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Abstract: Optical sensor data can be used to determine changes in anthocyanins, chlorophyll and
soluble solids content (SSC) in apple production. In this study, visible and near-infrared spectra
(729 to 975 nm) were transformed to SSC values by advanced multivariate calibration models i.e.,
partial least square regression (PLSR) in order to test the substitution of destructive chemical analyses
through non-destructive optical measurements. Spectral field scans were carried out from 2016 to
2018 on marked ’Braeburn’ apples in Southwest Germany. The study combines an in-depth statistical
analyses of longitudinal SSC values with horticultural knowledge to set guidelines for further applied
use of SSC predictions in the orchard to gain insights into apple carbohydrate physiology. The PLSR
models were investigated with respect to sample size, seasonal variation, laboratory errors and the
explanatory power of PLSR models when applied to independent samples. As a result of Monte
Carlo simulations, PLSR modelled SSC only depended to a minor extent on the absolute number
and accuracy of the wet chemistry laboratory calibration measurements. The comparison between
non-destructive SSC determinations in the orchard with standard destructive lab testing at harvest
on an independent sample showed mean differences of 0.5% SSC over all study years. SSC modelling
with longitudinal linear mixed-effect models linked high crop loads to lower SSC values at harvest
and higher SSC values for fruit from the top part of a tree.

Keywords: Vis/NIR; repeated longitudinal measurements; apple maturation; precision horticulture

1. Introduction

In apple fruit production, tree physiological status, the farmer’s management decisions
in the orchard, together with environmental factors influence postharvest fruit quality
and storage pack-out. More specifically, factors that affect fruit quality can include crop
load [1,2], timing of harvest [3], application of calcium and potassium fertilizer [4,5], light
distribution within the orchard and temperature during important growth periods [6,7] as
well as single tree or tree sector physiology [3].

Many factors within apple fruit tissues (cells per apple, energy status, cell wall sta-
bility [8]) which can determine harvest date and storage pack-out cannot be seen from
the outside of the fruit. Depending on the wavelength, optical sensors (visible (Vis) and
near-infrared (NIR) point spectroscopy) can help to get a non-destructive view of the
fruit from 1–2 cm under the skin [9]. These portable optical sensors are now relatively
inexpensive and fast [10]. In addition, data handling and chemometric software are user
friendly (own experience). Light reflectance from the fruit can be monitored in the field
to give information about plant pigment development such as chlorophyll, anthocyanins
and carotinoids in the Vis spectra [11]. In addition, partial least squares regression (PLSR)
modelling for the NIR spectra can be used to estimate soluble solids content (SSC) and
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dry matter content [12–14]. Further information on fruit tissues can be obtained from the
light scattering of cell walls and other cellular components using more advanced technolo-
gies like spatial frequency domain imaging [15,16]. However, the latter laboratory based
technology is not available for applied field-sensing to separate the absorbance from the
scattering coefficient. One of the advantages of non-destructive sensor technology is the
possibility to gain a large data set on a small-orchard scale during fruit maturation and
link these spectral data together with other temporal and orchard field data. Biological
and spatial variation are typically high, even within a small-scale apple orchard [17,18].
Moreover, fruit should be harvested and managed according to orchard variation such
as site and cropping history to maintain the best possible fruit quality after long-term
controlled atmosphere storage [19].

The development of SSC in individual apples depends mainly on the light distribution
within the planting system and the fruit to leaf ratio per tree [20]. Furthermore, SSC
values vary between different fruit and even for the same measurement position [12,21].
However, spectral scanning allows a large sample size to be obtained relatively fast. These
measurements could provide a feasible alternative in the practice to labour intensive and
costly laboratory analyses to gain a better idea of the distribution in SSC values.

Furthermore, standard ANOVA analyses are used at a particular moment in time
(mostly at harvest) to determine the SSC distribution. This approach overlooks SSC devel-
opement over the course of time [22]. In the case of repeated measurements in agriculture
and horticulture, mixed-effects models show clear advantages with respect to missing
or unbalanced observations and different or restricted measurement periods [23]. When
modelling is based on repeated measurements during fruit development, the longitudinal
structure results in linear mixed-effect (LME) models to describe time-dependent changes
linked to treatment effects and physiological influences. This class of LME models is a
flexible subset of (generalized) regression models and can be used to model growth patterns
in horticulture [24,25] and other research areas such as physical anthropology [26], clinical
biometry [27] or ecology [28]. Modelling apple growth with expolinear, Gompertz and
logistic [29,30] functions and adapted von Bertalanffy models [31] is common but SSC
accumulation has been less frequently modelled. This is gradually changing through the
use of in-depth biochemical analyses and the use of optical handheld sensors. Vis/NIR
point spectrometers allow for repeated non-destructive spectral scanning on the same fruit.
In a further classification process, longitudinal Vis/NIR data can enable modelling and
classification of optimal harvest dates [32,33].

The present study focuses on non-destructive and longitudinal SSC accumulation in
fruit in the orchard and the practical application of the above outlined methodology to
set guidelines for their broader use. The carbohydrate physiology i.e., SSC accumulation
during apple ripening was monitored within the experimental field treatments, reviewed
from a user perspective and a statistical viewpoint. The results of the study were based on
a large data set of Vis/NIR scans obtained over three study years.

This study investigates in detail (1) the number of calibration samples needed for a
robust SSC prediction, (2) the effects of laboratory errors in wet chemistry analyses on
PLSR model results, (3) the reliability of modelled SSC values in the orchard in comparison
to standard laboratory tests of an independent sample and (4) time-dependent treatment
effects on longitudinal SSC accumulation.

2. Results

The apple cropping seasons of 2016, 2017 and 2018 in Southwest Germany were dis-
tinctively different. A very wet spring with a light frost event during bloom was recorded in
2016. In 2017, severe frosts occurred during bloom in many European horticulture regions.
At the Kompetenzzentrum Obstbau Bodensee, the number of trees available for research
studies was reduced to those protected with heaters in plastic tents. Furthermore, 2018
was a relatively hot and dry year with 398 mm of precipitation between April to October
compared to 956 mm and 730 mm for the same periods of 2016 and 2017, respectively.
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There were also clear differences between years in plant development for the growth stages
(BBCH) flowering and fruit ripe for picking with differences of up to 12 days.

SSC accumulation derived from the yearly calibrated PLSR model (Section 2.1.1)
(Figure 1a) and fruit diameter growth (Figure 1b) are plotted as days after full bloom
(DAFB) over the three study years. Fruit diameter and SSC were monitored at the same
measurement intervals and for the same fruit. Fruit growth will not be further discussed
here and serves only as additional background information on orchard data variance. SSC
increases over time following a linear trend. In general, these data indicate a continuous
mean SSC accumulation until apple maturity which is consistent with biochemical fruit
analyses. In 2017 around 120 DAFB, the within-fruit variability during the time-series
data acquisition shows either that the same fruit accumulate and degrade SSC between
the scanning intervals or that the measurement environment negatively affected data
acquisition. In 2016 and 2017, SSC had approximately the same values at around 120 DAFB.
For 2018 the highest SSC values for the three study years were observed. In order to obtain
a higher time-series resolution and larger time-series data for improved modelling in [33],
data acquisition took place on a daily basis for 120-180 DAFB and SSC scanning started at
50 DAFB in 2018.

Figure 1. Soluble solids content (SSC) accumulation derived from the yearly calibrated (Section 2.1.1)
partial least squares regression models (a) and fruit diameter growth (b) for the three study years
and all treatments are shown. Mean values per measurement day are plotted as solid line, single
values as grey dots and +/−standard deviations as black vertical bars.
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2.1. PLSR Calibration Models
2.1.1. Multi-Year (2016–2018) Calibrated Model

The multi-year model was built with calibration data from all study years (2016–2018).
The multi-year model was subsequently validated with either a multi-year or the respective
yearly data set.The multi-year model results in a root mean square error of prediction
(RMSEP) of 0.65% SSC (adjusted R2 of 0.77) in 2016, 0.67% SSC in 2017 (adjusted R2 of 0.72),
and 0.54% SSC in 2018 (adjusted R2 of 0.89) compared to 0.62% SSC (adjusted R2 of 0.81)
over all three years combined (Figure 2). A look at the RMSEP and the adjusted prediction
R2 is usually not sufficient to determine the presence of systematic errors in the PLSR
model. Fitting a linear regression to the prediction values resulted in a slight deviation
from a diagonal line indicating the presence of small but negligible systematic errors (bias).
More specifically, the multi-year PLSR model possibly underestimates or overestimates the
frequency of particularly low or high SSC values in 2017 and 2018. Residual plots (data
not shown) suggest a slightly heteroscedastic structure. In terms of model performance
over all years, the multi-year PLSR model appears to yield reasonable predictions with
minor restrictions.

Figure 2. Regressions between laboratory measured and modelled % SSC. The calibration model was
trained on 2016–2018 data. This model was thereafter evaluated with an independent validation data
set for all years together and separately. Regression lines are plotted for each validation data set and
adjusted prediction R2 is displayed.

2.1.2. Year-Dependent Calibration Model Transfer to Other Years

Independent PLSR calibration models for each study year were calculated to check
the transferability and adequacy of year-dependent PLSR model to other study years
(500 observations in the calibration data set, 100 observations in the validation data set).
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Results suggest that yearly calibrated models perform best for scans taken within the same
year (Table 1).

Table 1. Root mean square error of prediction (RMSEP) of % soluble solids content (SSC) to test the
transferability of calibration models after 500 Monte Carlo simulation runs per point (500 observations
in each calibration data set, 100 observations in each validation data set. Mean and standard deviation
(in brackets) for each point are shown.

Training Data Set
Validation Data Set of Respective Years

2016–2018 2016 2017 2018

2016–2018 0.65 (0.05) 0.68 (0.05) 0.68 (0.04) 0.57 (0.04)
2016 0.90 (0.16) 0.61 (0.05) 1.00 (0.30) 1.02 (0.21)
2017 0.83 (0.12) 0.95 (0.23) 0.57 (0.04) 0.90 (0.14)
2018 0.95 (0.10) 1.19 (0.20) 1.01 (0.08) 0.48 (0.03)

The multi-year PLSR model predictions (calibration data set) based on reference
samples measured from all years in equal parts show a slight increase in the mean RMSEP
values compared to the yearly calibrated prediction models. The calibration model based on
2016 data gives a RMSEP and standard deviation (sd) in bracket value of 0.61 (+/−0.05) %
SSC for 2016 validation data compared to a RMSEP value of 0.68 (+/−0.05) % SSC for the
multi-year model (2016–2018). In 2017 and 2018 similar results were obtained. Yet, all yearly
calibrated models performed poorly in other years. Standard deviations were considerably
higher when using validation data from years that were not part of the calibration data sets.
This suggests two conclusions: first, yearly calibrated models tend to overfit the data and
can hardly be used as general PLSR models. Second, as the range in SSC values in 2018
was wider than in 2016 or 2017, this increased range led to poor model performance for the
2016 and 2017 models which were not trained for particularly low or high SSC values.

2.2. Evaluation of the Training Data
2.2.1. Effect of Sample Sizes

To assess the effects of different calibration sample sizes, 500 repeated Monte Carlo
simulation runs were performed. For each simulation run a stratified random sample with
n = 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 300, 400 or 500 calibration measurements
per year (corresponding to 60 to 1500 calibration measurements in total) was used as a
calibration data set to calibrate a multi-year (2016–2018) PLSR model. The RMSEP was
determined using a validation set with n = 200 observations for each year. The mean RMSEP
of these Monte Carlo simulation runs and the standard deviations thereof are shown in
Figure 3. PLSR models based only on 20 calibration scans per year show a mean RMSEP of
0.93 (+/−0.18 sd) % SSC in 2016, 0.91 (+/−0.17 sd) % SSC in 2017 and 0.95 (+/−0.28 sd) %
SSC in 2018. PLSR models based on 100 calibration measurements per year result in a
mean RMSEP of 0.70 (+/−0.06 sd) % SSC in 2016, 0.70 (+/−0.06 sd) % SSC in 2017 and
0.60 (+/−0.07 sd) % SSC in 2018. Based on 500 calibration measurements per year, a mean
RMSEP of 0.67 (+/−0.05 sd) % SSC in 2016, 0.67 (+/−0.04 sd) % SSC in 2017 and 0.56
(+/−0.04 sd) % SSC in 2018 are obtained. As the 2018 calibration measurements include a
higher proportion of scans taken during early fruit development, the larger range of SSC
values available results in a supposedly lower RMSEP value. This fact, to a large extent,
explains the apparent model improvement in 2018. Besides, the accuracy of laboratory
calibration work may also have improved in the third year of the study. No differences in
mean RMSEP values were detected for scans conducted at different temperatures in the
laboratory with Monte Carlo simulation (∼10, 20 or 30 ◦C).
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Figure 3. Root mean square error of prediction (RMSEP) in % soluble solids content (SSC) based on 2016, 2017 and 2018
partial least squares regression (PLSR) models to test the effect of reduced calibration sample sets. For each setting, 500 Monte
Carlo simulation runs were performed. Mean and standard deviation for each point are shown and 500 observations in
each calibration data set and 100 observations in each validation data set used.

2.2.2. Effect of the Data Range

To assess the prediction quality at certain SSC values the RMSEP was also determined
with 500 repeated Monte Carlo simulation (1200 observations in the calibration data,
300 observations in the validation data set). The multi-year model (2016–2018) was split
into values of <9, 9–10, 10–11, 11–12, 12–13 and >13% SSC and resulted in a RMSEP of 0.59
(+/−0.08 sd), 0.55 (+/−0.05 sd), 0.57 (+/−0.04 sd), 0.65 (+/−0.06 sd), 0.73 (+/−0.08 sd)
and 0.82 (+/−0.09 sd) % SSC, respectively. The analysis of the mean RMSEP shows signs
of heteroscedasticity with a worse PLSR prediction for lower and especially higher SSC
values. However, there was a smaller calibration data set at the beginning and end of
fruit ripening.

In all years, mean RMSEP values were very high for a low number of calibration values
and decrease rapidly up to n = 100 reference values per year with only a slight additional
improvement in model adequacy as shown in the RMSEP for n > 100 calibration values per
year. Standard deviations for the RMSEP values are rather high for small calibration sets
and decrease with increasing sample size. This suggests that model accuracy might appear
high in some cases “by chance”. This has two implications: first, the number of calibration
measurements can be limited to a rather small number of observations per year and a
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reduced number of calibration measurements can be used in future experiments. Second,
a certain prediction error seems to be inevitable with a given PLSR model no matter how
many calibration measurements are available.

2.2.3. Effect of Refractometer Errors

In this simulation procedure, additional normally distributed noise with a mean value
of m = 0% SSC and standard deviations of s = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 2.0% SSC was
added to the laboratory reference values for each simulation run. The standard deviation
of s = 0% SSC corresponds to the standard PLSR calibration model. All the simulation runs
show highly robust PLSR models. Even moderate and substantial laboratory errors only
increase the RMSEP values slightly (Figure 4). The RMSEP in 2016 increased from 0.67
(+/−0.05 sd) % SSC to 0.74 (+/−0.06 sd) % SSC with an additional laboratory error and a
standard deviation of 2.0% SSC. The simulations show similar results for 2017 and 2018.

Figure 4. Root mean square error of prediction (RMSEP) in % soluble solids content (SSC) based on 2016, 2017 and 2018
partial least squares regression (PLSR) models to test for nonsystematic laboratory errors during wet chemistry analyses.
For each setting, 500 Monte Carlo simulation runs were performed. Mean and standard deviation for each point are shown
and 500 observations in each calibration data set and 100 observations in each validation data set used.
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2.3. Use of LME Models to Describe SSC Accumulation

At any given time, the SSC values follow a linear trend with a normal distribution
and a slight increase in variance during fruit development and maturation (Figure 1b).
A breakdown by different orchard factors/experimental management treatments for tree
sector, crop load, cell division temperature and calcium treatment for the 2018 season
mainly suggests a clear effect of sector position, lower effects of crop load and temperature
and no effect of calcium treatment (data not shown). These trends are consistent with the
observations made for the 2016 and 2017 seasons. Three different models are considered
to evaluate whether the specification of random effects and interaction terms yields a
substantial improvement in model quality.

Model 1 is a fully-specified LME model with tree-specific and fruit-specific random
intercepts, year, weeks after full bloom (WAFB), sector position, crop load, cell division
temperature and calcium treatment as fixed effects and interactions between time and the
above listed main effects. Model 1 is a fully-specified LME:

yijk = β0 + uj,0 + ui,0 + β1tk + uj,1tk + ui,1tk + βXXi + βYXitk + eijk (1)

with a population intercept β0, a population parameter β1 for modelling a time-dependent
linear accumulation trend, a time-independent population parameter βX for any other
fixed effects such as treatment effects and sector position, a time-dependent parameter
βY for these fixed effects, a random tree-specific intercept uj,0 with uj,0 ∼ N(0, σ2

uj,0
),

a random tree-specific slope uj,1 with uj,1 ∼ N(0, σ2
uj,1

), a random fruit-specific intercept

ui,0 ∼ N(0, σ2
ui,0

), a random fruit-specific slope ui,1 ∼ N(0, σ2
ui,1

) and a random error term
eijk ∼ N(0, σ2

e ). Model 2 is nested in Model 1 without interaction terms (βY = 0):

yijk = β0 + uj,0 + ui,0 + β1tk + uj,1tk + ui,1tk + βXXi + eijk (2)

Model 3 corresponds to a fully-specified linear regression model without random
effects (with uj,0 = ui,0 = uj,1 = ui,1 = 0) and serves as a baseline model to compare
the effects of the LME modelling. Model 3 is a standard linear regression model without
random effects:

yijk = β0 + β1tk + βXXi + βYXitk + eijk (3)

The fixed time and treatment effects for any given fruit i from tree j were calculated as:

E(yijk|i, j) = β0 + β1tk + βXXi + βYXitk (4)

Using Akaike information criterion (AIC) and Bayesian information criterion (BIC)
as indicators of goodness of fit, both LME models (Models 1–2) are clearly favourable
over the standard linear regression (Model 3). Based on 17,004 observations, Model 1,
2 and 3 result in an AIC of 27,896, 29,154 and 35,708 and a BIC of 28,074, 29,255 and
35,871, respectively. The root mean square error (RMSE) was 0.48, 0.50 and 0.69% SSC
for Model 1, 2 and 3, respectively. Further information about regression coefficients and
time-dependent treatment effect of Model 1 can be obtained from Tables 2 and 3. Of
these two mixed-effects models, Model 1 seems to give the best fit which suggests that
the specification of interaction terms is appropriate to reflect the spatial and temporal
dependencies between observations. Model 1 shows highly significant effects for year,
WAFB, sector crop load and cell division temperature and their interactions. No significant
effect is observed for the calcium treatments.
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Table 2. Time-dependent treatment effects in 2017 on % soluble solids content (SSC) accumulation at
different stages of fruit development given in days after full bloom (DAFB). The baseline configuration
(Base) corresponds to fruit from the bottom sector of a tree with medium crop load without alterations
of cell division temperature. Displayed effects are bottom, middle, top sectors and light, standard
(stand.), heavy crop load and cold, ambient (amb.), warm cell division temperature treatments. SSC
values of the respective effects need to be added or subtracted to the base value.

Sector Crop Load Temperature
DAFB Base in % SSC

Middle Top Light Heavy Cold Warm

40 5.54 0.21 0.53 0.02 −0.07 0.08 0.16
60 6.43 0.25 0.60 0.06 −0.09 0.05 0.13
80 7.31 0.30 0.67 0.11 −0.11 0.01 0.11
100 8.19 0.34 0.75 0.16 −0.13 −0.02 0.08
120 9.08 0.39 0.82 0.20 −0.15 −0.06 0.06
140 9.96 0.43 0.89 0.25 −0.17 −0.09 0.03

Table 3. SSC model simulations with a reduction of sample size and different measurement errors. Multi-year model (MYM)
corresponds to a linear mixed-effect model with all data from 2016–2018 included (LME Model 1), Model A was reduced to
samples from 100 trees of the MYM, Model B was reduced to 500 fruit samples of the MYM and Model C had an unbiased
error of 1.0% SSC added to the MYM. The estimate % SSC (standard deviation) is stated with a significance code with
*** <0.001, ** <0.01, * <0.05. The number of observations, different fruit and trees is shown.

Multi-Year Model Model A Model B Model C

Observations (N) 17,004 7457 6777 17,004
Fruit (N) 1274 540 500 1274
Trees (N) 237 100 211 237
Intercept 3.78 *** (0.084) 3.72 *** (0.115) 3.90 *** (0.127) 3.86 *** (0.157)
Year 2017 1.47 *** (0.096) 1.58 *** (0.136) 1.45 *** (0.148) 1.51 *** (0.183)
Year 2018 1.85 *** (0.081) 2.04 *** (0.114) 1.87 *** (0.125) 1.85 *** (0.150)
Week 0.31 *** (0.003) 0.31 *** (0.005) 0.31 *** (0.005) 0.31 *** (0.007)
Middle sector 0.11 * (0.054) 0.00 (0.078) −0.03 (0.087) 0.01 (0.100)
Top sector 0.39 *** (0.054) 0.38 *** (0.078) 0.35 *** (0.089) 0.423 *** (0.101)
Cold temperature 0.15 (0.089) −0.02 (0.126) −0.03 (0.131) −0.05 (0.152)
Warm temperature 0.21 ** (0.065) 0.15 (0.090) 0.26 ** (0.095) 0.09 (0.107)
Light crop load −0.07 (0.064) −0.05 (0.096) −0.17 (0.094) −0.11 (0.110)
Heavy crop load −0.03 (0.069) −0.11 (0.094) −0.18 (0.101) −0.01 (0.117)
Without calcium 0.17 (0.140) 0.00 (0.175) 0.43 (0.230) 0.03 (0.227)

The time-dependent effects of different treatment levels are displayed in Table 2.
Fruit from the light crop load treatment show increasing SSC values throughout fruit
development. At the end of cell division (∼40 DAFB), only small differences between
different crop loads (range of 0.09% SSC between light and high crop load) and cell
division temperature regimes (0.16% SSC between cold and warm temperatures) can be
observed. Close to harvest (140 DAFB), relatively large differences in SSC can be seen
between different levels of tree sector (range of 0.89% SSC between bottom and top sector)
compared to only minor differences in SSC for different crop loads (range of 0.42% SSC
between light and high crop load) and only negligible effects for different temperature
regimes (range of 0.12% SSC).

2.4. Sensitivity Analysis of the Experimental Setup

Data collection in large orchard trial designs is labour and cost intensive. Therefore,
it is of interest to investigate whether reduced sample sizes lead to different results. SSC
values were derived from the multi-year PLSR calibration model based on laboratory
reference measurements. The influence of reduced sample sizes and unbiased laboratory
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measurement errors of 1.0% SSC on research results was investigated with LME Model 1.
Different simulation settings are presented in Table 3.

Three settings are discussed and the standard Model respectively altered: Model A
shows the effects of a reduced number of trees (100 trees within three years, same number
of fruit per tree). Model B is based on a reduced number of fruit (500 fruit within three
years, same number of trees). While the first setting with less experimental trees makes
if possible to have additional experiments in the same orchard block, the second setting
reduces the number of working hours per tree. Additionally, Model C shows the effect of
an increased but unbiased measurement error (additional white noise of 1.0% SSC) in the
SSC measurements. As expected, Models A–C show increased standard deviations of all
estimates compared to the multi-year SSC model due to a reduced sample size (for Models
A and B) or an increased measurement error (Model C). In Model C, the cell division
temperature and calcium treatment are not marked as “statistically significant” due to
increased measurement errors. In most cases the effect of sample size remains comparable
to the multi-year SSC model.

In summary, these simulations show the possibility of reduced sample sizes when
the focus is on treatments with large effects. In order to detect small differences between
different treatments, large sample sizes are still required, especially in the presence of
measurement errors due to increased t-values of the estimates.

2.5. A Practical Comparison of Spectral and Conventional Laboratory Methods to Determine SSC
at Harvest

Traditional destructive laboratory samples for SSC were taken at harvest from eight
apples per tree sector, treatment (2 or 3× levels) and repetition (3×). At the same time,
the last non-destructive scans in the orchard were taken from an independent batch of
approx. seven apples, scanned and postprocessed with the yearly calibrated PLSR model.
Mean destructive laboratory values for 2016, 2017, 2018 and all study years from 2016 to
2018 were 11.3, 11.1, 12.3 and 11.7% SSC, respectively (2016: +/−0.52 sd, n = 63; 2017:
+/−0.55 sd, n = 9; 2018: +/−0.53 sd, n = 50). The non-destructive samples were 11.8, 10.7,
12.0 and also 11.7% SSC, respectively (2016: +/−0.85 sd, n = 63; 2017: +/−0.70 sd, n = 27;
2018: +/−0.56 sd, n = 68). There is a higher variance for the PLSR modelled SSC values
as compared to the laboratory values. The mean difference of each treatment level for the
two methods is 0.5% SSC for all study years. The obtained values from the two approaches
were not biased.

3. Discussion

Varying weather conditions during the three study years resulted in different SSC
values at harvest which is in accordance with the literature [34–36]. Using time-series data
in the orchard offers the possibility to see a linear carbohydrate development in the form
of SSC accumulation over time. For 2017, the severe frost year, the SSC increase showed a
larger variance (Figure 1a), as was also seen for fruit growth (Figure 1b). Non-destructive
technologies can provide researchers with new tools to study fruit physiology or offer
the possibility to use these values in digital orchard management information systems
to predict and manage fruit quality, as seen for fruit diameter [37]. The effects of field
treatments and physiological differences were directly related to the developmental stage
of the fruit. Differences in tree sector position and crop load [1,38] caused increasingly
large differences in SSC during fruit development and negligible differences due to early
season temperature (∆ 2 ◦C to ambient). Differences in sector position influence SSC early
in the season whereas crop load effects increase steadily during fruit development.

Up until now the practical application of non-destructive scanning in apple research
experiments has been restricted due to the intensive amount of laboratory work necessary
to obtain reference samples and to the unknown precision of PLSR calibration models
in the orchard. The results of the PLSR calibration only partially depend on the number
and precision of the reference laboratory measurements. The results suggest that special
emphasis should be placed on scanning fruit at low and high SSC values at the beginning
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and end of each season to cover a wider range of possible SSC values within a particular
growing season. These results have some practical implications and suggest that even a
considerably reduced sample size (100 samples) leads to comparable results, although the
standard deviations of the estimates increase with reduced sample size. It suggests that
repeated laboratory reference measurements of the same fruits to increase the accuracy of
reference values lead to almost negligible improvements of the PLSR calibration models.
These simulation results are consistent with standard results from statistical measurement
error theory for response variables [39]. Moreover, in future experimental designs a
reduced number of field scans would be sufficient to detect SSC differences between the
treatments. A classical experimental field design with blocks and repetitions did not play a
role in the LME modelling, which relaxes some limitations of the classical variance analysis
framework and provides a more flexible way to adapt to temporal, spatial and tree-specific
dependencies. A precision horticulture approach beyond research trials to monitor fruit
SSC development on large sample numbers aligned to orchard structure should be possible.

The accuracy and robustness of the PLSR models was examined in great detail and
only showed minor limitations to their broader use for our purposes. Yearly calibrated
models cannot be generalised to other years, but multi-year models can be used for the same
orchard and cultivar as was also seen in Peirs et al. (2003) [21]. The practical comparison
between all laboratory based destructive measurements and the non-destructive orchard
SSC data collection showed that the independent apple selection was unbiased and for the
apple cultivar ’Braeburn’ there was no difference between the two methods for determining
SSC values at harvest in the orchard. In the future, however, new developments with model
transfer methodology [40] together with neural networks or other ’big data’ applications
may facilitate the wider use of non-destructive sensor based SSC predictions for apples.

Our results may not be generalised to other apple cultivars or fruit species and to
other sites or other climate regimes. However, since all effects are comparatively large and
consistent with a literature review, additional measurements would probably confirm the
overall effects. Analyses of dry matter content which can also be obtained by PLSR models
were not considered in this study. As the number of non-destructive sensors available for
horticultural practice and research is expected to increase in the coming years, longitudinal
data will be available in ever greater quantities. The collaboration of horticultural science,
computer science and statistics will avoid the collection of data as an end in itself and allow
for new insights into currently hidden patterns of fruit physiology and development.

4. Materials and Methods
4.1. Experimental Setup

This research took place at the Kompetenzzentrum Obstbau-Bodensee (47◦46′01.9′′ N
9◦33′23.3′′ E) in the Lake Constance region of Southwest Germany using the apple cultivar
’Braeburn’ Malus domestica. A randomised field design with treatments of crop load (light,
standard, heavy), calcium spraying (with, without) and cell division temperature (ambient,
∆ + 2 and ∆ − 2 ◦C) were used. Each tree was divided into three sectors of ∼1.25 m height
each for the bottom, middle and top. Apple phenological growth stages were recorded
following the BBCH code scheme [41]. The experimental design (treatments and scanning
number/frequency) varied during the different study years. For a detailed description of
the field experiments see [33,42].

4.2. SSC Sampling

Around June drop, one representative fruit per tree and sector was selected, marked
and repeatedly measured (scanned) until harvest. Fruit were scanned on the equatorial
and sun side with a handheld portable Vis/NIR device (F-750, Felix Instruments, Camas,
WA, USA). The device had a 3 nm spectral sampling over a 310–1100 nm spectral window,
a spectral resolution of 8–13 nm and corrected each scan for background daylight. The
spectral range of 729–975 nm was used in the PLSR models to predict SSC. Fruit were
replaced by a similar nearby fruit, if the fruit was lost or was not representative.
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Orchard sampling was performed weekly in 2016 between 15 August and 16 October
for n = 198 fruit from n = 33 trees. A total of n = 3994 scans were performed. In 2017,
sampling took place weekly between 3 August and 30 October for n = 603 fruit from n = 96
trees. A total of n = 5957 scans were made. In 2018, n = 473 fruit from n = 146 trees were
measured biweekly between 6 June and 25 October. In total, n = 7087 scans were recorded.
In 2018, data acquisition took place on a daily basis for 120–180 DAFB and SSC scanning
started at 50 DAFB.

4.3. PLSR Models

Reference measurements combined both destructive wet chemistry results and non-
destructive spectral scans. A sample of n = 30 reference fruit were taken regularly over
the fruit development and maturation periods from nearby trees in the same block and
around the same field at scanning time to ensure the transferability of the calibration
model to the SSC of sampled fruit. In total, n = 599 fruit in 2016, n = 211 fruit in 2017 and
n = 333 fruit in 2018 were selected. Non-destructive spectral reference measurements were
performed at different temperatures (∼10, 20, 30 ◦C) to help adjust for temperature induced
changes in hydrogen bonding [43]. The number of reference measurements is given as a
total of n = 1639 observations in 2016 (529 observations at 10 ◦C, n = 583 observations at
20 ◦C, n = 527 observations at 30 ◦C), in 2017 n = 631 observations (210 observations at
10 ◦C, n = 211 observations at 20 ◦C, n = 210 observations at 30 ◦C) and in 2018 n = 984
observations (n = 328 observations at each temperature level). Destructive wet chemistry
SSC measurements were obtained with a refractometer (Atago, Tokyo, Japan). PLSR models
were postprocessed on a year- and site-specific basis.

The original models were built with the Felix model builder software (v1.3.0.177).
Additional PLSR models were fitted using the R package pls [44]. Spectral data was
transformed using second derivative spectra from 729 nm to 975 nm. The maximum
number of principle components was set to 7 and the models were validated with leave-
one-out cross validation methods. The reference data set was split into a calibration data set
to train the PLSR model and a validation data set which was only used to test the prediction
quality. A stratified random sample was drawn for each year to generate equal parts for
all years. In total, n = 1200 observations were used as calibration data and n = 300 for
validation data, if not stated otherwise. The RMSEP and adjusted prediction R2 were used
to describe the model performance and goodness of prediction. Reference measurements
were taken as the longitudinal observations took place in the orchard. Therefore, we
assume that the RMSEP for the validation data corresponds to the RMSEP of the SSC
sampled fruit which could not be chemically analysed destructively due to the longitudinal
structure of the study.

4.4. Monte Carlo Simulations

Monte Carlo simulations were used to assess PLSR model sensitivity to changes in
input parameters and effects of sample size [45]. Measurement accuracy using standard
laboratory analyses was simulated with repeated random samples. For simulations a mod-
ified and randomly sampled calibration set was generated without replacement. Reference
measurements were split into a calibration data set with 1200 observations and a validation
data set with 300 observations. The modified calibration sets were used in an automatic
Monte Carlo simulation process to calculate the RMSEP and adjusted R2 values for each
setting. Each setting was repeated n = 100 times to calculate mean RMSEP values and
standard deviations.

For sample size analyses, calibration sets with a reduced sample size were sampled
for each year and all years combined. For laboratory errors, calibration sets were sampled
for each year and all years combined. Laboratory errors were assumed to be unbiased
and normally distributed. Additional normally distributed error terms (white noise) with
different magnitudes were added afterwards.
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4.5. Longitudinal LME Models

LME models (hierarchical regression models, nested linear models, multi-level re-
gression models) are a subset of generalized regression methods to analyse repeated
time-correlated and cluster-correlated observations [46]. DAFB and WAFB were used for
time-dependent analyses in each year.

All time-correlated observations on a single fruit were part of a natural cluster of obser-
vations which shared the same fruit-specific and tree-specific characteristics. A hierarchical
(nested) data structure was therefore applied. The LME model combined population-
specific and subject-specific (spatial variation in the orchard) random effects.

The specification of the random effects needs special consideration as the longitudinal
data structure makes two adaptions necessary: first, a random effect is given by a fruit-
specific dependency as these observations are correlated over time (fruit-specific intercept
and slope). Second, a random effect is necessary due to tree-specific dependency for all
fruit from the same tree. Therefore, with respect to the natural dependency of observations
from the same tree, a tree-specific intercept and slope were specified. Two random effects
were modelled in addition to fixed effects which affect all fruit simultaneously. Details are
specified in the previous sections. Modelling was done with the R package lme4 which
provided various functions for fitting, analysing and evaluating mixed-effects models in
a linear, generalised linear and nonlinear framework [47,48]. The restricted maximum
likelihood method and full maximum likelihood method were used to estimate parameters.
The R package lmerTest was used to approximate the degrees of freedom and calculate
p-values for mixed-effects models using Satterthwaite’s method [49]. Yet no emphasis is
placed on the interpretation of these p-values, as there is an unresolved statistical discussion
about their theoretical applicability [50]. Coefficients of fixed effects with a t-value (ratio
of estimate and its standard deviation) of less than −2 or greater than 2 were considered
statistically significant. Model choice was based on the AIC and the BIC both of which use
the log-likelihood ratio and describe model quality by adjusting the goodness of fit with
a penalization term for model complexity [51,52]. RMSEP was used to compare model
predictions and observations.

4.6. Mann–Whitney–Wilcoxon Test

A Mann–Whitney–Wilcoxon test was conducted in R to compare the modelled SSC
values from the field scans based on the PLSR modelsto destructively measured fruit in the
laboratory. Refractometer values showed a normal distribution, whereas PLSR modelled
SSC were not normally distributed and Mann–Whitney–Wilcoxon test was used. For the
laboratory samples the top half of a fruit batch of eight apples was mixed in the laboratory
with a conventional fruit blender.

5. Conclusions

In summary, the non-destructive temporal development of SSC accumulation could
contribute new insights into apple fruit carbohydrate physiology. The present study linked
an in-depth statistical analysis of large data sets with horticultural knowledge in order to
test the application of ’Braeburn’ SSC prediction models with a special focus on model
transferability and accuracy.

• In terms of model performance over all years, the multi-year PLSR model appeared
to be reasonable with minor restrictions for especially low and high SSC predictions.
However, independent yearly calibration models performed best for the same year.

• A sample size of n = 100 fruit for a yearly PLSR model with a wide range of SSC
values seems to be sufficient.

• Differences in sector position and crop load resulted in increasingly large differences in
SSC during fruit development and offer the possibility for further physiological studies.
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