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Abstract: In recent years, evidence has accumulated that cannabinoids—especially the non-psychoac-
tive compound, cannabidiol (CBD)—possess promising medical and pharmacological activities
that might qualify them as potential anti-tumor drugs. This review is based on multiple studies
summarizing different mechanisms for how CBD can target tumor cells including cannabinoid
receptors or other constituents of the endocannabinoid system, and their complex activation of
biological systems that results in the inhibition of tumor growth. CBD also participates in anti-
inflammatory activities which are related to tumor progression, as demonstrated in preclinical
models. Although the numbers of clinical trials and tested tumor entities are limited, there is clear
evidence that CBD has anti-tumor efficacy and is well tolerated in human cancer patients. In summary,
it appears that CBD has potential as a neoadjuvant and/or adjuvant drug in therapy for cancer.

Keywords: cannabinoids; cannabidiol; anti-tumor therapy

1. Introduction

In the past few decades, cannabinoids—that can be classified into endogenous cannabi-
noids, synthetic cannabinoids and phytocannabinoids, derived from the plant Cannabis
sativa L.—have attracted great interest in medicine with respect to their broad medical
applicability [1]. Cannabis sativa L. has been used for the treatment of glaucoma, anxi-
ety, nausea, depression and neuralgia [2–5]. The therapeutic value of phytocannabinoids
has been demonstrated in the management of HIV/AIDS symptoms and multiple sclero-
sis [6,7]. Terpenoid compounds are found in the bulbous glands, capitate-sessile glands and
capitate-stalked glands of pistillate flowers [8]. The capitate-stalked type glands contain the
highest amount of non-psychoactive cannabinoids, whereas the well-known psychoactive
compound tetrahydrocannabinolic acid (THCA) is predominantly found in the glandular
cells of the plant.

Cannabis was used for the first time for medical purposes in 16th century in Asia
for analgesic, anticonvulsant, hypnotic, anti-inflammatory, antitussive and expectorant
treatments [9]. In 1840, William O’Shaughnessy noted the medical properties of Indian
cannabis for the treatment of different diseases including asthma, insomnia and opium-use
withdrawal [10]. Due to an association of the psychoactive potential of cannabis with
crime and mental deterioration, the drug was prohibited at the end of the 19th century and
other non-psychoactive synthetic derivatives of cannabis have since been produced [11,12].
More than 560 different compounds have been identified in cannabis, each with different
biological and chemical activities that might qualify them as potential drug candidates [13].
Phytocannabinoids that interact with the endocannabinoid system have been analyzed ex-
tensively [14]. Phytocannabinoids contain high amounts of non-psychoactive compounds
such as cannabichromene (CBC), cannabigerol (CBG) and cannabidiol (CBD) [8,15], and
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lower amounts of psychoactive cannabinoids [16] such as ∆9-tetrahydrocannabinol (∆9-
THC) [8,17,18]. The chemical structures of the compounds are shown in Figure 1. ∆9-THC
and CBD are the two best-studied active components of Cannabis sativa L., which can
either be directly extracted from the plant or synthesized chemically for medical applica-
tions [17,19]. Clinical and preclinical trials have shown that CBD [20,21], unlike ∆9-THC,
does not induce hallucinogenic effects [22]. Presently, maceration (ME), ultrasound-assisted
extraction (UAE) and reflux heat extraction (RHE) are used to isolate phytocannabinoids
such as CBD. UAE is superior to other methods with respect to time, energy consumption
and costs [23]. Due to its suitable polarity, ethanol (96%) works best as the extraction
solvent [24,25].

Figure 1. (A) Molecular structures of cannabidiol (CBD) [26] (B) ∆9-tetrahydrocannabinol (∆9-THC),
(C) cannabichromene (CBC), and (D) cannabigerol (CBG) [16].

2. Molecular Targets of Cannabidiol (CBD)

CBD, one of the phytocannabinoids of Cannabis sativa L., was first identified by Raphael
Mechoulam in the 1960s [27]. CBD with a molecular weight of 314.464 g/mol consists of a
cyclohexene ring, a phenolic ring and a pentyl sidechain. In addition, methyl, n-propyl,
n-butyl, and n-pentyl sidechain homologs are present in CBD [28,29]. The metabolism of
CBD starts with a hydroxylation on position C-7, which results in (−)-7-hydroxy-CBD,
followed by (−)-7-carboxy-CBD after a further oxidation step [30].

Cannabinoid receptors and other constituents of the endocannabinoid system have
also been identified and characterized. Cannabinoid receptor interaction influences dif-
ferent physiological processes such as appetite, pain and inflammation [31,32]. Based
on their molecular structure, cannabinoid receptors belong to the guanine nucleotide-
binding protein (G protein)-coupled receptor superfamily [33] that stimulates guanosine
5′-O-(3-[35S]thio)-triphosphate ([35S]GTPγS) and thereby decreases the affinity of GDP
binding [34,35]. The cannabinoid receptor CB1 contains seven-transmembrane domains,
which initiate the mitogen-activated protein kinase via G proteins for cell signaling. The
cannabinoid receptor CB2 shares a sequence homology of 48% with CB1. Cannabinoid-
specific receptors are expressed on a large variety of different mammalian tissues. In
contrast to CB1, CB2 is not expressed on cells of the central nervous system, but on some
peripheral neuronal tissues. CB1 and CB2 are both expressed on many primary immune
cells [36,37]. ∆9-THC specifically binds to both cannabinoid receptors, CB1 and CB2. In
the CB1 receptor-containing endocannabinoid system, ∆9-THC acts as an agonist, but its
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agonistic potency is significantly lower than that of other cannabinoids receptor agonists
(e.g., CP55940 or WIN55212) with a high intrinsic activity [35,38]. The binding of ∆9-THC
to the CB2 receptor is weaker than that to the CB1 receptor [39]. Unlike ∆9-THC, CBD
acts as a cannabinoid receptor antagonist with low affinity to both receptors [26,40,41],
whereas the isomers (+)-CBD exhibit a high affinity to CB1 and CB2 [26]. A study has
shown that CBD antagonizes both cannabinoid receptors in the whole-brain membrane
tissues of mice, as well as Chinese hamsters’ ovary cells which were transfected with the
human CB2 receptor [42]. A few reports have now shown that CBD might act as a negative
allosteric modulator of the CB1 and CB2 receptors [43,44] (Table 1).

Transient receptor potential vanilloid (TRPV) channels are members of the TRP super-
family that modulates the transmission of iron and calcium in cells and thereby mediates
a variety of neuronal signaling processes, such as the sensing of temperature, pressure,
pH, smell, etc. The occurrence of some common diseases—inflammatory and chronic pain,
for instance—are associated with dysfunctional TRPV1 and TRPV2 receptors [26,45]. It is
well accepted that CBD has a weak affinity to CB1 and CB2 receptors, but predominantly
interacts with TRPV1 and TRPV2 receptors and the mustard oil receptor [26,45–47], which
acts as a negative allosteric modulator of the CB1 receptor [43,48]. TRPV1 interacts with
phosphatidylinositol-3-kinase (PI3K) signaling [49] and thereby supports cell survival. In
contrast to TRPV1, TRPV2 is predominantly activated by different phytocannabinoids [50]
including CBD [51]. The efficacy of CBD to activate TRPV3/4 is weaker compared to
that of TRPV1/2 (~54, ~15 vs. ~78, ~67%, respectively) [52] (Table 1). CBD displays a
high potency to agonistically support the TRP ankyrin type-1 (TRPA1) channel’s activity
(efficacy ~108%) [52], whereas it antagonizes the TRP melastatin type-8 (TRPM8) channel’s
activity [53]. Other molecular targets of CBD that are mediated through the CB1/CB2
receptors include the fatty acid neurotransmitter [54–56], G-protein coupled receptors
(GPR55/ GPR18) [57–60], serotonin receptor 5-HT1 [61], peroxisome proliferator-activated
receptor γ (PPARγ) [62,63], cyclooxygenase-2 (COX-2) enzymes and glycine-receptor [64].
Furthermore, CBD mediates neuroprotection by influencing cytosolic Ca2+ and K+ home-
ostasis by blocking low-voltage-activated (T-type) Ca2+ channels [65,66], reducing Ca2+

levels, preventing Ca2+ oscillations under high-excitability and by altering K+ levels [45].

Table 1. Affinity of the receptors to CBD.

Receptor Effect Affinity Sequence Identity

TRPV1 agonist ~78% [52] 79% [52]
TRPV2 agonist ~67% [52] 96% [52]
TRPV3 agonist ~54% [52] 77% [52]
TRPV4 agonist 15% [52] 68% [52]
TRPA1 agonist 108% [52] ~30% [52]
TRPM8 antagonist IC50 = 70–160 nM [53] ~30% with TRPV2 [52]

CB2 inverse agonist Ki = 4200 nM [53] N
CB1 antagonist Ki = 4900 nM [53] N

GPR55 antagonist IC50 = 445 nM [67] N
Sequence identity, percentage of receptor sequence homology within the putative CBD binding site; N, not defined.

3. CBD and Cancer

Cancer has become the second greatest cause of disease-related death worldwide in
the past few decades [68]. The major treatment strategies for cancer are based on surgery,
chemotherapy and/or radiotherapy. However, normal tissue toxicity and the therapy
resistance of tumor cells often limit the efficacy of these three major treatment pillars.
Therefore, there is a great medical need for anti-cancer drugs that are well tolerated and
highly effective against cancer cells. CBD could serve as a potential anti-cancer drug
candidate that fulfills these criteria. In vitro studies with fetal rat telencephalon cells have
revealed that highly lipophilic cannabinoids can easily cross the blood-brain barrier and
thereby access tumor target cells within the nervous system [69]. Since CB2 receptors
mediate neuronal cell survival and proliferation, treatment with the antagonist, CBD, could
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inhibit the formation and propagation of malignant glial tumor cells [37]. Lipophilic CBD
influences mitochondrial calcium stores, glycine receptors and fatty amide hydrolases [70].
Due to its non-psychoactive characteristics, lipophilic CBD has the potential to become an
important drug in the treatment of glioblastoma [71]. Preclinical studies have demonstrated
that CBD impedes tumor cell proliferation and metastatic spread and induces autophagy
and/or apoptosis in tumor cells [62,72]. CBD induces tumor cell apoptosis by activating
the pro-caspases-3/8/9 and increases the production of reactive oxygen species (ROS) in
human glioma cells. In addition, CBD disturbs redox homeostasis by depleting intracellular
glutathione stores via stimulation of the activity of both glutathione reductase and glu-
tathione peroxidase. Interestingly, CBD does not influence the viability of normal primary
glial cells [73]. Incubation of the human glioblastoma cell lines, U87 and U373, with CBD
reduces their proliferative capacity in a concentration-dependent manner [74]. The partial
activation of CB2 receptor activity by CBD is not impaired by the antagonistic activity of
the CB1 receptor, and in the absence of the ROS scavenger alpha-tocopherol/vitamin E,
the induction of apoptosis by CBD is not inhibited [73,74]. The treatment of leukemia cells
with CBD has resulted in CB2 receptor-mediated cell death. CBD treatment results in a
disruption of mitochondrial membrane potential, which is accompanied by a release of the
pro-apoptotic factor cytochrome c [75]. Other studies have demonstrated that CBD affects
the regulation of CB2 and the NAD(P)H oxidases Nox4 and p22 (Phox) [76]. In non-small
cell lung cancer (NSCLC) cell lines (A549, H460, H358), the inhibition of the invasive
capacity of the tumor cells by CBD has been related to a reduction in plasminogen activator
inhibitor-1 (PAI-1) [77]. COX-2 inhibitor (NS-298) and PPAR-γ antagonist (GW9662) studies
in lung cancer cell lines (A549, H460) and primary lung cancer cells have demonstrated that
CBD-induced apoptosis is associated with an upregulation of the pro-apoptotic markers,
COX-2 and PPAR-γ [78]. Activation of the cannabinoid receptors by CBD induces apoptotic
cell death in epidermal tumor cells in vitro and results in significant growth inhibition in
an epidermal tumor mouse model. Interestingly, the viability of non-transformed normal
epidermal cells remains unaffected by CBD [79] (Figure 2).

Depending on the applied concentration, CBD mediates different pharmacological
effects. Low CBD concentrations, in the range of 0.01 µM to 9 µM, do not impair tumor cell
viability but result in an increased migratory capacity of U87 glioblastoma cells. In this low
concentration range, the biological activities of CBD are neither related to the CB1/CB2
receptors nor the TRPV1 receptor [80], whereas the effects of higher CBD concentrations
clearly depend on these receptors [26]. Furthermore, CBD acts as a TRPV2-selective ac-
tivator by intensifying Ca2+ influx and thereby inducing apoptosis in U87 glioblastoma
cells [81]. Other studies suggest that CBD may promote doxorubicin-mediated cell death
in hepatocellular carcinoma (BNL1 ME) and triple-negative breast cancer (TNBC) cells
by facilitating the uptake of doxorubicin, via the activation of the TRPV2 channels [82,83].
Overexpression of TRPV3 in human lung cancer cells correlates with a poor overall survival
of lung cancer patients, but blocking TRPV3 efficiently inhibits the proliferation of lung
cancer cells [84]. The low binding capacity of CBD to TRPV3 might be another explanation
for its anti-tumoral effects. Treatment of the triple-negative breast carcinoma cell line,
MDA-MB-231, with CBD induces both, autophagy and apoptosis, as demonstrated by
a ROS accumulation, Beclin1 activation and Bcl-2 inhibition [85]. TRPA1/TRPM8 recep-
tors that have been shown to promote autophagy and the metabolic transformation of
UCP2 (uncoupling protein 2), respectively, in Lewis lung cancer (LLC) cells [85] might be
responsible for CBD-induced autophagy and modulated ROS levels (Figure 2).



Biomolecules 2021, 11, 582 5 of 16

Figure 2. Anti-tumor activities (apoptosis, therapy sensitivity, autophagy, tumor cell growth) of CBD. CBD acts as an
agonist for the receptors TRPV1/2, TRPA1 and PPARγ. CBD acts as an inverse agonist of the receptors CB1/CB2 and
as an antagonist of the receptors GPR55 and TRPM8. CBD inhibits the efflux transporters P-gp and MRP1 and thereby
reverses multi-drug resistance. CBD inhibits the MRP1 pump LPI out and the autocrine loop with GPR55 thereby reduces
cell proliferation. Abbreviations: BCRP, breast cancer resistance protein; BCL2, B-cell lymphoma 2; CB1/2, cannabinoid
receptors type 1/2; CBD, cannabidiol; COX-2, cyclooxygenase 2; Fluo3, substrate of MRP1; GPR55, G-protein-coupled
receptor 55; LPI, lysophospholipid lysophosphatidylinositol; MRP1, multidrug resistance-related protein 1; NOX4, NADPH
oxidase 4; PPARγ, peroxisome proliferator-activated receptor-gamma; P-gp, P-glycoprotein; p22 Phox, human neutrophil
cytochrome b light chain; Rh123, P-gp substrate rhodamine 123; ROS, reactive oxygen species; TRPV1/2, transient receptor
potential vanilloid type 1/2; TRPA1, TRP ankyrin type-1; TRPM8, TRP melastatin type-8.

In combination with temozolomide (TMZ, the benchmark drug for the management of
GBM), cannabinoids enhance autophagy in U87MG glioblastoma cells in vitro. In xenograft
glioblastoma mouse models, a subsequent reduction in tumor size is associated with an
increase in active cleaved caspases [86]. Treatment of U251 and SF126 glioblastoma cell lines
with both ∆9-THC plus CBD is superior to monotherapy with ∆9-THC with respect to ERK
signaling, G0-G1 arrest and repression of tumor cell survival [87]. Additionally, combined
treatment has resulted in modulation of the oxidative stress response and the lipoxygenase
pathway [80,86,87]. Ligresti et al. have reported an accumulation of intracellular Ca2+ and
reactive oxygen species (ROS) upon CBD treatment, followed by an induction of apoptosis
in MDA-MB-231 cells through either direct or indirect activation of CB2 and/or TRPV1
receptors [88]. Another study in MDA-MB-231 cells shows the induction of autophagy and
apoptosis and an increase in the ER stress response, AKT/mTOR pathway and cell cycle
arrest by CBD [85]. Moreover, CBD significantly inhibits EGFR/AKT and MAPK/ERK,
as well as NF-kB signaling that mediates proliferation and chemotaxis [89]. CBD also
inhibits some efflux transporters, such as P-glycoprotein (P-gp) and multidrug resistance-
related protein 1 (MRP1) by reversing multiple drug resistance (MDR) in anti-cancer
therapies. Decreased P-gp expression correlates with an accumulation of the P-gp substrate
Rhodamine 123 (Rh123) and promotes the sensitivity of the human T lymphoblastoid
leukemia cell line (CEM/VLB(100)) and a mouse fibroblast MDR1 transfected cell line
(77.1) towards the P-gp substrate, vinblastine [90]. Moreover, CBD increases the uptake
of intracellular MRP1 substrates, Fluo3 and vincristine in ovarian carcinoma cells [91].
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Another study has shown that P-gp efflux function is down-regulated after long-term
(72 h) CBD exposure, while the breast cancer resistance protein (BCRP), one of the efflux
transporters, is up-regulated in a choriocarcinoma cell line [92]. The MRP1 (ATP-binding
cassette transporter) pump LPI (lysophospholipid lysophosphatidylinositol) initializes
cascades downstream of GPR55 to induce proliferation and migration in prostate and
ovarian cancer cells [93]. CBD has also been shown to inhibit GPR55-mediated migratory
and proliferative capacity in breast cancer cells [94]. CBD strongly inhibits the anti-invasive
capacity of tumor cells by reducing Id-1 (an inhibitor of basic helix-loop-helix transcription
factors), as shown by in vitro and in vivo experiments [95,96]. The intercellular adhesion
molecule-1 (ICAM-1) and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), which
are frequently decreased in tumor cells upon treatment, are up-regulated by CBD, whereas
an opposite trend is detected for matrix metalloproteinases (MMPs) in lung cancer cells,
which obstruct tumor cells’ ability to pass through complex extracellular matrices [97]
(Table 2).

Due to their small size, targeted nanoparticles loaded with drugs show an advan-
tageous biodistribution and dissemination in the body, and have the capacity to release
the drug in close proximity to the tumor [98,99]. Although CBD is a potentially effective
anti-cancer drug, poor water solubility and the requirement for organic solvents such
as ethanol or methanol limit its broader application [100,101]. Due to these limitations,
nanoparticles loaded with CBD (CBD-NPs) at a ratio of 1:5 or 3% (w/w) have first been
tested to treat ovarian cancer cells in vitro and for in vivo models. Compared to free CBD
in organic solvents, CBD-NPs induce apoptosis and tumor growth inhibition at lower IC50
values [102]. CBD in lipid nanocarriers exhibits a high brain targeting ability by enhancing
the passage across the blood-brain barrier in vitro and in ovo and, therefore, might provide
a novel strategy to treat CNS tumors [103].

Table 2. Studies summarizing the multiple effects of CBD.

Type/Cancer Cell Line Mechanism Conclusion Ref.

glioblastoma U87/U373
in vitro/in vivo ssDNA↑ proliferation↓

apoptosis [74]

prostate ovarian PC-3/DU145
OVCAR3

GPR55/LPI↓
phospho ERK1/2↓

proliferation↓
cell migration↓ [93]

glioblastoma U87

ROS↑
caspase↑

cytochrome c↑
CB1/CB2/TRPV1

receptor-independent
TRPV2-activation

Ca2+ influx↑

apoptosis↑
migration↓
viability↓

(no effect at low doses)

[73,80,81]

glioblastoma U251/SF126
in vitro/in vivo

ERK↓
G0-G1 arrest

ROS↑
Id-1↓

cell survival↓
proliferation↓

apoptosis↑
aggressiveness↓

[87,95]

acute T lymphoblastic
leukemia

Jurkat/MOLT-3/CCFR-
CEM/K562/Reh/RS4

mito Ca2+ overload
mito transition

pore formation↑
ROS↑

cytochrome c↑

autophagy↑
apoptosis↑ [75]

breast MDA-MB-231/MCF-7

AKT/mTOR↓
BCL2↓
ROS↑

beclin1↑
direct/indirect activation

CB2 and/or TRPV1
intracellular Ca2+↑

AKT/mTOR↓
cell cycle arrest

GPR55↓
LPI↓

apoptosis/
autophagy↑
migration↓

[85,94]
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Table 2. Cont.

Type/Cancer Cell Line Mechanism Conclusion Ref.

breast
SUM159/4T1/SCP2/MVT-

1/MDA-MB-231/RAW
264.7

GM-CSF/CCL3↓
NF-κB↓

EGFR/AKT↓
MAPK/ERK↓

cell growth↓
metastasis↓

TME

[89]

lung A549/H460/H358
in vitro/in vivo

PAI-1↓
COX-2/PPAR-γ↑

ICAM-1↑
TIMP-1↑
MMP↓

invasiveness↓
apoptosis↑ [77,78,97]

T lymphoblastoid
leukemia CEM/VLB(100) P-gp↓

Rh123↑ sensitivity↑ [90]

ovarian 2008

MRP1↓
Fluo3/vincristine↑

GPR55↓
LPI↓

sensitivity↑
proliferation↓ [91,93,104]

immune cells T/macrophages/NK cells

IFN-γ↓
IL-2↓

TNF-α↓
IL-10↑

GM-CSF↓
CCL3↓
NFAT↓

proliferation↓
infiltration↓ [89,105–108]

primary endothelial cells HUVEC

VEGF-2/VEGFA-2↓
MMP-2/9↓

uPA↓
ET-1↓

PDGF-AA↓
CXCL16↓

ERK/Akt↓
JNK↓

angiogenesis↓ [109,110]

Abbreviations: BCRP, breast cancer resistance protein; BCL2, B-cell lymphoma 2; CB1/2, cannabinoid receptors type 1/2; CCL, chemokine
(C-C motif) ligand 3; COX-2, cyclooxygenase 2; CXCL16, chemokine ligand 16; EGFR/AKT, epidermal growth factor receptor signaling
pathway; ET-1, endothelin-1; Fluo3, substrate of MRP1; GPR55, G-protein-coupled receptor 55; GM-CSF, granulocyte-macrophage colony-
stimulating factor; IFN-γ, interferon-γ; IL, interleukin; Id1, inhibitor of differentiation/DNA binding; ICAM-1, intercellular adhesion
molecule 1; LPI, lysophospholipid lysophosphatidylinositol; mito, mitochondrial; MAPK, mitogen-activated protein kinase pathway; MMP,
matrix metalloproteinase; MRP, multidrug resistance-related protein; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells;
NK, natural killer; NFAT, nuclear factor of activated T-cells; PAI-1, plasminogen activator inhibitor type 1; PDGF-AA, platelet-derived
growth factor-AA; P-gp, P-glycoprotein; PPAR-γ, peroxisome proliferators activated receptor gamma; Rh123, rhodamine 123; ROS, reactive
oxygen species; ssDNA, single stranded DNA; TNF, tumor necrosis factor; TIMP-1, metallopeptidase inhibitor 1; TRPV1/2, transient
receptor potential vanilloid type 1/2; uPA, urokinase-type plasminogen activator; VEGF-2/VEGFA-2, vascular endothelial growth factor 2
and angiopoietin 2.

4. Tumor Microenvironment

The immune system plays a critical role in controlling tumor cells. This immuno-
surveillance largely depends on the synergy of cytotoxic T cells (CTLs) and natural killer
(NK) cells, as well as dendritic cells (DCs) and helper CD4+ Th1 cells [111]. However,
a large variety of “tumor immune escape” mechanisms often hinder long-term protec-
tive anti-tumor immunity [112]. Over-stimulated, pro-inflammatory immune cells can
induce a chronically inflamed tumor microenvironment, which supports tumor progres-
sion [113], such as ulcerative colitis inducing colorectal cancer [114] and chronic bronchial
inflammation-inducing lung cancer [115]. Studies indicate that complex extracellular and
intracellular signaling pathways, including the epidermal growth factor (EGF)/mTOR,
NF-κB/STAT3 and JNK pathways, are activated during tumor cell transformation, as pro-
moted by chronic inflammation [116–118]. CBD suppresses the activation of the EGF/EGFR
signaling pathway and its downstream targets Akt, ERK and NF-κB in multiple tumor
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cells, which demonstrates that there might be a potential role for CBD to interfere in the
cross-talk between inflammation, cell survival and tumor proliferation [85,89,119]. Preclin-
ical and first clinical trials combining chemotherapy and anti-inflammatory drugs such
as cyclooxygenase-2 (COX-2) inhibitors are already used to prevent tumor progression in
prostate or breast cancer [120]. In addition, in xenograft glioma tumor mouse models, CBD
induces tumor cell death by modulating the LOX/COX-2 pathway [121].

It has been shown CBD not only induces cell death in cancer cells but also alters
the reactivity of some immune cells. CBD suppresses the proliferation and infiltration
of T cells and macrophages in the tumor microenvironment, reduces the production of
pro-inflammatory cytokines—such as interferon-γ (IFN-γ), interleukin-2 (IL-2) and tumor
necrosis factor-α (TNF-α)—and increases that of immune-suppressive cytokines, such as
interleukin-10 (IL-10), in vitro and for in vivo models [105]. This hints that CBD inhibits
immune effector cell functioning [106]. Another study demonstrated that the CBD-induced
cell death was mediated via the inhibition of voltage-dependent anion channel 1, located
in the mitochondrial membranes of immortalized BV-2 microglial cells [122]. In triple-
negative breast cancer cells, CBD causes the down-regulated release of GM-CSF and CCL3
cytokines, which are important for macrophage recruitment and activation [89] (Table 2).

CBD also has the capacity to down-regulate the release of anti-inflammatory or pro-
inflammatory mediators [104]. Due to the agonistic activity of CBD on serotonin 5-HT1
receptors, TRPV1 and the glycine signaling pathway [50,61,123], the generation of ROS
and the release of pro-inflammatory chemokines and cytokines can be inhibited, along
with T cell proliferation [124,125]. Repeated injections of CBD (1.5 mg/kg IP) into animals
for 10 weeks lead to reduced T cell differentiation and invasion, which is accompanied by
a decrease in the release of pro-inflammatory cytokines and chemokines [126]. Another
study has shown that CBD causes the suppression of NFAT, in addition to common pro-
inflammatory cytokines such as IL-2 and IFN-γ, suggesting an inhibition of the activity of
NK cells and/or T cells [106–108,127] (Table 2). GPR55, another target of CBD, exhibits anti-
inflammatory activities that depend on intracellular pathways such as RhoA-dependent
Ca2+ signaling, ERK/NF-kB and the p38 MAPK pathways [127–129].

5. Cannabinoids Inhibit Angiogenesis

Tumor blood vessel neoangiogenesis plays an essential role in the process of tumor
formation, expansion and growth. Blood vessels are important for the transport of nutrients
and oxygen and also provide appropriate conditions for tumor invasion and distant metas-
tasis. Anti-angiogenic therapies have been extensively tested to suppress tumor growth.
CBD effectively inhibits the growth of different types of tumors in vitro and in vivo by
down-regulation of vascular density via interference with pro-angiogenic pathways in
many solid tumor cells [130–132]. Due to its favorable pharmacological and toxicolog-
ical profile, CBD might provide a new strategy for the design of a cannabinoid-based
anti-angiogenic tumor therapy that targets the tumor microvasculature. This process
can be modulated by targeting several key factors, such as by inhibiting growth factors
like vascular endothelial growth factor (VEGF), integrins or angiopoietins, or by acti-
vating inhibitory effector molecules such as thrombospondin or interferons [110]. The
anti-angiogenic property of CBD has been confirmed in HUVEC cells by inhibiting pro-
angiogenic factors, vascular endothelial growth factor and angiopoietin-2 (VEGF-2/VEGFA-
2), matrix metalloproteinase-2/9 (MMP-2/9), urokinase-type plasminogen activator (uPA),
endothelin-1 (ET-1), platelet-derived growth factor-AA (PDGF-AA) and chemokine ligand
16 (CXCL16), as determined by immunohistochemical analyses and vascular permeability
assays [109,133]. Cannabinoid anandamide inhibits basic fibroblast growth factor (bFGF)-
stimulated endothelial cell proliferation in a dose-dependent manner and induces vessel
apoptosis [134]. Some critical pro-survival markers and migratory pathways such as
ERK/Akt phosphorylation, FAK, JNK signaling and the activity of matrix metalloprotease
MMP-2 result in impaired endothelial cell proliferation, migration and tube formation [110].
Moreover, the p38/MAPK signaling pathway is also involved in CBD-induced apopto-
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sis [110,134]. Other researchers report reduced sprouting activity of endothelial cells in
spheroids, as well as direct induction of apoptosis in endothelial cells by CBD, both in cell
cultures and in chick chorioallantoic membrane assays [132,134]. CB1 receptors stimulate
corresponding intracellular signaling during angiogenesis [110]. Some studies suggest that
even at low nanomolar concentrations, CBD binds to the cannabinoid receptors CB1/CB2,
antagonizes receptor agonists, and thereby blocks the anti-angiogenic effect, which is
mediated in part by CB1/CB2 [42]. However, further studies are necessary to elucidate the
exact molecular mechanism of CBD on the microvasculature.

In non-melanoma skin cancer, which is believed to arise mainly from the stem cells
of hair follicles [135], CB1 and CB2 receptors are expressed. EGF-R phosphorylation is
markedly reduced upon CBD treatment; large parts of the tumor vessels shrink to narrow
capillaries, compared to control carcinomas with large, dilated vessels. However, these
effects appear not to be related to apoptosis [79]. Another study suggests that CBD also
inhibits HIF-1α, which is extensively up-regulated in nearly all solid tumors due to a
hypoxic tumor microenvironment [136].

6. Clinical Trials with CBD

Based on preclinical studies, CBD appears to be a potent anti-cancer agent, one
which might qualify for clinical applications in combination with other therapies [137].
Due to its non-psychoactive characteristics, CBD is superior to other cannabinoids in
clinical applications. A double-blind, placebo-controlled, randomized clinical phase I
trial has been started to prove its safety and capability to relieve tumor-related adverse
effects at a CBD concentration of 100 mg/mL, within a dose range of 50 mg to 600 mg
per day, in 2 weeks [138]. Another study focused on therapy for severe cancer-related
side effects associated with chemotherapy, in which 177 patients were included who
were experiencing unsatisfactory analgesic effects even during a standard chronic opioid
titration phase. A combination of THC:CBD significantly alleviated their pain intensity
compared to the placebo group (23 [43%] vs. 12 [21%]) and also showed weak positive
effects with respect to the avoidance of avoiding nausea and vomiting, while the effects
in the THC-monotherapy group were non-significant [139]. Some other cannabinoids
including ∆-9 tetrahydrocannabinol, cannabidiol and a THC-11-oic acid analog have also
been tested for their capacity to reduce the neuropathic pain caused by chemotherapy, and
have shown favorable analgesic properties [140–143]. A phase II clinical trial investigated
the curative effects of THC:CBD when combined with dose-intensified TMZ, as versus
TMZ mono-chemotherapy, in patients with glioblastoma multiforme (GBM) (clinical trial
NCT01812603). In this study, a total of 21 patients diagnosed with GBM were included.
Patients received 27 mg/mL THC and 25 mg/mL CBD in 100 µL per day. The TMZ
monotherapy group reached a one-year survival rate of 44%, while the THC:CBD plus
TMZ group presented promising results, with a one-year survival rate of 83% and a
significantly extended median survival of more than 22 months (THC:CBD+TMZ) vs.
12.3 months (TMZ) [71]. In another remarkable study recruiting 119 patients with prostate,
breast, esophageal and brain cancer and lymphoma, patients received an intermittent
administration of CBD—’three days on and three days off’ CBD therapy—with an average
dose of 10 mg twice a day for at least 6 months and a follow-up period of four years. The
major findings of this study were that the dose administration should be adapted to the
tumor growth rate and diagnosis; the maximum dose of 30 mg should be given to patients
with a PD (progressive disease), while the minimum maintenance dose of 5 mg should be
given to patients with a SD (stable disease) after chemotherapy. This study failed, however,
to define the maximum tolerated dose since no side-effects were seen at the maximum
applied dose [144].

7. Conclusions

This review provides an update on data associated with the in vitro and in vivo effects
of CBD in anti-tumor therapies (Figure 2). Pharmacological effects, as well as complex
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mechanisms of CBD on activated biological up- and/or downstream targets, were studied
with respect to their anti-tumor capacities. Recently, a novel inverse molecular docking
approach has been successfully established when exploring the anti-cancer effects of the
natural compound, curcumin [145,146]. The related technology might help to provide new
insights into the molecular modes of action of CBD.

It has been shown that CBD, either alone or in combination with other therapies,
has the potential to act as a novel anti-tumor, anti-inflammatory and anti-pain drug in
preclinical studies and first clinical trials. A few clinical trials have now demonstrated
beneficial pharmacokinetic and pharmacodynamic characteristics of the drug, and some
anti-tumor activities at well-tolerated doses. Therefore, it can be assumed that CBD might
be considered a potential candidate for neoadjuvant and/or adjuvant interventions in
oncology. However, future studies with larger patient cohorts are necessary to prove the
efficacy of CBD in tumor patients.
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