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Abstract: Traditional pixel-based semantic segmentation methods for road extraction take each pixel
as the recognition unit. Therefore, they are constrained by the restricted receptive field, in which
pixels do not receive global road information. These phenomena greatly affect the accuracy of road
extraction. To improve the limited receptive field, a non-local neural network is generated to let each
pixel receive global information. However, its spatial complexity is enormous, and this method will
lead to considerable information redundancy in road extraction. To optimize the spatial complexity,
the Crisscross Network (CCNet), with a crisscross shaped attention area, is applied. The key aspect of
CCNet is the Crisscross Attention (CCA) module. Compared with non-local neural networks, CCNet
can let each pixel only perceive the correlation information from horizontal and vertical directions.
However, when using CCNet in road extraction of remote sensing (RS) images, the directionality of
its attention area is insufficient, which is restricted to the horizontal and vertical direction. Due to the
recurrent mechanism, the similarity of some pixel pairs in oblique directions cannot be calculated
correctly and will be intensely dilated. To address the above problems, we propose a special attention
module called the Dual Crisscross Attention (DCCA) module for road extraction, which consists of
the CCA module, Rotated Crisscross Attention (RCCA) module and Self-adaptive Attention Fusion
(SAF) module. The DCCA module is embedded into the Dual Crisscross Network (DCNet). In the
CCA module and RCCA module, the similarities of pixel pairs are represented by an energy map. In
order to remove the influence from the heterogeneous part, a heterogeneous filter function (HFF) is
used to filter the energy map. Then the SAF module can distribute the weights of the CCA module
and RCCA module according to the actual road shape. The DCCA module output is the fusion of
the CCA module and RCCA module with the help of the SAF module, which can let pixels perceive
local information and eight-direction non-local information. The geometric information of roads
improves the accuracy of road extraction. The experimental results show that DCNet with the DCCA
module improves the road IOU by 4.66% compared to CCNet with a single CCA module and 3.47%
compared to CCNet with a single RCCA module.

Keywords: remote sensing; semantic segmentation; road extraction; attention mechanism; geometric
information; directionality

1. Introduction

Road extraction has become a popular topic as a branch subject of semantic segmen-
tation, and many complicated deep learning methods have been developed [1–3] and
improved continuously to pursue a higher accuracy.

Some researchers have focused on the loss function. He et al. [3] proposed an encoder-
decoder network model with a special loss function, which was optimized by road structure
constraints. This method improved the detection of road coherence to a certain extent. In
addition, many deep learning models based on the fully convolution network (FCN) have

Sensors 2021, 21, 6873. https://doi.org/10.3390/s21206873 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21206873
https://doi.org/10.3390/s21206873
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206873
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206873?type=check_update&version=2


Sensors 2021, 21, 6873 2 of 28

been proposed [1,4]. Some researchers have analysed the effective area of the receptive field
in traditional convolutional neural networks (CNNs). The active receptive field presents a
Gaussian distribution, which will lead to difficulties for each pixel in obtaining contextual
information [5]. These road extraction methods were generally at the pixel level, which
would lead to local receptive area limits; therefore, each pixel will not receive enough
global information [6]. However, the roads in remote sensing images have multidirec-
tional characteristics. Due to the lack of perception of global information, the geometric
information of the road has not been fully utilized.

To solve the poor receptive field problem, many constructions have been proposed to
expand the receptive field range. Wang et al. [2] proposed the non-local neural network,
which calculates the feature similarity between each pixel and other pixels on the feature
map. In this way, the global information can be integrated into the centre pixel. However,
this method needs to calculate the relationship of each pixel pair on the feature map, which
will lead to a high computational complexity. In specific semantic segmentation problems,
it will generate information redundancy. Some researchers have focused on the convolution
process and produced dilated convolutions to enlarge the receptive field [7]. However,
the dilated convolution has some flaws. When using dilated convolutions, the effective
receptive field of the pixels at the edge of the feature map is quite different from that of the
pixels at the centre. The uncertainty of the effective receptive field will make it untargeted
to solve semantic segmentation problems.

Following the idea of reducing computational cost and information redundancy,
Huang et al. [8] generated the CCNet by using a crisscross shape attention module, which
can expand the receptive field in the vertical and horizontal directions at the same time.
Using a recurrent mechanism, CCNet can let each pixel receive global information with a
relatively low computational cost. However, this mechanism will also lead to a recurrent
dilemma, which means that the similarity calculation of two pixels will be influenced by
the intermediate pixel. In extreme cases, the heterogeneity of the intermediate nodes will
reduce the similarity of homogeneous pixels in the oblique direction.

For example, there are two pixels P1 and P2 in the Figure 1:
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P1 and P2 are two points on the road, while S1 and S2 are two points on the non-road
part. S1 and S2 are in the vertical and horizontal directions of P1 and P2. Using a recurrent
mechanism [8], the relation between P1 and P2 needs to contain the transitions in S1 and
S2, which can be described as P1→S1→P2 and P1→S2→P2. In the similarity calculation,
by processing the feature vector, the similarity of P1 and S1 is α1. The similarities of S1 and
P2, P1 and S2, S1 and P2 are α2, α3, and α4, respectively. The similarity of P1 and P2, which
is directly calculated by the feature vectors, is α5. Due to the heterogeneity of S1 and P1, α1
is relatively smaller than α5. Moreover, α2, α3, and α4 are also relatively smaller than α5
for the heterogeneity of corresponding points. In the recurrent mechanism, the similarity
of P1 and P2 will be α1 × α2 + α3 × α4, which can be regarded as the second-order small
amount compared to α5, which is why the recurrent mechanism will lead to the distortion
of similarity. In the methodology section, we will illustrate this in detail by the formula.

Consequently, the key shortcoming of CCNet is that the crisscross shape attention
module has poor directionality when extracting multidirectional objects, especially roads.
Considering the multidirectionality of roads, we add two extra attention areas, with one
line in the 45◦ direction and another line in the 135◦ direction, to let each pixel receive more
directional information. These two lines are called the RCCA module. The CCA module
and RCCA module can let each pixel receive contextual information from eight directions.
The computational cost of RCCA module is two-thirds of the computational cost of CCA
module.

In the attention process, the generation of weights is an important step, where the
activation function is often used. Some researchers choose the sigmoid function to output
the final weights in the spatial attention module [9]. The activation function can be regarded
as a selection of the feature. According to the requirements of semantic segmentation work,
we proposed an HFF, which can largely reduce the influence of the heterogeneous part in
the attention area.

Then we proposed a SAF module that can distribute the weight of the CCA module
and RCCA module according to the specific direction of roads in images. The combination
of the SAF module, CCA module and RCCA module is called the DCCA module. The
computational cost of DCCA module is five-thirds of the computational cost of CCA
module.

The innovations are based on the following aspects.
In the road extraction area, we proposed the RCCA module, which expands the

attention area to pixels in the oblique direction for the first time. Consequently, it can solve
the recurrent dilemma in DCCA module was designed by distributing the weight of the
CCA module and RCCA module according to the specific road shape. The DCCA module
can let each pixel receive contextual information from eight directions and not only local
pixel information from convolutions. Therefore, it can be regarded as the combination of
eight directional nonlocal attention mechanisms and the local convolution mechanism.

A heterogeneous filter function is created to suppress the influence of heterogeneous
regions in the attention process. Processed by the heterogeneous filter function, each pixel
can largely receive contextual information from homogeneous areas, which can promote
the extraction accuracy.

In the following sections, we will introduce the related work, methodology, experi-
ment, and conclusion. In the related work section, we will give an overview of the research
content related to our work. Then, in the methodology section, we will give a detailed
description of the implementation method of the DCCA module and the grafted network.
In the experimental section, we will show the advantages of the DCCA module on the
attention of road directionality through experimental analysis.

2. Related Work
2.1. Semantic Segmentation Based on Deep Learning

With the advent of LeNet in 1998, convolutional neural networks (CNNs) began to
be widely used in image information processing [10]. The main elements of CNNs were
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also determined at this time, including convolutional layer, pooling layer, fully connected
layer, etc. Researchers designed AlexNet and let people see the potential of CNN in image
processing for the first time in the ImageNet competition in 2012 [11]. Since then, the
image processing capabilities have been transferred to semantic segmentation, and various
networks, including different architectures, exist in the semantic segmentation stage.

The deep learning algorithm of semantic segmentation affixes class labels to each pixel.
That is, the general workflow can be regarded as the interpretation of the pixels. After years
of development, there are many prominent semantic segmentation neural networks, such
as FCN [4], U-Net [12], SegNet [13], and DeepLab [14]. However, FCNs and other networks
based on the CNN structure limit the range of the receptive field and can only obtain short-
range context information. Although the traditional deep convolutional neural network
obtains global context information by superimposing multiple convolutions, related studies
have shown that the actual perception range of this method is smaller than the theoretical
expected value [6]. Some researchers have found that this kind of receptive field has
an irregular Gaussian distribution around the central pixel [5]. Consequently, the long-
distance dependency relation inside the sample cannot be processed properly. To address
this problem, Chen et al. proposed the Atrous Spatial Pyramid Pooling (ASPP) module with
multiscale dilated convolution to integrate context information [14–16]. On this basis, Zhao
et al. further proposed Pyramid Scene Parsing Network (PSPNet) with a pyramid pooling
module to capture contextual information [17]. These kinds of methods based on dilated
convolution still have the deflection that they obtain information from a small number
of surrounding points and cannot form a dense context information structure. At the
same time, methods based on pooling lose too much spatial information and thus cannot
effectively meet the pixel-by-pixel classification requirements of semantic segmentation. To
effectively obtain the global context information of the pixel, PSPNet learns to summarize
the contextual information of each pixel by the predicting attention map [18]. A non-local
network uses a self-attention mechanism to enable each pixel to perceive the features of
pixels at all other locations, which can produce more powerful pixel-level characterization
capabilities [2].

With the advancement of the attention mechanism in the application of semantic
segmentation, crisscross attention [8], a very prominent attention method, was proposed.
Crisscross attention proposed measures in view of the large amount of calculation and
low efficiency of non-local networks by using a crisscross shape attention module, which
can expand the receptive field in the vertical and horizontal directions at the same time.
However, it also has a certain problem that the attention directionality is limited. When
solving the semantic segmentation problem, an attention area, which can help centre
pixels obtain contextual information from eight directions with automatic weights, is more
appropriate to interpret objects with complex directionality.

2.2. Attention Mechanism and Its Implementation in CNN

The attention mechanism has been widely used in natural language processing and
computer vision [19,20]. The attention mechanism in computer vision simulates the human
recognition process of an image, which means that the perception system does not process
the entire scene at once but puts attention to certain specific parts to obtain the information
with high priority. The priority of these parts is selected by preset preferences in the human
brain, such as for colour, shape, and characteristics.

Some researchers have implemented attention mechanisms in image captioning tasks.
They proposed soft attention and hard attention architectures with a visualization method
of the attention area. Researchers at Google [21] first proposed the transformer structure
based on self-attention and the multihead self-attention structure. The key, query, and
value of self-attention are output by sequence-to-sequence type, which becomes the basis
of subsequent attention research. Wang et al. [2] proposed a nonlocal neural network,
which can remove the local receptive field limitation of convolution and capture global
information effectively. Hu et al. proposed a channel attention mechanism, using global



Sensors 2021, 21, 6873 5 of 28

average pooling and full connection to focus on the attention weight of channel feature
extraction [22]. Some researchers have proposed the convolutional block attention module
(CBAM), which can carry out spatial attention and channel attention to the feature map at
the same time [9]. The embed type of the CBAM is series connection. Based on this, Fu
et al. used parallel connections to embed spatial attention and channel attention in neural
networks [23].

These attention methods can be summarized as self-attention families. Generally,
the self-attention mechanism can capture the spatial dependence of any two positions
in the feature map and obtain global context information, thereby greatly improving the
performance of the semantic segmentation network [24,25].

2.3. Attention Mechanism and Its Implementation in CNN

In recent years, a variety of methods have been proposed to extract roads from remote
sensing images. These methods can be generally divided into two categories: road area
extraction and road centerline extraction. Road area extraction [26–31] can generate pixel-
level markers of roads, and the purpose of road centerline extraction [32–35] is to detect
the skeleton of the road.

Zhang et al. first applied a support vector machine (SVM) to the road extraction of
remote sensing images based on edge detection [36]. Song et al. proposed a method using
shape index features and support vector machines (SVMs), which put geometric features
into consideration for the first time [37]. Based on this, researchers use salient features to
design a multilevel framework, which can extract roads from high-resolution multispectral
images [38].

With the development of deep learning, road extraction methods based on deep learn-
ing have shown better performance than non-deep learning methods. Researchers have
proposed a method to detect road areas from high-resolution aerial images using restricted
Boltzmann machines, which first implemented deep learning tools [27]. Compared to this
method, researchers have used CNNs to extract roads and buildings and obtain better
results [30]. Alvarez et al. [39] proposed an automatic road extraction method based on U-
Net. Zhong et al. [40] proposed a semantic segmentation neural network that combines the
advantages of residual learning and U-Net for road extraction, which simplified training
and achieved better results with fewer parameters.

Zhang et al. [41] used D-Link-Net and DenseNet for high-resolution satellite image
road extraction. Based on this, Peng et al. [42] proposed a multiscale enhanced road
detection framework (Dense-U-Net) based on densely connected convolutional networks
(Dense-Net) and U-Net, which can effectively perform feature learning and retain finer
spatial details.

Generally, the method of road extraction based on deep learning focuses more on
the use of road features. These methods lack attention to geometric information, such as
directionality. The DCCA module fills this vacancy.

3. Methodology

In the methodology section, we will first provide a description of the framework. Then,
we will introduce the implementation details of the CCA module and the grafted network.
The design of the RCCA module will be described in the RCCA part. In heterogeneous
filter function and output part, the HFF and SAF module will be introduced.

3.1. Framework

The neural network is based on the DCCA module, which is called DCNet. DCNet
consists of three main parts: backbone part, attention part and output part. The back-
bone part extracts the feature by traditional convolutions, which supports obtaining the
correlation between pixels in different directions. The attention part consists of the CCA
module and RCCA module, which can constitute an eight-direction nonlocal attention
mechanism. HFF plays an important role in the energy process inside the attention part. In
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the output part, the SAF module can distribute the weights of these two modules according
to the energy distribution in the sampling area and fuse the correlation information from
eight directions. Considering the use of local 3 × 3 convolutions, the output part can
realize the combined acquisition of 3 × 3 local information and eight directions of nonlocal
information. The network structure is shown in the Figure 2.
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X ∈ RH′×W′×C is input at the beginning of the network. The first process is three
convolutions and one max-pooling, and then it comes to the feature extraction based on
ResNet101. After three downsamplings, the output F ∈ R(H′/8)×(W′/8)×C is generated.
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This process can be expressed by the following formula:

F =

{
fCCA( X ), CCA Backbone

fRCCA( X ), RCCA Backbone
(1)

3.1.2. The Implementation of CCA Module

The implementation of the CCA is generally simple compared to that of the RCCA.
Therefore, it will be shown firstly in Figure 4.
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This attention method is from Huang et al. [8], which is used as the CCA module as
part of the DCCA module.

First, we represent the dimension of F ∈ R(H′/8)×(W′/8)× C as F ∈ RH×W×C.
As shown in the Figure 4, the local feature map F, the output of the backbone part, is

mapped to K ∈ RH×W×C, Q ∈ RH×W×C and V ∈ RH×W×C.

K, Q, V = F (2)

Then, an affinity process is used to process K ∈ RH×W×C and Q ∈ RH×W×C. For each
position (i, j), the centre point channel vector Qij is multiplied by the channel vectors of
crisscross attention area KΦ

ij .

KΦ
ij = Kij{(xI , yI) |xI = i, yIε [1, · · · , W]} ∪
Kij{(xI I , yI I) | xI Iε [1, · · · , H], yI I = j}

i ε [1, · · · , H], j ε [1, · · · , W ]

(3)

where {(xI , yI)| . . .} and {(xI I , yI I)| . . .} are two point groups that represent the horizontal
line and vertical line in the crisscross area. The output of the affinity process is called raw
energy map D ∈ R(H+W−1)×H×W.

Dij = Qij · KΦ
ij iε[1, · · · , H], jε[1, · · · , W]

For each position (i, j) in the spatial dimension of D ∈ R(H+W−1)×H×W, we use HFF to
process the raw energy vector Dij ∈ RH+W−1. The result is labelled Aij ∈ RH+W−1, which
is the energy vector in position (i, j) of the energy map A ∈ R(H+W−1)×H×W.

Aij = HFF( Dij )
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For each position (i, j), an aggregation process is used to process the channel vector
Aij and the channel vectors of crisscross attention area VΦ

ij .

VΦ
ij = Vij{(xI , yI) | xI = i, yIε [1, · · · , W]}∪
Vij{(xI I , yI I) | xI Iε [1, · · · , H], yI I = j}

i ε [1, · · · , H], j ε [1, · · · , W]

(4)

In this way, the residual part between the input F ∈ RH×W×C and the output F′ ∈
RH×W×C can be obtained as follows:

F′ij = ∑ VΦ
ij · Aij + Fij iε[1, · · · , H], jε[1, · · · , W] (5)

where F′ is the output of this module. In CCA part, the output F′ is labelled as F′CCA. The
implementation of the RCCA part will be introduced in Section 3.2.

3.2. Introduction of the RCCA Module
3.2.1. Design and Realization of the RCCA Module

As mentioned in previous chapters, the RCCA module is a complement of the direc-
tionality in the attention area. As shown in Figure 5, the RCCA module can let the target
pixel receive attention information from oblique directions.
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The attention area needs to be extracted. For the pixels at different locations, the size
of the attention area is different. The structure of RCCA module is shown in Figure 6.
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First, we represent the dimension of F ∈ R(H′/8)×(W′/8)× C as F ∈ RH×W×C.
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In the RCCA module part, the local feature map F∈ RH×W×C, the output of the
backbone part, is mapped to K ∈ RH×W×C , query Q ∈ RH×W×C and value V ∈ RH×W×C

(see Equation (2)).
For each position (i, j), in the spatial dimension of Q, we can obtain a vector Qij ∈ RC.

Then, for this position in feature map K, the channel vectors of the rotated crisscross area
can be represented by KΩ

ij .

KΩ
ij = Kij{(xI , yI) | xI = α, yI = i + j− α, α ε A(i, j)}∪
Kij{(xI I , yI I) | xI I = β, yI I = i− j + β, β ε B(i, j)}

i ε [1, · · · , H], j ε [1, · · · , W]

(6)

{(xI , yI)| . . .} and {(xI I , yI I)| . . .} are two-point groups that represent two oblique
lines in the rotated crisscross area. A(i, j) and B(i, j) represent the initial position of the
sampling area, which can be obtained as follows:

A(i, j) =

{
{0, · · · , i + j} i f i + j ≤ H

{i + j− H, · · · , W} else
(7)

B(i, j) =
{

{j− i, · · · , W} i f i ≤ j
{0, · · · , j− i + H} else

(8)

For each position (i, j), we can apply an affinity operation to obtain the raw attention
map D as follows:

Dij = Qij · KΩ
ij iε[1, · · · , H], jε[1, · · · , W] (9)

The Dij ∈ D represents the correlation between Qij and KΩij.
Then, we use a heterogeneous filter function to process Dij as follows:

Aij = HFF( Dij ) (10)

where Aij is the feature vector of attention map A at position (i, j).
At each position (i, j) in the spatial dimension of V, we can obtain the channel vectors

of the rotated crisscross area, which can be represented by VΩ
ij :

VΩ
ij = Vij{(xI , yI) | xI = α, yI = i + j− α, α ε A(i, j)}∪
Vij{(xI I , yI I) | xI I = β, yI I = i− j + β, β ε B(i, j)}

iε[1, · · · , H], jε[1, · · · , W]

(11)

For each position (i, j), an aggregation process is used to process the channel vector
Aij and the channel vectors of rotated crisscross attention area VΩ

ij to obtain the residual

part between the input F ∈ RH×W×C and the output F’ ∈ RH×W×C as follows:

F′ij = ∑ VΩ
ij · Aij + Fij iε[1, · · · , H], jε[1, · · · , W] (12)

F′ is the output of this module, which is generated by the combination of F′ij. In RCCA
part, the output F′ is labelled as F′RCCA.

The pseudocode of the RCCA module is attached in Algorithm 1:
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Algorithm 1. The process of RCCA attention.

Input : f eature map F
Output : attention f eature map F′
Initialize : K, Q, V = F
1: f or i in {1, · · · , H} do
2: f or j in {1, · · · , W} do
/* According to the points groups (xI , yI) and (xI I , yI I), get feature value of the RCCA region
positions in K. */
/* A(i, j) and B(i, j) represent the range of index on the horizontal axis of the feature map. */

3: A(i, j) =

{
{0, · · · , i + j} i f i + j ≤ H
{i + j− H, · · · , W} else

4: B(i, j) =
{

{j− i, · · · , W} i f i ≤ j
{0, · · · , j− i + H} else

5: f or α in A(i, j) do
6: xI ← α

7: yI ← (i + j)− α

8: f or β in B(i, j) do
9: xI I ← β

10: yI I ← (i− j) + β

/* KΩ
ij represents the channel vectors sets of the RCCA region in K. */

11: KΩ
ij ε Kij(xI , yI) ∪ Kij(xI I , yI I)

/* Search Q corresponding to the position in K and then get the energy map E */
12: Eij = Qij · KΩ

13: end
14: end
/* Apply activation function HFF to the energy map, HFF is defined in 3.3 */
15: E← HFF(E)
16: f or i in {1, · · · , H} do
17: f or j in {1, · · · , W} do
/* According to the point set (xI , yI) and (xI I , yI I), get feature value of RCCA region positions in
V */
18: VΩ

ij ε Vij(xI , yI) ∪Vij(xI I , yI I)

/* Aggregate E and V and Fij represents the residual structure */
19: F′ij ← VΩ · Eij + Fij
20: end
21: end

3.2.2. Functional Merits of the RCCA Module

When using the recurrent mechanism to relate position (x + k, y + k) to position (x, y),
the process is shown in Figure 7.
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In the first attention process, the value change of each position in the recurrent mecha-
nism can be shown:

Fx+k,y(CCA) = Qx+k,y ·Kx+k,y(x + k, y + k)·Fx+k,y(x + k, y + k) + Qx+k,y

·
(

Kx+k,y
{(

xI , yI) ∣∣ xI = x + k, yIε [1, · · · , W], yI 6= y + k
}

∪ Kx+k,y
{(

xI I , yI I) ∣∣ xI Iε [1, · · · , H], yI I = y
})

·
(

Fx+k,y
{(

xI , yI) ∣∣ xI = x + k, yIε [1, · · · , W], yI 6= y + k
}

∪ Fx+k,y
{(

xI I , yI I) ∣∣ xI Iε [1, · · · , H], yI I = y
})

= Qx+k,y ·Kx+k,y(x + k, y + k)·Vx+k,y(x + k, y + k) + δ1

(13)

Fx,y+k(CCA) = Qx,y+k ·Kx,y+k(x + k, y + k)·Fx,y+k(x + k, y + k) + Qx,y+k

·
(

Kx,y+k
{(

xI , yI) ∣∣ xI = x, yIε [1, · · · , W]
}

∪ Kx,y+k
{(

xI I , yI I) ∣∣ xI Iε [1, · · · , H], yI I = y + k, xI I 6= x + k
})

·
(

Fx,y+k
{(

xI , yI) ∣∣ xI = x, yIε [1, · · · , W]
}

∪ Fx,y+k
{(

xI I , yI I) ∣∣ xI Iε [1, · · · , H], yI I = y + k, xI I 6= x + k
})

= Qx,y+k ·Kx,y+k(x + k, y + k)·Vx,y+k(x + k, y + k) + δ2

(14)

Qx+k,y ·Kx+k,y(x + k, y + k) is the similarity parameter of positions (x + k, y + k) and
(x + k, y) and Qx,y+k ·Kx,y+k(x + k, y + k) is the similarity parameter of positions (x + k, y + k)
and (x, y + k). δ1 and δ2 are the redundancy information which is caused by feature vectors
of other positions.

In the second attention process, the value change of each position in the recurrent
mechanism can be shown:

Fx,y(CCA) = Qx,y ·Kx,y(x + k, y)·Fx,y(x + k, y) + Qx,y ·Kx,y(x, y + k)·Fx,y(x, y + k)+
Qx,y·( Kx,y{ (xI , yI)

∣∣ xI = x, yIε [1, · · · , W], yI 6= y + k}∪
Kx,y{ (xI I , yI I)

∣∣ xI Iε [1, · · · , H], yI I = y + k, xI I 6= x + k} )·
(Fx,y{ (xI , yI)

∣∣ xI = x, yIε [1, · · · , W], yI 6= y + k}∪
Fx,y{ (xI I , yI I)

∣∣ xI Iε [1, · · · , H], yI I = y + k, xI I 6= x + k}
= Qx,y ·Kx,y(x + k, y)·Fx,y(x + k, y) + Qx,y ·Kx,y(x, y + k)·Fx,y(x, y + k) + δ3

(15)

Qx,y ·Kx,y(x + k, y) is the similarity parameter of positions (x + k, y) and (x, y) and
Qx,y ·Kx,y(x, y + k) is the similarity parameter of positions (x, y + k) and (x, y). δ3 is the
redundancy information in this step.

Therefore, when we generate two processes together, we can obtain fx,y(CCA) as
follows:

Fx,y(CCA) = Qx,y ·Kx,y(x + k, y)×
(Qx+k,y ·Kx+k,y(x + k, y + k)× Fx+k,y+k(CCA) + δ1)+

Qx,y ·Kx,y(x, y + k)×
(Qx,y+k ·Kx,y+k(x + k, y + k)× Fx+k,y+k(CCA) + δ2) + δ3

(16)

After summing all the redundancy information to ∑ δ, we can obtain the following:

Fx,y(CCA) = Qx,y ·Kx,y(x + k, y)×Qx+k,y ·Kx+k,y(x + k, y + k)Fx+k,y+k(CCA)+
Qx,y ·Kx,y(x, y + k)Qx,y+k ·Kx,y+k(x + k, y + k)Fx+k,y+k(CCA) + ∑ δ

(17)

When using the RCCA module, the relation between (x + k, y + k) and (x, y) is shown
in Figure 8:
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𝐹 , (𝐶𝐶𝐴) =  𝑄 ,  ∙ 𝐾 , (𝑥 + 𝑘, 𝑦 + 𝑘) ∙ 𝐹 , (𝑥 + 𝑘, 𝑦 + 𝑘) + 𝑄 ,∙  𝐾 , (𝑥Ⅰ, 𝑦Ⅰ) | 𝑥Ⅰ = 𝑥,  𝑦Ⅰ𝜖 1, ⋯ , 𝑊∪ 𝐾 , (𝑥Ⅱ, 𝑦Ⅱ) | 𝑥Ⅱ𝜖 1, ⋯ , 𝐻 ,  𝑦Ⅱ = 𝑦 + 𝑘, 𝑥Ⅱ 𝑥 + 𝑘∙  𝐹 , (𝑥Ⅰ, 𝑦Ⅰ) | 𝑥Ⅰ = 𝑥,  𝑦Ⅰ𝜖 1, ⋯ , 𝑊∪ 𝐹 , (𝑥Ⅱ, 𝑦Ⅱ) | 𝑥Ⅱ𝜖 1, ⋯ , 𝐻 ,  𝑦Ⅱ = 𝑦 + 𝑘, 𝑥Ⅱ 𝑥 + 𝑘  = 𝑄 ,  ∙ 𝐾 , (𝑥 + 𝑘, 𝑦 + 𝑘) ∙ 𝑉 , (𝑥 + 𝑘, 𝑦 + 𝑘) + 𝛿  

(15)

𝑄 ,  ∙ 𝐾 , (𝑥 + 𝑘, 𝑦 + 𝑘)  is the similarity parameter of positions (𝑥 + 𝑘, 𝑦 + 𝑘) 
and (𝑥 + 𝑘, 𝑦) and 𝑄 ,  ∙ 𝐾 , (𝑥 + 𝑘, 𝑦 + 𝑘) is the similarity parameter of positions (𝑥 + 𝑘, 𝑦 + 𝑘)  and (𝑥, 𝑦 + 𝑘) . 𝛿  and 𝛿  are the redundancy information which is 
caused by feature vectors of other positions.  

In the second attention process, the value change of each position in the recurrent 
mechanism can be shown: 𝐹 , (𝐶𝐶𝐴) =  𝑄 ,  ∙ 𝐾 , (𝑥 + 𝑘, 𝑦) ∙ 𝐹 , (𝑥 + 𝑘, 𝑦) + 𝑄 ,  ∙ 𝐾 , (𝑥, 𝑦 + 𝑘) ∙ 𝐹 , (𝑥, 𝑦 + 𝑘) +𝑄 , ∙ ( 𝐾 , (𝑥Ⅰ, 𝑦Ⅰ) | 𝑥Ⅰ = 𝑥,  𝑦Ⅰ𝜖 1, ⋯ , 𝑊 ,  𝑦Ⅰ 𝑦 + 𝑘 ∪𝐾 , (𝑥Ⅱ, 𝑦Ⅱ) | 𝑥Ⅱ𝜖 1, ⋯ , 𝐻 ,  𝑦Ⅱ = 𝑦 + 𝑘, 𝑥Ⅱ 𝑥 + 𝑘   ) ∙( 𝐹 , (𝑥Ⅰ, 𝑦Ⅰ) | 𝑥Ⅰ = 𝑥,  𝑦Ⅰ𝜖 1, ⋯ , 𝑊 ,  𝑦Ⅰ 𝑦 + 𝑘 ∪𝐹 , (𝑥Ⅱ, 𝑦Ⅱ) | 𝑥Ⅱ𝜖 1, ⋯ , 𝐻 ,  𝑦Ⅱ = 𝑦 + 𝑘, 𝑥Ⅱ 𝑥 + 𝑘   =  𝑄 ,  ∙ 𝐾 , (𝑥 + 𝑘, 𝑦) ∙ 𝐹 , (𝑥 + 𝑘, 𝑦) + 𝑄 ,  ∙ 𝐾 , (𝑥, 𝑦 + 𝑘) ∙ 𝐹 , (𝑥, 𝑦 + 𝑘) + 𝛿

(16)

𝑄 ,  ∙ 𝐾 , (𝑥 + 𝑘, 𝑦)  is the similarity parameter of positions (𝑥 + 𝑘, 𝑦)  and (𝑥, 𝑦) 
and 𝑄 ,  ∙ 𝐾 , (𝑥, 𝑦 + 𝑘)  is the similarity parameter of positions (𝑥, 𝑦 + 𝑘)  and (𝑥, 𝑦) . 𝛿  is the redundancy information in this step. 

Therefore, when we generate two processes together, we can obtain 𝑓 , (𝐶𝐶𝐴) as fol-
lows:  𝐹 , (𝐶𝐶𝐴) =  𝑄 ,  ∙ 𝐾 , (𝑥 + 𝑘, 𝑦) × 𝑄 ,  ∙ 𝐾 , (𝑥 + 𝑘, 𝑦 + 𝑘) × 𝐹 , (𝐶𝐶𝐴) + 𝛿 +                              𝑄 ,  ∙ 𝐾 , (𝑥, 𝑦 + 𝑘) × 𝑄 ,  ∙ 𝐾 , (𝑥 + 𝑘, 𝑦 + 𝑘) × 𝐹 , (𝐶𝐶𝐴) + 𝛿 + 𝛿  

(17)

After summing all the redundancy information to ∑ 𝛿, we can obtain the following:                        𝐹 , (𝐶𝐶𝐴) =  𝑄 ,  ∙ 𝐾 , (𝑥 + 𝑘, 𝑦) × 𝑄 ,  ∙ 𝐾 , (𝑥 + 𝑘, 𝑦 + 𝑘)𝐹 , (𝐶𝐶𝐴) +                                                          𝑄 ,  ∙ 𝐾 , (𝑥, 𝑦 + 𝑘)𝑄 ,  ∙ 𝐾 , (𝑥 + 𝑘, 𝑦 + 𝑘)𝐹 , (𝐶𝐶𝐴) + 𝛿 (18)
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The value change can be represented as follows:

Fx,y(RCCA) = Qx,y ·Kx,y(x + k, y + k)·Fx,y(x + k, y + k)+
Qx,y ·( Kx,y{ (xI , yI)

∣∣ xI = α, yI = x + y− α, α ε A(x, y)}∪
Kx,y{ (xI I , yI I)

∣∣ xI I = β, yI I = x− y + β, β ε B(x, y), β 6= x + k } )·
(Fx,y{ (xI , yI)

∣∣ xI = α, yI = x + y− α, α ε A(x, y)}∪
Fx,y{ (xI I , yI I)

∣∣ xI I = β, yI I = x− y + β, β ε B(x, y), β 6= x + k } )
= Qx,y ·Kx,y(x + k, y + k)·Fx+k,y+k(RCCA) + δ4

(18)

Qx,y ·Kx,y(x + k, y + k) is the similarity parameter of positions (x + k, y + k) and (x, y).
δ4 is the information redundancy caused by feature vectors of other positions.

When we compare the similarity parameters of Fx,y(CCA) and Fx,y(RCCA), the ratio
r can be represented as follows:

r =
Qx,y ·Kx,y(x+k,y)×Qx+k,y ·Kx+k,y(x+k,y+k)+Qx,y ·Kx,y(x,y+k)Qx,y+k ·Kx,y+k(x+k,y+k)

Qx,y ·Kx,y(x+k,y+k) (19)

When positions (x + k, y + k) and (x, y) are homogeneous and (x + k, y) and (x, y + k)
are heterogeneous compared to (x, y), the similarity parameters of (x + k, y + k) and (x, y)
will be extremely low in the recurrent mechanism. When using the RCCA module under
the same conditions, which can let these two positions be related directly, the similarity
parameter can be high, corresponding to the real situation. The ratio r can sometimes be
very low because the recurrent mechanism will cause similarity distortion.

DCCA module consists of CCA module and RCCA module. It can also distribute the
weight of each attention module according to the statistics of the energy map in the SAF
module. The shape of the attention area allows each pixel to receive contextual information
from eight directions, as shown in Figure 9.

Considering the local information extracted by 3× 3 convolution, the DCCA module
can let each pixel perceive the local information and eight-direction nonlocal information,
as shown in Figure 10.
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3.2.3. Computational Advantages of the RCCA Module

From the aspect of the theory of the algorithm, we will analyze the computational cost
based on the attention information received by each pixel. In CCNet, each pixel receives
the information from the pixels in the same column and row. The total computational cost
can be described as follows:

O(CCA) =
s a

D f (i, j)didj
D = {(i, j) | i ε [1, · · · , H], j ε [1, · · · , W]}
f (i, j) = H + W − 1

(20)

So, we can conclude that:

O(CCA) = H ×W × (H + W − 1) (21)
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The computational cost of RCCA module can be calculated as follows:

O(RCCA) =
s a

D f (i, j)didj
D = {(i, j) | i ε [1, · · · , H], j ε [1, · · · , W]}

A(i, j) =

{
{0, · · · , i + j} i f i + j ≤ H
{i + j− H, · · · , W} else

B(i, j) =
{

{j− i, · · · , W} i f i ≤ j
{0, · · · , j− i + H} else

f (i, j) = card(A ∪ B)

(22)

The function card( ) represents the number of elements in the set. So, we can conclude
that:

O(RCCA) = H ×W × (H + W − 1)× 2
3 = 2

3 O(CCA)
O(DCCA) = O(CCA) + O(RCCA) = 5

3 × H ×W × (H + W − 1)
(23)

That is to say, theoretically, the computational cost of the RCCA module is two-thirds
of that of a single CCA. The computational cost of the DCCA module is five-thirds of that
of a single CCA. The computational cost of Non-local Network [2] can be described as:

O(Non local) = H ×W × (H ×W)� O(DCCA) (24)

Through comparison, it can be concluded that the computational cost of DCCA
module is much smaller than that of Non-local Network.

3.3. Heterogeneous Filter Function and Output Part
3.3.1. Heterogeneous Filter Function

In energy processing, there is an unevenly distributed sequence of energy values.
These energy groups come from the values taken in different attention areas. In the DCCA
module, we need to process these energy values to assign weights. The value of energy
represents the similarity between point pairs. In such a process, we expect that this filter
function can benefit our classification problem. That is, the filter function needs to remove
the influence of the heterogeneous part, which can let each part receive more relation
information from the homogeneous part.

We design the Heterogeneous Filter Function (HFF) to help us remove the influence of
a part of the energy values that are relatively low in one energy group. The implementation
details are shown in Figure 11:
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The mathematical formula of HFF can be expressed as follows:

HFF(x) =
{

x i f x ≥ Pα(X)
0 else

(25)

We introduce a position parameter α to determine how large the lost part is. We
arrange the value of energy from small to large in a sequence. The parameter α is a
percentage. The position function Pα(X) refers to the value at the α position in sorting from
small to large, as shown in Figure 12.
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The energy value, which is smaller than Pα(X), will be fixed to 0. Consequently, the
lost part of the energy will have no influence in the attention process. The existence of
the position function Pα(X) ensures that the DCCA model still has the ability to identify
homogeneous and heterogeneous regions for the change of energy distribution. In the
experiment, it can be found that the most proper position parameter α is often related to
the road pixel percentages of the images in the training dataset, as shown in Figure 13.
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Figure 13. The performance of different position function Pα(X).

In Figure 13 we choose the road intersection over union (IOU) as a statistical index to
show the performance of each different α. When the position parameter α is approximately
0.8, corresponding to the average percentage of nonroad parts in images, the performance
will be the best. Therefore, α needs to be matched with the percentage of non-road parts in
the dataset.

For such a type of data processing problem, the ReLU function is often used in
traditional methods, which is shown in Figure 14.
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The function can be expressed in the following form:

ReLU(x) =
{

x i f x ≥ 0
0 else

(26)

In the traditional ReLU function, there is an absolute threshold for numerical filtering.
In most cases, this threshold is 0, similar to the example in Figure 14. However, in the
road extraction problem, the threshold for judging the energy cannot be a fixed number. In
different samples, the value of energy will vary greatly; therefore, we need to perform the
filter process according to the energy value ranking in the sampling group, which is the
reason why the ReLU function is not suitable for use in the DCCA module.

3.3.2. Output Part: SAF Module

In the output part, the SAF module can recognize the road shape through the mean
values of energy in two different attention intervals. The mean value of the energy reflects
the homogeneity and heterogeneity in the sampling area, which will be illustrated in the
experimental section.

SAF module consists of these steps:
For each position u, we take the mean value of the energy vector ACCA

u ∈ RH+W−1

and ARCCA
u ∈ RL (which has been introduced in Section 3.2) of the crisscross and rotated

crisscross attention modules: ECCA
u and ERCCA

u .
The softmax function is used to process the two mean values and obtain the weights

of the two attention modules, ωCCA and ωRCCA. This can be shown as follows:

( ωCCA, ωRCCA ) = So f tMax(ECCA
u , ERCCA

u ) (27)

The weights of the two attention modules represent the prediction of road shape from
the SAF module, which is the key part of the self-adaptive mechanism. If one attention
module obtains a higher weight in one point, the road shape around this point is more
likely to be the shape of this attention module. Under this condition, in the SAF module, a
higher weight can let this point receive more relation information from the road area.

Multiply the weights by the outputs of the two attention modules to obtain the vector
of fusion result in position u.

Foutput ′
u = ωCCA × FCCA ′

u + ωRCCA × FRCCA ′
u (28)

Foutput ′
u is combined in the spatial dimension to obtain F′output, the fusion result. The

function g represents the upsampling process. The structure of the output part is shown in
the Figure 15.

F′output = g(F′output) (29)
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4. Experiment
4.1. Dataset and Implement Details

The dataset of this experiment is based on the DeepGlobe Road Extraction Chal-
lenge [43]. The size of the road image has been changed from 1024 pixels to 256 pixels by
downsampling. To emphasize the function of our special attention mechanism, we select
those images that have distinctive direction features. The road directions on these images
are evenly distributed in space. Then, we create two subdatasets, which are both parts
of the entire dataset. The first subdataset consists of all the images that mainly include
horizontal and vertical roads, whose angles between their direction and the horizontal or
vertical direction are less than 22.5◦.

This subdataset is called the crisscross dataset (CC dataset). In Figure 16, an example
image is shown, which contains two horizontal roads.
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We implement different attention methods and compare the results to analyse the
advantages of our special attention method to a great extent. The difference between the
CCA module and RCCA module is the attention area. For each pixel in one feature map,
we will generate two energy maps for two different attention areas. In these energy maps,
we will analyse the energy distribution to determine whether the energy can reflect the
homogeneity and heterogeneity of pixels. Then, we use the SAF module to distribute the
weight of the CCA module and RCCA module according to the energy map. In this way,
we can obtain the result of the DCCA module and compare it with the results of the CCA
module and RCCA module. In detail, we will also select some typical examples to illustrate
the merits of our DCCA module.

4.2. Results of Different Attention Methods

In this part, we select the IOU as the statistical index. In this two-classification problem,
we set the classification labels as road and background.

The road IOU and mean IOU are indices that we choose to compare the results
of different attention modules. Mean IOU is the mean value of the Road IOU and the
Background IOU.

When applying the CCA module to the complete dataset and two subdatasets, the
CCA module shows the highest result when being used in the crisscross dataset from
the perspectives of both mean IOU and road IOU in Table 1. The road IOU and mean
IOU of the complete dataset are at the mean level of the results of the CC dataset and
RCC dataset. From these two characteristics, we can conclude that the CCA module has a
better processing effect on crisscross-shaped roads. It seems powerless for the road in the
rotated crisscross shape. The reason for its relatively poor performance on the RCC dataset
is that the CCA module cannot effectively extract the geometric information of rotated
crisscross-shaped roads.

Table 1. Applying CCA module to different datasets.

Indicators Complete Dataset CC Dataset RCC Dataset

Road IOU 0.4948 0.5442 0.4498
Mean IOU 0.7030 0.7327 0.6759

Table 2 shows that the road IOU and mean IOU of the CC dataset are still the highest.
Although these 2 indicators of the RCC dataset are still not as good as those of the CC
dataset, there is still a rise compared to the result of the CCA module on the RCC dataset.
This result shows that the RCCA module can extract the geometric information of the
rotated crisscross shape better than the CCA module.
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Table 2. Applying RCCA module to different datasets.

Indicators Complete Dataset CC Dataset RCC Dataset

Road IOU 0.5067 0.5242 0.4909
Mean IOU 0.7117 0.7229 0.7015

When applying the DCCA module to three different datasets in Table 3, the road IOU
and mean IOU are the best. The performance of the CCA module, RCCA module and
DCCA module on the complete dataset can show the properties of each attention method.
The results of three different attention modules on the complete dataset can reveal the high
performance of the DCCA module.

Table 3. Applying DCCA module to different datasets.

Indicators Complete Dataset CC Dataset RCC Dataset

Road IOU 0.5414 0.5722 0.5140
Mean IOU 0.7256 0.7454 0.7077

In Table 4, the performance of the DCCA module on the complete dataset is signifi-
cantly ahead of that of the CCA module and RCCA module. Focusing on the road IOU, the
advantages of the DCCA module are shown in Figure 18 as follows:

Table 4. The results of the different attention module on complete dataset.

Indicators CCA RCCA DCCA

Road IOU 0.4948 0.5067 0.5414
Mean IOU 0.7030 0.7117 0.7256
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In Figure 18, from the perspective of the road IOU indicator, the result of the DCCA
module generally leads the CCA and RCCA by 4 percent.

In order to illustrate the performance of the DCCA module, we also incorporate a 30◦

module into the DCCA module for experimentation. At the same time, we also tested the
performance of Non-local Network [2], CBAM [9] and PSPNet [17] mentioned above. The
final results are shown in the Table 5.
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Table 5. The comparison results of other models.

Models Road IOU Mean IOU

DCCA 0.5414 0.7256
DCCA (with 30◦) 0.5275 0.7282

Non-local
CBAM
PSPNet

0.5411
0.5325
0.5357

0.7372
0.7318
0.7322

We conclude that adding more directional modules and letting each pixel perceive
the information of all pixels (Non-local) will improve the Mean IOU of the road and the
background. But the Road IOU will not necessarily improve.

From the above comparison, we can also conclude that the DCCA module is in the
leading position on the Road IOU. Only the Non-local method is similar to the result
of the DCCA module. The computational cost we got in Section 3.2.3 shows that the
computational cost of Non-local is much greater than that of the DCCA module. The
performance of DCCA module is significantly better than CBAM and PSPNet. This reflects
the advantages of the DCCA module in road extraction problems.

4.3. Explanation of the Result

The raw energy, Dij iε[1, · · · , H], jε[1, · · · , W], is calculated by the inner product of
the 2-pixel channel vector, which reflects the similarity of the centre pixel and the pixels
in the sampling area. In the road extraction, since the similarity between the road points
is higher than the similarity between the road and other features, the energy calculated
between the points on the road will be very high in this way.

Based on this principle, the calculation of energy helps us distinguish roads from
nonroads. In the DCCA module, for one point, two attention areas will be considered, the
crisscross area and rotated crisscross area, which regard this point as the centre point. The
energy inside these two areas is calculated, and then the weight distribution is performed
according to the calculated energy in these two areas.

The position of energy calculation processing is in front of the attention process;
therefore, whether the energy can correctly reflect the similarity between the two points
becomes the key point. The following will take several typical samples to analyse the
numerical characteristics of energy in the similarity between road points.

4.3.1. Example with Only Crisscross Shaped Roads

In Figure 19, there is an image in the dataset and its corresponding ground truth. The
selected red points on the image are used to analyse the energy. To generate the energy
map, we calculate the inner product of this pixel and each pixel in the image. There are two
sampling areas in the energy map: crisscross area and rotated crisscross area. The crisscross
area is represented by the blue lines, while the rotated crisscross area is represented by the
green lines.
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(1) The energy heat map:

The energy heat map for these two areas is shown as follows:
In Figure 20, the heat map of the energy distribution of two different sampling areas

is shown.
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Figure 20. The heat map of energy distribution.

The fixed point is in the road; therefore, most of the points that are homogeneous with
the fixed point are distributed on the road. From the energy map, we can see clearly that
when the sampling area comes to the road area, the energy value becomes higher than that
of the non-road area. This rule can be seen from the brightness of the pixels in the image.

(2) The energy line chart:

The energy value of each sampled pixel can be displayed more clearly through the
curve. In Figure 21, the abscissa represents the pixel points in two-point groups of the
CCA module: {(xI , yI)| . . .} and {(xI I , yI I)| . . .}. For the red line, the ordinate is used to
distinguish roads from non-roads, which is explained in the legend. The ordinate is the
value of energy for the blue line. The abscissa represents the pixel label, and each pixel in
the sampling interval has a label number. It can be seen from these two figures that when
energy is used to express the similarity of two homogeneous points, the value will become
larger compared to the case of heterogeneous points. The distribution of the entire energy
value is highly similar to the distribution of the ground truth.
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In the two sampling areas, the mean value of energy for road points and non-road
points can be displayed in Table 6:

Table 6. The energy comparison of CCA and RCCA sampling.

Classification CCA RCCA

Road 10.21 7.96
Non-road 7.95 −0.14
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The fixed point is on the road. The energy between this point and other road points is
higher than the energy between this point and other non-road points. It can be concluded
that the energy map is very distinguishable for the homogeneity and heterogeneity of
points.

Such an energy map can help the attention process play an important role in deter-
mining to what extent the point pair needs to be focused.

(4) The output collection:

The outputs of this image are shown below:
Figure 22 shows that the result of the CCA module is better than the result of the

RCCA module. The CCA module can help to focus on more areas of roads because roads
are crisscross-shaped. Due to the distinguishability of the energy map, the CCA module
can help each pixel pay more attention to the road area. Because of the SAF module inside
the DCCA module, the result of the DCCA module remains the advantage of the CCA
module.
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Figure 23. The image and its ground truth.

(1) The energy line chart:

By the same way to calculate the energy, the energy value of each sampled pixel can
be displayed clearly through the curve:

In Figure 24, the abscissa also represents the pixel points in two-point groups of the
RCCA module: {(xI , yI)| . . .} and {(xI I , yI I)| . . .}. In this rotated crisscross-shaped road
example, the rotated crisscross-shaped sampling area contains more road pixels. We can
obtain the same conclusion as the last example that the distribution of the entire energy
value is highly similar to the distribution of the ground truth.
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(2) The energy table:

In the two sampling areas, the mean value of energy for road points and non-road
points can be displayed in Table 7:

Table 7. The energy comparison of CCA and RCCA sampling.

Classification CCA RCCA

Road 6.97 5.75
Non-road 1.12 3.43

The distinguishability of the energy map is still clear in this rotated crisscross-shaped
road sample.

(3) The output collection:

The output of this sample by the CCA module and RCCA module is shown in
Figure 25:
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Figure 25 shows that the result of the RCCA module is better than that of the CCA
module. The RCCA module truly predicts more road parts, which means that in this case,
the RCCA module can focus on more road areas. In this rotated crisscross-shaped road
image, the DCCA module can distribute a higher weight to the RCCA module according to
the energy map, which can let each road pixel receive more relation information from the
road part. In this way, the geometric information can be considered largely in the attention
process, which is the reason why the result of the DCCA module can retain the advantages
of the RCCA module.

4.3.3. Example with Both Crisscross Shaped Roads and Rotated Crisscross Shaped Roads

We put an image containing both a rotated crisscross-shaped road and a crisscross-
shaped road as an example.

Figure 26 shows that the CCA module has a relatively poor performance when dealing
with sloping roads and rotated-crisscross shaped roads. Meanwhile, the RCCA module will
miss some road parts when the roads are crisscrossed. The output of the DCCA module
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complements the advantages and disadvantages of the CCA module and RCCA module.
Through the SAF module inside the DCCA module, a larger weight can be assigned to
the RCCA module on inclined roads, while a larger weight can be assigned to the CCA
module on horizontal and vertical roads to obtain the best results in the end, which is the
reason why the DCCA module can adaptively focus on roads of different shapes, and the
result is the best.
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In Figure 27, the yellow part is the common prediction of the RCCA and CCA, and
the red part is predicted by the RCCA module but not by the CCA module, while the blue
module is the opposite. From the comparison of these two modules, we can see clearly that
the CCA module plays an important role in the extraction of crisscross-shaped roads, while
the RCCA module also has a better result in the extraction of rotated crisscross-shaped
roads.
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This result shows that the CCA module and RCCA module have their own directional
advantages. According to this, the DCCA module can let each module maximize its
advantages to obtain better results.

4.4. Some Typical Examples

In Figure 28, the first column are the input images and the figures in the second
column are the ground truths. The figures in the third column are the results of the CCA
module, while the figures in the fourth column are the results of the RCCA module. The
figures in the fifth column are the results of the DCCA module.
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In examples 1 to 5, the CCA module cannot extract sloping roads in many cases.
However, in these cases, roads can be extracted by the RCCA module. In examples 6 to
10, the output of the RCCA module misses parts of the roads, while the CCA module has
a better performance on these crisscross-shaped roads. In these 10 examples, the DCCA
module can allow each module to play its own advantage to obtain a better result. This
is the reason why the DCCA module can always have the best result. When there are
more roads in crisscross shape, the DCCA module will distribute more weights to the CCA
module. In contrast, the same situation will come to the RCCA module. Typically, Example
11 contains both crisscross-shaped roads and rotated crisscross-shaped roads. The CCA
and RCCA modules make up for each other, and then the result of the DCCA module is
the best.

5. Conclusions

This paper proposes a special attention mechanism for road extraction, the DCCA
module. This module is designed from two attention modules based on different directions,
the CCA module and the RCCA module. It also contains the SAF module, a module that
can assign weights to the CCA module and RCCA module based on pixel similarity. Since
the recurrent dilemma caused by the recurrent mechanism is avoided, the DCCA module
can effectively reduce the similarity distortion in the relation between each point pair in
the attention process.

In the experiment, the indicators of the DCCA module are 4% higher than those of the
CCA and RCCA modules. By analysing specific samples, the DCCA module combines the
merits of the CCA module and RCCA module and has better results for road extraction
with a richer directionality. In general, the DCCA module has a breakthrough in road
extraction by exploiting geometric road directionality information.

In the future, we still have relevant research that needs further exploration. The
directionality of the DCCA module is richer than that of the CCA module, but it is still
confined to eight directions. Roads in actual situations are often in more than eight
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directions. There are some circular roads whose direction changes continuously. How
to deal with the directional geometric information of these roads is a question worth
considering in the future.
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