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Featured Application: The developed methods and framework can be used to support effectors
configuring and design for novel electric-vertical-take-of-landing (eVTOL) aircrafts, which aims
to optimize their control authority, and the results correspondingly provide an analytical basis
for the flight control design.

Abstract: In this paper, we discuss an attainable moment set (AMS) optimization methodology
considering a system’s required moment set (RMS). The AMS describes the achievable moments
from a system, given its input limits. An RMS, like an AMS, is a convex set in the moment space,
describing the required moments for a system to meet the designed mission profile and disturbance
rejection requirements. Given the configuration of a system, its mission requirements, and the derived
RMS, the proposed optimization maximizes coverage of the AMS onto the RMS, thus ensuring the
system possesses the guaranteed controllability to fulfill its required missions from a design level. To
achieve this goal, the variables to optimize are chosen as effector settings, such as the installation
position and angle of propellers and control surfaces, which effectively change the AMS without a
vast impact on major design parameters, such as mass and moment of inertia. Since the optimization
includes massive geometry operations of rays intersecting polyhedron, an efficient intersection
solver is proposed to speed up the optimization process. The described method is applied to an
electric-vertical-take-of-landing vehicle (eVTOL) with eight hover propellers, which delivers a highly
improved coverage of the RMS compared to its initial design.

Keywords: attainable moment set; required moment set; configuration optimization; eVTOL

1. Introduction

Attainable moment set (AMS) is a powerful tool to understand a system’s control
authority. The concept was initially proposed in [1,2] to solve the direct control allocation
problem from geometry intuition. It describes the reachable set of moments generated by
a system given its inputs limits, e.g., limits of actuators’ position and rate. For a linear
time-invariant system, the AMS is a convex set defined in the R3 moment space, as:

AM = {m|m = Bu, u ≤ u ≤ u}, (1)

where m ∈ Rk is the moment vector; u ∈ Rm is the input vector (k and m are the number
of moments and inputs, respectively); B ∈ Rk×m is the so-called effectiveness matrix
representing each input’s moment generation capability; u and u are respectively the lower
and upper limits of the inputs. This concept can be extended to other quantities, such as
generalized forces or pseudo controls, e.g., direct forces or angular accelerations, as long as
the quantity is algebraically related to the system inputs [3].

The AMS has a big impact on the performance of a system from a control perspective.
It poses limits on the maximum achievable time derivative of states, such as translational
and angular accelerations, thus constraining maneuverability and agility of trajectories and
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mission profiles, as well as the capability of disturbance rejections. Often a limited AMS
poses risks on the safe operation of the system in off-nominal situations, e.g., effector or
power system failures. As a consequence, a system with relatively big and redundant AMS
means better safety margin against extreme cases.

What influences the AMS of a system is however fixed at the design phase by sizing
and positioning of the effectors. Therefore, appropriately configuring the effectors at
early design phase is critical to the system’s performance. For conventional airplanes, the
freedom of such effector designs is very limited given major design requirements such
as stability and endurance. However, this freedom becomes largely expanded for novel
aircraft architectures, such as electrical-vertical-take-off-landing (eVTOL) vehicles, which is
often a hybrid system capable of both hover and high-speed flight, exploiting large number
of redundant inputs in the form of distributed electric propulsion (DEP) for a bigger flight
envelope and additional safety features. As a consequence, optimization can be utilized to
find the best combination of effector settings without violating major design parameters
such as mass and moment of inertia of the system.

Several studies have incorporated optimization to refactor settings of effectors or to
directly search for the optimal AMS of the system. In [4], a trim analysis is performed
for a conventional aircraft enhanced with DEP over wingspan, showing that the size of
the vertical tail can be reduced by 45% by exploiting differential thrust without adversely
affecting directional stability. The idea is further explored in [5] together with aH∞ control
methodology in a sequential optimization process, which reduces the area of vertical
tail by 60% and lowers the actuator bandwidth, while maintaining the overall control
loop bandwidth. In [6], a propeller optimization is applied to a DEP enhanced airplane
configuration to decide for the optimal propeller diameter, which shows up to 80% of
take-off distance reduction compared to the two-propeller conventional counterpart. As
for AMS optimization, a generic AMS framework is proposed in [7] to aid visualize AMSs
of complex systems during design phase, which is then conceptually applied to the Max
Launch Abort System escape vehicle to help decide the optimal orientation of the thrust
nozzles. In [3], a trim routine is developed for an unconventional box-wing configuration
to maximize local AMS at operation point. Although it does not directly relate to effector
configuration of the system, it implements an optimization framework to exploit best
control capability given the system redundancy.

The described methods in the literature aims to optimize a certain target within the
design space of redundant inputs from a control’s perspective. In this paper, we propose a
different optimization framework which directly take into account performance require-
ments, including mission profiles, the desired control bandwidth of transient maneuver
and the disturbance rejection ability, using the novel concept of Requirement Moment Set
(RMS). Similar to an AMS, an RMS is a set in the moment space, often convex, which con-
sists of all the moments required by a system to perform its predefined tasks. In order for a
system to be capable of fulfilling its tasks, the AMS should fully enclose the RMS, and any
violation of this enclosing means failure to meet the requirements otherwise. The RMS can
be calculated from the predefined mission trajectory, the transient maneuver bandwidth as
well as the desired ability to reject disturbances. The RMS seeks to aid the description of a
system’s control capability, i.e., AMS, by referencing its relative amplitude with respect to
the mandatory moments driven by the mission requirements instead of purely examining
the size of an AMS itself. It also provides a good insight into the requirements whether
they are too ambitious to the overall vehicle design.

In this paper, we focus on formulation of the optimization problem and address the
related algorithm to solve for the geometry coverage problem between the AMS and RMS
as two polyhedral. To define the coverage problem, we propose a mathematical defini-
tion that represents the margin between the two convex polytopes, and the optimization
directly targets to maximize this margin. Calculation of this margin requires finding in-
tersections between rays extending from vertices of one polyhedron with the facets of
another polyhedron. The margin needs to be evaluated in each optimization step such is
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computationally demanding due to the large number of vertices on a precisely calculated
RMS and additionally a large number of facets on the AMS of a highly redundant system.
To handle this demanding computation, an efficient intersection solver is proposed to
reduce the computation burden. The proposed methods are applied to an eVTOL with
eight hover propellers to optimize for their installation angles. Derivation of the RMS is
detailed in another submitted paper “Required Moment Sets: Enhanced Controllability
Analysis for Nonlinear Aircraft Models” [8], which is directly used for this work as a priori
information.

A brief structure of the paper is given here: Section 2 briefs on the theoretical back-
ground and approach overview; Section 3 mathematically formulates the optimization
problem; Section 4 elaborates on the efficient intersection algorithm; Section 5 discuss the
implementation details and the results; Section 6 briefly concludes the paper.

2. Methodology Overview

Before we examine the details of the optimization formulation, an overview of the
approach’s framework is introduced in this section. We start with a brief discussion of the
theoretical background with the important concepts.

2.1. Theoretical Background

The most relevant concepts in this problem are the AMS and RMS, which are both
defined in the moment space. Additionally, the AMS is derived from the admissible control
set (ACS) and the effectiveness matrix. Recalling all relevant definitions from [8,9]:

• Control Space: A Cartesian coordinate system in the Rm space, with one control
effector as a variable on each axis. m is the number of effectors. Each point in this
space represents a combination of effector positions.

• Admissible Control Set: (Ac): A set in the control space of all possible combinations
of effector positions given their respective limits. Since the effectors are actuated
independently, it figures a cuboid or hyper-cuboid in the Rm control space.

• Moment Space: A Cartesian coordinate system in the Rk space, with generalized
forces on each axis as variables. The generalized forces do not necessarily have to be
moments but also, e.g., angular accelerations, load factors or direct forces. The name
“Moment Space” is more of a legacy concept at its initial definition. k is the number of
generalized forces.

• Attainable Moment Set: (AM): A set in the moment space of all possible combinations
of generalized forces that can be produced from the effector combinations in the ACS.
In this paper, we consider a linear mapping from ACS to AMS, with the so-called
effectiveness matrix B ∈ Rk×m : Ac → AM. Since Ac is convex, this convexity
is preserved by this linear transformation [10], making the AMS geometrically a
convex polytope in the Rk moment space. The B matrix is inherently defined by
the configuration especially the effectors, e.g., the moments produced by a propeller
is dependent on its lever arm with respect to center of gravity and the angle of
installation.

• Required Moment Set: A set in the moment space, incorporating all the combination
of generalized forces desired to fulfill the prescribed system requirements and mis-
sions. These requirements and missions could include fulfillment of certain trajectory
profiles, bandwidths of control reaction or disturbance rejections. The RMS is inherent
from major system parameters such as mass and moment of inertia, as well as the
prescribed requirements, and will remain unchanged once the concept of operations
and preliminary design are fixed.

2.2. Calculation of AMS and RMS

The calculation of an AMS given an ACS and the B matrix have been thoroughly
discussed in [1,2,9]. Since the AMS is a convex set composed of the mapping of all the
points from the ACS, it can be easily computed by evaluating the produced moments at all
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the ACS vertices (extremes of inputs) and then determine the convex hull as the exterior of
the AMS by the readily developed convhull function in MATLAB® [9,11,12].

The calculation of RMS is elaborated in [8]. The idea is to evaluate disturbance per-
turbed dynamic models at each trim point and find the hull of the moments of all the
perturbed models as the disturbance required moment set, and then generate a set of
linearly spaced query directions to evaluate the maneuver required moments, which is
assembled with the former one. The result is a convex polytope in the moment space with
vertices on the query directions as an unconservative estimation of all the required mo-
ments.

2.3. The Optimization Framework

It is obvious that we can influence the AMS from a design level, especially with the
effectors’ settings, to manage its relative capacity with respect to the RMS as the RMS will
remain primarily unchanged given the requirements. Intuitively, a good design should
guarantee that the system’s AMS completely encircles the RMS, such it is able to accomplish
the tasks given an appropriately designed flight control system. This assignment seems
trivial for conventional airplanes with three independent sets of control effectors impacting
each axis in the moment space, however, when aerospace systems evolve in to modernized
novel styles with multiple redundant and different types of effectors, the possibility of
AMS optimization arises tremendously.

The framework to this optimization goal is depicted in Figure 1 as a block diagram.
We start with formulating the AMS from some initial design parameters and evaluate
the cost function. Given the requirement derived RMS, the cost function mathematically
defines the coverage problem of the AMS as a polytope onto the RMS as another polytope.
The optimizer then tries to reduce this cost function by updating some effector parameters
considering certain system related constraints such as mass, space, and structure stiffness.
With the updated parameters, we reformulate the AMS of the flight dynamics model and
loop the process, until the parameters converge.

Figure 1. Workflow overview of the proposed optimization framework. The RMS of a system is inherent from the prescribed
requirements, while the AMS can be optimized by configuring effectors. To guarantee the ability of mission fulfillment, the
AMS should maximally enclose the RMS from design point of view, which is therefore the optimization goal.

The most important step in this process is to mathematically describe the coverage
problem of two polytopes in the cost function. We will narrate in detail the formulation of
this problem in the next chapter.
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3. Optimization Formulation

Given two polytopes of the AMS and the RMS, mathematical definition of the coverage
problem can be explained with the aid of an example draft in Figure 2. The red and blue
polygons in the figure represent a 2D AMS and RMS, respectively. Due to the convex
property, a complete coverage can be guaranteed when all the RMS vertices are enclosed
by the AMS. For each RMS vertex, a margin factor is defined as

λi =
‖ai‖
‖ri‖

, (2)

where,

• ri is the vector from origin to the i-th RMS vertex,
• ai is the intersection point of a ray extension from ri onto the AMS’s boundary,
• ‖ · ‖ is the 2-norm of a vector.

Figure 2. A 2D illustrative comparison between the AMS and the RMS. In 2D, both AMS and RMS
reduce to convex polygons. In higher dimensions, they are both convex polyhedrons.

Note that this margin factor λ is a positive number and will be bigger than 1 if a vertex
of RMS is bounded inside the AMS, and it is smaller than 1 if the vertex is beyond the AMS.
The AMS’s coverage over the RMS is therefore guaranteed if all the λ is bigger than 1.

Recall that we can influence the AMS (shape or capacity as a polytope) by changing
the effector related parameters, therefore, we can optimize the AMS such that it fully
encircles the RMS. To maximize overall coverage and punish vertices with small margins,
the optimization problem can be defined as

min
p

J = ∑n
i=1

1
λi ,

subject to,
{

p ≤ p ≤ p
c(p) ≤ c

,
(3)

where,

• n is the total number of vertices on the RMS,
• p is the vector of variables to optimize, with p and p the lower and upper bounds of p,
• c is the vector of some additional constraints, e.g., allowance of additional mass or

space, with c is the limits of c.

The key to this optimization problem is to calculate λi for each RMS vertex and
evaluate the cost function. For problems in 3D or higher dimensions, calculating this
intersection and finding λ is not at all trivial. Given the case of linear effectiveness, the
AMS of a system with m inputs has 2C2

m facets, whereas the intersection is only located on
one facet among all. To find the intersection, the most straightforward solution is to brutal
search among all the facets. In a R3 moment space, assume three vertices on one facet
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of the AMS represented by 3D coordinates
→
a ,
→
b , and

→
c , and assume the query direction

represented by the coordinate of an RMS vertex is
→
d . To solve for the margin factor λ of

→
d

with respect to facet
{
→
a ,
→
b ,
→
c
}

, the following set of equations needs to be solved:

α1
→
a + α2

→
b + α3

→
c = λ

→
d

α1 + α2 + α3 = 1
, (4)

It is a 4-by-4 linear system such that α1,2,3 and λ can be solved for. The only valid
solution is when α1,2,3 ∈ [0, 1], which means the intersection is encircled by the three
vertices of the facet. Note that for each RMS vertex, this equation needs to be solved
for all the 2C2

m facets of the AMS in the worst case, and in each optimization step all the
RMS vertices need to be considered to evaluate the cost function. From [8], the RMS takes
12× 12× 24 = 3456 vertices to precisely represents its contour, and the AMS of a system
with only 8 inputs has 56 facets. This means to evaluate the cost function defined in (3) for
an 8-input system, 3456× 56 = 193, 536 4-by-4 linear systems must be evaluated in each
optimization step for the worst case.

Another solution to the intersection problem is to formulate it as an optimization
problem by itself:

maxλ,

subject to,
{

Bu = λd
u ∈ Ac, λd ∈ AM

.
(5)

This problem is also known as direct allocation in the control allocation domain, which
can be transformed into a standard linear programming problem and solved by either
simplex algorithm or interior-point algorithm [1,13,14]. However, this also means to solve
for 3456 times linear programming problem for all the RMS vertices in each step of our
“outer” optimization framework and is therefore not an acceptable means.

In this paper, we focus on the application in R3 space of the optimization framework
and propose an efficient 3D intersection solver to tackle the computation issue. As will
be elaborated in the next chapter, the method starts from geometry intuition to locate
the intersection facet by coordinate transformation and dimension reduction. Instead of
solving a 4-by-4 linear system for each facet, the method solves only a point in triangle
problem in R2 space. Once the facet is determined, the intersection is easily located by
“ray-tracing” solver often used in the computer graphics domain, which only involves
vector dot products.

Given correct evaluations of the cost function, the optimization problem can be solved
by surrogate optimization functions provided by MATLAB [11].

4. Efficient Intersection Solver

The problem of intersection is summarized as follows: for an AMS (a convex polyhe-
dron) and a ray (starting from the origin) in 3D space, find the intersection point of the ray
onto the AMS boundary. In our specific problem, the ray direction is defined by a vertex of
the RMS. The difficult step is to find which facet the ray intersects with. Once the facet is
found, the intersection point can be solved as a ray tracing problem [15].

An example of the problem is shown in Figure 3a. The problem can be simplified by
rotating the original coordinate system representing the moment space and correspondingly
a dimension reduction. Given the query direction of the ray, a coordinate transformation by
rotation can be applied such that the ray aligns with the x-axis in the transformed coordinate,
as shown in Figure 3b. By doing so, the complexity of the problem is immediately reduced,
due to the facts that:
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1. After rotation, only facets in the positive-x half (rotated) space can be the intersection
facet, meaning the number of search facets is reduced by approximately half.

2. The intersection facet contains the origin in the rotated y-z plane, meaning the 3
vertices of the facet can only be of one of the following 3 cases:

◦ lie in 3 different quadrants of the y-z plane,
◦ only lie in quadrants 1 and 3 in the y-z plane,
◦ only lie in quadrants 2 and 4 in the y-z plane.

This further reduces the number of possible candidate facets.

3. The fixation for the intersection facet reduces to a 2D “point-in-triangle” problem—the
three vertices of the intersection facet must enclose origin in the y-z plane.

4. Once the facet is found, the final solution can be found by ray tracing.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 17 
 

1. After rotation, only facets in the positive-x half (rotated) space can be the intersection 
facet, meaning the number of search facets is reduced by approximately half. 

2. The intersection facet contains the origin in the rotated y-z plane, meaning the 3 ver-
tices of the facet can only be of one of the following 3 cases: 
o lie in 3 different quadrants of the y-z plane, 
o only lie in quadrants 1 and 3 in the y-z plane, 
o only lie in quadrants 2 and 4 in the y-z plane. 
This further reduces the number of possible candidate facets. 

3. The fixation for the intersection facet reduces to a 2  “point-in-triangle” problem—
the three vertices of the intersection facet must enclose origin in the y-z plane. 

4. Once the facet is found, the final solution can be found by ray tracing. 

 
(a) Original AMS and Intersection 

 
(b) Rotated AMS and Intersection 

Figure 3. Comparison between the (a) original problem and (b) the rotated problem. To calculate 
the intersection, the priority task is to locate the intersection facet. In the rotated space as of (b), the 
query direction coincides with the x-axis. Therefore, the intersection facet can be located by solv-
ing a 2D “point-in-triangle” problem, that is, the facet which contains origin is the facet to solve 
for. 

Accordingly, a process diagram to solve for the intersection point is given in Figure 
4. Note that, although the loop to search for the facet is inevitable, the calculation in each 

− 4

Original AMS and Intersection

− 2

− 5

− 4

− 3

− 2

− 1

0

1

2

3

4

4 2 00 2− 2 − 4

Original AMS
Query Direction

Candidate Facet
Vertices of Candidate Facet

Intersection

− 4 − 3 − 2 − 1 0 1 2 3 4

− 3

− 2

− 1

0

1

2

3

Rotated AMS and Intersection

Rotated AMS
Rotated Query Direction ([1 0 0])

Candidate Facet
Vertices of Candidate Facet

Intersection

Figure 3. Comparison between the (a) original problem and (b) the rotated problem. To calculate
the intersection, the priority task is to locate the intersection facet. In the rotated space as of (b), the
query direction coincides with the x-axis. Therefore, the intersection facet can be located by solving a
2D “point-in-triangle” problem, that is, the facet which contains origin is the facet to solve for.

Accordingly, a process diagram to solve for the intersection point is given in Figure 4.
Note that, although the loop to search for the facet is inevitable, the calculation in each
search iteration is minor compared to solving a set of linear equations. The following
sections in this chapter briefly introduce the aforementioned steps.
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Figure 4. A brief process of the intersection solver. The process is to determine whether a facet is a
candidate to solve for, and immediately loop to the next if it is not. This considerably speeds up the
optimization compared to a brutal search.

4.1. Coordinate Transformation

The coordinate transformation rotates the space such that the x-axis is aligned with the
query direction. The rotation matrix R is solely defined by the query direction. Suppose the
query direction is defined by a unit vector q, then applying the transformation to q gives:

Rq =

 1
0
0

. (6)

This rotation matrix can be calculated by the Rodrigues’ rotation formula [16], which
generates an orthogonal matrix. Applying this rotation to vertices of the AMS is equivalent
to a canonical coordinate transformation. In the transformed system, the coordinate of q is
[1; 0; 0]. Thereafter, the origin-in-triangle-check in the next section is operated within the
transformed coordinates.

4.2. Origin-in-Triangle Check

Once rotated, it is necessary to check if the origin is enclosed by the facet’s 3 vertices in
the y-z plane. For independent inputs, the ACS is a hyper-cuboid in Rm control space, when
mapped to R3 moment space, some edges of the ACS mapped to the interior of the AMS
through the null space of the B matrix, and parallel edges remains parallel through linear
mapping. Therefore, the facets of AMS in R3 space are parallelograms [2]. By using the
MATLAB command convhull, each parallelogram facet is parameterized as two triangles in
R3 space, which directly serves our purpose of the origin-in-triangle check.

Keep in mind that only facets in the positive x-axis domain after rotation should be
considered As denoted in Figure 5, the easiest way to find if the origin is enclosed by
triangle P1P2P3 is to calculate the barycentric coordinates of origin expressed by vector
→

P1P2 and
→

P1P3, then check if both coordinates are positive and their sum is smaller than
1. Therefore, if coordinate of Pi in the y-z plane is (yi, zi) (i = 1, 2, 3), then the barycentric
coordinate of origin is calculated by:

u = y1(z1−z3)+z1(y3−y1)
(y2−y1)(z3−z1)−(y3−y1)(z2−z1 )

v = z1(y1−y2)+y1(z2−z1)
(y2−y1)(z3−z1)−(y3−y1)(z2−z1 )

, (7)
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If u ≥ 0, v ≥ 0 and u + v ≤ 1, then the origin is enclosed by triangle P1P2P3 in the y-z
plane.

Figure 5. D origin-in-triangle check. For a convex problem, there is only one intersection between
the polyhedron and the query direction. Therefore, only the intersection facet will contain the origin
in the rotated space thus can be determined by this check.

4.3. Ray Tracing for Intersection

The ray tracing problem can be solved in the rotated space given the right facet, as
shown in Figure 6. The task is to calculate intersection Q of the ray extending unit vector
→
m = [1; 0; 0] and the facet P1P2P3. Assume

→
n is normal vector to facet P1P2P3, and the

length of vector
→

OQ is t. Then, it is obvious that:

→
P1Q ·→n = 0, (8)

therefore, (
P1 − t

→
m
)
·→n = 0, (9)

such that,

t =
P1 ·

→
n

→
m ·→n

, (10)

Figure 6. The ray tracing problem known as in the field of computer graphics, which provides a fast
and efficient way of calculating the intersection between a query direction and a facet in space.

Note that, P1 and
→
n are known given the facet. t is the length of the vector

→
OQ. Since

the rotation transformation does not change magnitude, t is therefore ‖a‖ in Equation (2).
The margin factor in Equation (2) is therefore calculated as:

λ =
t

‖→r ‖
. (11)

We can repeat the process for each RMS vertex to calculate our final cost function in
Equation (3). Note that, although the process contains several steps, each step requires mi-
nor computation power compared to solving a set of linear equations in higher dimensions,
reducing the total amount of computation power needed.
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5. Implementation and Results
5.1. The Plant Model and the Moment Sets

The proposed framework is applied to an eVTOL to optimize its eight hover propellers’
installation angles. The outline of the propellers’ arrangement is displayed below in
Figure 7:
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Figure 7. Outline of propeller positions of the considered plant: (a) 3D view, (b) Top view. In (b), the
black bars represent two hanger frames where the propeller are installed on. This leads to a natural
constraint on the propeller rotation direction, which is only allowed to rotate around the x-B axis.

The Cartesian coordinate in blue represent the body-fixed frame, denoted by B. The
eight discs denoted as P1 to P8 sketch the eight propellers with an arrow representing the
directions of forces they produce. The figure demonstrates the propellers respective relative
positions and alignment in the B-frame. Since the propellers are installed on two hanger
frames (black bars in Figure 7b) which are parallel to the x-B axis, the propellers constrained
to rotate around the y-B axis. Therefore, all the propellers are tilted symmetrically around
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the x-B axis which also accounts for the otherwise limited yaw authority. Note that
the figure is only a conceptual illustration and does not represent actual sizing of the
plant considered.

Generally, a linear relationship between the forces and moments produced and the
square of rotational rate of the propellers can be assumed [17,18]. For hover control, the
most relevant forces and moments are the vertical force along the z-B direction and three
moments. Here we choose the generalized forces of the vertical load factor and angular
accelerations as the axis of the moment sets, since they are algebraically equivalent to the
vertical force and moments, and they present a more straightforward relationship between
the most often controlled variables, e.g., vertical speed and attitude. The mathematical
model we consider here is therefore:

nz.
p
.
q
.
r


B

= B(p)


ω2

1
ω2

2
...

ω2
3

, ω2
i ∈

[
0, ω2

max

]
(12)

On the LHS, nZ is the vertical load factor;
.
p,

.
q,

.
r are the angular accelerations,

subscript B denotes the quantities in the B-frame. On the RHS, B is the effectiveness matrix,
which is a function of the parameters, p to be optimized. ω2

1,...,8 are the square of rotation
rate of the propellers. ωmax is the maximum rotational speed.

The preliminary design tilts the propellers around the x-B axis symmetrically, as can
be seen in Figure 7. Assume the tilt angle is φ, then the vector of preliminary parameters is
p = [φ,−φ, φ,−φ,−φ, φ,−φ, φ] for propellers P1 to P8. Figure 8 shows the projections of
the R4 AMS and RMS into 6 R2 spaces, when φ is 5◦, 15◦ and 25◦ respectively.
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Figure 8. Comparison of RMS and AMSs when the symmetrically tilted angles of propellers is 5◦,
15◦ and 25◦ respectively.

Note that when the angle is small, the system shows very limited authority in yaw
thus a very small marge with respect to the RMS. When the angle increases, the yaw
authority is correspondingly enlarged but the achievable load factors and roll accelerations
are noticeably degraded. For all the three cases, the pitch authority in the AMS is slightly
changed and remains highly redundant compared to its counterpart in the RMS. Given
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these observations, we choose to optimize a R3 subset of the R4 AMS, using a sub-model
of Equation (12):  nz.

p
.
r


B

= Bsub(p)


ω2

1
ω2

2
...

ω2
3

, ω2
i ∈

[
0, ω2

max

]
, (13)

where, Bsub takes the first, second and fourth columns of the original B matrix. Corre-
spondingly, the RMS takes its R3 projection with the same axes. With this simplification,
the proposed intersection solver in Section 4 can be directly utilized.

5.2. Verification of Intersection Solver

Before showing the optimization results, the intersection solver proposed in Section 4
is verified against solutions of Equation (5), solved as a linear programming problem, using
the solver provided in the “QCAT” toolbox [19]. The toolbox helps to translate the problem
into a standard linear programming problem and then solve it using the inherit linprog
function from MATLAB [11,20].

Totally 10,000 randomly generated cases evenly distributed in the R3 space are com-
pared for both solvers. The result is shown below in Figures 9 and 10. The calculated
margin factors of the proposed method are mostly the same as the linear programming
solution with a precision of ±2%, but is on average 5–10 times faster as shown in the
histogram of time consumptions.
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Figure 9. Comparison of margin factor λ calculated by both methods of 10,000 random cases.
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5.3. Single Variable Optimization

To verify the optimization framework, we firstly take equally distributed angles, with
only one variable φ to parameterize the problem as in Section 5.1, such that
p = [φ,−φ, φ,−φ,−φ, φ,−φ, φ]. The signs here represent the rotation direction of each
propeller. This single variable setup helps us to verify the optimization results by plotting
the relationship between the cost function and the variable φ. If implemented correctly,
the optimization should generate the minimum value on the cost function curve. Some
settings for the optimization, the variable is limited between [−10◦, 50◦], whose initial
value is set to 5 degrees. The constraint is chosen as the condition number of the B matrix,
which must be smaller than a threshold such that the resultant system is NOT ill-shaped in
its controllability.

In Figure 11, the trend between cost function and constraint with respect to the
optimization variable φ is shown. The initial value and optimal value calculated by the
optimization framework is marked by yellow and red astray symbols. Clearly, the value
calculated by the optimization achieves the global minimum of the cost function and
resides well inside the constraint limit. Figure 12 shows a direct comparison between
the initial AMS, the optimal AMS, and the RMS in the R3 space. The coverage margin of
the AMS over the RMS is largely increased, especially in the yaw axis where the initial
margin was relatively low. The optimal AMS sacrifice a little performance on the roll
axis compared to the initial one, but the resultant margin is still rather high. Note that,
the system seems unable to handle the positive corner of the load-factor axis despite
the optimal configuration. This reminds of a preliminary design issue, or too ambitious
requirements presumed.
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Figure 11. Relation of cost function and constraints with the optimization variable, each is a one-to-
one mapping since we have only one optimization variable. This figure shows that the optimizer
successfully locates the optimal point which also fulfills the constraints.
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Figure 12. Comparison of RMS (red), initial AMS (cyan), and optimal AMS (green) of the single
variable optimization. As can be seen, the optimal AMS largely increase yaw capability without
minor sacrifice of the other two axes.

Figure 13 compares further the margin factor cumulative density function. For the
initial and optimal AMS, the margin factors of all RMS vertices are gathered and counted to
formulate the cumulative function. The curve of optimal AMS is clearly shifted right-ward,
indicating an increased probability of safety margin. For the optimal AMS, only less than
10% of the margin factor is smaller than 1.5, whereas the number for initial AMS is more
than 30%. Additionally, the biggest margin is increased from 3.4 to 4.3, with a marginal
increase in the smallest value.
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Figure 13. Comparison of margin factor CDF of all the query direction (RMS vertices) between initial
and optimal AMS. The overall margin factor of the optimized AMS is elevated compared to the initial
one.

5.4. Multivariable Optimization

Since the framework is verified by the single variable case, we can use it to directly opti-
mize all the 8 angles independently. The parameter vector is therefore
p = [φ1,−φ2, φ3,−φ4,−φ5, φ6,−φ7, φ8], where φ1−8 are the absolute values of the angles
and the sign represent the rotation direction. The Figure 14 shows the multi-variable
optimized AMS compared to the initial AMS and RMS.
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Figure 14. Comparison of optimal AMS, initial AMS, and RMS of the multivariable optimiza-
tion setup.

A comparison between the single variable and the multi-variable optimized AMS
are shown below. The corresponding optimal angles, optimal cost function and nonlinear
constraint value are for the initial system, single-variable optimized system and multi-
variable optimized system are summarized in the table below. Note that the multi-variable
optimization achieves a more even distributed space between the axes, especially in the
nz −

.
r plane on the upper-right subplot of Figure 15. The multi-variable optimization is

able to achieve a smaller cost function compared to the single-variable case as shown by
Table 1.
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Table 1. Comparison of optimized angle, cost function and nonlinear constraint of initial, single-
variable optimized and multi-variable optimized AMS.

Initial State Single-Variable
Optimization

Multi-Variable
Optimization

Parameter Vector
(Angles in degree)



5
−5
5
−5
−5
5
−5
5





19.8
−19.8
19.8
−19.8
−19.8
19.8
−19.8
19.8





27.8
−4.7
0.3
11
−27.8

4.7
−0.3
−11


Cost Function 17.2 13.7 13.2

Nonlinear Constraint
(Condition Number) 11.25 2.9 5.4

6. Conclusions

In this paper, an AMS optimization framework to support configuration design is pro-
posed. The optimization considers the RMS of a system which imprints the requirements
information such as the disturbance rejection and maneuverability. Given the RMS as a
polyhedral, the optimization aims to maximize the overall coverage of the AMS over the
RMS, such that the system obtains a larger safety margin, and the prescribed requirements
can be fulfilled to its best extent. An efficient intersect solver is proposed due to the high
computation resources needed for computing the complex geometry margin between the
AMS and the RMS. The framework is applied to an eVTOL with eight rotors for their
installation angles. It is firstly verified by a single variable optimization setup where the
relationship between cost function and the variable can be plotted clearly. It is then utilized
to the multi-variable case to directly optimize for all the eight propeller angles. Optimiza-
tion results show that the resultant AMS largely improves the coverage margin especially
in the low-authority axes without sacrificing overall performance. The framework helps to
largely increase the design freedom with enhanced performance.
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