. The 
advantage of the intended method is the possible integration of a nondestructive testing 
method into the manufacturing process, and therefore, a good automation capability 
through the use of the corresponding camera technology, whereby 100% inspection can 
be performed during production. 

3.2. Cross-Cut Test 
The cross-cut test can be used to estimate the adhesion of a single- or multi-layer 

coating to the respective substrate. This method involves assessing how the tested coating 
behaves under injury and shear stress. As shown in Figure 2, a set of parallel cuts are made 
down to the substrate using a cutter knife. These are then crossed by six cuts arranged in 
a perpendicular orientation. After the surface has been scored, it is cleaned using a soft 
brush. An adhesive tape is then applied to the cuts under slight pressure and removed in 
a uniform peeling motion. This grid cut is assessed by visual inspection against reference 
images. A distinction is made between cross-cut class 0 (good adhesion) and 4 (poor 
adhesion). A detailed overview and description of the classes can be found in ISO 2409: 
2013 [5]. 

 
Figure 2. Photo of a battery cell with cross-cut tests. 

3.3. Hyperspectral Measurement of the Battery Cells 
Hyperspectral measurements of the battery cells is performed using an HSI 

measurement system with two different pushbroom cameras and diffuse halogen 
illumination. Figure 3 shows a schematic representation of the system. The system is 
equipped either with an NIR-HSI (Xenics NIR, Xenics nv, Leuven, Belgium) camera with 
wavelength varying between 900 and 2300 nm or with a VNIR-HSI camera (Hyperspec-

Figure 2. Photo of a battery cell with cross-cut tests.

3.3. Hyperspectral Measurement of the Battery Cells

Hyperspectral measurements of the battery cells is performed using an HSI measure-
ment system with two different pushbroom cameras and diffuse halogen illumination.
Figure 3 shows a schematic representation of the system. The system is equipped either
with an NIR-HSI (Xenics NIR, Xenics nv, Leuven, Belgium) camera with wavelength vary-
ing between 900 and 2300 nm or with a VNIR-HSI camera (Hyperspec-VNIR, Headwall
Photonics Inc., Bolton, MA, USA) with wavelength varying between 400 and 1000 nm,
and the corresponding optics (NIR: SWIR-25 f/1.4 25 mm, Navitar, Rochester, NY, USA.
VNIR: Xenoplan 23 mm f/1.4; Jos. Schneider Optische Werke, Bad Kreuznach, Germany).
The VNIR camera is equipped with an EMCCD detector with 1004 × 1002 px (Luca R 604,
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Andor Technology Ltd., Belfast, UK), and the NIR camera is equipped with an InGaAs
detector (Xenics nv, Leuven, Belgium) with 320 × 280 px. The lighting is provided by
six halogen lamps with a power of 25 W each. The diffuse illumination of the samples
is conducted by an integration tube made of Spectralon (Labsphere Inc., North Sutton,
NH, USA). Sample movement is controlled by a linear stage (VT 80, PI Micos, Eschbach,
Germany). The integration and control of the system components, as well as data acqui-
sition, is performed by the dedicated HSI software suite imanto®pro (Fraunhofer IWS,
Dresden, Germany).

To avoid lighting irregularities and to eliminate dark current influences, white and
dark corrections for each wavelength were performed according to Equation (1):

Ic(λ) =
Io(λ)− Id(λ)

Iw(λ)− Id(λ)
(1)

Ic is the corrected image and Io is the original image for the wavelength λ. Id is the
dark signal recorded with the light source switched off and the lens covered. For the white
reference (Iw), a Spectralon plate was recorded under the same measurement conditions as
the original image.
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Figure 3. Schematic representation of the hyperspectral imaging system. HSI: VNIR or NIR-HSI
camera. O: optics of the HSI camera. DL: diffuse halogen lighting. MU: motion unit.

Thirty battery cells were examined from the front side and back side by the HSI system.
The measurement was performed once before and once after laser cleaning and structuring
of the cells. VNIR camera measurements were performed with a working distance of
300 mm, exposure time of 8 ms, recording frequency of 40 Hz, and 4× binning in the
spectral dimensions. This results in a field of view (FOV) of ~90 mm, lateral resolution of
~150 µm, and spectral resolution of 3 nm. NIR camera measurements were performed with
a working distance of 300 mm, exposure time of 4.5 ms, and recording frequency of 50 Hz.
This results in a FOV of ~145 mm, lateral resolution of 450 µm, and spectral resolution of
7 nm. For both cameras, the advance speed of the sample was set to obtain square pixels
and, therefore, the same spatial resolution was observed in both directions. The result
of each measurement was a hypercube containing 191 spectral bands between 400 and
1000 nm for the VNIR measurement and 189 spectral bands between 900 and 2300 nm for
the NIR measurement. Figure 4 shows an example of battery cell measurements before
laser cleaning taken by the NIR-HSI camera. Figure 4a shows the color-coded reflectivity
at a wavelength of 1500 nm. Figure 4b shows some example spectra, the positions of which
are marked by colored crosses in the Figure 4a. The blue spectra are from areas of the
sample that appear clean, and the green spectra are from areas that appear contaminated.
The blue spectra show higher reflectivity and few characteristic bands, while the green
spectra show lower reflectivity and more characteristic bands (for example at 1950 nm).
Thus, it seems possible to detect contaminated sample areas by NIR-HSI.
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Figure 4. (a) Color-coded image of a battery cell before laser cleaning at a wavelength of 1500 nm.
The positions of the displayed sample spectra are marked by the colored crosses. The blue spectra
represent areas that appear clean, and the green spectra represent areas that appear contaminated;
(b) Example spectra of the cell. The positions of the displayed sample spectra are marked by the
colored crosses. The blue spectra represent areas that appear clean, and the green spectra represent
areas that appear contaminated.

3.4. Data Preparation

After coating and curing the battery cells, 10 cross-cut tests were performed according
to DIN EN ISO 2409 [5] on each side of the cells to achieve coating adhesion. Figure 2
shows an example of a battery cell subject to cross-cut tests. The cross-cut test assessment
was subjective, and provided cross-cut classes between 0 and 3. The worst cross-cut class,
4, did not occur. No cross-cut tests were performed for four sides of the battery cells;
therefore, a total of 560 cross-cut classes were obtained. Table 1 shows the distribution of
the measured cross-cut classes. A cross-cut class of 3 was obtained for only seven samples,
as samples were taken from real production. Since for series production it is essential that
as few defective products as possible are produced, only a few defectively painted cells
could be collected. Since there is not enough data to successfully execute machine learning,
these samples were also assigned to cross-cut class 2.

Table 1. Distribution of the obtained cross-cut classes.

Cross-Cut Class No. of Samples

0 274
1 164
2 115
3 7

In the next step, the corresponding areas in the hyperspectral measurements were
assigned to the cross-section ranges. Each area corresponds to an area of approximately
1.5 cm × 1.5 cm. The training data for machine learning were derived from these areas.
Two different approaches were considered: on the one hand, a mean spectrum was formed
for each cross-cut area (100 × 100 spectra, approach a); on the other hand, the cross-cut
areas were divided into smaller sub-areas with a size of 10 × 10 spectra (~1.5 × 1.5 mm)
and 4 × 4 spectra (~2 mm × 2 mm) for the VNIR and NIR measurements, respectively.
The mean spectra of these sub-areas were calculated (approach b). Hence, the number of
training data points can be increased from 560 to 100,000 for the VNIR measurements and
50,000 for the NIR measurements. In addition, this increases the spatial resolution for the
prediction of the cross-cut values. Furthermore, VNIR and NIR measurements before laser
cleaning (bc) and after laser cleaning (ac) were considered and used for the evaluation.

In total, eight data sets were generated:

• VNIR-a-bc: VNIR measurement before cleaning, approach a; 560 data points
• NIR-a-bc: NIR measurement before cleaning, approach a; 560 data points
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• VNIR-b-bc:VNIR measurement before cleaning, approach b; ~100,000 data points
• NIR-b-bc: NIR measurement before cleaning, approach b; ~50,000 data points
• VNIR-a-ac: VNIR measurement after cleaning, approach a; 560 data points
• NIR-a-ac: NIR measurement after cleaning, approach a; 560 data points
• VNIR-b-ac: VNIR measurement after cleaning, approach b; ~100,000 data points
• NIR-b-bac: NIR measurement after cleaning, approach b; ~50,000 data points

For the data sets created using approach b, only 5000 randomly chosen data points
were used for training to reduce the necessary training time. The target values for the
training of the prediction models are the cross-cut classes. In approach b, the same value
was assigned to each subsection. In addition to trying to predict the exact cross-cut value,
an attempt was made to predict whether coating adhesion issues would arise. For this
purpose, all samples with a cross-cut value of 0 and all samples with a value greater than
zero were combined into one class.

3.5. Machine Learning Methods

The goal is to train machine learning models to predict the cross-cut class and, thus,
measure the quality of coating adhesion of the cells based on spectral information of the
battery cell surfaces before and after cleaning. To achieve this, three different classification
algorithms were trained and compared: logistic regression (LR, [20]), random forest classi-
fication (RF [13]), and support vector machines (SVM [12]), using a radial basis and a linear
kernel. For a detailed algorithm description, please refer to the corresponding literature.
Before the model training, an optional principal component analysis (PCA) and optional
standardization to a standard deviation of one and a mean value of zero were performed.

Hyperparameter optimization was conducted for all algorithms, and also for the pre-
processing of the spectral data. Hyperparameters are the parameters of the classification
algorithms used to control the algorithms themselves. These parameters are set before
the actual model training and are not learned during the training. They can greatly affect
the overall classification accuracy of the trained algorithms; therefore, optimization of the
hyperparameters is highly useful. Often, this optimization is guided by trial-and-error
approaches and user experience. This process is often time-consuming, and does not guar-
antee that it will find an optimal result. Automatic hyperparameter optimization methods
are increasingly being used to address these issues, especially for classification algorithms
that require high computational efforts and a large number of hyperparameters. These
algorithms attempt an iterative approach for the optimal hyperparameters of the classifica-
tion algorithm using various mathematical methods. An example of such an algorithm
is the Bayesian optimization algorithm (BOA, [21]). A disadvantage of these algorithms
is that their calculation is time-consuming and computationally intensive. The random
search algorithm (RS) is a simple and fast alternative, which randomly selects the next
hyperparameter. It has been shown by Bergstra and Bengio that the differences between RS
and other hyperparameter optimization algorithms are often small [22]. Therefore, the RS
algorithm is used here for hyperparameter optimization. The optimized hyperparameters
and the ranges in which these parameters were optimized are summarized in Table A1.
All other parameters have been left at their default settings. Hyperparameter optimization
using RS was performed on 50 epochs, which means that 50 models with different random
hyperparameters were trained to find a good set of hyperparameters.

All trained classification models were assessed by 10-fold cross-validation. This
technique involved dividing each data set into 10 parts and then training 10 classifica-
tion models, whereby one part of the data is always not taken into account for training.
The derived model is then applied to the neglected part of the data, and the overall bal-
anced classification accuracy is determined. The mean value of all 10 tests yields the
cross-validated overall balanced accuracy. Classification models are compared using the
calculated overall balanced classification accuracies of the cross-validation. The balanced
accuracy is used to avoid inflated accuracy because of the imbalanced dataset [23].
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All calculations were performed with scikit-learn (version 0.23.2., [24]), a Windows
10TM computer with an Intel® CoreTM i5-4590 with 3.3 GHz, 16 GB RAM, a Nvidia® GTX
1080 Ti graphics card with 11 GB GDDR5X memory, and a processor clock of 1632 MHz.

4. Results
4.1. Data Understanding

Figure 5 shows the average spectra of all regions with one of the three cross-cut classes
before and after laser cleaning for NIR- and VNIR-HSI measurements.
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Figure 5. (a) Mean value spectra of the VNIR- HSI measurement for each of the three cross-cut classes
of the samples before cleaning (bc) and after cleaning (ac); (b) Mean value spectra of the NIR-HSI
measurement for each of the three cross-cut classes of the samples before cleaning (bc) and after
cleaning (ac).

The mean spectra were calculated from the mean spectra of all hypercubes of one
cross-cut value. The mean spectra of the cross-cut classes between the NIR and VNIR
measurements, as well as before and after laser cleaning, differ. The mean spectra differ-
ences of the NIR measurements are larger than those of the VNIR measurements. Cross-cut
classes 1 and 2 hardly show any difference in the VNIR measurements. The mean spectra
differences are mainly visible in the shape and intensity of the reflection spectra. The
spectra are reminiscent of the interference spectrum of a thin layer and could, therefore,
indicate such a layer on the sample surface (e.g., an oxide layer). The ripple of the spectra,
which is mainly visible between 500 and 800 nm, is caused by the detector’s quantum
efficiency. Slight differences in the absorption bands between 1200 and 1400 nm are visible
in the NIR spectra. These bands could be caused by organic substances, but the exact origin
is unknown.

Based on these results, it should be possible to differentiate between the cross-cut
classes based on the spectral properties of the sample surface. However, a different picture
emerges if one looks at the mean spectra of each cross-cut area rather than at the mean
spectra of each cross-cut class. Figure 6 demonstrates 10 randomly selected spectra for each
cross-cut class for VNIR and NIR measurements before cleaning. The figure shows small
differences between the spectra of the individual cross-cut classes and a significant overlap
in certain cases. However, NIR measurements show weak bands between 1300 and 1400
and ~1900 nm in the spectra of the areas with cross-cut values 2 and 3, which indicate the
presence of organic substances on the surface. Those contaminations are assumed to cause
weak coating adhesion, leading to higher cross-cut classes.

A possible explanation for the small spectral differences between the cross-cut classes
is that there is only partial correlation between the surface spectral properties and the
cross-cut test result. Another possible reason is the inaccuracy of the “ground truth” values.
Since these were only determined integrally for a relatively large area of the cells, it is
possible that the coating adhesion differs over one cross-cut area. The mean spectrum
of this area can, therefore, be a combination from areas with different levels of coating
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adhesion. This could make it difficult to predict the coating adhesion or the cross-cut class
from the spectral properties of the sample surface.
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Figure 6. (a) The figure shows 10 randomly selected spectra for each of the VNIR-HSI measurement
for each of the three cross-cut classes of the samples before cleaning (bc); (b) The figure shows 10
randomly selected spectra for each of the NIR-HSI measurement for each of the three cross-cut classes
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4.2. Results of Modeling Using Machine Learning Algorithms

Classification models are trained, optimized, and validated based on the eight data
sets described in Section 3.4. The training is performed as described in Section 3.5, with
the support vector machine, random forest, and logistic regression algorithms. For the
data sets generated with approach b, only 5000 data points are used for the training to
reduce the necessary training time. In addition, the training was performed twice: the
first approach sought to predict the three cross-cut classes (0, 1 and 2 + 3; 3-class models),
while the second one tried to distinguish between a zero cross-cut value and greater than 0
values (i.e., 1, 2, and 3; 2-class models). Greater-than-zero cross-cut values predict whether
coating adhesion will be successful or not.

Table 2 lists the results of the 10-fold cross-validation. It is clear that the balanced
classification accuracies for the 3-class models reach a maximum of 65.4% for the NIR-b-ac
data set using the SVM algorithm. If the number of classes is reduced to two (2-class
models), the balanced classification accuracy increases to a maximum of 75.1% for the
NIR-b-bc data set and the random forest algorithm. The SVM and random forest algorithms
show similar classification accuracies on average, while logistic regression algorithms yield
less accurate results. The balanced classification accuracies are also better on average for
the 2-class models, demonstrating better balanced classification accuracies than the 3-class
models. This shows that it is much easier to identify whether coating adhesion problems in
an area will arise or not than to identify the exact cross-cut class of coating adhesion. Other
reasons for this are that the differences between a cross-cut class of 1 and 2 are relatively
small, and that the cross-cut class was determined manually, which could lead to errors in
the ground truth data.

It also states that NIR measurements demonstrate better balanced classification accu-
racy than VNIR measurements. This indicates that surface contamination of the battery
cells that weaken coating adhesion can be more clearly detected in the NIR spectral range.
The assumption is that reduced coating adhesion is caused by electrolyte fluid contam-
ination. Since the contaminations show a characteristic absorption in the NIR spectral
range, it is conclusive that they can be better detected by the NIR-HSI method. Even
if this absorption is only slightly pronounced (see Section 3.1), it may be sufficient for
a classification. Differences in the balanced classification accuracy between the cleaned
(ac) and uncleaned samples (bc) are small, and it is unclear whether either measurement
provides a better accuracy. This indicates that the developed approach can be used before,
as well as after the laser cleaning process, to predict the cross-cut class and, hence, assess
the coating adhesion.
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Another result is that approach b leads to a slight improvement in the balanced
classification accuracy compared to approach a. This effect can be explained by the fact that
when considering the entire cross-cut areas (approach a), potentially contaminated and
non-contaminated areas are combined, whereby spectral differences are reduced, making
classification less accurate.

Overall, the prediction does not yet reach the quality required for later use and needs
further improvement. Section 5 analyses the reasons for this and discusses ways to improve
the prediction accuracies.

Table 2. 10-fold cross-validated overall balanced classification accuracies for the prediction of the cross-section classes from
the spectra of the HSI measurements in percent. The calculation was performed for three or two cross-cut classes. The best
accuracy is marked in bold.

Data Set
3-Class Models – 2-Class Models –

LR RF SVM Mean LR RF SVM Mean

VNIR-a-bc 49.9 55.8 57.1 54.3 68.3 67.7 71.2 69.1
VNIR-a-ac 52.6 53.0 57.4 54.3 66.9 66.0 63.9 65.6
NIR-a-bc 55.6 61.4 60.1 59.0 70.8 68.9 72.1 70.6
NIR-a-ac 53.5 58.1 59.2 56.9 65.5 70.1 69.4 68.3

mean 52.9 57.1 58.5 56.1 67.9 68.2 69.2 68.4

VNIR-b-bc 50.4 56.7 50.0 52.4 65.7 69.2 69.2 68.0
VNIR-b-ac 53.8 59.6 57.6 57.0 63.8 70.5 69.7 68.0
NIR-b-bc 56.8 61.6 59.4 59.3 67.7 75.1 65.7 69.5
NIR-b-ac 56.1 64.2 65.4 61.9 67.7 73.7 71.6 71.0

mean 54.3 60.5 58.1 57.6 66.2 72.1 69.1 69.1

VNIR: visible and near-infrared spectral data. NIR: near-infrared spectral data. a: approach a, mean spectra of cross-cut areas, 560 data
points used for training and validation. b: approach b, sub-areas for each cross-cut area, 5000 data points used for training and validation.
bc: measured before cleaning. ac: measured after cleaning.

4.3. Evaluation of the Prediction Algorithms

Ultimately, the best classification model found in Section 4.2 was applied to all HSI
measurements to obtain a spatially resolved prediction of the coating adhesion for the
complete surface of the battery cells. This experiment only intended to illustrate the results
and demonstrate the possible application of the developed method, as the predictions
obtained cannot be verified by reference measurements in this work.

For the prediction, the data set NIR-b-bc was selected, for which a balanced classifica-
tion accuracy of 75.1% was achieved with the random forest algorithm and in the 2-class
case. Figure 7 shows the result of the prediction for two of the examined battery cells.
The prediction obtained from the algorithm agrees with the results of the cross-cut test for
most areas. However, it can also be seen that for some cross-cut areas, there are differences
between the measured and the predicted cross-cut classes.

Results show that the method is, in principle, suitable for quality control of the laser
cleaning of the battery cells. For example, it would be possible to perform more intensive
cleaning to increase coating adhesion in areas where adhesion is predicted to be poor.
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Figure 7. Example of the prediction of coating adhesion for two battery cells with the NIR-b-bc data
set and the best prediction model found. Purple boxes show areas where the 2-class model predicts
reduced coating adhesion (cross-cut value unequal 0). Colored boxes show the coating adhesion
classes estimated by the cross-cut test (cross-cut value 0, 1, or 2).

5. Discussion

The best prediction of balanced accuracy found for the cross-cut value was 75.1%.
This means that it can be predicted whether coating adhesion problems will arise for 75.1%
of all sample areas (each corresponding to ~2 mm × 2 mm or 4 × 4 spectra). Unfortunately,
the prediction accuracy of the model, whether the considered area has a cross-cut value of
1, 2 or 3, is not acceptable.

Since a large number of algorithms for predicting the cross-cut value have been
investigated, it can be assumed that no (significantly) better accuracy can be achieved with
the available data. There could be several reasons for this. One reason is inaccuracies in the
ground truth of the cross-cut classes. One aspect is that the cross-cut classes are a subjective
estimation for the coating adhesion and are, therefore, themselves subject to error. Another
aspect is that the cross-cut classes are only determined for a relatively large area with the
cross-cut test, and it is possible that in this area, there are points with good and bad coating
adhesion. When training the machine learning models, these areas are mixed, thereby
diminishing the quality of the prediction models. This makes prediction model training
more difficult. This is supported by the fact that slightly better classification accuracies
were achieved with data pre-processing approach b.

Furthermore, there might be no complete correlation between the HSI measurement
data and the cross-cut classes of the coating adhesion. This means that there are causes
for poor coating adhesion that cannot be detected by the hyperspectral measurements
and, thus, cannot be taken into account in the prediction. These may include, for example,
problems with the coating process itself, which were not considered in the present study.

The attempt to predict the exact cross-cut classes (0, 1, and 2 or 3) led to lower overall
prediction accuracies. Differentiating the exact cross-cut classes seems to be more difficult
than predicting whether coating adhesion will be impaired at all. The spectral differences
between the sample areas with a cross-cut class are probably very small. In addition, the
problem of inaccurate ground truth values increases in this case.

6. Conclusions

In summary, we conclude that an estimate prediction of the coating adhesion of battery
cells after laser cleaning is possible using hyperspectral measurements and subsequent
data evaluation based on machine learning. The best prediction accuracy was achieved
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with the NIR hyperspectral data of the battery cells before cleaning using the RF algorithm.
It was possible to predict whether there was a problem with the coating adhesion (cross-cut
classes 1, 2, or 3) or not (cross-cut class 0) with an accuracy of 75.1%. To improve the
prediction accuracy, it would be useful to perform further experiments, especially with
a more accurate ground truth method. For example, it would make sense to obtain the
ground truth values for smaller sample areas and automate and objectify the evaluation
of the cross-section characteristics, which could be achieved by image evaluation and/or
machine learning.

Furthermore, it would make sense to obtain more data to train more accurate models
and possibly apply deep learning methods. Ideally, these additional experiments should be
performed under industrial conditions to better estimate the effect of external influences on
the results. Data acquisition could for example take place during the ongoing production
of battery cells. Predictive models could be continuously improved by the results of the
ongoing quality control and eventually replace them.

The results show that hyperspectral imaging is a promising method for fast, noncontact
and nondestructive prediction of surface properties and the parameters derived from them.
Further investigations in this direction will be conducted in the future.
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Appendix A

Table A1. Overview of the optimized hyperparameters and the optimization ranges of machine
learning models. For a description of the hyperparameters, please refer to the literature references.

– Hyperparameter Optimization Range

For all algorithms
PCA Yes/No

No. of PCs used 2–10
Standardization Yes/No

Logistic regression [25] Penalty L1/L2/Elasticnet
C 0.01–100

Ensemble learning with
decision trees

(ENSEMBLE) [26]

No. of decision trees 5–200
Max. depth of decision trees 5–100

Min. number of samples for node split 2–50
Min. leaf size 1–10

Support vector machines [27]
Kernel Rbf/Linear

C 0.001–1000
Gamma 0.0001–1
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