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Abstract: Model predictive control (MPC) is a flexible and multivariable control technique with better
dynamic performance than linear control. However, MPC is sensitive to parametric mismatches
that reduce its control capabilities. In this paper, we present a new method of improving the
robustness of MPC to filter parameter variations/mismatches by easily implementable parameter
estimation. Furthermore, we extend the proposed technique for wider operating conditions by novel
neuro-fuzzy estimation. The results, which are demonstrated by both simulations and real-time
hardware-in-the-loop tests, show a steady-state parameter estimation accuracy of 95%, and at least
20% improvement in total harmonic distortion (THD) than conventional non-adaptive MPC under
parameter mismatches up to 50% of the nominal values.

Keywords: AC microgrid; model predictive control; LC-filter; grid-forming converter; parameter
mismatch; neuro-fuzzy parameter estimation; distributed energy resources

1. Introduction

Grid-forming converters hold an important place in microgrids powered by converter-
interfaced renewable distributed energy resources (DERs). In AC microgrids, they have
four necessary requirements, viz [1]: (1) During normal power system operations, they
function as AC voltage sources. (2) During transient conditions arising from sudden power
changes to the power system, they still operate as voltage sources, but observe safety limits
for self-protection (e.g., current limits). (3) They can work without connection to the main
grid, and provide voltage and frequency references to the network they operate in. (4) They
could be required to provide black start services and grid restoration after a blackout; this
would require supplementary energy storage.

The comprehensive requirements of grid-forming converters (hereafter called con-
verters for simplicity) are difficult to achieve with conventional linear control techniques.
For this reason, model predictive control (MPC), a robust, multi-variable control technique
has been identified as a highly promising candidate for converters [2]. The performance
of model predictive control is highly dependent on the accuracy of the prediction model
of the controlled system. It has been shown that prediction errors are not only caused by
parametric mismatches, but also by instantaneous values of load current and voltage—and
this is dominantly manifest with inductance mismatches and negligible with resistive
mismatches [3]. Thus, whenever mismatches occur between the system parameter values
utilized in the model (nominal values) and the actual/physical values, it results in control
errors. These errors manifest as persistent steady-state offsets [4] and distorted output
signals [5]; these even deteriorate further in transient situations. Other factors that cause
model mismatches include temperature, measurement errors, operational time of use of the
equipment/electronics, etc. The methods to address the MPC-based parameter accuracy
errors are grouped as model-free, disturbance estimation, and adaptive model techniques.
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Model-free methods do not require a prior knowledge of the plant [6–8], but their
accuracy is determined by the sampling frequency [9,10]. In addition, some of them (in-
cluding Kalman filter, deadbeat, sliding mode, least-square-based) have utilized complex
and computationally-intensive algorithms or require extra measurements [11,12]. Distur-
bance estimation methods estimate the disturbance caused by parameter mismatches and
uncertainties, and provide a feedforward compensation [13,14]. Adaptive parameter pre-
dictive control (which is less computationally demanding) utilizes an online estimate of the
actual parameter in the prediction model, and this results in more accurate controls [5,15].
Nonetheless, there are few investigations on adaptive predictive control, and existing
solutions are constrained by the limited range of the operational application.

The robustness and accuracy of MPC can be improved with online parameter estima-
tion. This reduces the errors that arise from mistmatch between physical and control model
parameter values. In [16], the estimation of inductance and resistance was reported for the
voltage-oriented control of three-phase pulse-width modulated (PWM) rectifiers, but it
required significant tuning efforts for the adaptive rate. A Lyapunov-based estimation of
inductance for a model reference adaptive system reported in [17], aided the improvement
in line voltage estimation accuracy for an active front-end (AFE) rectifier. Several estimation
methods are focused on the application to balanced grid conditions, e.g., the least square
method in [18]. The authors of [19,20] investigated inductance estimation (by gradient
correction and Kalman filter) under distorted grid conditions. The proposed solutions
reduced both harmonics and ripples but with a high computational burden.

In recent times, power electronics researchers have sought to explore data-based
methods as alternatives to model-based techniques [21,22]. Some benefits reported in the
literature are the improvement of reliability (sensor reduction) [23,24], and reduction of
hardware requirements [25]. One artificial intelligence (AI) data-based method is neuro-
fuzzy control, and it is a hybrid of fuzzy logic and artificial neural networks (ANN) [26].
The membership functions used in a fuzzy controller can be auto-tuned (with a higher
degree of accuracy than heuristic techniques) by offline ANN training done with historical
input-output data of the plant. Although the neuro-fuzzy controller has an increasing
computational burden as the fuzzy subsets increase, it has the advantage of being operable
over a wider range of operating conditions than conventional controllers [27]. Hence,
an optimal trade-off between accuracy and cost is done in applications to converter control
for microgrids [28] and electrical drives [29,30].

The above literature review indicates that auto-tuned parameter estimation can im-
prove predictive control’s robustness to parameter variation/mismatch. Moreover, the
neuro-fuzzy method, which is a hybrid of expert-knowledge and data-based design, is yet
to be applied to either microgrid parameter estimation or MPC. Furthermore, many of the
proposed solutions operate around a specific operating point, requiring re-tuning with a
change in operating conditions. Motivated by these, this paper proposes novel parameter
auto-tuning for MPC using two methods. First, a simple estimation procedure for a specific
operating point and second, a neuro-fuzzy based estimation of parameter variation that
can cover a wider operational range. Please note that the estimation being proposed in this
control scheme is the estimation of the amount of filter parameter (L or C) variation relative
to its pre-known nominal value. The major contributions of this work are highlighted
as follows:

1. We present a theoretical analysis of LC-filter parameter variation dynamics (Section 3.1);
2. To extend the operational range of the estimator, we introduce a new neural–trained

fuzzy logic parameter estimator for islanded AC microgrids (Section 4.2);
3. The new estimator is then embedded in a comprehensive adaptive predictive control

scheme for microgrid converters (Section 3). The overall scheme has much better
performance than a conventional MPC under parametric mismatches, with results
verified via extensive simulations and hardware-in-the-loop (HiL) experiments.

The organization of the paper comprises the introduction of MPC for converters
in Section 2, the underlying principles of an adaptive neuro-fuzzy control in Section 4,
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and the proposed adaptive MPC control schemes in Section 3. The results and conclusion
are provided in Sections 5 and 6 respectively.

2. Conventional Dual-Objective Model Predictive Inverter Control

An AC microgrid with inverter-interfaced distributed generation and common AC
loads is shown in Figure 1. This section will introduce the fundamental principles for the
predictive control of inverters, as a basis for later developing the proposed adaptive MPC
system in Section 3.
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Figure 1. A microgrid system with converter-interfaced distributed generation and common loads.

2.1. LC Filter

Assuming the inverter in Figure 1 has identical filter parameter values in all three
phases (i.e., inverter legs), we invoke Clarke’s transformation to obtain the αβ transforma-
tion of the three-phase current and voltage vectors:

xα + jxβ = K
(

xa xb xc

)′
, (1)

where K = 1
3

(
1 ej 2

3 π ej 4
3 π
)

. By Kirchoff’s current and voltage laws, the LC filter is
modeled in continuous-time state-space as:

d
dt

(
if
vf

)
= A

(
if
vf

)
+ B

(
vi

io

)
, (2)

where A =

[
− Rf

Lf
− 1

Lf
1

Cf
0

]
; B =

[ 1
Lf

0

0 − 1
Cf

]
. The variables Rf, Lf, and Cf represent the filter

resistance, inductance, and capacitance respectively. The filter current is if = ifα + jifβ; the
filter voltage is vf = vfα + jvfβ; the inverter output voltage is vi = viα + jviβ; and the load
current is io = ioα + jioβ.

The discrete-time state space model of Equation (2) is achieved using zero-order-
hold (ZOH) with a sampling period Ts, and to account for digital computational delays,
the two-step-forward prediction is employed as:(

ipf (k + 2)
vp

f (k + 2)

)
= Ad

(
if(k + 1)
vf(k + 1)

)
+ Bd

(
vi(k + 1)
io(k + 1)

)
, (3)
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where Ad = eATs and Bd =
∫ Ts

0 eAτBdτ. In practice, the load current io is of slow dynamics
(grid frequency); thus it can be assumed constant within two samples (io(k + 1) ≈ io(k)),
without any loss of accuracy.

2.2. Cost Function

Minimizing the Euclidean distance error of tracking both if and vf will yield more
accurate results than tracking either alone due to the cross-coupling between them (see
Equation (2)). The cost function in Equation (4) achieves the dual-objective tracking.

Gc = ‖v∗f − vf(k + 2)‖2 + χi‖i∗f − if(k + 2)‖2

+ χuu2
sw(k + 2) + ψlim(k + 2),

(4)

where χi is the current term weighting factor, χu penalizes the switching effort usw(k) =
∑ |u(k)− u(k − 1)|, and the fourth term accounts for the physical current limits on the
device as:

ψlim(k) =

{
0 if |if(k)| ≤ imax,

∞ if |if(k)| > imax.
(5)

Equation (6) defines the reference voltage, where Vref, ωref are the reference voltage
amplitude and angular frequency respectively:

v∗f = Vrefcos(ωreft) + jVrefsin(ωreft). (6)

The reference current is given by [31]:

i∗f = (Cfωrefv∗fβ + ioα)− jCfωrefvfα + jioβ. (7)

2.3. Droop Relationship

The droop curve dictates how power drawn by the common load is shared between
parallel connected inverters and is given by the following equations:

ω = ω∗ − kp(P̃− P∗), (8)

V = V∗ − kq(Q̃−Q∗), (9)

where kp and kq are MG droop coefficients for frequency-active-power and voltage-reactive-
power respectively.

3. The Proposed Adaptive MPC Scheme

In this section, a new parameter variation estimation method will first be introduced;
next, its application to predictive control will be illustrated.

3.1. Parameter Estimation and Adaptive Model Update

The proposed adaptive MPC scheme is described by Figure 2. The main difference
between this scheme and the conventional scheme is that the output current, filter cur-
rent, and voltage are utilized to first estimate the variation in the filter inductance and
capacitance from their nominal values Lf and Cf, respectively. Since MPC’s prediction
errors from parametric mismatches are negligible for resistive mismatches and dominant
in passive energy-storage elements [3], this study attends only to inductive and capacitive
mismatches/variations from their nominal values. We define δy to indicate the sign of the
parameter mismatch relative to the nominal value. δy ∀ y ∈ [C, L] as:

δy =

{
−1 if ∆yf is positive,

+1 if ∆yf is negative.
(10)
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Figure 2. Block diagram of the proposed adaptive model predictive control scheme.

3.1.1. Inductance Variation Estimation

With reference to Figure 5, the difference between the voltage at the inverter output vi
and the voltage across the filter capacitor vf is linearly proportional to the rate of change of
inductor current if. Therefore, when there is an inductance variation ∆L, the instantaneous
voltage difference (vi − vf) relative to the voltage difference at the nominal inductance Lf is
described by:

vε = (vi − vf)|[Lf+∆L] − (vi − vf)|Lf = ∆L
dif
dt

. (11)

After algebraic operations as explained in Appendix A.1, the normalized capacitance
variation becomes:

∆L
Lf

= m1

(∫
vε(t) + m2δL

)
, (12)

where m1 = 1/(Lfif_amp) and m2 is a tuned coefficient, if_amp is the amplitude of if, vε =
(vi − vf)|[Lf+∆L] − (vi − vf)|Lf , and δL is as defined in (10).

3.1.2. Capacitance Variation Estimation

The capacitance variation dynamics is:

iε = (if − io)|[Cf+∆C] − (if − io)|Cf = ∆C
dvf
dt

. (13)

Hence, the normalized capacitance variation is determined by the linear relationship
in Equation (14). After algebraic operations as explained in Appendix A.2, the normalized
capacitance variation becomes:

∆C
Cf

= n1

(∫
iε(t) + n2δC

)
, (14)

where n1 = 1/(Cfvf_amp) and n2 is a tuned coefficient, vf_amp is the amplitude of vf,
and iε = (if − io)|[Cf+∆C] − (if − io)|Cf , and δC is as defined in (10).

3.2. Adaptive Model Update

Equations (10)–(14) together define how the proposed adaptive estimation method
gives the estimated parameter ŷ at the kth sampling instant as:

ŷ(k) = yf

(
1 + ∆y(k)

yf

)
∀ y ∈ [C, L], (15)
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and this is illustrated in Figure 3.
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Figure 3. The adaptive estimator of inductance and capacitance variations. m1 = 1/(Lfif_amp),
m2 = 10e−3, where Lf is the filter inductance nominal value, and if_amp is the filter inductance current
amplitude. Also, n1 = 1/(Cfvf_amp) and n2 = 0, where where Cf is the filter capacitance nominal
value, and vf_amp is the filter capacitance voltage amplitude.

The estimated variations ∆L
L and ∆C

C are processed using the adaptive estimator in
Figure 3 to generate the updated inductance L̂ and updated capacitance Ĉ respectively.
This is done for every sample. The updated parameters are used to compute the state-space
matrices A and B whose terms are needed to predict the values of ipf and vp

f .
After the parameters have been updated as described by Equation (15), they are used

to update the system matrices as:

Â =

[
−Rf/L̂ −1/L̂
−1/Ĉ 0

]
, B̂ =

[
1/L̂ 0

0 −1/Ĉ

]
. (16)

The prediction model in (3) becomes modified to:(
ipf (k + 2)
vp

f (k + 2)

)
= Âd

(
if(k + 1)
vf(k + 1)

)
+ B̂d

(
vi(k + 1)
io(k + 1)

)
, (17)

where Âd = eÂTs and B̂d =
∫ Ts

0 eÂτB̂dτ. The cost function in (4) still applies.

4. The Proposed Neuro-Fuzzy Parameter Estimator

In this section, the principles underlying adaptive neuro-fuzzy control will be intro-
duced as a foundation for application to the proposed parameter estimation scheme.

4.1. Principles of Adaptive Neuro-Fuzzy Control

A neuro-fuzzy control system combines the principles of fuzzy systems and artificial
neural networks (ANN) to regulate the relationship between inputs and outputs. In general,
ANN is applied to improve the accuracy of an initially-designed fuzzy controller according
to historical data, and this will be further explained in the following discussion. Figure 4
shows the outlay of this paper’s neuro-fuzzy scheme. It comprises four layers: Input layer,
membership layer, rule layer, and the output layers [32,33].
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Input  Layer Membership
Layer Output LayerRule Layer

Figure 4. Structure of a four-layer neuro-fuzzy system.

4.1.1. The Input Layer

comprises inputs x1, x2. In this study, the inputs are the inductance variation dynamics
vε and capacitance variation dynamics iε, as defined in Equations (11) and (13) respectively.

4.1.2. The Membership Layer

fuzzifies the input variables by converting them to numbers ranging from 0 to 1
through membership functions. Membership functions are user-defined curves used to
analyze/map the fuzzy system’s input data. The generalized bell-shaped membership

function is used in this study, and is defined as f (x, a, b, c) =
[
1 +

∥∥ x−c
a

∥∥2b
]−1

, where a
determines the width of curve, b defines the shape of the curve on either side, and c is the
center of the membership function.

4.1.3. The Rule Layer

multiplies the input signals as in Equation (18), to give lr, where wij is the weight
between membership and rule layers, taken as one, µij is membership function i with
neighbor j, for each input xi.

4.1.4. The Output Layer

in this case is a single node that computes results as in Equation (18), where wij, µij,
and xi are as earlier defined, Nr is the total number of rules, and Nmf is the total number of
membership functions [32,33]:

y =
Nr

∑
r=1

wr

Nmf

∏
i=1

wijµij(xij)︸ ︷︷ ︸
:=lr

. (18)

4.2. Neuro-Fuzzy Parameter Estimation

Due to its adaptability to a wide range of operating conditions, we propose the follow-
ing neuro-fuzzy parameter estimation scheme, which follows from preceding discussions.
The earlier defined parameter variation dynamics vε and iε are necessary inputs for the
neuro-fuzzy estimator. The overall structure of the control scheme is shown in Figure 5. It
comprises a four-leg, H-bridge, three phase inverter whose switching is dictated by the
adaptive MPC scheme that will be further described below. The LC-filter voltage and cur-
rent variation dynamics (vε and iε respectively, earlier defined in Equations (11) and (13))
are fed into the neuro-fuzzy parameter estimation and update block; an integrator is
used to smoothen the signals by filtering high frequency components. After the neural-
network-based training of membership functions, the estimation block accurately estimates
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parameter mismatches (∆L and ∆C) to a maximum mean square error less than 5%. Thus
the updated parameters for the prediction model are L̂ = Lf + ∆L and Ĉ = Cf + ∆C.

io

MG
Bus

Loads

Droop
Control

INVERTER

Vdc

Prediction
Model

Min.
Cost

Function 
ADAPTIVE MPC

Neuro-fuzzy Parameter 
Estimation & update

DG/ESS

Figure 5. Proposed adaptive predictive control for VSCs with neuro-fuzzy parameter estimation,
where L̂ = Lf + ∆L, Ĉ = Cf + ∆C, and vε, iε are defined by (A4) and (A13) respectively.

The workflow to achieve the trained neuro-fuzzy estimator is shown in Figure 6. About
seven million data points were generated with the conventional MPC model while the
nominal filter parameters where increased in linear scales of 10% up to 50%. For instance
for the inductance, we had Lf to 0.5Lf. This was done for events including load step
changes too. The data were then used to train the initial membership functions created (see
Figure 7a). Details on rules regarding selections of appropriate membership functions are
outside the scope of this paper, but can be found in [33]. The initial membership functions
were designed with MATLAB Simulink Fuzzy Logic Toolbox by expert knowledge of the
system, in such a manner that they model the relationship between input and output
signals (here, the input signals are vε and iε, and the output signals are ∆L and ∆C).
As earlier mentioned in Section 4, the bell-shaped membership functions were used here
(Figure 7a). These were then trained offline, using MATLAB Simulink’s Neuro-Fuzzy
Toolbox, for improved accuracy with the system’s input-output data from simulation
runs, resulting in the trained functions shown in Figure 7b. The trained system had
4.2 million training data pairs, 2.5 million checking data pairs, 35 nodes, 9 linear parameters,
18 nonlinear parameters, and 9 fuzzy rules.

��������� ���	
�������������

���
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���DE�F��G�����DE�F�!G�����DE�F�HG�����DE�F!�G�����DE�F!!G�����DE�F!HG�� 8.+4&�4&4)4+7�9(::,0-01-.234'�9(&;)4<&2�8.+4&-=�&-(.<>9(::,0<=-7�?=+')4@-�/ABB<&).<7�
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/-01L�9(&;)4<&2I-(.<>9(::,�&-)J<.K

Figure 6. Workflow for implementing the proposed neuro-fuzzy parameter estimation.
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Figure 7. Input membership functions: (a) Before training and (b) after training with offline data.

5. Results and Discussion

The simulative and real-time hardware-in-the-loop results are presented in this sec-
tion. The discussion is done under headings of system description, parameter estimation,
transient performance, steady-state performance, and parametric robustness.

5.1. System Description

The proposed control scheme was tested via both simulations and HiL demonstra-
tions. The overall system topology and control scheme are depicted in Figure 2, and the
system parameters are provided in Table 1. The simulation tests were carried out with
MATLAB/Simulink software, while the real-time HiL tests were done with two PLECS
RT-Box 1 real-time systems which exchange digital pulse-width modulation and analog
signals: One for the controller, and the other for the plant subsystem. The laboratory
testbench is shown in Figure 8.

5.2. Parameter Estimation

Both parameter estimation methods earlier described in Sections 3 and 4 have identical
levels of accuracy. Therefore, for the simulation results in this section, only results for the
neuro-fuzzy parameter variation estimation are shown. Figure 9 shows the estimation
results for filter capacitance. The designed estimator was able to detect the deviation
from the nominal values with a high degree of accuracy. The capacitance estimation
has ripples that are higher as the mismatch with nominal grows. Similarly, inductance
estimation results are illustrated in Figure 10, and it is observed that for both values
tested, the estimator came within a high degree of accuracy. The mean square training and
checking errors during the neuro-fuzzy training process were 4.73% and 4.12% respectively.
In addition, higher training error values were observed with load step change data—as
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high as 11.5%. For parameter estimation errors less than 10%, identical power quality as
using the actual values is obtainable.

Table 1. Parameters of the test microgrid system.

Parameters Symbols Values

DC voltage Vdc 650 V
Nominal frequency fnom 50 Hz
Nominal voltage Vnom 250 V
Filter Rf LC; Cf Rf = 0.05Ω

Lf = 2 mH, Cf = 80 µF
Sampling time Ts 25 µs (Simulation)

10 µs (HiL controller)
7 µs (HiL plant discretization)

Droop coefficients mp, mq mp = 25 µV/W,
mq = 50 µrad/sVar

Line impedance Rl, Ll Rl = 0.1Ω, Ll = 2.4 mH
Virtual impedance Rv, Lv Rv = 0.2Ω, Lv = 4 mH

A B

C

D

Figure 8. Real-time HiL system: A—signal monitor, B—PLECS user interface monitor, C—real-time
controller, and D—plant emulator.

Figure 9. Simulation results: Estimated and actual capacitance variations—Top: 0.5Cf variation,
bottom: 0.3Cf variation.
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Figure 10. Simulation results: Estimated and actual inductance variations for 0.5Lf variation, bottom:
0.4Lf variation.

5.3. Neuro-Fuzzy Transient Performance

Figure 11 is a plot of the simulated performance of the proposed neuro-fuzzy-based
estimation and adaptive MPC control with a step chanve in active and reactive powers.
During the transient operation, rapid and robust transient responses are desired, and these
were achieved using the adaptive neuro-fuzzy MPC scheme in Figure 5. Figure 11 shows
that during the transient period (initiated at 0.1s), the proposed control scheme did not
lose tracking performance, the voltage ripples are very low, while transient distortions are
minimized, due to the effective parameter estimation and compensation for the mismatch
in the inductance.

Figure 11. Simulation results: Performance of the neuro-fuzzy adaptive controller with 0.5Lf variation
in nominal induactance.

5.4. Steady-State Performance

The steady-state performance will inquire into the relationship between the average
switching frequency (as regulated by the switching effort weighting factor χu) on the
output voltage and current THDs. We achieved this by maintaining the weighting factor
for current χi constant at 3 (gives optimal performance among other heuristically tested
values), while χu was varied from 0 to 70 in unit steps. The results (comparing conventional
MPC and the proposed adaptive MPC) are plotted in Figure 12. The average switching

frequency was calculated with fsw = ∑N
k=1 usw(k)

3NTs
, where N is the number of samples per

second (i.e., 800 for Ts = 25 µs). THDs were obtained with MATLAB/Simulink’s spectrum
analyzer. The voltage THD decreased with switching frequency: From 2.5% at 5 kHz
to 0.5% at 12 kHz. These results are for nominal filter parameters, and indicate that the
proposed method has similar steady-state performance as the conventional MPC.
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Figure 12. Conventional MPC voltage THD versus average switching frequency for current term
weighting factor χi = 3, while switching weighting factor χu is varied.

5.5. Overall Performance

Figure 13 illustrates the voltage and current sensitivities to a wide range of param-
eter variations. These figures show a broader view of the performance of the proposed
control algorithm. Adaptive MPC voltage THD has a lower range (3%) than conventional
MPC (8%), for almost all ranges of parameter variations of filter inductance and capaci-
tance. In addition, adaptive MPC current THD has a lower range (12%) than conventional
MPC (18%).

 

 

(a)

 

 

(b)

 

(c)

 

 

(d)

Figure 13. Sensitivity of output voltage to model mismatches. (a) Voltage—conventional MPC rseponse, (b) voltage—
adaptive MPC response, (c) current—conventional MPC response, and (d) current—adaptive MPC response.

5.6. Real-Time Hardware-in-the-Loop Verification

In this section, the real-time HiL performance will be discussed. We set up the test
micrgrid system on a test bench made up of PLECS RT-Box 1 real-time HiL equipment.

5.6.1. Transient Performance

During the transient, operation rapid and robust transient responses are desired.
Figure 14 shows that during the transient period, the proposed control scheme did not lose
tracking performance.
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0.42 0.46 0.50
Time [s]

Figure 14. HIL Results: The proposed adaptive MPC response to a step change in power.

5.6.2. Robustness to Model Parameter Variations

Figure 15 illustrates the conventional MPC and proposed adaptive MPC voltage
and current performances for 0.5Lf variation in nominal inductance. The left-hand plots
in Figure 15 are for conventional MPC, while the right-hand plots are for adaptive MPC.
Comparing the top plots (voltage) shows that the proposed adaptive MPC scheme produces
significantly less distortion than the left waveform (63.2% THD reduction). Similarly,
the adaptive MPC current waveform on the right is less distorted than the waveform on
the left, i.e., 47.6% THD reduction. These results point to the robustness of the proposed
control scheme to parameter variations.

0.030.02 0.04

6.9098%

241.8752 [V]
50 [Hz]

Time [s]

Harm. ord.

(a)

0.030.02 0.04

246.5833

0.9182%

Time [s]

Harm. ord.

(b)

0.030.02 0.04

2.910%
50 [Hz]
4.8611 [A]

Time [s]

Harm. ord.

(c)

C
ur

r.
 [

A
]

0.030.02 0.04

0.6370%

4.9533 [A]

Time [s]

Harm. ord.

(d)

Figure 15. HiL Results: MPC and the proposed adaptive MPC voltage and current performances for
0.5Lf variation in nominal inductance. (a) Conventional MPC voltage and spectrum. (b) Proposed
adaptive MPC voltage and spectrum. (c) Conventional MPC current and spectrum. (d) Proposed
adaptive MPC current and spectrum.

6. Conclusions

The performance of predictive-controlled converters deteriorates with parametric
mismatches. In this paper, we demonstrated a solution to this problem via the design of a
parameter estimator for an operating point, and neuro-fuzzy parameter estimator for wider
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operating conditions. The latter’s advantages came at the price of a higher estimation
computation burden. The simulation and HiL results have demonstrated the effectiveness
of the proposed adaptive predictive control of grid-forming converters with an improved
power quality and robustness to parameter uncertainties.

In future, we would be interested in examining how other intelligent/data-based
methods reduce the computational burden without compromising the performance.
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Appendix A. Parameter Estimation and Update

This section presents the mathematical basis for the adaptive LC-filter parameter
estimation and update for improved accuracy of the predicted model for inverter control.

Appendix A.1. Inductance Variation Estimation

Applying Kirchoff’s voltage law to Figure 2, and representing the inverter output
voltage as vi, we have:

vi = Rfif + Lf
dif
dt

+ vf, (A1)

where all variables are as earlier defined. Let the difference voltage in (A1) at nominal
inductance be (vi − vf)|Lf ; Equation (A1) becomes:

(vi − vf)|Lf = Rfif + Lf
dif
dt

. (A2)

When there there is a small variation in the inductance ∆L, we write (A2) as:

(vi − vf)|[Lf+∆L] = Rfif + (Lf + ∆L)
dif
dt

. (A3)

Taking the difference (A2) and (A3) gives:

vε = (vi − vf)|[Lf+∆L] − (vi − vf)|Lf = ∆L
dif
dt

. (A4)

From (A4),

if∆L =
∫ t

τ=0
vεdτ. (A5)
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Since if is sinusoidal, the RHS is a sine wave too. The evaluation of the integral
results in:

∆L =
1
if
(vεt + κ), (A6)

where κ is an integration constant. Normalizing with the nominal inductance Lf gives:

∆L
Lf

=
1

Lfif
(vεt + κ). (A7)

The MATLAB/Simulink and PLECS implementation of (A7) is in the form:

∆L
Lf

=
1

Lfif_amp

(∫
vε(t) + m2δL

)
, (A8)

where if_amp is the amplitude of if, m2 is a tuned term, and,

δL =

{
−1 if ∆Lf > 0,

+1 if ∆Lf < 0.
(A9)

Equations (A8) and (A9) together define how the proposed adaptive estimation
method operate to give the estimated inductance L̂ at the kth sampling instant as (A10)
and this is illustrated in Figure 3:

L̂(k) = Lf

(
1 + ∆L(k)

Lf

)
. (A10)

Appendix A.2. Capacitance Variation Estimation

Applying Kirchoff’s current law to Figure 2, we have:

if = io + Cf
dvf
dt (A11)

where all variables are as earlier defined. When there is a small variation in the capacitance
∆C, and for a difference current at nominal inductance (if − io)|Cf , we write (A11) as:

(if − io)|[Cf+∆C] = (Cf + ∆C) dvf
dt . (A12)

We define the difference (A11) and (A12) as:

iε = (if − io)|[Cf+∆C] − (if − io)|Cf = ∆C dvf
dt . (A13)

From (A13),

vf∆C =
∫ t

τ=0
iεdτ. (A14)

The evaluation of the integral becomes:

∆C =
1
vf
(iεt + κc), (A15)

where κc is an integration constant. Normalizing with the nominal inductance Cf gives:

∆C
Cf

=
1

Cfvf
(iεt + κc). (A16)

The MATLAB/Simulink and PLECS implementation of (A16) is in the form:

∆C
Cf

=
1

Cfvf_amp

(∫
iε(t) + n2δC

)
, (A17)
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where vf_amp is the amplitude of vf, n2 is a tuned term, and

δC =

{
−1 if ∆Cf > 0,

+1 if ∆Cf < 0.
(A18)

Equations (A17) and (A18) together define how the proposed adaptive estimation
method operate to give the estimated capacitance Ĉ at the kth sampling instant as Ĉ(k) =
Cf

(
1 + ∆C(k)

Cf

)
, and this is illustrated in Figure 3.
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