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Abstract: For a long time, determining the factors influencing the cleaning of technical surfaces in
the food and beverage industry has been of significant interest. In this study, an innovative test setup
with a newly designed parallel plate flow cell was implemented to assess the cleaning of soluble
molecular fouling materials, which allows for the independent variation of flow parameters, such as
the Reynolds number, velocity, and wall shear stress. The test setup used fluorescence spectroscopy; it
was found to produce reliable measurements of cleaning, and the results were confirmed with the help
of another fluorescent tracer. A comparison of cleaning times for both equipment revealed that the
cleaning times tend to have a geometrically independent power-law relationship with the wall shear
stress and velocity, and they were used to directly correlate the cleaning times of the used soluble
fouling material. However, the Reynolds number showed a geometric dependence on cleaning
times. Nevertheless, on dividing the Reynolds number with respective channel characteristic lengths,
geometric independence was observed, and, therefore, a correlation was obtained. We also suggest
that complex fouling materials should still be investigated to elucidate their cleaning mechanisms
better and test for parameter influences on complex cleaning mechanisms.

Keywords: cleaning; parallel plate flow cell; hygienic design; cleaning test; flow parameters; fluores-
cence spectrometer

1. Introduction

Cleaning in food industries is an essential process during food production and han-
dling in all food-processing plants. Reliable and efficient cleaning must be ensured to meet
the hygienic standards and expectations of end consumers. Inadequate cleaning poses
health risks to consumers. In addition, cleaning is a complex process, involving more than
one type of mechanism to remove fouling materials; therefore, its validation is complex,
and cleaning processes are rarely optimized [1]. The interaction of the fouling material with
water is vital given that water is the most widely used cleaning medium. Consequently,
fouling materials are classified into soluble, swellable, emulsifiable, and particulate [1,2].
Different types of fouling models are employed to perform cleaning tests. Examples of
widely used soluble fouling materials are malt extract, tomato paste, and riboflavin. This is
because these fouling materials can spread evenly over a wide surface and form crack-free
surface upon drying, thereby yielding high reproducibility. Riboflavin is easily detectable
because of its self-fluorescence and capability to detect other fouling materials such as
tomato paste and malt extract. The use of a fluorescent or a photoluminescent tracer is
usually employed to detect removal and determine the progress of cleaning [3–7]. Flu-
orescence spectroscopy is used in various disciplines [8,9] and can be easily integrated
into a closed cleaning unit such as flow cells. Parallel plate flow cells (PPFC) are used in

Processes 2021, 9, 881. https://doi.org/10.3390/pr9050881 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-1263-724X
https://orcid.org/0000-0001-7725-5907
https://orcid.org/0000-0002-6381-1543
https://www.mdpi.com/article/10.3390/pr9050881?type=check_update&version=1
https://doi.org/10.3390/pr9050881
https://doi.org/10.3390/pr9050881
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9050881
https://www.mdpi.com/journal/processes


Processes 2021, 9, 881 2 of 13

performing cleaning experiments because of their simple geometry and easily reproducible
well-developed flow. Researchers have employed PPFCs in cleaning experiments, such as
the detection of microbial adhesion [10–12], as well as for comparison of cleaning behaviors
of various food biopolymers [13].

In a previous research [13], quantification of cleaning with the help of fluorescence
spectroscopy and a PPFC is shown, along with a comparison of cleaning behaviors of
different fouling materials, but no work exists in the literature to show the comparison of
cleaning by independent variation of flow parameters. This is because such a variation
requires geometric flexibility in PPFC. The current study develops a PPFC with geometric
flexibility to independently vary flow parameters—velocity, Reynolds number, and wall
shear stress—to determine the parameter influences on the cleaning of soluble fouling
materials and determine whether these experimental results could be used to correlate the
cleaning times.

2. Materials and Methods
2.1. Newly Designed PPFC

The flow parameters, Reynolds number (Re), and wall shear stress (τ) are both depen-
dent on the geometry through which the fluid flows. The Reynolds number, a dimensionless
quantity, is the ratio of inertial to viscous forces acting on the fluid and is calculated using
the following [14,15]:

Re =
V ∗ Dh

ν
(1)

where V is the average flow velocity [m/s], Dh is the hydraulic diameter of the flow
geometry [m] and ν is the kinematic viscosity of the fluid [m2/s]. The wall shear stress (τ)
is calculated using the following [14,15]:

τ =
ρ ∗V2 ∗ f

8
(2)

where ρ is the density of the fluid [kg/m3] and f is the Darcy friction factor [14] for
calculating the pipe roughness. The Darcy friction factor for turbulent flow in pipes is
evaluated by the following (for 2320 < Re < 105) [14,15]:

f =
0.316

4
√

Re
(3)

The flow cells used so far are geometrically rigid [7–10], and, therefore, a new design
with geometrical flexibility is required so that the flow parameters can be varied indepen-
dently. By setting up a flow cell with a variable height of the flow channel, it is possible to
vary the flow parameters independently as the channel becomes geometrically flexible.

Figure 1 shows the newly designed PPFC with exchangeable flow channels. The flow
cell in Figure 1 consists of an inlet and outlet (A) that are connected to water hoses via
couplings, a bottom (B), and a cover plate (C) made of poly (methyl methacrylate) or more
commonly known as plexiglas. The use of plexiglas allows for viewing the cleaning during
experimentation. The exchangeable flow channel (D), where the groove (E) is built on the
surface to host a stainless steel coupon (SSC) with the food soiling, is variable by design. By
using three different flow channels (D), the measuring cell can be operated with variable
height and width ratios. Multiple holes (F) are drilled on the plexiglas cover plate (C) to
fasten it to the bottom (B). The new flow cell has three flow channels with heights of 2.5, 5,
and 7.5 mm. The length and width of the flow channels are 30 cm and 20 mm, respectively.
Since cleaning must take place under a turbulent flow condition, it is paramount to ensure
that the flow is fully developed. The hydraulic diameter (Dh) for a rectangular channel
with width (w) and depth (d) can be calculated as follows [15]:

Dh =
2 ∗ w ∗ d

w + d
(4)
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Figure 1. New design for a PPFC.

The maximum value of hydraulic diameter for the three different channels is 10.9 mm
in the case of the 7.5 mm channel (Table 1). For pipe flow, by ensuring an inlet length of
about 10 × D (D: hydraulic diameter), the flow is fully developed for turbulent flows [15].
An inlet length of 250 mm, where the cleaning takes place, already ensures a fully developed
turbulent flow.

Table 1. Variation of wall shear stress and velocity under constant Reynolds number.

Reynolds Number 1 Parameter
Channel Depth

2.5 mm 5 mm 7.5 mm

-NA- Hydraulic diameter [m] 0.0044 0.008 0.0109

2500
Mass flow [kg/h] 115.234 128.138 140.951

Velocity [m/s] 0.641 0.356 0.261
Wall shear stress [Pa] 2.294 0.708 0.380

5000
Mass flow [kg/h] 230.648 256.275 281.903

Velocity [m/s] 1.281 0.712 0.522
Wall shear stress [Pa] 7.176 2.381 1.281

7500
Mass flow [kg/h] 345.971 384.413 422.854

Velocity [m/s] 1.922 1.068 0.783
Wall shear stress [Pa] 15.686 4.842 2.604

1 Flow is controlled by controlling the mass flow in the system.

Figure 2 shows the fully assembled PPFC. The individual parts of the cell are fastened
with 36 screws and sealed with silicone and rubber seals. The flow channel with a height
of 5 mm is shown in Figure 3.
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Figure 3. The interchangeable flow channel with a height of 5 mm: (A) top view of the flow channel and (B) side view of
the flow channel.

2.2. Reparation of the Soiling Material and SSC Matrix

SSCs, similar to the work of Otto, Zahn et al. [13], were employed for the application
of fouling material. The SSCs (Figure 4) have length, width, and thickness of 30, 18, 2 mm,
respectively; they have rounded corners with a radius of 2.5 mm. A smooth finish on the
surface of the SSCs is used to produce comparable and reproducible test samples. The SSCs
fit exactly into the recess of the flow channels of the PPFC and do not affect the flow rate.
A mixture of maltose [D(+)-maltose-monohydrate ≥92%–Carl Roth, Karlsruhe, Germany],
demineralized water, and the fluorescent tracer uranine AP (AppliChem, Darmstadt,
Germany) was used as molecular fouling material. Similarly, for validation experiments
(Appendix C) fluorescent tracer eosin Y (Alfa Aesar, Kandel, Germany) was employed in
place of uranine AP.
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Figure 4. A typical SSC.

For the test, a maltose–uranine mixture was prepared in a 2000:1 ratio. A solution
consisting of 15 g maltose and 6.7 mL demineralized water was prepared at a constant tem-
perature of 110 ◦C with stirring (MH 15, Rotilabo magnetic stirrer with heating, Carl Roth,
Karlsruhe, Germany). To weigh, AUW220D (Shimadzu Deutschland GmbH, Duisburg,
Germany) semi-micro balance was used. Then, 25 mg uranine AP was mixed in 750 µL
demineralized water to produce an uranine solution. Finally, 225 µL uranine solution
was mixed in maltose solution to obtain the maltose–uranine mixture. The SSCs were
cleaned with the help of acetone (>96% v/v)—also purchased from Carl Roth—before the
application of the maltose–uranine mixture over it. Approximately 0.5 g of the cooled
uranine–maltose mixture was applied to the SSCs with a pipette (Eppendorf, Hamburg,
Germany) and distributed. They were dried in a drying cabinet (UF55, Memmert GmbH
and Co. KG, Büchenbach, Germany) for 4 min at 100 ◦C, then removed and carefully
distributed to the edges with a spatula. The applied amount was then weighed again
exactly to 0.4 g (±0.002 g). The SSCs were then dried for another 1 h in the drying cabinet.
To cool them down, they were placed in the desiccator (Glaswerk Wertheim, Wertheim am
Main, Germany) for about 21 h and measured on the fluorescence spectrometer the next
day. Before the measurement, the coupons were weighed, and the weight of the applied
fouling material was determined. The samples (Figure 5) had a mean weight of 0.331 g, a
residual water content of 0.155 (w/w), and a standard deviation of 0.0069 g, which meant
the samples deviated from the mean value by approximately 2%. The fouling material falls
under type 1—soluble—categorized by Fryer et al. [1,16]
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2.3. Fluorescence Spectrometer

Fluorescence spectroscopy was used in this project to perform online measurements
of the cleaning of the molecular fouling material. The fluorescence spectrometer used was
“Cary Eclipse” (Figure 6A), obtained from Agilent Technologies, Waldbronn, Germany. A
xenon lamp was used to excite the samples used in the cuvette. The spectrometer was
accompanied by a software called “Cary Eclipse,” which allows continuous measurement
of the change in fluorescence intensity of a sample in the cuvette via the program “Kinetic”.
For single measurements of the fluorescence intensities, the program “Scan” was used.
To ensure inline measurements using the fluorescence spectrometer, a specially designed
holder for the flow through cuvette was used (Figure 6C). The resulting calibration curves
of the Fluorescence Spectrometer are shown in Figure A1.
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2.4. Cleaning Tests

Cleaning behavior can be monitored with help of an experimental setup consisting of
a storage tank, flow cell, continuous measuring unit, and pump [13,17,18]. The cleaning
tests were conducted in the experimental setup (Figure 7), which is a similar configuration
as proposed by Otto, Zahn et al. [13]. The arrangement was such that the cleaned material
was discarded from the flow cell once the cleaning has taken place, and a volume fraction of
the flow was diverted, with the help of a peristaltic pump, to the fluorescence spectrometer
to measure the cleaning taking place. First, initial experiments were conducted to check the
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reproducibility of the cleaning tests and define a calculation method for the evaluation of
the results. The fluorescence spectrometer measures the fluorescence intensities in arbitrary
units. Therefore, a calculation method had to be developed to validate the cleaning experi-
ments. This can be done using the calibration curves previously obtained. The calculation
procedures and test protocols were then used to perform the actual cleaning tests to obtain
the most influential parameter in the cleaning of the molecular soil used. Since uranine
is sensitive to the pH values of the solvent [8,9], demineralized water with a temperature
of 15 ◦C was used as the cleaning medium. The flow in the system was controlled by
regulating the mass flow. With the new concept of the flow cell, the height of the channel
(three different heights) can be varied, so that any of the flow parameters—velocity, wall
shear stress, and Reynolds number—can be varied independently with respect to another.
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Table 1 shows how the wall shear stress and velocity change with the duct depth for
the same value of Reynolds number. Tables A2 and A3 show the other variations used in
this study. Each test was performed using a three-fold determination.

3. Results and Discussion
Determination of the Parameter Influences

This study investigates the influence of flow parameters on the cleaning of a molecular
fouling material, which can be later used to correlate cleaning times. As explained, cleaning
experiments were performed by independent variation of the flow parameters—Reynolds
number, velocity, and wall shear stress. Therefore, it was possible to record the cleaning
curves for a fixed value of the Reynolds number and changing values of the wall shear
stress and velocity (Figure 8), and vice versa.

It is observed that the peak value of material removed, observed at around 30 s,
decreases with increasing values of channel depth. This is expected as the values of
flow velocity and wall shear reduce with the increasing values of channel depth (Table 1).
Additionally, the cleaning times increase with the increasing values of channel depth.
Cleaning time is characterized by the time at which the fluorescence spectrometer readings
go to zero (maltose concentration = 0). In addition, the cleaning times of all cleaning
experiments with Reynolds numbers greater than the critical value of 2300 were plotted
against the respective values of the flow parameters. Figure 9 shows the cleaning times
plotted against the Reynolds number.
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It can be observed that for each channel geometry configuration, the cleaning times
reduce according to a power-law fit with the increasing value of Reynolds number. This
shows a geometric dependency of the relationship between cleaning time and Reynolds
number. Therefore, cleaning times show a power-law relationship with the Reynolds
number, but only for the respective channel geometries. In Figure 10, the cleaning times
are plotted against the respective velocity values.

Additionally, here a power–law relationship between cleaning times and the flow
velocity is observed. However, here no geometric dependence on the channel geometry
is observed. That is, irrespective of the channel configurations, the cleaning times reduce
with increasing flow velocities following a power–law fit.
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Similarly, for wall shear stress, the cleaning times show a power–law relationship with
the wall shear stress values for all measured points independent of the channel geometry
(Figure 11).
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Table 2 shows the correlation of cleaning time obtained for all the flow parameters.

Table 2. Parameters and correlation obtained.

Parameter 2 Fit Equation R2

The Reynolds number: 2.5 mm channel y = 15234.4 x−0.584 0.967
The Reynolds number: 5 mm channel y = 24344.7 x−0.597 0.986

The Reynolds number: 7.5 mm channel y = 17919.3 x−0.537 0.991
Wall shear stress [Pa] y = 200.9 x−0.318 0.983

Velocity [m/s] y = 125.2 x−0.578 0.982
2 y refers to the cleaning times and x refers to the respective parameter.
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4. Conclusions

In this study, in-line cleaning experiments could be performed reliably with the
help of fluorescence spectroscopy and a test setup consisting of a new design of PPFC
(Appendix B). The results of the test method proposed are consistent with the usage of trac-
ers of different molecular weights and, thus, different diffusive properties (Appendix C).
The results of the cleaning experiments demonstrate that by using a geometrically flexible
PPFC, independent variation of flow parameters is possible to reveal the influences of
flow parameters on the cleaning times of a molecular food soiling. A general decrease
in cleaning times with increases in the Reynolds number, flow velocity, and wall shear
stress was observed. A power–law relationship between cleaning times and the Reynolds
number was observed, which is consistent with the review work of Goode et al. [16] as the
fouling material used here is of type 1 deposit as classified by Fryer et al. [1]. It was shown
that concerning the flow parameters—wall shear stress and velocity—cleaning times show
geometrically independent power–law relationship with the respective flow parameters,
for the fouling material used in this study. Therefore, they were used to directly correlate
the cleaning times (Table 2). However, for the Reynolds number, a geometric dependency
was observed. Although velocity and wall shear stress seemed to have more influence on
the cleaning times due to their geometric independence, the wall shear stress had a steeper
correlation curve in comparison and was the most influential parameter on cleaning of the
molecular fouling used in this study. Therefore, this study provides a better understanding
of the cleaning mechanism involved as well as presents an innovative strategy to vary the
cleaning parameters to determine the cleaning behavior. More research with fouling mate-
rials involving complex removal mechanisms such as dairy cream is required to elucidate
their respective cleaning mechanisms and the effect of flow parameters.
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Appendix A. Calibration of the Fluorescence Spectrometer

To perform the calibration of the fluorescent tracers—uranine AP and eosin Y—used
in this project, serial dilutions of different concentrations of the tracers were prepared,
similar to the works of many other authors [8,9]. The diluted solutions contained maltose
and the fluorescent tracer under the same weight ratio (2000:1) as in the fouling material
used for the cleaning tests. The fluorescence intensities for the solutions with different
concentrations were measured and plotted against the respective concentration values. The
calibration experiment was performed on 12 different concentration values for each tracer.

The resulting calibration curves are shown in Figure A1. The goal of the calibration ex-
periments is to obtain a trend function with a good coefficient of determination (R2 > 0.95).
The performed experiments resulted in a 0.999 coefficient of determination.
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Appendix B. Initial Cleaning Experiments

The preliminary cleaning tests were performed to show the feasibility of the cleaning
experiments. The idea was to determine the difference in mass measured by fluorescence
spectrometer and the actual measured mass before cleaning experiments. The fluorescence
spectrometer measures the intensities of fluorescent tracer in the solution in arbitrary units
(a.U.) and is then converted to a concentration by exploiting the calibration curve obtained
previously. Based on the mass fraction of maltose to that of the fluorescent tracer present in
the fouling layer prepared, the concentration of maltose is calculated. Figure A2 shows the
change in mass concentration of maltose (Cm) with time obtained from the measurements
of the fluorescence spectrometer. The total mass of maltose removed during cleaning
experiments from the fluid cell can be calculated using the following steps:

1. Finding the area under the curve (A):

A =
∫ tend

0
Cm.dt (A1)

2. The mass of maltose that passed via the cuvette (mc) can be calculated using the

volume flow through the cuvette (
.

Vc)

mc = A.
.

Vc (A2)

3. The mass of maltose that was removed from the system (mtot), assuming a homo-
geneous distribution of the solute in both the separated flows, can be calculated
using the fraction of volume flows through the flow cell to that through the cuvette

(r =
.

Vtot.
Vc

)

mtot = mc.r (A3)

4. Finally, the deviation of the mass measured by the fluorescent spectrometer (mtot)
from the mass measured before the cleaning experiments (mme) can be calculated from

%error =
mme −mtot

mme
(A4)
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The following table (Table A1) shows the error values from the preliminary cleaning
tests. The deviations from the mean values are smaller, and the experiments can be
considered reliable.

Table A1. Feasibility of the cleaning tests.

Channel Size (mm) Velocity (m/s) Experiment Nr. Mass Before Cleaning (g) Measured Cleaned Mass (g) Mean % Error

5 0.5
1 0.337 0.329

2.852 0.337 0.328
3 0.341 0.329

5 0.89
1 0.333 0.319

3.982 0.338 0.325
3 0.335 0.322

Channel Size (mm) Reynolds Number Experiment Nr. Mass Before Cleaning (g) Measured Cleaned Mass (g) Mean % Error

7.5 2500
1 0.333 0.315

5.972 0.335 0.316
3 0.337 0.314

7.5 7500
1 0.335 0.3

7.772 0.335 0.315
3 0.334 0.311

A1 Flow is controlled by controlling the mass flow in the system.
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Appendix C. Validation of the Fluorescent Spectrometer Measurements with Eosin Y

To ensure that the current experimental setup with the fluorescence spectrometer
measures the cleaning of the fouling material used and not just the dissolution of uranine
AP from the fouling material in the system, another initial cleaning test was conducted
using the common fluorescent tracer eosin Y. In this test, the fouling material was prepared
similarly as in that of uranine AP. Calibration experiments were also performed like that of
uranine AP (Figure A1). The expectation is that if the fluorescence spectrometer measures
the cleaning of the fouling material used, the test results should not vary significantly when
using another common fluorescent tracer, given that both are soluble in water. Figure A3
shows the comparison of the change in maltose concentration over time with the use of
eosin Y (blue line) and uranine (red line). From Figure A3, the values are consistent, and
the fluorescence spectrometer measurements were, therefore, successfully validated.
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Appendix D.1. Variation of Flow Parameters with Constant Velocity

Table A2. Variation of Reynolds number and wall shear stress for constant velocity.

Velocity [m/s] Parameter
Channel Depth

2.5 mm 5 mm 7.5 mm

0.5
Mass flow [kg/h] 90 180 270
Reynolds number 1951.029 3511.853 4788.89

Wall shear stress [Pa] 1.486 1.283 1.188

0.75
Mass flow [kg/h] 135 270 405
Reynolds number 2926.544 5267.779 7183.335

Wall shear stress [Pa] 3.022 2.609 2.414

0.89
Mass flow [kg/h] 160.2 320.4 480.6
Reynolds number 3438.405 6256.59 8524.604

Wall shear stress [Pa] 3.811 3.281 3.0377
Flow is controlled by controlling the mass flow in the system.

Appendix D.2. Variation of Flow Parameters with Constant Wall Shear Stress

Table A3. Variation of Reynolds number and velocity for constant wall shear stress.

Wall Shear Stress [Pa] Parameter
Channel Depth

2.5 mm 5 mm 7.5 mm

1
Mass flow [kg/h] 71.76 156.092 244.745
Reynolds number 1555.622 3045.398 4340.955

Velocity [m/s] 0.399 0.434 0.453

2
Mass flow [kg/h] 106.635 231.952 363.690
Reynolds number 2311.645 4525.44 6450.634

Velocity [m/s] 0.592 0.644 0.673

3
Mass flow [kg/h] 134.438 292.429 458.516
Reynolds number 2914.37 5705.382 8132.536

Velocity [m/s] 0.744 0.812 0.849
Flow is controlled by controlling the mass flow in the system.
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