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Abstract: Contemporary climate change leads to earlier spring phenological events in Europe. In
forests, in which overstory strongly regulates the microclimate beneath, it is not clear if further change
equally shifts the timing of leaf unfolding for the over- and understory of main deciduous forest
species, such as Fagus sylvatica L. (European beech). Furthermore, it is not known yet how this vertical
phenological (mis)match—the phenological difference between overstory and understory—affects
the remotely sensed satellite signal. To investigate this, we disentangled the start of season (SOS)
of overstory F.sylvatica foliage from understory F. sylvatica foliage in forests, within nine quadrants
of 5.8 × 5.8 km, stratified over a temperature gradient of 2.5 ◦C in Bavaria, southeast Germany, in
the spring seasons of 2019 and 2020 using time lapse cameras and visual ground observations. We
explained SOS dates and vertical phenological (mis)match by canopy temperature and compared
these to Sentinel-2 derived SOS in response to canopy temperature. We found that overstory SOS
advanced with higher mean April canopy temperature (visual ground observations: −2.86 days
per ◦C; cameras: −2.57 days per ◦C). However, understory SOS was not significantly affected by
canopy temperature. This led to an increase of vertical phenological mismatch with increased canopy
temperature (visual ground observations: +3.90 days per ◦C; cameras: +2.52 days per ◦C). These
results matched Sentinel-2-derived SOS responses, as pixels of higher canopy height advanced more
by increased canopy temperature than pixels of lower canopy height. The results may indicate
that, with further climate change, spring phenology of F. sylvatica overstory will advance more than
F. sylvatica understory, leading to increased vertical phenological mismatch in temperate deciduous
forests. This may have major ecological effects, but also methodological consequences for the field of
remote sensing, as what the signal senses highly depends on the pixel mean canopy height and the
vertical (mis)match.

Keywords: overstory; understory; Sentinel-2; time lapse cameras; vertical mismatch; phenological
escape; climate change; European beech

1. Introduction

Contemporary climate change leads to earlier spring phenological events in Europe,
such as bud burst and leaf unfolding of trees, with an average rate of −2.5 days per ◦C
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warming [1]. These phenological shifts can have massive effects, ranging from the fitness
of individuals to the whole ecosystem. At the individual level, leaf unfolding of trees too
early can lead to an increase of damage by late-frost events in spring, e.g., [2,3]. At the
ecosystem level, phenological shifts of vegetation can result in or increase mismatches
with individuals in higher trophic levels, which are often not equally sensitive to climate
change and therefore shift at dissimilar rates, e.g., [4–8]. Mismatches can also occur non-
trophically within the level of primary producers. In forests, early canopy closure in spring
will provoke too low light levels beneath the overstory, creating more unsuitable growing
conditions for understory vegetation [9,10]. To buffer these different types of mismatches,
land use planning and forest management could play a key role, e.g., by promoting larger
proportions of vegetation that is less sensitive to climate change, or by increasing spatial
phenological variability [5,11].

Previous studies have mainly focused on horizontal phenological variability, e.g., [11–13],
although some studied elevational gradients on the landscape scale [14,15]. However,
especially on the scale of a forest with multiple vertical layers of primary productivity, it is
important to acknowledge that space has not two but three dimensions [10,16]. Considering
a forest as a 2D-feature, by doing observations on only one random layer or the integrated
vertical column from above and generalizing them to the whole vertical dimension, could
introduce biased conclusions on the habitat of animals, as they are often stratified to only
one specific forest layer [17]. Furthermore, for the primary producers themselves, studying
phenology three-dimensionally is of high importance, as the future of the forest overstory
is dependent on the fitness of tree regeneration in the understory [18], and, in that way, it
can highly impact the carbon balance.

Previous studies showed that both among and within species, understory ephemerals,
shrubs, and tree juveniles generally reach budburst and leaf unfolding earlier in spring than
adult trees in the overstory [19–22]. This pattern, which is determined ontogenetically [21],
is of high importance for tree populations since photosynthetically active radiation (PAR)
at the forest floor is drastically reduced after overstory flushing [23,24]. Gill et al. [23]
found that, in a beech-maple dominated hardwood forest, the transmission of PAR from the
canopy top to 1 m above the forest floor was reduced from 55% before overstory budburst
to 1–2% after full leaf unfolding of the overstory and that understory CO2 gains per time
unit before overstory budburst was significantly higher than afterwards. Jolly et al. [25]
also found that the productivity of the understory is highly dependent on its timing of leaf
flushing and senescence, relative to that of the overstory, as they found that an extension of
the understory’s growing season, relative to that of the overstory, by one week led to an
increase in productivity of 32% and an extension of two weeks, even to an increase of 55%.
Despite higher probabilities of late-frost risks with earlier leaf flushing, the net survival rate
of understory individuals that leaf out earlier are expected to increase, as Jones et al. [26]
and Seiwa et al. [27] found for seedlings of Acer rubrum and Acer mono, respectively.

However, it would be an oversimplification of reality to assume that this ontoge-
netically determined earlier understory flushing relative to the overstory is a static phe-
nomenon, as there are reasons to expect interaction effects between climate and vertical
forest gradients to explain spring phenology. Forest canopies are able to create microcli-
mates underneath, with the temperature and radiation in the understory fluctuating less
than in the overstory [10,28]. In this way, the climate change effects are buffered in the
understory. Jolly et al. [25] suggested that altered matches between overstory and under-
story phenology induced by climate warming can affect stand structure and productivity
in the long term. Heberling et al. [9] showed that the spring phenology of understory
wildflowers responded less to warming than the trees in the overstory above, and, in
that way, their study was the first to show that non-trophical phenological (mis)matches
between understory and overstory are expected to alter with climate change. It is not
known yet if this also applies to tree regeneration of deciduous species native to temperate
forests, such as Fagus sylvatica L. (European beech), the main deciduous tree species in
Central and Western Europe, and of high ecological and economical importance [29]. Thus,
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understanding how well its understory is able to keep “phenologically escaping” [30]
with ongoing climate change is very important, as it will be the future overstory. It will
be economically relevant to wood production and ecologically relevant by providing a
habitat to many animal species [10,18]. Next to that, tree regeneration is expected to have
a narrower range of adaptation strategies than the herbaceous part of the understory, as
the first is usually less species rich. Therefore, tree regeneration might be more vulnerable
to variables associated with climate change than the herbaceous understory studied by
Heberling et al. [9]. A recent study of Vitasse et al. [31] reported delayed budburst of
tree seedlings from several species, including F. sylvatica, under artificial shading nets
that intercepted 70% of incoming radiation and were causing a cooler microclimate at the
same time. We assume that an early closing forest canopy can have the same effect, but
investigation is required.

As variation in global radiation is known to affect local temperature reasonably [32],
and furthermore might also directly affect leaf phenology of F. sylvatica [31], topography
and cloud cover based global radiation can also be a very important variable to downscale
coarsely gridded air temperature. Therefore, next to global radiation and air temperature,
a variable based on a combination of both, which would be called “surface temperature”,
or—especially in forests with a large vertical climatic gradient—“canopy temperature” [32],
would be expected to maximally expose differences between the overstory and understory.

Scaling up from the level of individuals to stands, forests, and even landscapes,
multispectral satellite remote sensing has accelerated the study of phenology immensely by
covering larger spatial and temporal extents and its lower degree of subjectivity compared
to visual in-situ ground observations, with the earliest studies done by Myneni et al. [33]
and White et al. [34]. Therefore, a very important second knowledge gap is how shifting
vertical forest phenology patterns will influence the interpretation of data by multispectral
satellite remote sensing. Among the latter, products provided by the European Space
Agency’s (ESA) Sentinel-2 are well appreciated by the research community due to the high
spatial resolution (10 m), global coverage, and free public access.

An important drawback of Sentinel-2, and satellite remote sensing in general, in the
study of the phenology of forests is that it looks at the canopy solely from above [35–38].
For deciduous forests, this means that in the part of the year in which the overstory leaves
have flushed and form a closed canopy, the forest layers beneath the overstory are partly
or completely absent from the signal, whereas in the part of the year in which the upper
part of the canopy is not yet closed, an integrated signal is sensed from the forest floor to
the top of the canopy, e.g., [38]. However, without additional phenological measurements
from visual in situ ground observations or cameras, the relative contribution of each layer
to the signal at different points in time is unknown [38,39]. Given the generally accepted
assumption that understory flushes before overstory [20], results of Ahl et al. [35] and Ryu
et al. [38] indicated that, in the time period before overstory canopy closure, it is mainly
the signal from the forest understory that is sensed. Ahl et al. [35] found that the MODIS
signal predicted spring phenology weeks in advance of overstory observations from the
ground. Ryu et al. [38] found the MODIS signal to be much more correlated with visual in
situ ground observations from the understory than those from the overstory. Elaborating
on this, Pisek et al. [40] and Tuanmu et al. [37] were able to successfully disentangle
remotely sensed understory phenology from overstory phenology purely based on MODIS
data. Nevertheless, the forests in both studies were very specific. In the study of Tuanmu
et al. [37], the understory (evergreen bamboo shrubs) was very clear and spectrally and
phenologically different from the overstory (deciduous, evergreen or a mix of tree species).
In the study of Pisek et al. [40] on semiarid to boreal forests, overstory vegetation was rather
sparse. Temperate deciduous forests are often dense, meaning phenological disentangling
will hardly be possible [39], and, adding to that, the understory may consist of the same
species as the overstory and therefore have a more similar phenology. Although Misra
et al. [41] showed that LIDAR-derived stand structure data helped to explain spatial
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variability in “land surface phenology”, they did not disentangle the phenology of specific
forest layers.

Furthermore, when the time gap between overstory and understory is not static, but
instead, as we hypothesized, is rather susceptive to climate change, we can argue that
the layer that is actually sensed is dependent on the phenology of the understory relative
to the overstory and on the density of the overstory covering the understory. Due to the
fact that the vertical integration of the understory is of an unknown proportion (before
canopy closure), or absent (after canopy closure) in the remotely sensed signal, we argue
that it is impossible to generalize climate change effects on either overstory, understory, or
temperate deciduous forest phenology as a whole, solely based on satellite remote sensing
techniques.

Therefore, to disentangle overstory from understory, a combination with other sensors,
such as time lapse cameras and/or visual in situ ground observations, is required. In several
studies, a combination of methods was used to study vegetation phenology, e.g., [22,38,42–49],
which showed the possibilities of combining and partly replacing the classical visual in situ
ground observations with more quantitative (satellite and camera observations), higher
spatial coverage (satellite), and higher temporal resolution (cameras) methods. Derivatives
to define phenological metrics, such as the start of the season (SOS), are found to align well
with each other and are given ecological meaning. Nevertheless, only some of these studies
disentangled the phenology of overstory and understory [38,49], although we see this as a
key advantage of ground and camera observations, and essential to do in forests, as the
vertical dimension is inevitable. Furthermore, most of these studies are purely methodical
and were conducted over single years or seasons and single sites or areas, and thus the
effects of climate variability were not tested.

Here we aimed to investigate the following research questions: (1) how do the phe-
nology of F. sylvatica overstory and understory, and the associated vertical (mis)match,
respond to the main environmental variables associated with climate change, by using
visual in situ observations from the ground and time lapse cameras, and (2) what does this
mean for the sensed SOS signal by Sentinel-2.

2. Materials and Methods
2.1. Study Design

In the spring seasons of 2019 and 2020, we observed the phenology of F. sylvatica in
deciduous and mixed temperate forests in nine 5.8 × 5.8 km quadrants within the federal
state of Bavaria, southeast Germany (Figure 1; Table 1). This administrative unit forms
a central and representative part of the geographical range of F. sylvatica and is therefore
an ideal study area. These quadrants are a subset of the 60 quadrants of the stratified
study design developed by Redlich et al. [50] and are based on existing grid cells of ‘TK 25’
(topographical maps, scale 1:25,000), allowing for the comparison with other long-term
monitored ecological data. The nine quadrants used here were chosen over a mean annual
temperature gradient over 30 years (1981–2010) from 6.78 ◦C (Q9) to 9.24 ◦C (Q1). Three
different methods were used to observe phenology: time lapse cameras, visual in situ
ground observations, and Sentinel-2 imagery.
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Figure 1. The study quadrants within the federal state of Bavaria, southeast Germany.

Table 1. Description of the nine study quadrants (5.8 × 5.8 km), including their center coordinates, elevation, mean annual
temperature (1981–2010), mean annual precipitation (1981–2010), as well as the number of samples per method. Note that
all samples were taken in two years (2019 and 2020). Camera sites always included one camera facing understory and one
camera facing overstory. Abbreviations: temperature (temp.), precipitation (precip.), overstory (over.), understory (under.),
individuals (indivs.). “Ground” stands for ground-based visual phenological observations.

Quadrant
Center

Coordinates
(◦E, ◦N)

Elevation
(m)

Mean Annual
Temp.
(◦C)

Mean Annual
Precip.
(mm)

Camera Sites
(Section 2.1)

Groundover.
Indivs.

(Section 2.2)

Ground Under.
Indivs.

(Section 2.2)

Sentinel-2 Indivs.
(Section 2.5.2

Dataset 1)

Sentinel-2 Pixels
(Section 2.5.2

Dataset 2)

Q1 9.77, 49.76 294 9.2 635 3 3 1 4 12,356
Q2 9.94, 49.89 309 9.1 678 2 3 1 20 15,923
Q3 10.44, 50.07 328 8.8 701 - 3 2 8 -
Q4 11.75, 48.92 449 8.6 675 3 4 3 11 15,384
Q5 11.85, 48.58 490 8.4 650 - 3 3 13 132
Q6 10.53, 49.92 412 8.2 809 - 3 3 12 17,029
Q7 11.70, 49.13 543 7.9 785 2 4 3 8 3614
Q8 13.36, 48.78 491 7.8 1215 1 3 3 10 3910
Q9 13.54, 48.88 785 6.8 1367 2 3 3 6 -

Total 13 29 22 92 68,348

2.2. Hourly Time Lapse Camera Images
2.2.1. Sampling

We selected up to three locations per quadrant to place two Cuddeback C2 wildlife
cameras with a time lapse function in March 2019, when all F. sylvatica buds were still
closed and no other vegetation was blocking the view. One of them was installed at a height
of ~70 cm and facing F. sylvatica foliage in the understory, which we defined as the lowest
2 m of the forest, in line with the definition of understory by Gressler et al. [51]. In that way,
understory was potentially forageable by hoofed animals, such as roe deer, an important
ecological determinant of European and, in particular, Bavarian forests, e.g., [52–54]. The
other camera was installed at a height of ~3 m and positioned diagonally upwards facing
the overstory of F. sylvatica foliage, as Ryu et al. [38] did in their study. Cameras took
one picture per hour between sunrise and sunset, with “aspect” set to “full” and “zone”
to “wide”. We set the image size (“Lapse SZ”) to 5 megapixels (MP), as this resulted in
sufficient quality for both visual and quantitative analysis, while saving storage space, as
compared to the option of 20 MP.

All cameras were operational until August 2020. Batteries were replaced and SD cards
read out every three months. For analysis, we selected only complete time series from sites
that had, for both spring seasons, unmixed F. sylvatica foliage recorded for the overstory
and the understory during the greenup period, roughly between day of the year (DOY) 95
and DOY 125. This resulted in 13 sites, spread out over six quadrants (Q1, Q2, Q4, Q7, Q8,
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and Q9), all having an understory 2019, overstory 2019, understory 2020, and overstory
2020 spring time series of F. sylvatica (Table 1).

2.2.2. Pre-Processing

For the images in those time series, we drew expert-based regions of interest (ROI) in
which only F. sylvatica foliage occurred and was not disturbed by other features, such as
moving branches in the foreground, through time. Subsequently, we selected the images
taken between 10:00 a.m. and 2:00 p.m., and between DOY 80 and 140. Per image, we
calculated the mean green chromatic coordinate (GCC) of all pixels within the ROI on each
time step as a measure of the standardized greenness, e.g., [44,48,55] via:

GCC =
G

R + G + B
(1)

where R, G, and B are the mean red, green and blue digital numbers, respectively. This
resulted in a time series of four GCC values per DOY. To compare cameras and years,
we normalized these data, similar to how Richardson et al. [56] did, by setting the mean
GCC from images taken between DOY 80 and DOY 95, in which all F. sylvatica buds were
closed, to 0, and the mean GCC from images taken between DOY 125 and DOY 140, in
which all F. sylvatica leaves were at mature size, to 1, by which the values in between were
stretched accordingly. As weather conditions are known to potentially affect the camera
signal [55], we applied a filter by taking the 60th percentile of a 3 day moving window, and
a time step of 1 day, as the proposed 90th percentile by Sonnentag et al. [55] resulted in
systematically too high GCC values, compared to the unfiltered data. Subsequently, we
fitted a double-logistic function to each time series, according to Beck et al. [57], which
automatically filtered out too low winter values, and thus was particularly useful in the
temporally dense time series. Then, the start of season (SOS) was derived by taking the
DOY at which a normalized GCC of 0.5 was reached for the modelled values. We chose
this threshold since the increase in both springs was very steep (increase in normalized
GCC from 0 to 1, mostly in ~<7 days) and on average the steepest increase in greenness
tended to occur at this threshold (similar to the reasoning of Richardson et al. [56] for their
threshold choice). For both drawing ROIs as well as fitting double-logistic curves, we used
the phenopix package [58] in R [59]. The camera-derived normalized GCC time series for
one quadrant (Q4), as an example, is presented in Figure A1 in Appendix A.

We derived “vertical mismatch” between overstory and understory by subtracting
overstory SOS from understory SOS per site [9]. Thus, negative values represent the number
of days the understory was flushing before the overstory (“phenologically escaping”) [30],
which is the classical pattern. Positive values represent the number of days the overstory
was flushing before understory, meaning an inverted classical pattern.

2.3. Ground Observations
2.3.1. Sampling

Visual in situ ground observations were performed (further referred to as “ground
observations”). Within each quadrant, we selected one deciduous or mixed forest stand in
which F. sylvatica was one of the dominant species. In each forest stand, we selected at least
three F. sylvatica overstory and three F. sylvatica understory individuals. We defined an
overstory individual as being part of the upper canopy layer, either by being a dominant,
codominant, subdominant, or suppressed tree [60], with a minimum height of 15 m, by
which the definition of overstory as defined by Gressler et al. [51] was slightly extended. We
defined understory individuals as individuals of <2 m high, in accordance with the camera
observations and Gressler et al. [51]. From these individuals, we near-weekly estimated the
percentage of buds per individual that had burst (“budburst”) and the percentage of leaves
that were fully out (“leafout”), starting from before budburst until when all leaves were
completely unfolded. “Budburst” was neglected for further analysis, as it was often hard to
identify in tree crowns despite the use of binoculars. We defined “leafout” as the moment
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at which the leaf was completely visible, all the way to the petiole, in accordance with the
BBCH 11 (Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie) [61]. For
further analysis, we only used the individuals measured in both years, resulting in a total
of 29 overstory individuals and 22 understory individuals spread over the nine quadrants
(Table 1).

2.3.2. Pre-Processing

We used the phenex package [62] in R [59] to fit a double-logistic function to each time
series for leafout ranging from 0% to 100%, as per Fischer [63]. Then, we derived “leafout
50%” as the DOY at which the modelled values reached 50%, as this implied that the
majority of leaves were unfolded and, furthermore, we estimated that, at this threshold, the
average curve incline was highest (similar to Richardson et al. [56]). We defined leafout 50%
as SOS, to compare with remotely sensed phenological derivatives ([64], see Section 2.5.2).
To illustrate this, all leafout fraction time series derived from ground observations for one
quadrant (Q4) are presented in Figure A2.

We derived a value of “vertical mismatch” for each quadrant × year by subtracting the
mean SOS of the overstory individuals from the mean SOS of the understory individuals.

2.4. UAV Data

In order to link ground observations (Section 2.3) to satellite remote sensing (Section 2.5),
we made use of a UAV to identify tree crowns in the field. Between 5 and 8 May 2020, when
the leaves of the majority of the deciduous trees in all quadrants were out, but species were
most distinguishable because of different shades of visual green, we executed UAV flights
over each of the nine forest stands using a DJI P4 Multispectral, which had a separate
camera, to take high quality RGB-images with a spatial resolution of ~5 cm at an acquisition
height of 100 m. These images were geo-referenced with a precision of ~10 cm and were
stitched together to form an orthomosaic (GeoTiff) using Pix4DMapper 4.5.

2.5. Sentinel-2 Data
2.5.1. Data Retrieval

Using the Sen2R package [65] in R [59], we downloaded all available cloud-free
Sentinel-2 level-2A tiles from 20 February to 30 June for 2019 and 2020 for the spatial extent
of the nine quadrants. This product contains bottom-of-atmosphere (BOA) reflectance of
13 spectral bands, from which the visual and near-infrared bands have a spatial resolution
of 10 m. Using the same package, and based on a scene classification included in the
level-2A product, we filtered out pixels classified as “cloud (high probability)”, “cloud
(medium probability)”, “thin cirrus”, “snow”, “cloud shadows”, “unclassified”, “saturated
or defective”, and “no data”.

2.5.2. Pre-Processing

Using multispectral remote sensing, the greenness or productivity of vegetation can
be defined as a certain ratio between reflectance in the near-infrared and the red band [66],
and, in that way, it can measure seasonal vegetation development over time [33]. Here we
used the normalized difference vegetation index (NDVI), which we calculated for each
non-cloud covered pixel in each quadrant-clipped Sentinel-2-tile by:

NDVI =
N − R
N + R

(2)

where N and R are the reflectances in the near-infrared and the red band, respectively.
Subsequently, two data sets were used as input for Sentinel-2 analysis:

1. Data set 1 was generated for the forest stands in which ground observations were
also conducted. There, we selected the individuals we did ground observations for,
and, additionally, we selected two more random locations per forest stand, selecting
all F. sylvatica individuals that fell in an angle-count sample as was done by the
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German forest inventory “Bundeswaldinventur” [67]. This resulted in a total of
92 trees spread out over the nine quadrants (Table 1). We imported the UAV-acquired
RGB orthophotos as a tile layer in ESRI ArcGIS Online, which we enabled for offline
use. Then, using the ESRI ArcGIS Collector application on a tablet in the field, we
identified all 92 selected trees (ground phenology + additional individuals) on the
orthophoto tile layer and manually drew the polygons of the crowns from the selected
trees in a separate layer. After this, we extracted the NDVI for each crown at each
DOY that had an acquired cloud-free Sentinel-2 image, using bilinear interpolation
among the cells where each crown overlapped.

2. Data set 2 was generated for quadrant-wide beech forests. We masked the quadrant-
wide cloud-free Sentinel-2 NDVI time series by a shapefile, including all forests
owned by the Bavarian State Forest agency in the quadrant in which F. sylvatica was
the dominant species, according to the Bavarian State Forest agency. This forest type
was present in 7 out of the 9 quadrants.

For both Sentinel-2 data sets 1 and 2, we used the phenex package [62] to fit a double-
logistic function to the NDVI time series of each individual crown (data set 1) or pixel
(data set 2) for both years. Modelled values were normalized from 0 to 1, with the lowest
modelled value set to 0 and the highest set to 1. We defined the start of season (SOS) as the
DOY in which a curve reached a threshold of 0.3. Although the literature was not uniform
in terms of which greenness threshold best represented field-observed phenological events,
such as leafout, and as this can vary depending on the spatial resolution of the satellite
product [68], we chose a threshold of 0.3 since, according to White et al. [64], Landsat TM
(30 m resolution)-derived SOS based on a threshold of 0.3 best represented the moment at
which the “plot average reached full leafout”, which corresponds to our “leafout 50%” on
the tree level. Equally, following Misra et al. [69], MODIS (231.65 m resolution)-derived
SOS was based on a threshold of 0.2, which matched best with ground-observed understory
phenology, and a threshold of 0.5 for the leaf unfolding of deciduous trees. We filtered out
pixels or trees that did not greenup in a temporally dense acquisition period, and those from
which the difference between summer and winter normalized NDVI, i.e., the amplitude,
was lower than 0.2. We additionally removed pixels or trees with an unrealistically late
(after DOY 125) or early (before DOY 100) start of season. For further analysis, we only
used trees and pixels present in both years after filtering. All normalized NDVI time series
derived from Sentinel-2, data set 1, for one quadrant (Q4) are presented in Figure A3.

2.6. Environmental Variables
2.6.1. Tree and Canopy Height

We measured the height of all selected trees (Section 2.5.2, data set 1) individually. A
Vertex IV (Haglöf Sweden) was used for trees > 3 m and a meter stick for trees < 3 m. We
further refer to this variable as “tree height”.

In order to derive “canopy height” for the selected pixels (Section 2.5.2, data set 2), we
retrieved a digital surface model (DSM) in LAS format, with a spatial resolution of 40 cm
in a radius of 700 m around each ground-observed forest and each camera site, which
was derived by the Bavarian “Landesamt für Digitalisierung, Breitband und Vermessung”
(LDBV) on the basis of aerial images, acquired in either summer 2019 or summer 2020.
Secondly, we also retrieved a digital terrain model (DTM) from the LDBV in tiff-format,
which was acquired by laser scanning from an air plane (LIDAR) with a spatial resolution
of 5 m for the same area. We calculated “canopy height” at a spatial resolution of 1 m by
subtracting the DTM from the DSM, using the lidR package [70] in R [59].

2.6.2. Air Temperature

As the main driver of plant phenology [1], we obtained monthly averaged mean daily
air temperature (◦C) by retrieving 1 × 1 km gridded monthly temperature data from the
German Meteorological Service (Deutsche Wetterdienst, DWD) [71].
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2.6.3. Global Radiation

Using the area solar radiation function from the spatial analyst toolbox within Ar-
cGIS Pro 2.6.0, we calculated spatially and temporally explicit global radiation in watt
hours per square meter (Wh/m2) for each 5 m grid cell based on the DTM, using meth-
ods described by Fu et al. [72] (see also Allen et al. [73] for more details on the method).
With the DTM as input, this area solar radiation tool accounts for topography including
slope, aspect, sun-earth geometry, and sky obstruction by topographic features. It likewise
accounts for atmospheric conditions by including the diffuse proportion and the trans-
mittivity as input [72]. To calculate the diffuse proportion and transmittivity, we used
SEVIRI/AVHRR-derived daily fractional cloud cover (CFC), which we retrieved from EU-
METSAT’s Satellite Application Facility on Climate Monitoring (CM SAF), with a spatial
resolution of 15 × 15 km, as per the method described by Huang et al. [74]. Afterwards, by
dividing the global radiation over the number of hours per month, we derived the mean
global radiation in W/m2 per month.

2.6.4. Canopy Temperature

We included topography-based global radiation to downscale gridded air tempera-
ture. As it was empirically derived for a Festuca ovina grassland by Bennie et al. [32], we
calculated canopy temperature (temperature directly at the canopy surface) (Tc) using:

Tc = Tg + 0.013 Rad (3)

where Tg is gridded air temperature (◦C) and Rad is global radiation (W/m2). We assumed
that wind speed was mainly >1 m/s, a similar albedo between F. sylvatica and F. ovina,
neglected the temperature difference potentially caused by tree height, did not account
for canopy structure, nor for differences in transpiration rates. The coefficient of +0.013
was also in line with Ashcroft [75], who empirically modelled a parameter of +0.01327 to
multiply with radiation (W/m2) to retrieve a maximum temperature.

We extracted monthly means of air temperature, global radiation, and canopy temper-
ature for: (a) all Sentinel-2 and ground observed tree polygons, and (b) a radius of 50 m
around all camera sites using bilinear interpolation. For further analysis, only the month of
April was used, as preliminary results showed that air temperature of this month explained
ground-, camera-, and Sentinel-2 phenology better than any other single month or a combi-
nation of months. Furthermore, we only presented the results for canopy temperature here,
since similar results were obtained for all three explanatory variables. Canopy temperature
was preferred over air temperature and global radiation, since it integrates the other two
ones (see Equation (3)), is spatially more explicit, and most directly affects vegetation.

2.7. Statistical Analysis

To test differences between 2019 and 2020 in terms of the climate variables in the forest
stands for which we did ground- and Sentinel-2 observations, we used paired t-tests with
the quadrants as pairs.

To test differences in SOS per layer between 2019 and 2020 and per year between
layers, we ran generalized linear mixed-effects models (GLMM), accounting for grouping
by quadrant and site (for cameras) and quadrant and individual (for ground observations)
by including them as random factors, using the lme4 package [76] in R [59]. To test
differences in Sentinel-2 SOS between 2019 and 2020, we also performed GLMMs with
quadrant and individual as random factors.

To test the linear relation between overstory SOS and the vertical mismatch with the
understory, we used separate GLMMs for both camera and ground observations, with the
overstory SOS as the fixed effect, the vertical mismatch as the dependent variable, with
quadrant and site (for cameras) or only quadrant (for ground observations as the random
factors.



Remote Sens. 2021, 13, 3982 10 of 26

To test the linear effects of canopy temperature on SOS for all cameras and ground
observations, we first centered canopy temperature to its mean. Then, we ran GLMMs
with the canopy temperature as a fixed effect to predict the SOS of the overstory, the SOS
of the understory, and on vertical mismatch per site (for cameras) or per individual (for
ground), all in separate models, with quadrant and site (for cameras) or quadrant and
tree individual (for ground observations) as the random factors. For Sentinel-2, we ran
a GLMM to test the effect of canopy temperature on SOS of the tree polygons. To test if
the canopy temperature effect differed with tree height, we also included tree height (m)
per individual in the Sentinel-2 model and the interaction between tree height and canopy
temperature. Quadrant and tree individual were used as random effects.

Lastly, to deepen our insight into the relation between canopy height and spring
phenology, as obtained by Sentinel-2, for the pixels in the state forests dominated by F.
sylvatica (see Section 2.5 analysis 2), we tested the effect of mean canopy height per Sentinel-
2 pixel area, further referred to as “pixel mean canopy height”, on the SOS using simple
linear models per quadrant per year and compared results between the two years.

For the analyses we additionally used the raster package [77], RStoolbox package [78],
the jpeg package [79], and the lubridate package [80]. For visualizations, we used the
ggplot2 package [81] and the cowplot package [82] in R [59].

3. Results

In 2020, over all quadrants, mean April global radiation (206.01 W/m2) was 22.50 W/m2

higher than in 2019. Similarly, in 2020, the mean April air temperature (13.16 ◦C) was
0.68 ◦C higher than in 2019, and in 2020, the mean April canopy temperature (10.48 ◦C)
was 0.97 ◦C higher than in 2019.

Comparing the years using the Sentinel-2 observations, the pixels overlapping with
polygons around overstory individuals reached SOS in 2020 on DOY 108.13, which was
2.57 days earlier than in 2019 (p < 0.001). Furthermore, for each individual in every quad-
rant, SOS was earlier in 2020 than in 2019 (Figure 2a,b).

Comparing years per layer for the ground observations, the overstory reached SOS
in 2020 on DOY 109.00, which was 3.46 days earlier than in 2019 (p < 0.001), while the
understory reached SOS in 2020 on DOY 112.28, which was 1.2 days later than in 2019
(p = 0.09). Comparing layers per year for the ground observations, the understory reached
SOS in 2019 on DOY 111.20, which was 1.20 days earlier than the overstory, although not
significant (p = 0.38), while in 2020, the understory reached SOS on DOY 112.93, which was
3.84 days later than the overstory (p < 0.001) (Figure 2c,d).

Comparing years per layer for the camera observations, the overstory reached SOS
on DOY 109.95, which was 3.38 days earlier in 2020 than in 2019 (p < 0.001), while the
understory SOS on DOY 111.51 was not significantly different from 2019 (0.10 days later,
p = 0.79). Comparing layers per year for the camera observations, the understory reached
SOS in 2019 on DOY 111.37, which was 1.96 days earlier than the overstory (p = 0.007),
while, in 2020, the understory SOS was reached on DOY 111.47, 1.52 days later than the
overstory, although not significant (p = 0.13) (Figure 2e,f). Furthermore, comparing all
single sites (Figure 2e), we saw that the overstory advance in 2020, as compared to 2019,
was always larger than the understory advance, which was sometimes even delayed. In
other words, the vertical mismatch between the overstory and understory was higher at all
sites in 2020 compared to 2019.

We found a negative relation between the SOS of the overstory and the vertical
mismatch with the understory (Figure 3). This trend was consistent across methods. For
camera observations, we found an increased mismatch with the understory of 0.93 days per
day of overstory advancing (p < 0.001), indicating hardly any advancing of the understory
SOS when the overstory SOS was advancing. For ground observations, we found an
increased vertical mismatch with the understory of 1.31 days for an advance of the overstory
of 1 day (p < 0.001), indicating an understory SOS that was delayed when the overstory
SOS was advancing.
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Figure 2. Differences in SOS for 2019 and 2020, overstory and understory, by the three different methods: Sentinel-2
observations (a,b), ground observations (c,d), and camera observations (e,f). In panel (a,c), these observations are visualized
per quadrant and, in panel (e), per camera site, as indicated with a small letter behind the quadrant code. Dots represent
individuals (a,c) or cameras (e). In panel (b,d,f), these dots are summarized in boxplots per year, with large black dots
representing the mean and small black dots representing outliers. Lines represent individuals (a–d) or cameras (e,f).

Figure 4 and Table 2 show that higher canopy temperature advanced F. sylvatica
overstory SOS for both camera observations (−2.57 days per ◦C, p < 0.001) and ground
observations (−2.86 days per ◦C, p < 0.001), using canopy temperature as the only fixed
variable in the GLMM. For Sentinel-2 SOS, we found a similar trend of −2.64 days per ◦C
(p < 0.001) when including canopy temperature as the only fixed effect in the model, and
−2.62 days per ◦C (p < 0.001) when additionally including tree height and the interaction
between the two fixed effects in the model. In the latter case, we also found a signifi-
cant interaction between canopy temperature and height, explaining the Sentinel-2 SOS
(p < 0.001). In contrast, the canopy temperature did not affect the SOS of the understory for
camera observations (−0.18 days per ◦C, p = 0.57), nor for ground observations (+0.64 days
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per ◦C, p = 0.40). A canopy temperature increase of 1 ◦C led to an increase in vertical
mismatch of 2.52 days, as measured by camera observations, and 3.90 days, as measured
by ground observations (both p < 0.001).

Figure 3. Vertical mismatch between over- and understory (understory SOS–overstory SOS) in depen-
dence of the overstory SOS. Circles represent the year 2019, while triangles represent the year 2020.
Closed symbols represent camera observations, while open symbols represent ground observations.
The same quadrant (ground observations) or the same site (cameras) is always connected by a line
(solid for cameras and dashed for ground observations).

Table 2. Results of seven separate GLMMs (rows) explaining SOS per layer or vertical mismatch between overstory and
understory. Each row represents one model, with the dependent variable listed in the first column, followed by the method
in the second column. The third column represents the centered fixed effect. For camera and visual ground observations, that
was always canopy temperature (CT). For Sentinel-2 observations, the one model had CT, tree height, and the interaction
between CT and tree height (CT × height) as fixed effects. The coefficients represent regression slopes of the fixed effects
explaining the dependent variables. Since CT and height are both centered to their means, their centered intercepts are
listed for the different models. “n” represents number of trees (see Table 1) × 2 years (for Sentinel-2 and visual ground
observations) or number of sites × 2 years (for camera observations). Which random effects are used per model is described
in the methods. Stars indicate significance.

Dependent Variable Method Fixed Effect Coefficient Centered
Intercept n

Models Camera and Visual Ground Observations

SOS overstory (DOY) Camera CT −2.574 *** 111.494 *** 26
SOS overstory (DOY) Ground CT −2.860 *** 110.705 *** 58

SOS understory (DOY) Camera CT −0.175 111.450 *** 26
SOS understory (DOY) Ground CT +0.644 111.632 *** 44

Vertical mismatch (days) Camera CT +2.522 *** 0.072 26
Vertical mismatch (days) Ground CT +3.901 ** 0.085 18

Models Sentinel-2 Observations

CT coefficient Height
coefficient

Interaction
coefficient

SOS (DOY) Sentinel-2 CT * height −2.619 *** −0.025 −0.082 *** 109.416 *** 184

Note: * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 4. Effects of mean canopy temperature in April (◦C) on Sentinel-2 SOS (a), overstory SOS by visual ground
observations (b), overstory SOS by camera observations (c), understory SOS by visual ground observations (d), understory
SOS by camera observations (e), vertical mismatch by visual ground observations, (f) and vertical mismatch by camera
observations (g). Colors represent quadrants. Circles represent records from 2019, while triangles represent records from
2020. Colored lines connect the same individuals (a,b,d), ROIs (c,e), quadrant averaged values (f) or sites (g) between the
two years. Thick black lines are linear regression lines.

In Figure 5, we present the significant negative interactions between the climate
variables and tree height to explain the Sentinel-2 SOS (Table 2), meaning that the effects
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of air and canopy temperature were stronger when tree height was higher. In Figure 5,
we indeed see that for forests with taller trees (reddish colors), the lines connecting 2019
with 2020 showed a steeper decrease than those lines representing forests with lower
trees (bluish colors). This means that for forests with taller trees, effects of air and canopy
temperature on Sentinel-2 SOS were stronger than for forests with smaller trees. Note that
in Figure 5, we gave all trees within a quadrant the same color for optimal visualization,
corresponding to the mean F. sylvatica tree height per quadrant, while we used individual
tree height in our GLMMs (Table 2).

Figure 5. Interaction effects of climate variables (mean air temperature April (a), mean canopy temperature April (b)) and
tree height on Sentinel-2 SOS. Colors correspond to the mean tree height per quadrant. Circles represent observations from
2019, triangles represent observations from 2020. Same individuals are connected with thin lines. Thick colored lines connect
the mean observation in 2019 with the mean observation in 2020 per quadrant. Thick black lines are linear regression lines.

Our analysis on all State Forest areas with F. sylvatica as dominant species in the
seven quadrants (Table 3; Figure 6) revealed that, for all single quadrants and overall, the
negative linear relation between Sentinel-2 pixel mean canopy height and Sentinel-2 SOS
was stronger in 2020 (mean trend among quadrants of −0.133 days per meter) than in 2019
(mean trend among quadrants of −0.017 days per meter).



Remote Sens. 2021, 13, 3982 15 of 26

Table 3. Pixel mean canopy height effects from separate linear models per quadrant × year predicting Sentinel-2 SOS
(Figure 6) and the resulting output for 1 m (understory height) and 30 m (adult tree height). Values under intercept, SOS at
1 m, and SOS at 30 m are in DOY. Height effect is the number of days the SOS is predicted to increase (+) or decrease (−) per
m increase in pixel mean canopy height.

2019 2020

Quadrant Intercept
(DOY)

Height
Effect

SOS at 1 m
(DOY)

SOS at 30 m
(DOY)

Intercept
(DOY)

Height
Effect

SOS at 1 m
(DOY)

SOS at 30 m
(DOY)

Q1 110.8 −0.003 110.8 110.7 109.6 −0.02 109.6 108.9
Q2 110.2 −0.008 110.2 109.9 110.0 −0.05 110.0 108.4
Q4 112.2 −0.062 112.2 110.4 111.6 −0.19 111.4 105.8
Q5 110.5 +0.038 110.6 111.6 108.9 −0.14 108.7 104.7
Q6 109.9 −0.028 109.8 109.0 109.0 −0.09 108.9 106.4
Q7 112.2 −0.012 112.2 111.9 112.0 −0.16 111.8 107.1
Q8 110.4 −0.046 110.4 109.1 112.0 −0.27 111.8 103.9

Mean 110.9 −0.017 110.9 110.4 110.5 −0.13 110.3 106.5

Figure 6. Effects of pixel mean canopy height (m) on SOS (DOY), derived from Sentinel-2 pixels
covering all State Forest areas in which F. sylvatica is the dominant species. Names on top of the
different panels refer to quadrant names followed by year. Each point represents a pixel, and is
colored according to the point density, i.e., number of neighbors (“n neighbors”), in the plot. Number
of neighbors is defined according to the default options in the geom_pointdensity function as part of
the ggplot2 package [81] in R [59].

This resulted in a relatively similar predicted SOS between years at 1 m (mean DOY
of 110.9 in 2019 and mean DOY of 110.3 in 2020), however deviated in predicting the SOS
at 30 m (mean DOY of 110.4 in 2019 and mean DOY of 106.5 in 2020) (Table 3; Figure 6).
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4. Discussion
4.1. Over- and Understory Phenology Response to Climatic Drivers

For both camera and ground observations, F. sylvatica overstory advanced more than F.
sylvatica understory in 2020, with the warmer and higher radiant April, compared to 2019,
with a cooler and lower radiant April. Furthermore, overstory SOS was directly related to
vertical mismatch with a ratio of roughly 1:1.

Matching these results, both our camera and ground observations revealed that F.
sylvatica overstory and understory phenology responded differently to climatic drivers: the
overstory advanced more with higher canopy temperature, a variable integrating radiation
and air temperature, than the understory did.

The significant advances of overstory SOS with higher canopy temperature were
very close to each other for the three different methods: −2.86 days per ◦C for ground
observations, −2.57 days per ◦C for camera observations, and −2.62 days per ◦C for
Sentinel-2 observations. These rates closely matched the mean advance of 2.5 days per ◦C
temperature increase reported by Menzel et al. [1] for all recorded species together.

However, for the understory, we did not observe phenological advancing with higher
canopy temperatures, indicating again that phenology of F. sylvatica foliage in the under-
story may be less responsive to climate change than phenology of F. sylvatica foliage in the
overstory.

4.2. Vertical Mismatch

As a result, for both camera and ground observations, a higher canopy temperature
led to a decreased phenological escape of the understory, meaning an increased vertical
mismatch within F. sylvatica. We found a higher increase in vertical mismatch with canopy
temperature for ground observations than for camera observations. That might be related
to the fact that for the ground observations of the understory, juveniles were exclusively
selected, while the camera understory ROIs also covered lower parts of taller trees. Further-
more, foliage further away from the camera might have also slightly exceeded the lowest
two meters of the forest. This reasoning is plausible since the closer to the forest floor, the
higher the temperature and radiation buffering [28].

Our results indicate an understory being relatively irresponsive to climate variables,
unlike the highly susceptive overstory. This may cause shifting matches between overstory
and understory phenology in the future, as not only the widely reported worldwide
temperatures are continuing to rise, but increasing trends for global radiation were likewise
reported. In Bavaria, between 1951 and 2020, sunshine duration increased yearly by 7.7%,
by 10.7% in spring (mean of March, April, and May), and, in April specifically, by 23.8%.
Zooming out to Germany, the respective numbers were quite similar (8.7%, 11.9%, and
23.2%) [83]. Moreover, for the entirety of Europe, covering the whole area in which F.
sylvatica naturally occurs, Pfeifroth et al. [84] reported an overall brightening since the
1980s, with a rate of between 1.9 and 2.4 W/m2/decade. If climate change, in terms of
air warming and increasing radiation, will keep advancing overstory SOS, our results
suggest that the vertical mismatch between forest layers may increase for F. sylvatica. Or,
in the words of Jacques et al. [30], the understory will be less able to “phenologically
escape”. We can explain these results by the buffering capacity of forest overstory to
climate variables, making them fluctuate less in the understory [10]. More specifically,
results from Hertel et al. [24] indicated that the difference in PAR between the overstory
and understory was more pronounced with clear-sky conditions than with overcast-sky
conditions. Furthermore, in April, the month in which the SOS occurred in all cases, the
angle of the sun relative to the horizon was still relatively low in our study area, which
additionally negatively affected the amount of PAR that was able to penetrate a canopy, but
only on clear-sky days [85]. To prove these hypotheses of microclimatic differences between
the overstory and understory, we recommend conducting future studies to measure both
the understory and overstory temperature and radiation at each study site.
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Our results were in line with the results from Heberling et al. [9], who found a lower
response rate to increased weather station-derived temperature for flower phenology of
the herbaceous understory layer compared to canopy phenology of the overstory. Our
finding, that the same principle applies intra-specifically to F. sylvatica foliage, is new and
implies important ecological effects, as well as methodological consequences, for the field
of remote sensing.

4.3. Ecological Consequences and Forest Management

Ecologically and on the population level of F. sylvatica, increased vertical mismatch
between the overstory and understory of the same species will drastically decrease the
amount of light that reaches the understory in the favorable time period that it uses to
phenologically escape [30]. In this way, photosynthesis, carbon uptake, and the growth
of the understory may be decreased [23] and the establishment of regeneration might be
hampered. As understory is the overstory of the future, this might highly affect the future
of deciduous forests [18], at least those in which F. sylvatica is the dominating species,
which, in turn, might affect wood production and animal habitats. We suggest future
research to test if these patterns can be generalized to other main deciduous tree species in
temperate forests.

Nevertheless, the lower phenological response rate of the understory to temperature
might decrease its susceptibility to late-frost events after leafout, and, in that way, the
mechanism also acts as a buffer. However, Jones et al. [26] and Seiwa [27] showed that, for
Acer rubrum and Acer mono seedlings, this late-frost risk was negligible compared to the
huge advantage of leafing out before the overstory.

On the other hand, phenological mismatches with higher trophic levels, enhanced by
climate change, might be buffered by a more stable understory that is less susceptive to
change. This will especially count for herbivores, which are exclusively dependent on the
understory [37], such as roe deer, and also for animals, which are theoretically able to move
among forest layers to track vertical variability in leaf and flower phenology. However, in
reality, most arthropods are highly stratified to a single forest layer for foraging [17]. If this
is the understory, our findings indicate that they will be affected differently than in case of
the overstory.

Our results, and these potential ecological consequences, should be accounted for in
decision making in forest management. Silvicultural measures in regeneration stands, such
as selective cutting intended to create gaps in the overstory, are often designed to regulate
the radiation gain in the understory in such a way that the regeneration is promoted in its
growth. If the phenological escape became smaller due to climate change, including higher
temperatures and global radiation, then the (natural) regeneration would have poorer
chances of growing up underneath older stands. This negative effect would then have
to be avoided by more intense selective cuttings of trees with crowns in the upper layer.
This, in turn, could reduce the ecological services of forests, such as climate (temperature)
mitigation, which are more pronounced in closed stands.

4.4. Methodological Consequences

Our results showed that erroneous ecological conclusions might be drawn when
generalizing climate effects on forest phenology to only two dimensions, which is generally
done using Sentinel-2 or other multispectral remote sensing data.

The canopy temperature response rate of the Sentinel-2 derived SOS was closer to
those of the ground and camera derived overstory SOS than to those of the understory SOS.
This means that Sentinel-2 data tended to overestimate climate effects on phenology of the
forest as a whole. Among all studies in which overstory and understory phenology are
disentangled and compared with satellite data, we are reporting this pattern for the first
time. In contrast, Ahl et al. [35] and Ryu et al. [38] found MODIS-derived phenology to be
better matching with understory phenological ground observations than with overstory
phenological ground observations. However, those studies reported consistently earlier
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spring starts for the understory than for the overstory, just as Augspurger and Barlett [19],
Richardson and O’Keefe [20], and Liu et al. [49] did. In those cases, as the understory
became visible first, it is logical that this layer was prevailing in the remotely sensed phenol-
ogy signal. In contrast to those publications, in our study, the phenology of the understory
mostly lagged behind that of the overstory (for more than half of the study sites the vertical
mismatch was >0). In those cases, obviously, it was mainly the overstory that could be
sensed from above. We can also explain the deviation from the earlier studies with specific
weather conditions in our study years. April 2020 was the April with the highest sunshine
duration (with an anomaly of +93.1% compared to 1961–1990), and the months March,
April, and May, taken together, formed the spring with the highest sunshine duration
(with an anomaly of +49.1% compared to 1961–1990) since the start of observations in
Bavaria in 1951. Furthermore, April 2019 was, with an anomaly of +40.8% in sunshine
duration compared to 1961–1990, also relatively sunshine-rich. Additionally, mean April
temperatures in Bavaria were also relatively high in both years: 10.3 ◦C in 2020 (+3.3 ◦C
compared to 1961–1990) and 9.4 ◦C in 2019 (+2.4 ◦C compared to 1961–1990) [83,86]. Con-
sequently, springs in the study years were likely warmer and had higher radiation levels
than the aforementioned studies, increasing the likelihood of higher vertical mismatch
and, in turn, the likelihood that the overstory was visible earlier than the understory in the
satellite signal.

In line with these results, the significant interaction between tree height and canopy
temperature explaining the Sentinel-2 SOS indicates that the higher the forest trees, the
stronger the effect of temperature and radiation, and the larger the phenological difference
between the two years. We argue that this is the case because the relative proportion of the
understory, which was responding less to canopy temperature, was lower in the vertically
integrated Sentinel-2 signal when the average tree height was higher for two reasons: first,
there was relatively more biomass, such as branches, of the overstory trees present in pixels
with a taller tree canopy, blocking the view on the understory, and second, when fully
stocked, there was less understory present underneath taller trees because of the lower
light conditions in the growing season. Several studies used the same reasoning to explain
higher understory appearance in sparser coniferous forests [36,87,88].

Our larger scale analysis on all beech forest stands revealed patterns within each
quadrant confirming this height-climate interaction: comparing the SOS responses to pixel
mean canopy height between the two years, we systematically observed rates with higher
decreasing magnitudes in 2020, which had a warmer and higher radiant April, compared
to 2019, which had a cooler and less radiant April. We can explain the relatively low
SOS response rates to pixel mean canopy height in 2019 by our result that, on average,
the understory greened up before the overstory that year. Intuitively, in such cases, we
would have expected an increasing response of SOS to height, which only Q5 demonstrated
(+0.038 days per degree warming, p < 0.001). We explain a more or less equal SOS for
different pixel mean canopy heights however by the fact that pixels with both low as well
as high canopies contained understory. In the warmer and more radiant spring of 2020, we
observed, for all seven quadrants, a steeper decreasing SOS with increasing pixel mean
canopy height. As higher pixels will again have relatively higher proportions of overstory
compared to lower pixels, this result is in line with an earlier greening overstory than
understory in 2020.

4.5. Future Research Directions

The study of phenology by remote sensing is, in the literature, generally defined as
land surface phenology (LSP) [89]. However, we argue that “land” per definition is not
a “surface”, but rather a three-dimensional space. This pre-eminently applies to forests,
as they are a green land use type with a relatively large vertical component upon which
many ecological processes depend. This study proved that generalizing its phenology
to only two-dimensions might lead to oversimplified conclusions on climate effects. In
warm, high radiant springs, the overall forest phenological advance to warming might
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be overestimated because there is an invisible understory layer below which responds
later. On the contrary, in colder, less radiant springs, when the understory SOS takes place
before the overstory SOS, the sensed phenological advance by warming depends on the
canopy height and density: for higher or denser forests the phenological advance might be
relatively overestimated because of a higher proportion of overstory in the signal, while
in lower or sparser forests it might be underestimated because of a higher proportion of
understory in the signal.

Methodologically, we recommend that, when using Sentinel-2 or any other spectral
satellite remote sensing product in future phenological studies in temperate deciduous
forests, ground and camera observations should be conducted as well to disentangle
overstory from understory. The application of UAVs [46], or satellite sensors with a higher
spatial resolution such as PlanetScope data (3 m resolution) [90], is also promising for this
purpose, as pixels showing pure understory might be visible through smaller gaps in the
canopy. Furthermore, for the case of UAVs, height can photogrammetrically be derived on
such a fine scale using the overlap of images. An important requirement thereby is that
the temporal resolution should be high enough to cover periods with phenological change.
Furthermore, we recommend investigating the use of indices other than NDVI, such as the
two-band enhanced vegetation index (EVI2) or the plant phenology index (PPI), as these
may saturate less quickly at higher biomass levels and, therefore, might perform better
in predicting vegetation phenology [91] and potential vertical mismatch. Furthermore,
especially when moving away from temperate deciduous forests, it is important to carefully
choose the method to derive the SOS, as White et al. [43] found that the ordinal rank of
SOS methods differs among ecoregions. Among others, the smoothing method of raw
data should be carefully considered, as, in some cases or specific ecoregions, methods
other than double-logistic curve-fitting, such as HANTS or SG, might be more appropriate,
e.g., [43,92]. Moreover, recent studies, e.g., [93], showed that machine learning techniques
might be promising as they are outperforming other methods to derive SOS, validated by
ground observations.

Ecologically, since Vitasse et al. [21] proved that phenological escaping of the under-
story is determined ontogenetically, and since our findings suggest increased phenological
mismatch with warmer and higher radiant springs, we expect that climate change proceeds
faster than species are able to ontogenetically adapt. An adaptation strategy would be that
the ontogenetic phenological differences also increase, by which the understory will stay
relatively able to keep phenologically escaping. More research and, most importantly, more
study years are needed to investigate this kind of (micro)evolution in response to further
climate change.

As Teuling et al. [94] found in observational evidence for higher cloud cover over
large forest regions in Western Europe, it may be that in regions with large proportions of
forest cover, radiation and temperature changes are mitigated, thereby suggesting that the
vertical mismatch found in this study may be less pronounced. Therefore, our findings are
not only relevant to consider for small scale forest management, but also for large scale
land use decisions. We support further research on the interaction between land use and
climate change.

5. Conclusions

Cameras and ground observations revealed that increased April canopy temperature,
integrating air temperature, and site-specific radiation, advanced the overstory phenology,
but not the understory phenology, leading to a decrease of the classical phenological escape
of the understory relative to the overstory and, therefore, to an increase in vertical mismatch.
Furthermore, higher trees and forest canopies had a higher sensitivity to temperature than
lower trees and forests, as we found through the Sentinel-2 data.

These findings may have major ecological and economical effects, as well as method-
ological consequences, for remote sensing studies. Ecologically and economically, they
indicate that—for this specific pathway—climate change may render (natural) regeneration
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under older stands more difficult, but decrease potential damage by spring late-frost events
and buffer phenological mismatches with higher trophic levels. Methodologically, the
warmer and more radiant a spring, the more likely it is that we sense the overstory without
the understory in the signal from Sentinel-2. Due to this climate dependency, remotely
sensed signals from above, which generalize forests to a 2D-surface, such as those from
Sentinel-2, might be misinterpreted. This may lead to incorrect conclusions about the
relationship between climate change and forest phenology, and on how able these forests
are to mitigate these effects. We recommend our findings be taken into account in future
forest management and land use decisions, as well as in further research on remote sensing
of forest phenology.
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Appendix A

Figure A1. All camera observed normalized GGC time series for the three different sites (a–c) from quadrant Q4, with
the two years separated over two panels. Transparent symbols indicate GCC values from hourly camera pictures (four
per day). Opaque symbols represent the 60th percentile of a 3 day moving window and a time step of 1 day. Each curve
represents modelled values for one camera × year resulting from double-logistic functions to each time series according to
Beck et al. [57]. Vertical dashed lines indicate start of season (SOS), the DOY at which a normalized GCC of 0.5 was reached
for the modelled values. Red represents overstory, while blue represents understory.
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Figure A2. All leafout fraction time series for visual ground observations for quadrant Q4 in 2019 (a) and 2020 (b). Each
curve represents a tree: blue for understory, red for overstory, and fitting double-logistic functions to visual ground
observations (circles). Dashed vertical lines indicate the DOY at which the modelled values reached 50% of the amplitude,
implying that 50% of the leaves have been unfolded (leafout 50%).
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Figure A3. All normalized NDVI time series from Sentinel-2 data set 1 for one quadrant (Q4). Each curve represents a
double-logistic function to normalized NDVI time series (symbols for single NDVI acquisitions, circles for 2019 and triangles
for 2020) of a single tree crown. Red for 2019 and blue for 2020. Vertical dashed lines represent start of season (SOS) as the
moment at which the curves reached a threshold of 0.3.

References
1. Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.G.; Briede, A.

European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 2006, 12, 1969–1976.
[CrossRef]

2. Cannell, M.; Smith, R. Climatic warming, spring budburst and forest damage on trees. J. Appl. Ecol. 1986, 23, 177–191. [CrossRef]
3. Gu, L.; Hanson, P.J.; Post, W.M.; Kaiser, D.P.; Yang, B.; Nemani, R.; Pallardy, S.G.; Meyers, T. The 2007 eastern US spring freeze:

Increased cold damage in a warming world? BioScience 2008, 58, 253–262. [CrossRef]
4. Plard, F.; Gaillard, J.-M.; Coulson, T.; Hewison, A.J.M.; Delorme, D.; Warnant, C.; Bonenfant, C. Mismatch Between Birth Date and

Vegetation Phenology Slows the Demography of Roe Deer. PLoS Biol. 2014, 12, e1001828. [CrossRef] [PubMed]
5. Renner, S.S.; Zohner, C.M. Climate Change and Phenological Mismatch in Trophic Interactions Among Plants, Insects, and

Vertebrates. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 165–182. [CrossRef]
6. Thackeray, S.J.; Sparks, T.H.; Frederiksen, M.; Burthe, S.; Bacon, P.J.; Bell, J.R.; Botham, M.S.; Brereton, T.M.; Bright, P.W.; Carvalho,

L. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Chang.
Biol. 2010, 16, 3304–3313. [CrossRef]

7. Visser, M.E.; Van Noordwijk, A.J.; Tinbergen, J.M.; Lessells, C.M. Warmer springs lead to mistimed reproduction in great tits
(Parus major). Proc. R. Soc. B Boil. Sci. 1998, 265, 1867–1870. [CrossRef]

8. Voigt, W.; Perner, J.; Davis, A.J.; Eggers, T.; Schumacher, J.; Bährmann, R.; Fabian, B.; Heinrich, W.; Köhler, G.; Lichter, D. Trophic
levels are differentially sensitive to climate. Ecology 2003, 84, 2444–2453. [CrossRef]

9. Heberling, J.M.; McDonough MacKenzie, C.; Fridley, J.D.; Kalisz, S.; Primack, R.B. Phenological mismatch with trees reduces
wildflower carbon budgets. Ecol. Lett. 2019, 22, 616–623. [CrossRef]

10. Landuyt, D.; De Lombaerde, E.; Perring, M.P.; Hertzog, L.R.; Ampoorter, E.; Maes, S.L.; De Frenne, P.; Ma, S.; Proesmans, W.;
Blondeel, H. The functional role of temperate forest understorey vegetation in a changing world. Glob. Chang. Biol. 2019, 25,
3625–3641. [CrossRef]

11. Post, E.; Pedersen, C.; Wilmers, C.C.; Forchhammer, M.C. Warming, plant phenology and the spatial dimension of trophic
mismatch for large herbivores. Proc. R. Soc. B Boil. Sci. 2008, 275, 2005–2013. [CrossRef] [PubMed]

http://doi.org/10.1111/j.1365-2486.2006.01193.x
http://doi.org/10.2307/2403090
http://doi.org/10.1641/B580311
http://doi.org/10.1371/journal.pbio.1001828
http://www.ncbi.nlm.nih.gov/pubmed/24690936
http://doi.org/10.1146/annurev-ecolsys-110617-062535
http://doi.org/10.1111/j.1365-2486.2010.02165.x
http://doi.org/10.1098/rspb.1998.0514
http://doi.org/10.1890/02-0266
http://doi.org/10.1111/ele.13224
http://doi.org/10.1111/gcb.14756
http://doi.org/10.1098/rspb.2008.0463
http://www.ncbi.nlm.nih.gov/pubmed/18495618


Remote Sens. 2021, 13, 3982 24 of 26

12. Wang, C.; Tang, Y.; Chen, J. Plant phenological synchrony increases under rapid within-spring warming. Sci. Rep. 2016, 6, 1–7.
[CrossRef]

13. Zohner, C.M.; Mo, L.; Renner, S.S. Global warming reduces leaf-out and flowering synchrony among individuals. eLife 2018, 7,
e40214. [CrossRef]

14. Chen, L.; Huang, J.-G.; Ma, Q.; Hänninen, H.; Rossi, S.; Piao, S.; Bergeron, Y. Spring phenology at different altitudes is becoming
more uniform under global warming in Europe. Glob. Chang. Biol. 2018, 24, 3969–3975. [CrossRef]

15. Vitasse, Y.; Signarbieux, C.; Fu, Y.H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl. Acad.
Sci. USA 2018, 115, 1004–1008. [CrossRef] [PubMed]

16. Donnelly, A.; Yu, R. Temperate deciduous shrub phenology: The overlooked forest layer. Int. J. Biometeorol. 2019, 65, 1–13.
[CrossRef]

17. Ulyshen, M.D. Arthropod vertical stratification in temperate deciduous forests: Implications for conservation-oriented manage-
ment. For. Ecol. Manag. 2011, 261, 1479–1489. [CrossRef]

18. Kwit, M.C.; Rigg, L.S.; Goldblum, D. Sugar maple seedling carbon assimilation at the northern limit of its range: The importance
of seasonal light. Can. J. For. Res. 2010, 40, 385–393. [CrossRef]

19. Augspurger, C.K.; Bartlett, E.A. Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest.
Tree Physiol. 2003, 23, 517–525. [CrossRef] [PubMed]

20. Richardson, A.D.; O’Keefe, J. Phenological differences between understory and overstory. In Phenology of Ecosystem Processes;
Springer: New York, NY, USA, 2009; pp. 87–117.

21. Vitasse, Y. Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytol. 2013,
198, 149–155. [CrossRef] [PubMed]

22. Fu, Y.H.; Piao, S.; Op de Beeck, M.; Cong, N.; Zhao, H.; Zhang, Y.; Menzel, A.; Janssens, I.A. Recent spring phenology shifts in
western C entral E urope based on multiscale observations. Glob. Ecol. Biogeogr. 2014, 23, 1255–1263. [CrossRef]

23. Gill, D.S.; Amthor, J.S.; Bormann, F.H. Leaf phenology, photosynthesis, and the persistence of saplings and shrubs in a mature
northern hardwood forest. Tree Physiol. 1998, 18, 281–289. [CrossRef]

24. Hertel, C.; Leuchner, M.; Menzel, A. Vertical variability of spectral ratios in a mature mixed forest stand. Agric. For. Meteorol.
2011, 151, 1096–1105. [CrossRef]

25. Jolly, W.M.; Nemani, R.; Running, S.W. Enhancement of understory productivity by asynchronous phenology with overstory
competitors in a temperate deciduous forest. Tree Physiol. 2004, 24, 1069–1071. [CrossRef]

26. Jones, R.H.; Allen, B.P.; Sharitz, R.R. Why do early-emerging tree seedlings have survival advantages?: A test using Acer rubrum
(Aceraceae). Am. J. Bot. 1997, 84, 1714–1718. [CrossRef]

27. Seiwa, K. Advantages of early germination for growth and survival of seedlings of Acer mono under different overstorey
phenologies in deciduous broad-leaved forests. J. Ecol. 1998, 86, 219–228. [CrossRef]

28. De Frenne, P.; Zellweger, F.; Rodriguez-Sanchez, F.; Scheffers, B.R.; Hylander, K.; Luoto, M.; Vellend, M.; Verheyen, K.; Lenoir, J.
Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 2019, 3, 744–749. [CrossRef]

29. Bolte, A.; Czajkowski, T.; Cocozza, C.; Tognetti, R.; De Miguel, M.; Pšidová, E.; Ditmarová, Ĺ.; Dinca, L.; Delzon, S.; Cochard,
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