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Abstract: A new solvatomorph of [Au3(1-Methylimidazolate)3] (Au3(MeIm)3)—the simplest con-
gener of imidazolate-based Au(I) cyclic trinuclear complexes (CTCs)—has been identified and
structurally characterized. Single-crystal X-ray diffraction revealed a dichloromethane solvate ex-
hibiting remarkably short intermolecular Au· · ·Au distances (3.2190(7) Å). This goes along with a
dimer formation in the solid state, which is not observed in a previously reported solvent-free crystal
structure. Hirshfeld analysis, in combination with density functional theory (DFT) calculations,
indicates that the dimerization is generally driven by attractive aurophilic interactions, which are
commonly associated with the luminescence properties of CTCs. Since Au3(MeIm)3 has previously
been reported to be emissive in the solid-state, we conducted a thorough photophysical study com-
bined with phase analysis by means of powder X-ray diffraction (PXRD), to correctly attribute the
photophysically active phase of the bulk material. Interestingly, all investigated powder samples ac-
cessed via different preparation methods can be assigned to the pristine solvent-free crystal structure,
showing no aurophilic interactions. Finally, the observed strong thermochromism of the solid-state
material was investigated by means of variable-temperature PXRD, ruling out a significant phase
transition being responsible for the drastic change of the emission properties (hypsochromic shift
from 710 nm to 510 nm) when lowering the temperature down to 77 K.

Keywords: cyclic trinuclear complex; photoluminescence; aurophilic interactions

1. Introduction

Cyclic trinuclear complexes (CTCs) featuring three coordinated metal atoms in the
nine-membered planar or near planar rings, represent some of the simplest polynuclear
metal clusters. Comprehensive synthetic, structural, theoretical, and photophysical studies
have been performed on a variety of cyclic trinuclear complexes, featuring series of angular
ditopic bridging ligands, including carbeniate, pyrazolate, imidazolate, and triazolate lig-
ands [1–7]. CTCs have found various applications in the field of intermolecular M(I)–M(I)
interactions [8,9], metalloaromaticity/π-acidity and basicity [10], luminescence [11–13] and
supramolecular assembly [14–16]. (Figure 1B–D) Imidazolate-based CTCs are the least
studied compared to those of carbeniate and pyrazolate, only four examples have been
reported (Figure 1A). In the 90s, Burini, Wagner and coworkers reported the synthesis of
Au3 imidazolate CTCs bearing methyl or benzyl substituents, while more recently Omary
et al. achieved complexes of general formula tris[(µ2-1-ethylimidazolato-N3,C2)Au(I)]
(Au3(EtIm)3) (Et = ethyl) [3,7,17]. These complexes exhibit rich supramolecular chemistry
having, e.g., fascinating luminescence properties in sandwich adducts of Au(I) imidazolate
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CTCs with Ag+ and Tl+ [6]. Very recently, CTCs were also shown to act as donors with a
range of planar π-acceptors and exhibited exceptionally strong binding, which envisaged
more complicated aromatic donor-acceptor supramolecular assembly(Figure 1C) [18,19].
Remarkably, Fujita et al. used the tris[(µ2-1-methylimidazolato-N3,C2)Au(I)] (abbrevi-
ated ‘Au3(MeIm)3

′ in the following, Me = methyl) and Ag+ ions to form an unprece-
dented triple-decker ion cluster (Au3–Ag–Au3–Ag–Au3) within a self-assembled cage
(Figure 1D) [14–16].
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Figure 1. (A) General structure of imidazolate-based CTCs [Au3(MeIm)]3 [7,20]; [Au3(EtIm)]3 [3]; Au3(BzIm)3 [19];
Au3(HexIm)3 [18]; (B) illustration of possible metallophilic interaction (red dashed lines); (C) an example of π electron lewis
acid/base binding model [18]; (D) guest supramolecular trigonal prismatic arrays within a Pd(II) coordination cage host,
M = Ag+ cation [14].

In this context, having great interest in small organometallic clusters [21,22], closed-
shell coinage-metal-based systems with fascinating photo-physical properties [23,24], we
further consider the Au(I) imidazolate-type CTCs as a valuable platform to investigate the
luminescence, inter- and intra-trimer metal-metal interactions and related supramolecular
assembly. The simplest scaffold - Au3(MeIm)3 was the first synthesized Au(I) imidazo-
late CTC by Burini in 1989 [7], but was not structurally determined until very recently
by Ruiz et al. in 2020 [20]. The reported crystal structure showed no co-crystallization
of solvent molecules or any pronounced intermolecular aurophilic interactions between
Au3(MeIm)3. When reinvestigating the synthesis, we serendipitously discovered a new
solvatomorph at an unconventional cryogenic crystallization condition, which actually
features a dimer formation of Au3(MeIm)3 through aurophilic interactions. Such weak
metallophilic interactions in linear-coordinate Au(I) complexes are similar to the en-
ergies of hydrogen bonds [8,25], and are also involved in the occurrence of polymor-
phism/solvatomorphism in the solid-state [26–28]. In addition, aurophilic interactions are
closely related to luminescence [29], pointing towards significant differences in the emis-
sion properties of the different solid-state structures. Therefore, we conducted a combined
photophysical and structural study, accompanied by DFT-calculations, of Au3(MeIm)3
being the archetypal molecule for imidazolate-based CTCs, to investigate which exact
polymorph is the photophysically active phase.

2. Results and Discussion

We prepared Au3(MeIm)3 mainly following the route described previously by Burini [7]
and Vaughan [30] with minor modifications (see Experimental section for details). Numer-
ous attempts have been made to obtain crystals suitable for single-crystal X-ray diffraction
analysis, however, the majority of attempts were unsuccessful. For example, slow evapora-
tion of a solution of Au3(MeIm)3 in dichloromethane or chloroform solution at ambient
conditions leads to the formation of a bright yellow solution and colloidal gold precipitation.
To prevent decomposition, crystallization was then carried out at ultra-low temperature
instead of reported room temperature crystallization. After keeping a saturated solution
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of dichloromethane/hexane (20:1) at 193 K (−80 ◦C) for two weeks, colorless needle-like
crystals suitable for a single-crystal X-ray diffraction (SC-XRD) study were obtained.

The SC-XRD result reveals the presence of a novel solvatomorph (hereafter referred to
as the solvatomorph β) which is structurally different from the one previously reported
(the structure discovered by Ruiz et al. is referred as the polymorph α) [20]. In detail, in
solvatomorph β, the trinuclear complex Au3(MeIm)3 crystallizes in triclinic system with
space group P-1, featuring one co-crystallized solvent molecule of dichloromethane. The
molecular structure of Au3(MeIm)3 can be considered identical for solvatomorphs α and
β, within the means of statistical errors. The three gold atoms are bridged by the three 1-
methylimidazolates with each metal ion being bound to one nitrogen and one carbon donor
atom from a neighboring imidazolate. The angles of N-Au-C slightly deviate from linearity,
which is in agreement to previously reported Au3 imidazolium trimers featuring bulkier
substituents (ethyl/benzyl) [3,17]. The distances of intramolecular contacts are slightly
exceeding the range of reported Au3 imidazolium complexes (ethyl/benzyl) (3.436(2) to
3.465(3) Å) [3,17].

Despite the similarities in the molecular structure, the packing of Au3(MeIm)3 in sol-
vatomorph β is fundamentally different. The Au3(MeIm)3 molecules show close contacts
to one adjacent molecule, which can be attributed to attractive aurophilic interactions being
absent in previously reported polymorph α. As a result, two Au3(MeIm)3 molecules are
arranged in a twist-staggered fashion rotated by 180◦ relative to each other. To further
understand the attractive interactions between the trimeric molecules, Hirshfeld surface
analysis [31] was applied for one Au3(MeIm)3 molecule as shown in Figure 2B. In the
dnormal mapping, four pairwise equivalent interactions (2 & 3) on the Hirshfeld surface
between two trimers can be observed, which we attribute to two aurophilic interactions (3)
and two short contacts (2) between carbon atoms on the heterocyclic rings. The interactions
1 and 7 are related to solvent molecules. Hydrogen bonds 7 (C-Cl· · ·H) are formed between
imidazolate back-bone hydrogen atoms and chlorine atoms of dichloromethane. Interaction
1 (C-H· · ·Au distance: 2.7395 Å) resembles hydrogen bonds between dichloromethane
and gold atoms, with CH group on dichloromethane acting as donor and gold acting
as hydrogen bond acceptor. A survey using Cambridge Structural Database (CSD) was
performed, revealing that among all the reported Au3 cyclotrimers preserving Au· · ·H
hydrogen bonding, Au3(MeIm)3 has the shortest distance between hydrogen to the tri-
angular centroid. The Au· · ·H distance (2.7395 Å) is shorter than the sum of the van
der Waals radii (2.8 Å) [32]. In an authoritative review of the hydrogen bonding to gold,
Schmidbaur et al. summarized different types of Au· · ·H-X bonding. In the discussion of
Au3 or Au4 clusters, he concluded this kind of bonding is dominated by classical Lewis-
adduct formation [32–34]. Interactions 4~6 are CH· · ·C hydrogen bonds bridging the
imidazolate back-bone hydrogen atoms to methylene groups of neighboured, symmetry
equivalent dimers.

The related Au3(EtIm)3 exhibits a similar stair-like dimer-trimer arrangement in the
solid-state as solvatomorph β (compare Figure 2C) [3]. To quantify this structural similarity,
we defined three planes that go through the hexanuclear gold core in the dimer-trimer
in Figure 2C. Plane a is defined by Au1-Au2-Au3 on the top layer, plane b is defined by
Au1-Au3 on the top and Au1-Au3 on the bottom, the plane c is defined by Au1-Au2-Au3
on the bottom. The plane angles ∠ab and ∠bc are both 88.07◦ in β, smaller than the plane
angles in Au3(EtIm)3 (between 95.85 and 101.54◦). The centroid a and centroid c are on
parallel planes, their projections on the same plane are separated by 2.04 Å, while in the
case of Au3(EtIm)3, the distance is 2.00 Å and 2.04 Å. The distance between plane a and
b is shorter in Au3(EtIm)3 compared to solvatomorph β (3.01 Å vs. 3.18 Å), going along
with shorter Au-Au distances and stronger aurophilic interactions (3.066(1) & 3.140(7) Å in
Au3(EtIm)3).

The differences between structure α and β in the intermolecular interactions con-
sequently lead to the aforementioned different packing of the two crystal structures as
shown in Figure 3. Au3(MeIm)3 molecules in the solvent-free monoclinic polymorph α are
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separated and form zigzag-like layers along the c axis (Figure 3A). Hereby, the intermolec-
ular interactions are dominated by hydrogen bonding, and the closest Au-Au distance is
3.6660(5) Å [20]. In contrast, in the solvatomorph β, the dimers of Au3(EtIm)3 are packed
within layered arrangements in the b-c plane (Figure 3B).
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2.1. DFT Studies

The results of the SCXRD analysis of solvatomorph β together with the conducted
Hirshfeld analysis clearly point towards the formation of intermolecular (additionally to
coordination induced intramolecular) metallophilic Au-Au interactions in Au3(MeIm)3
trimer structures, which has never been observed so far. Therefore, to further rationalize
the potential M-M interactions of the selected CTC, we performed electronic structure
calculations by density functional theory (DFT), using the M06 meta-hybrid functional by
Truhlar [35] and the CEP-31G(d) basis set [36]. This approach has successfully been applied
in the theoretical description of CTCs [37,38] and other systems with predominantly non-
covalent interactions [39]. Specifically, Galassi and co-workers used M06/CEP-31G(d)
DFT computations to examine d10-d10 metal-metal bonding in the aforementioned CTC,
[Au2(µ-C2,N3-MeIm)2Cu(µ-3,5-(CF3)2Pz)], which renders a direct comparison to related
systems possible [37,40].



Molecules 2021, 26, 4404 5 of 12

To study M-M interactions in solvatomorph β, the molecular structures of a monomeric
and a dimeric CTC species were first optimized starting from the available crystallographic
data. All optimized geometries were checked to be local minima of the potential energy
surface (PES) by the absence of negative eigenfrequencies. The so obtained molecular
structures are in good accordance with the crystallographic structures (Table 1). Lateral
shifts of monomer in the computed dimeric structure are in excellent accordance with the
monomer alignment found in the crystal structure.

Table 1. Comparison of calculated results from density functional theory (DFT) and experimental
data from SC-XRD.

Experimental Data Calculated Results

Au-N bond/Å 2.030(9), 2.036(9), 2.043(8) 2.091
Au-Ccarb bond/Å 1.986(11), 1.987(11), 1.988(11) 2.038

Ccarb-Au-N angle/◦ 173.6(4), 175.3(4), 175.8(4) 175.13
intratrimer Au1-Au2/Å 3.4961(9) 3.567
intratrimer Au1-Au3/Å 3.4636(7) 3.555
intratrimer Au2-Au3/Å 3.5032(8) 3.584

Based on the optimized molecular geometries, we then accessed the nature of intra-
and intermolecular aurophilic Au-Au interactions by following three methodologies:
(i) calculation of the Gibbs free energy of the Au3(MeIm)3 dimer formation ∆Gf, (ii) PES
scan calculations to access the dimer dissociation energy De, and finally (iii) bonding or-
der (BO) analysis by calculations of different bond orders (among others Wiberg bond
order = WBO [41], Mayer bond order = MBO [42], Fuzzy atom bond order = FBO [43] and
assessment of bond critical points = BCP).

The HOMO of Au3(MeIm)3 is almost exclusively localized at the three imidazolate
ligands with partial contribution from the gold atoms (pπ-orbitals of the NHC ring and dxy
orbitals of the Au(I) atoms), whereas its LUMO shows strong contributions from the gold
atoms with scarcely participation of the NHC ligands (Figure S1). The HOMO-LUMO gap
accounts to 0.185 eV. For Au3(MeIm)3-{Dimer}, the HOMO shows a strong metal contri-
bution, however with no pronounced electron density in intermolecular bonding regions.
The LUMO of Au3(MeIm)3-{Dimer} reveals strong metal contributions, but with partial
electron density located between two fragments, which suggests that intermolecular bond-
ing might become stronger during photoexcitation (Figure S2). The dimer HOMO-LUMO
gap accounts to 0.204 eV, as the HOMO level is lowered by 17.0 meV upon aggregation.

ESP analysis of Au3(MeIm)3-{Monomer} revealed a couple of minima and maxima at
the electrostatic potential surface of the monomer species in ranges of −31.2 kcal/mol to
25.1 kcal/mol. The positions of these maxima are predominantly located at the hydrogen
positions of the imidazolate backbone and the methyl substituent, with a global maximum
found at the H11 position (Figure S3a). The global minima positions are mainly arising from
abundant electron density below and above the positively charged Au3 triangle (Figure S3c).
Assuming that only electrostatic interactions between monomers in Au3(MeIm)3-{Dimer}
would govern the dimer formation, a T-shaped arrangement (enabling ideal contacts of
regions of high and low ESP) would be expected. However, such behaviour is apparently
not found in the dimer structure of β, which excludes strong electrostatic driven inter-
actions between monomers of Au3(MeIm)3-{Dimer} being structurally decisive during
crystallization, which is in agreement with the literature [10,38].

We further assessed Au-Au interactions in the dimer species by calculation of ∆Gf and
De. The Gibbs free energy of formation was accessed via calculations of heats of formation
following the reaction equation:

2 Au3(MeIm)3-{Monomer}→ Au3(MeIm)3-{Dimer} (1)
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By doing so we found a value for the dimer interaction energy ∆Gf, =−20.48 kcal/mol,
which is in the range expected for strong intermolecular aurophilic interactions (−10.24 kcal/mol
per Au-Au bond) [8,44] and was recently found for comparable CTCs [37,38].

To get access to the dimer dissociation energy De PES scans along with the Au-
Au distance in Au3(MeIm)3-{Dimer} (single point = SP calculations on vertically shifted
Au3(MeIm)3-{Monomer} at similar level of theory, see Figure 4). Analysis of the so ob-
tained PES revealed a De of 9023 cm−1 or 26.3 kcal/mol, giving rise of 13.15 kcal/mol
per intermolecular Au-Au bond. Such values are again expected for metallophilic Au-Au
interactions and are consistent with the calculated ∆Gf.
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We finally calculated a number of different BOs, which are summarized in Table 2,
distinguishing between Au-Au interactions within Au3(MeIm)3-{Monomer} and between
Au3(MeIm)3-{Monomer} in the dimeric species (labeling according to crystallographic
information). Based on purely crystallographic arguments, one would assume that au-
rophilic interactions between monomers are more pronounced, as bonding distances are
smaller than those within a monomer complex (by polymorph α 0.3 Å). Hirshfeld anal-
ysis supports this argument, as the conducted BO analysis does. One clearly finds, that
throughout all calculated indexes the BOs are doubled when going from intra- to inter-
molecular Au-Au interactions, evidencing a stronger intermolecular metallophilic binding
in Au3(MeIm)3-{Dimer}. Consequently, the calculated BO indexes suggest appreciable
metallophilic interactions to be responsible for dimer formation. (Note that the calculated
BO values are in good agreement with literature values [8,45]).

Table 2. Results of the BO analysis showing the results of different bonding indexes (WBO = Wiber
bonding order, MBO = Mayer bonding order, FBO = Fuzzy bonding order, BCP = bond critical point).

WBO MBO FBO BCP

Au1-Au2 (intra) 0.135 0.062 0.190 no
Au1-Au3 (intra) 0.135 0.079 0.192 no

Au1-Au2-Au3 (intra) — 0.035
(normalized multi-center BO) — yes

Au1-Au3 (inter) 0.269 0.156 0.428 yes
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In closing the theoretical section, all the above-presented results attest to the fact, that
in Au3(MeIm)3-{Dimer} interactions between monomer species Au3(MeIm)3-{Monomer}
are driven by robust aurophilic M-M interactions in accordance with the crystallographic
analysis. Calculations of the dimer formation free energy underpinned by the dimer
dissociation energy from PES scans, reveal rather strong aurophilic bonding interactions.
Analysis of the bonding situation by different bonding indexes throughout reveals no
negligible BOs, with a rather small bonding interaction within the Au3

3+-core, but stronger
interactions between monomer complexes in the dimer.

The aurophilic interactions are commonly associated with the luminescence prop-
erties of CTCs. Given that two different metal-metal bonding interactions can be found
in the solid-state of Au3(MeIm)3, a thorough photophysical study in combination with
phase analysis was conducted, to correctly correlate the photophysical active phase of the
bulk material.

2.2. Qualitative Phase Analysis and Photophysical Studies

In the attempts to grow samples for single-crystal X-ray diffraction analysis, two
crystallization methods were employed: (i) slow evaporation of dichloromethane solution
of Au3(MeIm)3; (ii) vapor diffusion of n-hexane or diethyl ether into dichloromethane
solution of Au3(MeIm)3. Additionally, crystallization experiments were carried out at
different temperatures to prevent decomposition. Limited to the low diffusion coefficient
of solvent at ultra-low temperature, vapor diffusion crystallization experiments with
dichloromethane and hexane at 193 K did not yield suitable single crystals, while the
slow evaporation of dichloromethane solution serendipitously offered a small number of
single crystals of solvatomorph β. When applying temperates higher than 253 K (−20 ◦C)
polymorph α is always yielded. Interestingly, dissolution of a solid sample of solvatomorph
β in dichloromethane followed by evaporation higher than 253 K also leads to the formation
of the α polymorph.

As the preparation of bulk crystalline samples for luminescence tests is generally con-
ducted at ambient conditions, the formation of the α polymorph should be expected. How-
ever, since also different solvent combinations were used, compared to the preparations
of the single crystals, we carefully investigated the solid-state phase of the prepared bulk
samples by means of powder X-ray diffraction (PXRD). Hereby, products from (1) fast evap-
oration of Au3(MeIm)3 from a DCM/THF solution and (2) precipitation of Au3(MeIm)3
with n-hexane/Et2O from DCM/THF solution were characterized. The powder diffrac-
tograms of the samples of the two crystallization methods are shown in Figure 5A. Small
differences can be visually observed (marked by asterisks), which we tentatively attribute
to a minor side phase we cannot further specify. Pawley analysis was conducted on the
measured powder data. The obtained cell parameters are in excellent agreement with
the data from SC-XRD structures of polymorph α (Figure 5B). Consequently, all bulk
crystallization methods at ambient conditions led to the formation of polymorph α, and
fast crystallization by solvent removal was identified to yield excellent phase-pure material
according to PXRD measurements, which consequently was used in the luminescence
measurements described below.

The luminescence measurement of the crystalline sampe with polymorph α partially
fits with previously reported results by Ruiz et al. When our sample is excited at 256 nm UV
light, polymorph α exhibits an emission maximum at around 710 nm at room temperature.
However, in their original work, Ruiz and co-workers report two emission bands, centered
at 722 nm and 810 nm. With regard to our initial results in yielding phase-pure materials of
polymorph α (compare above), our findings point toward the fact, that the 810 nm band
in the originally reported samples might originate from contamination of a possible side
phase, potentially exhibiting stronger aurophilic contacts. In all our experiments, we were
not able to reproduce bulk materials showing the emission band at 810 nm. (Note that we
were confirming phase-purity for all our samples by PXRD measurements before emission
measurements, which was apparently not undertaken by Ruiz et al.) Finally, these results
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show, that a careful evaluation of bulk samples is of utter importance, when molecular
properties are to be deduced from solid-state measurements.
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During the course of the photophysical study, another attractive behavior of poly-
morph α was observed when cooling the sample with liquid nitrogen. At 77 K, the emission
maximum moves to 510 nm with a dramatic intensity increase (quantum yield increased
from 15% to 60%) (Figure 6). When warming up to 297 K, the original emission is restored
and the whole process is fully reversible. Such a drastic hypsochromic shift at cryogenic
temperature has already been observed for CTCs [3,46,47]. Raithby et al. considered
a crystallographic phase transition as the possible origin in the temperature dependent
luminescence shifts [48]. Therefore, we investigated possible structural changes or phase
transitions with changing temperature. For the determination of the unit cell parameters
at different temperatures, SC-XRD measurements were conducted first, showing that the
crystal structure of polymorph α at 296(2) K remains in the same space group P 21/c with
<0.5% thermal expansion compared to when measured at 100(2) K. Accordingly, calculated
crystal density decreases from 3.547 to 3.452 g/cm3, when the crystal is heated from 100 K
to 296 K; intermolecular Au-Au distances slightly increase from 3.689 Å, 3.751 Å, 4.141 Å to
3.776 Å, 3.778 Å, 4.181 Å, respectively. All the intermolecular Au-Au distances significantly
exceed the sum of the vdW radii of Au (3.32 Å) [8], no additional aurophilic interactions
could be observed at cryogenic temperature. These findings are supported by non-ambient
PXRD measurements (Figure 7), which also show no change in the diffraction pattern and
therefore no phase transition when continuously measured between −180 ◦C and 40 ◦C.
Also, the thermal expansion of the crystal structure does not show a discontinous change
in the cell volume (See ESI Figure S12), therefore also not indicating a phase transition.
Hence, we think that the minor structural changes in the packing of polymorph α cannot
be correlated with the observed distinct thermochromism.

Another possible explanation for the thermochromism in CTCs have been hypothe-
sized, e.g., by Omary and coworkers who observed similar thermochromism for
Au3EtIm3 [3,37]. In detail, the related emission band centered at 425 nm at T < 200 K
shifts to 700 nm at T ≥ 200 K. They suggested that at a higher temperature (above 200 K), a
non-radiative relaxation to an intermediate excitation state takes place, which then gives
rise to the low energy emission band. At lower temperatures (T < 200 K) emission from an
energetically higher excitation state is supposed to happen, leading to the observed band
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centered at 425 nm. Since we did not see any significant structural changes in the solid-
state at low temperatures, this might also serve as a viable explanation of our observations
for Au3(MeIm)3.
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3. Materials and Methods

All manipulations were carried out under an inert atmosphere of argon using standard
Schlenk line. The preparation of Au3(MeIm)3 followed the route described previously by
Burini [7] and Vaughan [30] with minor modifications: The 1-methylimidazole was freshly
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distilled and degassed before use. Hexane and THF were dried using a MBraun MBSPS 5
apparatus and stored over 4 Å molecular sieves. All other reagents were used as supplied.
NMR spectra were recorded on a Bruker AV400 spectrometer at room temperature. 1H
NMR spectra were referenced to the signals of CDCl3. 2 mg of 1-methylimidazole was
dissolved in tetrahydrofuran, then cooled to−30 ◦C. To the stirred solution of methylimida-
zole in tetrahydrofuran, one equivalent of n-butyllithium in hexane was added drop-wisely
under argon. The pale-yellow mixture was kept stirring for 1.5 h at −30 ◦C, before the
addition of the equal equivalent amount of chloro(tetrahydrothiophene)gold(I) in 5 mL
tetrahydrofuran. The reaction was kept at −30 ◦C for another hour, then 0.5 mL of dry
methanol was added to quench the reaction. Afterward, the mixture was evaporated to
dryness at 0 ◦C. The precise temperature control and anaerobic condition are obligatory
for the deprotonation and metalation to happen. The remaining solid was dissolved in
dichloromethane then filtered with Celite. Recrystallization in dichloromethane offered
the analytical product. 1H NMR (400.13 MHz, CDCl3, 298 K): δ (ppm) = 7.15 (s, 3H,
HNCHC), 6.96 (s, 3H, HNCHC), 3.81 (s, 9H, HCH3). 13C{1H} NMR (100.62 MHz, CDCl3, 298
K): δ (ppm) = 168.51, 127.67, 119.89, 35.97. ESI-MS (m/z): 834.60 [Au3(MeIm)3]+, 917.10
[Au3(MeIm)3]MeIm+

, 1471.09 [Au3(MeIm)3][Au2MeIm3]+. Elemental analysis: Calculated
for C12H15Au3N6: C, 17.28; H, 1.81; Au, 70.83; N, 10.07. Found: C, 17.36; H, 1.87; N, 9.77.
UV-Vis (solid-state, nm): 222, 259, 276.

4. Conclusions

In conclusion, this study revealed a new solvatomorph β (dichloromethane solvate)
of Au3(MeIm)3, the archetypal imidazolate CTC molecule, exhibiting unprecedented short
intermolecular aurophilic interactions in the solid-state which were rationalized with DFT
calculations. Crystallization conditions were investigated in combination with powder
X-ray diffraction monitoring to correctly correlate the photophysically active phase of bulk
crystalline material. All investigated powder samples accessed via different preparation
methods can be assigned to the pristine solvent-free polymorph α, showing no aurophilic
interactions. In addition, a strong thermochromic behavior of polymorph α was observed,
going along with no significant structural changes in the solid state at low temperatures.
This indicates, that the observed thermochromism might be originating from a change in
the effective emission pathways of the molecular Au3(MeIm)3 rather than emerging from a
phase transition alongside with change in the intermolecular interactions. From a more
generalized perspective, this study provides the first example of solvatomorphism induced
aurophilic interactions in cyclic trinuclear complexes, and underlines the importance of a
thorough solid-state characterization when deducing properties of molecular materials.

Supplementary Materials: The following are available online. Details on: DFT calculations, single-
crystal X-ray determinations, Hirshfeld surface analyses, and spectroscopic measurements.
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