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Abstract: Precise frequency measurement plays an essential role in many industrial and robotic
systems. However, different effects in the application’s environment cause signal noises, which make
frequency measurement more difficult. In small signals or rough environments, even negative Signal-
to-Noise Ratios (SNRs) are possible. Thus, frequency measuring methods, which are suited for low
SNR signals, are in great demand. While denoising methods such as autocorrelation do not suffice
for small signal with low SNR, frequency measurement methods such as Fast-Fourier Transformation
or Continuous Wavelet Transformation suffer from Heisenberg’s uncertainty principle, which makes
simultaneous high frequency and time resolutions impossible. In this paper, the cross-correlation
spectrum is presented as a new frequency measuring method. It can be used in any frequency
domain, and provides greater denoising than autocorrelation. Furthermore, frequency and time
resolutions are independent from one another, and can be set separately by the user. In simulations,
it achieves an average deviation of less than 0.1% on sinusoidal signals with a SNR of −10 dB and a
signal length of 1000 data points. When applied to “self-mixing”-interferometry signals, the method
can reach a normalized root-mean square error of 0.2% with the aid of an estimation method and an
averaging algorithm. Therefore, further research of the method is recommended.

Keywords: cross-correlation; frequency measurement; low SNR; Fast-Fourier Transformation (FFT);
continuous wavelet transformation; self-mixing interferometry; autocorrelation; signal processing
method; frequency spectrum

1. Introduction

Measurement technology is an essential part of many industrial and robotic systems.
By precisely measuring physical parameters, robots are capable of perceiving their en-
vironment and fulfilling their purpose correctly. Many sensors generate signals, whose
frequency depends on certain input stimulus [1,2]. These include accelerometers [3] or
piezoelectric sensors [4,5]. Interferometers such as Laser Doppler Velocimeters or “self-
mixing” interferometers use signal frequencies for the measurement of physical parameters
such as vibration or velocity [6,7]. Therefore, precise frequency measurement is of the
utmost importance in measurement technologies [8].

However, different effects in practical applications cause signal noises, which make
frequency measurement significantly more difficult. In the case of small signals under
rough environment conditions, even negative Signal-to-Noise Ratios (SNRs) are possible.
Thus, methods which can measure frequencies of low SNR signals are in great demand [9].

One very common frequency determination method is the Fast-Fourier-Transformation
(FFT). It generates a frequency spectrum of the signal that specifies which frequencies the
signal consists of. However, the FFT does not provide information regarding frequency
changes in the viewed signal part. The Short-Time Fourier Transformation (STFT) can
solve this problem [10]. The signal is divided into small signal parts and the frequency
spectrum of each part is generated. However, the signal partition deteriorates the frequency
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resolution significantly. That is due to Heisenberg’s uncertainty principle. It says that an
improvement in time resolution leads to the deterioration of frequency resolution, and vice
versa [10,11].

The Continuous Wavelet Transformation (CWT) has been developed to solve the
resolution problems of STFT. However, the method is also limited by Heisenberg’s un-
certainty principle [12], and only suitable for long-duration frequency signals containing
short-duration high frequency events [10]. CWT is based on the dilation of the window
function, which results in a high time and low frequency resolution for high frequencies,
and vice versa. In situations, where high frequency and time resolutions are required at the
same time, the usage of CWT is not recommended.

For denoising tasks, autocorrelation has established itself as a reliable method. This
is a signal processing method in which the correlation of a signal with a delayed copy of
itself is described. Due to its characteristics, autocorrelation makes it possible to denoise a
signal without losing information about the signal frequency [13]. However, in the case of
small signals with low SNR, autocorrelation is not suited to denoise the signal while also
preserving frequency information (see Chapter 3).

This study presents a new method based on cross-correlation to measure the frequen-
cies of low SNR signals with high accuracy. The method can be used in any frequency
domain and preserves frequency information better than denoising methods such as au-
tocorrelation. Furthermore, the frequency and time resolution are independent from one
another and can be set separately by the user.

The rest of the paper is organized as follows: Section 2 describes cross-correlation and its
relevant characteristics as fundamentals. Furthermore, it presents the new signal processing
method, its working principle, as well as its characteristics and benefits. In Section 3, the new
method’s ability to measure frequencies and to denoise signals is analyzed in simulations and
compared with the performance of autocorrelation. In Section 4, the presented method is
validated by applying it to “self-mixing” interferometry (SMI) signals, which are explained in
detail as well.

2. Fundamentals and Methods
2.1. Cross-Correlation

Cross-correlation is a function used in signal processing. It describes the similarity of
two signals which have the time shift τ between one another. In general, it is defined as
follows [13]:

φxy(τ) = lim
T→ ∞

1
2T

∫ T

−T
x(t) ∗ y(t− τ)dt (1)

For simplicity, we will call x(t) the reference signal and y(t) the test signal under
analysis. The discrete cross-correlation is calculated with the following Equation, where N
is the number of discrete data points and k represents the data shift:

φxy(k) = lim
N→ ∞

1
N

N−1

∑
n=0

x(n) ∗ y(n− k); (k = 0, 1, 2, . . . , Z) (2)

Lee et al., (1949) has identified the cross-correlation as a sufficient denoising method [14].
Similar to autocorrelation, the cross-correlation of stochastic offset-free noise signals are
delta impulses, which converge to zero with increasing time (or data) shift τ (or k). Cross-
correlation between a test signal and a reference signal with the same frequency, amplitude,
and phase reduces noise significantly, without losing frequency information of the test sig-
nal. While autocorrelation describes the correlation of two noisy signals, cross-correlation
describes one between a noisy test signal and a noise-free reference signal. Therefore,
denoising with cross-correlation is more effective [14].
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In context of its practical use, the following question is stated: What does the cross-
correlation look like, when characteristics of tests and reference signals differ from one
another? Therefore, the cross-correlation of the following signals is analyzed:

x(t) = A ∗ sin(2π ∗ fN ∗ t + ϕ1) (3)

y(t) = B ∗ sin(2π ∗ fM ∗ t + ϕ2) + s(t) (4)

According to [14], the signal noise s(t) converges against zero in the cross-correlation.
Thus, it can be neglected in the analysis. In total, the cross-correlation is:

φxy(τ) = lim
T→ ∞

A∗B
2T
∫ T
−T sin(2π ∗ fN ∗ t + ϕ1) ∗ sin(2π ∗ fM ∗ (t− τ) + ϕ2)dt

= K ∗ cos(2π ∗ fM ∗ τ + (ϕ1 − ϕ2)) + L∗ cos(2π ∗ fM ∗ τ + (ϕ1 + ϕ2))
(5)

with

K = lim
T→ ∞

A ∗ B
4T

∗ sin(2π ∗ T ∗ ( fN − fM))

π ∗ ( fN − fM)
(6)

L = lim
T→ ∞

A ∗ B
4T

∗ sin(2π ∗ T ∗ ( fN + fM))

π ∗ ( fN + fM)
(7)

The cross-correlation is the sum of two cosine functions. They both have the frequency
of the test signal, but differ in amplitude and phase. With increasing T, the amplitude of
both cosines’ functions converges against zero.

The pace with which the amplitudes decrease depends on different factors. With
increasing T and a high value of ( fN + fM), the second cosine function converges against
zero very quickly. The convergence speed of the first cosine function depends on the
frequency difference between the test and reference signal. The smaller the difference is,
the lower the convergence speed becomes. This results in two conclusions: Most of the time,
the second cosine function will converge faster than the first one. Therefore, the second
function can be neglected, and thus the cross-correlation can be simplified to Equation (8):

φxy(τ) = K ∗ cos(2π ∗ fM ∗ τ + (ϕ1 − ϕ2)) (8)

Furthermore, the amplitude of the cross-correlation is at its largest, when fN = fM is
fulfilled. In this case, the parameter K has the following value:

K = lim
T→ ∞

A ∗ B
4T

∗ sin(2π ∗ T ∗ ( fN − fM))

π ∗ ( fN − fM)
=

A ∗ B
2

(9)

The amplitude is constant and is not influenced by the parameter T. The cross-
correlation function shows the same behavior as an autocorrelation function [13] and has
its greatest amplitude.

If the test signal consists of multiple sinusoid functions (see Equation (10)), the cross-
correlation function can be described by Equation (11).

y(t) =
P

∑
i=1

Bi ∗ sin(2π ∗ fMi ∗ t + ϕMi) (10)

φxyN (τ) =
P

∑
i=1

Ki ∗ cos(2π ∗ fMi ∗ τ + (ϕ1 − ϕMi)) =
P

∑
i=1

φxyi (τ) (11)

with

Ki = lim
T→ ∞

A ∗ Bi
4T

∗ sin(2π ∗ T ∗ ( fN − fMi))

π ∗ ( fN − fMi)
(12)
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The cross-correlation function φxyN (τ) is the superposition of the cross-correlations
between the reference signal and each component of the test signal. Each cross-correlation
function φxyi (τ) has its greatest amplitude when fN equals their frequency fMi.

Based on this property, and the fact from the Fourier analysis, that a signal can be
approximated with a linear combination of trigonometric functions, one can assume that
the frequencies of a test signal y(t) can be identified by determining values of the frequency
fN, which result in the largest amplitude of the cross-correlation function φxy(τ). Thus, a
new discrete signal processing method called the “cross-correlation spectrum” is described
in this article.

2.2. Cross-Correlation Spectrum

The cross-correlation spectrum K( fw) can be calculated with the Equations from (13) to
(17). There, fs is the sampling frequency. K( fw) represents the amplitude of the cross-correlation
function between the test signal y(n), which is abstracted according to Equation (15), and the
sinusoid function x fw(n) (see Equation (13)) as a function of the frequency fw, which is set
according to Equation (14).

x fw(n) = sin
(

2π ∗ fw ∗
n
fs

)
(13)

fw = w ∗ ∆ f ; w ∈
[

fa

∆ f
;

fe

∆ f

]
(14)

y(n) =
P

∑
i=1

Bi ∗ sin
(

2π ∗ fMi ∗
n
fs
+ ϕMi

)
(15)

φx f wy(k) = lim
N→ ∞

1
N

N−1

∑
n=0

x f w(n) ∗ y(n− k); (k = 0, 1, 2, . . . , Z) (16)

K( fw) =
P

∑
i=1

Bi
2N
∗ sin(π∗N∗( fw − fMi))

π ∗ ( fw − fMi)
(17)

The cross-correlation spectrum can be generated as follows (see Figure 1):

Figure 1. Calculation process of cross-correlation spectrum.

1. The viewed frequency range [ fa; fe] and the frequency resolution ∆ f are defined by the
user. To analyze the test signal’s frequency efficiently, a rough frequency estimation
is performed beforehand, to set the frequency range in a way that it is minimized
as much as possible, while ensuring that the signal’s frequencies are included in the
defined range. ∆ f is set according to the accuracy requirements. If, for example, the
signal’s frequencies are around 1 kHz and an accuracy of 0.5% is required, ∆ f should
be set to 1 Hz at most;

2. fw is initialized to fa;
3. The sinusoid function x fW (n) is generated according to Equation (13);
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4. The cross-correlation function φx f wy(k) between the test signal y(n) and x fW (n) is
calculated using Equation (16). The parameter Z (see Equation (16)) should be set to
the signal period length of φx f wy(k);

5. The cross-correlation spectrum’s value K( fw) for the current frequency fw is deter-
mined by identifying the amplitude of the cross-correlation function φx f wy(k). Here,
it is accomplished by finding the function’s maximum value;

6. The frequency fw is increased by ∆ f , i.e., w = w + 1 (see Equation (14));
7. The steps from 3–6 are repeated, until K( fe) has been determined.

Figure 2 shows an exemplary cross-correlation spectrum. Here, a simple sinusoid
function of the frequency 10 kHz is used as the test signal. The result resembles the
absolute function of a sine cardinal, which is symmetrical and has its global maximum at
the frequency of the test signal. Therefore, the creation of a cross-correlation spectrum is a
valid method to generate information about the frequencies of the test signal.

Figure 2. Exemplary cross-correlation spectrum.

In Figure 3, the method’s ability to determine frequencies of a signal, which consists
of several frequencies, is tested. For this purpose, a harmonic with a frequency of 20 kHz
is added to the signal from Figure 2. We can see two local maxima, which are at the test
signal’s frequencies. The value of the maxima seems to depend on the amplitude of the
corresponding harmonic. Therefore, the method can recognize the different frequency
components of the test signal, as well as their relative amplitude ratios.

Figure 3. Cross-correlation spectrum of a harmonic with the amplitude (a) 0.1, and (b) 0.5.
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If the different frequencies of a signal are close to one another, the result resembles the
superposition of the functions representing the respective frequencies. This can be seen in
Figure 4. There, the cross-correlation spectra of two simple sinusoidal signals of different
frequencies, as well as the spectrum of the two sinusoid functions’ sum, are visualized.

Figure 4. Cross-correlation spectra of the sinus signals and their sum.

In contrast to FFT and CWT, the frequency and time resolution in the cross-correlation
spectrum are independent from one another. Both can be set separately by the user, which
means that resolution problems can be reduced to a minimum. With the help of this
method, frequency determination with high time and frequency resolutions is possible.
Therefore, many limitations associated with FFT and CWT can be circumvented with the
cross-correlation spectrum.

However, it must be considered that the time resolution has an influence on the form
of the functions, which describe individual frequencies in the cross-correlation spectrum.
The longer the used time signal length is, the more compressed the sine cardinal in the cross-
correlation spectrum becomes. After a sufficient compression, the test signal’s frequencies
are represented as delta impulses, whereby the cross-correlation spectrum even corresponds
to a frequency spectrum (see Figure 5).

Figure 5. Cross-correlation spectrum (N = 10,000 data points).

Furthermore, the cross-correlation spectrum must not be confused with the “cross
power spectrum”. While the “cross-power spectrum” describes the relationship between
two time functions as a function of frequency, and thus shows which frequencies the two
viewed time functions have in common [15], the cross-correlation spectrum analyzes only
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one practical time signal (=test signal), and provides frequency information of the test
signal by describing its correlation with reference signals, which are generated by software.
Thus, the purpose and working principle of both spectrums differ from one another.

3. Simulations

In the following section, simulations are carried out to evaluate the method’s perfor-
mance on noisy signals. Firstly, cross-correlation spectra of sinusoidal signals, which have
a frequency of 10 kHz, are created under different SNR. The sampling frequency fs and
the number of data points N are set to 100 kHz and 1000 data points, i.e., fs = 100 kHz,
N = 1000. While Figure 6 shows the discrete time signals in comparison to a noise-free one,
Figure 7 visualizes the cross-correlation spectra.

Figure 6. Noisy sinus signals with different SNR; (a) 10 dB; (b) 0 dB; (c) −10 dB; and (d) −20 dB.

Figure 7. Cross-correlation spectra of different SNR; (a) 10 dB; (b) 0 dB; (c) −10 dB; and (d) −20 dB.
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Figure 7 shows that, even for signals with low SNR, the signal’s frequency is clearly
visible in the cross-correlation spectrum. Up to an SNR of −10 dB, the maximum of the
spectrum is visibly at the frequency of the test signal. Only at an SNR of −20 dB can the
correct frequency not be seen anymore.

In Figure 8a,b, the denoising of autocorrelation and the cross-correlation spectrum is
compared with one another. Figure 8a visualizes the SNRs of noisy signals after processing
by autocorrelation and cross-correlation spectrum as a function of their original SNRs,
while Figure 8b presents the SNR improvements after processing by both methods as
a function of their original SNRs. The figures indicate that whether autocorrelation or
the cross-correlation spectrum is superior in terms of denoising depends on the signal’s
original SNR. While the SNR improvements of autocorrelation are better in the case of
original SNRs which are higher than 2 dB, the cross-correlation spectrum is superior at
lower original SNRs. The results imply that the cross-correlation spectrum is more suited
to denoise signals of low SNR, while autocorrelation is the better option for signals with
relatively high SNR.

Figure 8. (a) SNR after using methods; (b) SNR improvements due to the methods.

However, in context of this article, the method’s ability to measure the frequencies of
noisy signal is more relevant. If denoising results in the loss of frequency information, the
method has missed its key point. Thus, the following simulation has been performed. The
SNR has been gradually reduced from 20 dB to −20 dB. For each SNR, the frequency of
500 test signals has been determined with two methods. Firstly, an autocorrelation and a
zero-crossing detection has been used for frequency measurement. Secondly, the frequency
has been determined by generating their cross-correlation spectra and identifying the
frequency with the highest spectrum value. The frequency range and resolution of the
cross-correlation spectrum have been set to the range of 9 to 11 kHz, and 1 Hz. The
sample frequency fs is the same as in Figures 6 and 7, while the signal frequency has been
changed to 10,123.4 Hz to show the effects of asynchronous sampling. Furthermore, the
same number of data points N has been used in both methods. Figure 9a,b compare the
normalized root mean square error (=NRMSE) and average deviation of both methods
with one another.

The cross-correlation spectrum shows superior performance in the frequency mea-
surements of low SNR signals. While the error of the autocorrelation method starts to rise
exponentially at an SNR of 5 dB, the error of the cross-correlation spectrum starts to behave
this way at SNRs below −10 dB. Table 1 provides a closer look at the cross-correlation spec-
trum’s accuracy in measuring frequencies. The results are very promising, as the average
deviation is less than 0.02% for SNR higher than −3 dB. Even at an SNR of −10 dB, both
deviations are still below 0.1%. Only at lower SNR do the deviations increase significantly.
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Figure 9. (a) NRMSE of methods under different SNR; (b) Average deviation of methods under
different SNR.

Table 1. NRMSE and average deviation of the cross-correlation spectrum method.

Scheme NRMSE in % Average Deviation in %

−20 4.7141 3.2802

−15 2.1118 0.7325

−10 0.0885 0.0652

−5 0.0382 0.0262

−4 0.0355 0.0244

−3 0.0312 0.0214

−2 0.0240 0.0182

−1 0.0191 0.0154

0 0.0145 0.0140

1 0.0136 0.0135

2 0.0125 0.0124

The accuracy can be improved even further by using longer signal parts for the cross-
correlation spectrum. This relationship is illustrated in the following simulation. The
method has been carried out with different signal lengths N on 500 test signals with a SNR
of −10 dB. The NRMSE and average deviation of the results were determined for each N
and visualized in Figure 10. As expected, the results’ accuracy improves with increasing
signal length. Beginning from a signal length of 1500 points, the NRMSE and average
deviation is below 0.05% even at an SNR of −10 dB.

Figure 10. Deviations of the cross-correlation spectrum using different signal lengths N.
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4. Application Example
4.1. Self-Mixing Interferometry

The simulations above have shown that the cross-correlation spectrum is able to
measure frequencies of low SNR signals with high accuracy. However, the method’s ability
must be validated by practical application. Therefore, the method has been tested by
using signals generated by “self-mixing” interferometry (SMI), as the precise frequency
measurement of SMI signals with low SNR is of great relevance in the research of speed
measurement technology [7].

SMI is a measurement technology of increasing popularity; a laser beam is reflected
from a target object, back into the laser cavity. This results in interferences between the
light generated inside the laser and the reflected one, which change the laser’s frequency
and amplitude. When a built-in photodiode senses the laser’s output power, one can
obtain a signal (=SMI signal), which can be used to measure physical properties such as
displacement, vibration, or speed [16]. Figure 11 shows the schematic structure of the
rotational speed measurement using SMI signals. If a turntable is used as the target object,
a linear relationship between the frequency of the SMI signal (=Doppler frequency) and
the turntable’s rotational speed ω can be derived and written as follows [7]:

fD(ω) =
2 ∗ω ∗ r ∗ cos(θ)

λ
(18)

where θ represents the incident angle between the laser and the target object’s moving
direction, while λ symbolizes the wavelength of the laser diode. The target’s linear speed v
can be calculated with the target’s radius r and the rotational speed ω, i.e., v = rω.

Due to Equation (18), SMI signals make the direct measurement of the target’s rota-
tional speed possible. As the method provides inherently high resolutions [17], which are
independent from the target object’s speed, there are no resolution problems in low-speed
ranges. Thus, self-mixing interferometry has become a promising solution for rotational
speed detections.

Figure 11. Schematic structure of SMI rotational speed measurement [7] (Reprinted with permission
from [18] © The Optical Society).

This being said, many challenges are involved with the usage of self-mixing-interferometry.
Spectral broadening is known as a major one. This results from different aspects such as the
vibration, profile add uncertainty, speckle effect, change in surface or velocity distribution
over the light spot region [19], and results in amplitude and frequency modulations of the
SMI signal [20]. The authors of [21] have conducted a comprehensive analysis of factors
influencing the spectrum of the SMI signal. The incident angle, the beam’s numerical
aperture (NA), the speed, and the fractional speed changes across the beam spot when
the spot is close to the target’s center have been identified as major factors. Laser nonzero
linewidth, target surface profile, system vibrations, instabilities of the target’s speed,
and fractional speed changes across the beam spot, when the spot is distant from the
target’s center, influence the spectrum in a minor way as well. However besides spectral
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broadening, the SMI signal is often corrupted by dynamic offsets due to system instabilities
environmental influences or by additive noises [17], which are caused by environmental
aspects such as electromagnetic interferences, etc.

Figure 12 visualizes a typical SMI signal. This is a sinusoidal signal disturbed by ampli-
tude and frequency modulation, as well as additive noises. All these factors make it difficult
to precisely measure the rotational speed with self-mixing interferometry. Therefore, there
is a need for robust signal processing methods.

Figure 12. Typical SMI-signal for rotational speed measurement (Reprinted with permission from [18]
© The Optical Society).

To obtain SMI signals for the experiments, the same test system, which is based on the
schematic structure of Figure 11, and the same settings as in [17] are used (see Figure 13). A
laser driver transforms the output of the power supply into a constant current, which runs a
sensor head consisting of a commercial 785 nm laser diode with an integrated photo diode
and two lenses. The sensor head targets a turntable mounted on the shaft of a Yaskawa
SGMJV-02A3E6S servo motor. Using the servo drive Yaskawa SGDV-1R6A01B002000, the
motor is controlled by a computer and rotates the turntable with a constant rotational
speed. The speed is measured by a 21-bit optical encoder to provide a good velocity
reference [17]. The integrated photo diode detects the optical feedback, generated by
self-mixing interferometry, and sends its output to a preprocessing circuit. The circuit
extracts and amplifies the SMI-signal and sends it to an oscilloscope, which enables the
extraction of SMI-signal data for further analysis. This test system uses an 8-bit DSO1024A
oscilloscope of Agilent with a bandwidth of 200 MHz. Due to its bandwidth capability, the
measuring device does not limit the measurement bandwidth.

Figure 13. Test system A: Sensor head; B: laser driver + preprocessing circuit; C: Servo motor; D:
Oscilloscope; and E: power supply [17] (Reprinted with permission from [18] © The Optical Society).
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In the first experiment, the method’s ability to detect signal frequencies is validated.
Then, the cross-correlation spectrum is used on SMI signals to measure the rotational speed
of a turntable. This is done by determining the frequency of the SMI signal (=Doppler
frequency). However, due to spectral broadening, a frequency range has emerged from the
Doppler frequency. Therefore, the original frequency of the SMI signal must be estimated
from the frequency range.

In principle, the cross-correlation spectrum can be viewed as the absolute value
function of a superposition of several sine cardinal. It is reasonable to assume that spectral
broadening has divided one sine cardinal into several, and that, in the viewed frequency
range, the integral of the cross-correlation spectrum remains the same in terms of amount.
The following estimation method has been developed based on this assumption.

In the first step, the integral of the cross-correlation spectrum is formed. Afterwards,
the cross-correlation spectrum is abstracted to the absolute value function of a single sine
cardinal with the same maximum integral value as the original cross-correlation spectrum.
The frequency, which the abstraction represents, is considered as the SMI signal’s original
frequency, and is searched accordingly. As the abstraction is y-symmetrical at the frequency
that it represents, the sought frequency would be at the point at which the integral of the
cross-correlation spectrum reaches half of its maximum value. Thus, the determination of
this point is the aim of the estimation method (see Figure 14).

Figure 14. (a) Cross-correlation spectrum of a SMI-Signal; (b) Integral of the cross-correlation
spectrum; and (c) Abstraction of the cross-correlation spectrum.

Based on the cross-correlation spectrum of the viewed signal part, this method can
provide a good estimation of the Doppler frequency. However, measurement errors, which
are caused by frequency modulation due to different effects such as the speckle effect or
system vibrations, can only be partly reduced with this method. To compensate these
errors, the method is followed by the averaging algorithm shown in Figure 15.

Figure 15. Averaging algorithms with window size M (Reprinted with permission from [18] © The
Optical Society).

The averaging algorithm works as follows: Every result from the previous steps is put
into the averaging window. Each time a new value arrives, the average of all values inside
of the window is calculated as the algorithm’s final output. When the window is full and
the new input EM+1 comes in, all values in the window are shifted one slot to the left. The
oldest value E1 leaves the window and EM+1 receives EM’s previous slot. The number
of slots is fixed, and can be defined by the user himself. The accuracy can be improved
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by increasing the size. However, this deteriorates the algorithm’s response time towards
speed changes.

4.2. Experiments on SMI-Signals

The first experiment aims to validate whether information regarding a signal’s fre-
quencies can be generated with the cross-correlation spectrum. For this purpose, the
cross-correlation spectrum and the FFT of an SMI signal were created, normalized, and
compared with one another (see Figure 16). A signal of the size of 10,240 data points has
been used for this experiment. The sampling frequency has been 12.5 MHz.

Figure 16. Comparison between normalized FFT and cross-correlation spectrum.

Generally, there is a match between the FFT and the cross-correlation spectrum.
However a closer look at the spectra reveals that the cross-correlation spectrum turns out to
be more accurate (see Table 2). While the frequency resolution for the FFT is approximately
1221 Hz, it has been set to ∆ f = 10 Hz for the cross-correlation spectrum. Therefore, the
frequency spectrum of the FFT is much coarser and thus less precise.

Table 2. Energy of the FFT and the cross-correlation spectrum.

FFT Cross-Correlation Spectrum

Frequency Energy Frequency Energy

301,513 0.1750

. . .

301,480 0.1600

301,490 0.1618

301,500 0.1643

301,510 0.1665

301,520 0.1695

301,530 0.1727

301,540 0.1765

301,550 0.1803

301,560 0.1841

302,734 1

. . .

302,710 0.9808

302,720 0.9827

302,730 0.9840

302,740 0.9861

302,750 0.9894

. . .

302,820 0.9986

302,830 0.9996

302,840 1
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Using the experiment setup described in Section 4.1, the method’s ability to measure
rational speed is tested. According to Equation (18), the incident angle is required to
calculate the rotational speed out of the Doppler frequency. However, if the laser’s position,
direction and thus the laser incident angle is fixed, the characteristic line between Doppler
frequency and rotational speed can be obtained from the calibration of the measurement
system. If the line is linear and its slope known, the rotational speed can be easily derived
from the Doppler frequency. Therefore, the experiment aims to find the method’s nonlin-
earity and its best possible accuracy in measuring frequencies. The first 3000 data points of
each data set have been used for the cross-correlation spectrum. Furthermore, the size of
the average window has been set to 20 values.

The frequency range of the cross-correlation spectrum has significant influence on
the estimation method’s results. It should contain all signal frequency components while
excluding as many noises as possible. Thus, for each speed, the authors have visually
evaluated the cross-correlation spectrums of the data sets to define spectrum borders,
which fulfill the condition.

In the first step, the linearity between the results and the turntable’s rotational speed
has been validated. For this purpose, a characteristic line has been created using linear
regression from the average values of 50 data sets for each rotational speed. Figure 17
and Table 3 describe the results. In the worst case, the linearity is at 0.4%. Thus, there is a
linearity between the determined Doppler frequency and the rotational speed.

Figure 17. Linearity between Doppler frequency and rotational speed (Reprinted with permission
from [18] © The Optical Society).

Table 3. Linearity of the average values from 50 data sets for each rotational speed.

Rotational Speed Doppler Frequency
in Hz

Doppler Frequency of
the Characteristic Line

in Hz
Linearity

5 19,863.79 17,920.50 −0.24%
10 39,692.23 38,101.50 −0.20%
20 78,921.36 78,463.50 −0.06%
30 118,590.4 118,825.5 0.03%
40 158,504.6 159,187.5 0.09%
50 198,683.8 199,549.5 0.11%
75 297,685.6 300,454.5 0.35%

100 398,130.6 401,359.5 0.40%
125 503,959.1 502,264.5 −0.21%
150 604,433.3 603,169.5 −0.16%
175 703,830.3 704,074.5 0.03%
200 806,050.0 804,896.9 -0.12%
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Table 4 shows the new method’s accuracy as the normalized root mean square error
(=NRMSE) of its results. To evaluate the results, the NRMSE from [18], where a method
consisting of a signal selection, autocorrelation, zero-crossing detection, and averaging
algorithm is used to measure the Doppler frequency, are also visualized. In both cases,
the average Doppler frequency of the respective rotational speed has been used as the
reference of the NRMSE.

Table 4. NRMSE of results using cross-correlation spectrum and the method from [18].

Rotational Speed (RPM) NRMSE of New Method (%) NRMSE of Method from [18]
(%)

5 0.18 0.16
10 0.11 0.06
20 0.11 0.05
30 0.07 0.08
40 0.13 0.15
50 0.15 0.13
75 0.10 0.07

100 0.10 0.06
125 0.14 0.06
150 0.09 0.07
175 0.07 0.05
200 0.04 0.06

Table 4 shows that both methods can measure the Doppler frequencies accurately, as
the NRMSE stays below 0.2% in both methods. The results are very promising and show
the cross-correlation spectrum’s potential in frequency measurements in application fields
such as robotics.

5. Discussions

In this paper, the cross-correlation spectrum is presented as an alternative to the Fast
Fourier Transformation (FFT) and the Continuous Wavelet Transformation (CWT). The
spectrum describes the amplitude of the cross-correlation function between the test signal
and a reference sinusoid signal as the function of the set frequency fw. To generate the
spectrum, the frequency fw is gradually increased from the spectrum border beginning fa
to the border ending fe by a frequency interval of ∆ f . Then, the amplitude of the cross-
correlation function is determined for each value of fw. While FFT and CWT must make
compromises between frequency and time resolution due to Heisenberg’s uncertainty
principle, the cross-correlation spectrum allows the user to set the time and frequency
resolution separately from one another. Thus, the cross-correlation spectrum makes it
possible to determine the frequencies of a signal with high time and frequency resolution
at the same time. The processing of very noisy signals does not pose a problem either, as
the method denoises signals as well. Simulations and experiments on SMI signals show
promising results. On a sinusoidal signal with a SNR of −10 dB and a length of 1000 data
points, the new method can achieve an average deviation of less than 0.1%. The deviation
can be reduced even further by using signal parts with more data points. In the case of SMI
signals, the cross-correlation spectrum can achieve a normalized root-mean square error
below 0.2% and a non-linearity below 0.5% with the aid of an estimation method, where
the integral of the cross-correlation spectrum is used for frequency estimations, as well
as an averaging algorithm. Therefore, the cross-correlation spectrum is a very promising
method, which could be used in many application areas such as robotics.

A lot of a signal’s frequency information can be derived from the cross-correlation
spectrum but, in most cases, it does not represent a frequency spectrum. Only when a
sufficiently long signal part is used are frequencies visualized as delta pulses in the cross-
correlation spectrum. However, if the form of the functions, that represent the individual
frequencies in the cross-correlation spectrum, can be predicted using the knowledge of
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necessary parameter values, the frequency spectrum could be derived from the cross-
correlation spectrum even with short signal parts. Therefore, a more detailed analysis of
the cross-correlation spectrum is recommended. Furthermore, the creation of the cross-
correlation spectrum is currently computationally intensive. Thus, further research should
be done to create methods reducing the calculation time.
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