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Abstract: Magnetic nanoparticles (MNPs) are used for magnetophoresis-based separation processes
in various biomedical and engineering applications. Essential requirements are the colloidal stability
of the MNPs and the ability to be separated even in low magnetic field gradients. Bare iron oxide
nanoparticles (BIONs) with a diameter of 9.2 nm are synthesized via coprecipitation, exhibiting a
high saturation magnetization of 70.84 Am2 kg−1 and no remanence. In our study, zeta potential,
dynamic light scattering (DLS), and sedimentation analysis show that the aggregation behavior
of BIONs is influenced by pH and viscosity. Small aggregate clusters are formed with either low
or high pH values or increased viscosity. Regarding magnetophoresis-based separation, a higher
viscosity leads to lower magnetophoretic velocities, similar to how small aggregates do. Additionally,
cooperative magnetophoresis, the joint motion of strongly interacting particles, affects the separation
of the BIONs, too. Our study emphasizes the effect of pH and viscosity on the physicochemical
characteristics of MNPs, resulting in different aggregation behavior. Particularly, for high viscous
working media in downstream processing and medicine, respectively, the viscosity should be taken
into account, as it will affect particle migration.

Keywords: magnetophoresis; magnetic separation process; iron oxide nanoparticles; aggregation;
pH; viscosity; sedimentation analyzer; zeta potential; hydrodynamic diameter

1. Introduction

Magnetic nanoparticles (MNPs) have become an important nanomaterial in biotechnol-
ogy, in chemistry, and in medicine [1–6]. They entail characteristics such as biocompatibility,
high binding capacities, and cost-efficient production via coprecipitation. Moreover, their
superparamagnetic properties are advantageous during the separation process, as the
MNPs show no remanence at room temperature. However, when applying a magnetic
field, they possess a high magnetic susceptibility and can be easily separated [7,8]. For
biological samples, it is challenging to separate a target entity from a complex mixture
with different components. Here, magnetophoresis-based processes provide a simple and
efficient method, where the desired entity (magnetic or magnetically labeled with MNPs)
is isolated by applying an external magnetic field [9–11]. For the method of High Gradient
Magnetic Separation (HGMS), a suspension containing the magnetic material is pumped
through a separation chamber, and it is trapped by a magnetically susceptible matrix due
to high magnetic field gradients (102–104 T m−1) [9,11,12]. In contrast, low magnetic field
gradients (<100 T m−1) are used for Low Gradient Magnetic Separation (LGMS), where a
magnet is placed outside the particle suspension without contacting the particles [13]. Both
modes of operation can be realized with either a permanent magnet or an electromagnet.
However, the latter brings up several challenges. The installation costs are higher than a
permanent magnet, and cooling might be necessary to counteract the Joule heating. Thus,
water usage is required besides energy consumption [14]. Therefore, a permanent magnet
might be preferred in the biomedical field. Moreover, in microfluidics, the implementation
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of a permanent magnet with a high magnetic field gradient is more advantageous, as
Alnaimat et al. summarize [15].

For LGMS or HGMS applications, such as in microfluidics [16] or in medicine [17–22],
it is important to have a defined and stable particle size. Hence, MNPs need to meet the
following requirements. On the one hand, they should be colloidal stable and not form
aggregates so that they remain their defined size during fractionation or separation [5].
Particularly, for medical purposes, such as hyperthermia treatment or magnetic resonance
imaging, the particle diameter should be smaller than 100 nm without forming large
aggregates [17,19,23,24]. On the other hand, it should be possible to isolate the colloidal
stable MNPs with the respective magnetic field gradient [25].

Regarding downstream processing, the handled liquids, e.g., cell lysates or hy-
drolysates coming out of fermentation, pose another challenge. Viscosity becomes an
essential factor, influencing the separation performance [26–28]. Furthermore, in medical
applications, the medium blood exhibits a higher viscosity, being fivefold higher than
the one of water [29]. In addition to the higher viscosity, serum proteins or other blood
components might influence the aggregation behavior [20,21]. However, the so-called
biocorona, which is determined by the liquid components such as biomolecules, bacterial
debris, proteins, or lipids, could also prevent the aggregation of MNPs [30]. Socoliuc
et al. recently emphasized the importance of characterizing the aggregation behavior
of MNPs in the respective medium, e.g., cell culture media, and not only in water [18].
Besides the intrinsic characteristics of the working liquid, an increase in viscosity could
be advantageous for the microfluidic processing of magnetic particles [31]. In order to
avoid sedimentation effects during the process, Solsona et al. developed a microfluidic chip
for the magnetophoretic sorting of single-catalyst particles composed of iron [31]. Hence,
working with different viscosities might facilitate process handling, or a specific medium
might give another viscosity. We would like to point out that besides other parameters,
e.g., pH, the viscosity might influence the particle aggregation behavior as well.

Concerning an LGMS process, the control of aggregation is important, as it has
been shown that, despite low magnetic field gradients, the particles can be separated,
mainly due to cooperative magnetophoresis [32–34]. By extending the DLVO theory with
the magnetic interaction, this phenomenon can be explained [35]. Here, particles form
aggregates because of the magnetic field gradient, as their magnetic dipoles align, and
the cooperative effect speeds up the magnetophoretic separation. According to Faraudo
et al., these aggregates are reversible for high zeta potentials. Electrostatic repulsion and
magnetic attraction form a secondary minimum besides the primary one, separated by a
potential barrier [35]. The magnetic Bjerrum length poses a parameter, which enables the
evaluation of aggregation throughout a magnetophoretic process. It describes the distance
of two parallel dipoles, where the magnetic force equals the thermal energy. Due to this
parameter, it can be estimated if the magnetic dipoles are interacting with each other or not.

λB =
µ0·m2

2·π·kB·T

1
3

(1)

The Bjerrum length is dependent on the permeability of free space µ0 = 4π × 10−7 H m−1,
the Boltzmann’s constant kB = 1.381 × 10−23 J K−1, the temperature T, and the magnetic
dipole, which is written as

m = MS·ρp·
4
3
·π·r3, (2)

where the saturation magnetization per unit mass of colloid is MS, the particle density is
ρP, and the particle radius is r.



Magnetochemistry 2021, 7, 80 3 of 13

This study emphasizes the importance of understanding the aggregation behavior
of bare iron oxide nanoparticles (BIONs) in different viscosities. The influence on a sep-
aration process in a low magnetic field gradient is investigated by the magnetophoretic
sedimentation velocity with a sedimentation analyzer. The following hypotheses are
proposed:

1. The aggregation behavior of BIONs in the gravity field is dependent on pH and
viscosity, respectively. Therefore, the colloidal stability can be selectively controlled.

2. During magnetophoresis, these effects directly influence the separation process. The
aggregate size, as well as viscosity, result in different magnetophoretic velocities.

Four different pH values between 4 and 9, which clearly show the pH’s influence on
aggregate size and therefore on magnetophoretic sedimentation velocity, are chosen. The
viscosity of water (η = 0.888 mPa s) is compared with the 2.5-fold viscosity. A higher viscos-
ity can be beneficial for magnetophoretic sorting processes, as field-induced aggregation
and convection only play a minor role at elevated viscosities [31,33]. The higher viscosity
is obtained by adding sucrose (η = 2.227 mPa s).

2. Results and Discussion
2.1. Particle Characterization

BIONs are synthesized via coprecipitation. They exhibit a high saturation magnetiza-
tion of 70.84 Am2 kg−1 (Figure 1a), no remanence and no hysteresis at 0 Oe [36–38]. The
chemical composition and the crystalline spinel structure were previously described by
Schwaminger et al. [39]. With Transmission Electron Microscopy (TEM) (Figure 1b), the
optical diameter of the BIONs is examined, resulting in an average single particle diameter
of 9.92 nm, which is similar to previous measurements of BIONs [38–40].
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Figure 1. (a) Superconducting quantum interference (SQUID) measurement for the bare iron oxide nanoparticles (BIONs) at
300 K with a LangevinMod fit. (b) Transmission Electron Microscopy (TEM) image of the BIONs.

2.2. Influencing the Colloidal Stability of the BIONs due to Viscosity and pH

Zeta potential is the electrostatic potential at the particle’s slipping plane, which
presents the interface between the moving fluid and the fluid attached to the particle
surface. Therefore, the zeta potential is used as a relative measurand for the surface
potential and, thus, for the magnitude of a particle’s charge. Due to the extent of electric
repulsion between the particles in the solution, the colloidal stability can be evaluated. The
repulsion energy is thereby dependent on the particles’ radius and the extent of shielding,
which is affected by the ionic strength of the solvent [41]. Figure 2 illustrates the course
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of zeta potential versus pH and presents the amphiphilic character of the BIONs’ surface.
At very low and high pH, it ranges between 20 and 35 mV or −20 and −35 mV, meaning
the BIONs’ net charge is positive or negative, respectively. Thus, the particles’ repulsion
is high, and they are colloidally stable, leading to less aggregation. The hydrodynamic
diameter measurement goes in line with this assumption, as it shows low diameters for low
and high pH values. While the isoelectric point (IEP), where the potential is 0, is 6.69 for
the low viscous solution (η = 0.888 mPa s) (Figure 2a), it is 6.07 for the high viscous solution
(η = 2.227 mPa s) (Figure 2b) [42]. Here, the particles form aggregates up to 3000 nm in both
liquids because of their low superficial charge. Comparing the particle distributions of
both solutions, the one with the low viscosity (Figure 2a) exhibits a wide distribution over
pH. In contrast, for the other one (Figure 2b), large aggregates can only be observed at pH
5 and 6. Thus, in the higher viscous solution, the colloidal stability of the BIONs is given
over a broader pH range from pH 2 to 4 and pH 7 to 10. In addition, the polydispersity
index (PDI) of the measured samples (Figure S1) confirms these results, as it is between
0.18 ± 0.09 and 0.24 ± 0.04 for the high viscous solution, whereas it is between 0.22 ± 0.03
and 0.54 ± 0.20 for the low viscous solution. Compared to the literature, a PDI below 0.7 is
considered as nearly monodisperse [43]. For pH 2, 3, 9, and 10, the PDI for both solutions
is similar; however, for the low viscous samples, the PDI at pH 5, 6, 7, and 8 is higher. This
indicates that the BIONs around the IEP possess a higher heterogeneity in aggregate size.
Additionally, this effect can be seen in the intensity distributions of all samples in Figures
S2 and S3. For the water solution, heterogeneous aggregates are detected between pH 4
and 8, while the particle distributions for the higher viscosity are uniform. Particularly,
for low pH values, the particles might react with the acid and therefore possess a higher
stability.
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Figure 2. Hydrodynamic diameter and zeta potential measurements of BION suspension in pH 2 to 10 (a) in deionized
water (η = 0.888 mPa s) (b) and sucrose solution (η = 2.227 mPa s).

The analysis of BIONs in other sugar solutions, such as fructose and glucose, at pH 7
resulted in similar particle distributions as sucrose (Figure S4). In the literature, the effect
on the colloidal stability of particles due to higher viscosity by sugars, such as sucrose, is
confirmed. Previously, Szalai et al. synthesized ex situ coated magnetite nanoparticles with
gelatin and sucrose. They reported higher colloidal stability of their particles when adding
sucrose [44]. Sun et al. propose that the multiple hydroxyl groups, as they are present in
sucrose, can adsorb or chelate onto the magnetite surface, resulting in steric hindrance, as it
is known to conventional surfactants [45,46]. Benítez et al. describe another effect of sugars,
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where they claim that sucrose might influence particles’ colloidal stability because of the
hydration capacity. They extend the DLVO theory by the hydration repulsive energy, which
occurs as water molecules around the particle surface restrict them in their motion, known
as hydration pressure [47,48]. We assume that stabilization due to the higher viscosity with
sucrose is reached because of a synergy of the mentioned effects.

2.3. Dependence of the Magnetophoretic Velocity on Aggregate Size and Viscosity

The effect of pH and viscosity on the aggregation behavior of our BIONs indi-
cates that it is essential to evaluate the influence of different aggregate sizes regarding a
magnetophoresis-based separation process. The Space-and-Time-resolved Extinction Pro-
files (STEP) technology is based on the sedimentation of particles due to magnetophoresis.
It describes the particles’ movement towards the magnetic field direction if the buoyancy
and friction force is overcome (Figure 3).
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Figure 3. (a) Schematic illustration of the sedimentation analyzer (LUMiReader) with the involved forces (magnetic force
Fmag, the gravitational force Fgrav, and the drag force Fdrag). (b) Experimental set-up. The cuvette filled with sample
fluid is placed on a magnet, and parallel light with a wavelength of 870 nm transmits the sample. A light sensor records
transmission profiles, and the magnetophoretic velocity of the particles is calculated. The magnetic flux density in the
direction of the particle movement is 40 mT at the sample top and 350 mT at the sample bottom. (c) Calculated magnetic
flux density along the y-axis. Calculations were performed with COMSOL Multiphysics 5.6.

Figure 4 presents the magnetophoretic velocity derived from STEPs over pH 4, 6, 7,
and 9 at η = 0.888 and η = 2.227 mPa s. For pH 4 and 9, the magnetophoretic velocity is
noticeably lower than for pH 6 and 7, which goes in line with the measured particle size
distributions via dynamic light scattering (DLS) measurement (Figure 5). The latter pH
values show around one power of ten higher diameters than pH 4 and 9 because the surface
of the BIONs is charged positively or negatively, respectively. Hence, the attractive forces
major the repulsive ones so that the particles do not resist aggregation. The same pattern
can be observed for the high viscous samples. Here, at pH 6, which is almost the IEP of
the BIONs, aggregates with a hydrodynamic diameter of 2764 ± 446 nm show a higher
magnetophoretic velocity in contrast to other pH values where the hydrodynamic diameter
is smaller (Figure 5b). Here, for pH 4, 7, and 9, a second mode with larger aggregates is
detected, which is not visible in the intensity distributions (Figure S2). Even if the amount
of these larger aggregates is lower compared to the first mode, they might influence the
measured magnetophoretic velocity. The velocity differences are lower compared to the
less viscous samples. Following Equation (7), the particle radius is directly proportional
to the magnetophoretic force during the sedimentation process. Therefore, the measured
velocities are in line with the theoretical assumptions.
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Figure 5. Particle size distribution at pH 4, 6, 7, and 9 of BION suspension (a) in deionized water (η = 0.888 mPa s) (b) and
sucrose solution (η = 2.227 mPa s).

Besides the aggregate size, viscosity is another parameter that influences the separation
process. The magnetophoretic velocities of all measured pH values are lower for the higher
viscosity (η = 2.227 mPa s) compared to the lower one (η = 0.888 mPa s), as the viscosity
is indirectly proportional to the velocity, as written in Equation (10). Due to the higher
viscosity, the drag force increases and slows down the particle motion along the magnetic
field gradient. The gravitational force does not influence this effect, as values for the
sedimentation velocity show very low values for both viscosities (Table 1). Here, the
sedimentation velocity is similar when having the same size of aggregates at different pH
values only in a gravitational field.

Taking these findings together, the viscosity influences the colloidal stability of the
particles and the magnetophoresis process itself. These effects should be taken into account
when working with high viscous liquids, such as cell lysates or blood, in order to obtain a
distinct separation process.
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Table 1. Measurement of the sedimentation velocity and the corresponding hydrodynamic diameter of the samples in the
sedimentation analyzer.

η = 0.888 mPa s η = 2.227 mPa s

pH Sedimentation Velocity
(µm s−1)

Hydrodynamic Diameter
(nm)

Sedimentation Velocity
(µm s−1)

Hydrodynamic Diameter
(nm)

4 1.57 ± 0.09 156 ± 106 0.88 ± 0.70 158 ± 108
6 3.82 ± 0.85 2986 ± 920 2.30 ± 0.01 2764 ± 446
7 3.69 ± 0.14 2047 ± 461 0.33 ± 0.28 351 ± 58
9 1.43 ± 0.37 331 ± 79 0.31 ± 0.06 111 ± 35

Regarding a LGMS process, the particle size poses an essential factor in the kinetics
of the separation and the resulting process efficiency. As mentioned above, mainly the
cooperative effect of magnetic aggregation speeds up the magnetophoretic motion of the
particles [49]. Here, the Bjerrum length can be used in order to evaluate the formation
of aggregates in a magnetic field [9,50]. Therefore, we calculate the ratio of the Bjerrum
length λB and the particle diameter d (Figure 6). As seen in Figure 6, particles do not form
aggregates in a magnetic field if λB d−1 < 1 with a saturation magnetization of 70.84 Am2

kg−1 [49]. For our BIONs with a particle diameter of 9.92 nm, the ratio is 1.12, which implies
magnetic aggregate formation. This value, measured by TEM, is close to one; however, this
is the minimal limit, as the particle diameter in suspension is >100 nm, depending on the
buffer conditions. Hence, the magnetophoretic velocity might be additionally influenced
by this effect, but from a practical process view, cooperative magnetophoresis might be
beneficial to implement such an LGMS process because the separation efficiency increases.
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Figure 6. Log–log plot of the ratio of the Bjerrum length and the particle diameter over the particle
diameter. The shaded region corresponds to particle diameters where no aggregation due to a
magnetic field occurs, and the solid line describes the Bjerrum length for particles with the same
magnetization. The symbol represents our particle size and indicates that magnetic aggregation takes
place (transparent region).

Besides the cooperative magnetophoresis, Leong et al. recently discussed the effect of
convective magnetophoresis [33,41]. They introduce the dimensionless Grashof number
Grm (Equation (3)), which is dependent on the magnetic field gradient ∇B, the volumetric
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magnetization M, the particle concentration difference between the bulk solution, the
collection plane cs − c∞ and the length of the analyzed system Lc.

Grm =
ρ·∇B·

(
∂M
∂c

)
H
·(cs − c∞)·L3

c

η2 (3)

It describes the convection induced by an external magnetic field, which happens due
to the rapid acceleration of the particles. Leong et al. state that the Grashof number is mostly
dependent on the concentration, resulting in a higher magnetophoretic velocity for higher
particle concentrations. However, in our study, all parameters are kept constant besides
the viscosity. Its square is indirectly proportional to the dimensionless number, so one can
say that an increase in viscosity lowers the convection and therefore, the magnetophoretic
velocity as well.

In addition to both discussed effects, the cooperative and the convective magne-
tophoresis, the diffusion, described by the Stokes–Einstein Equation, is influenced by
viscosity as shown in Equation (4) [51]:

Do =
kB·T

6·π·r·η (4)

According to Equation (4), the diffusion coefficient is decreasing with a higher viscosity
and thus, Brownian motion is lower as well. Hence, it evolves that viscosity noticeably
influences various parameters during a magnetophoresis-based process and should be
always considered.

To sum up, the colloidal stability of BIONs is controllable due to a change in pH
value, but also a higher viscosity leads to stabilization. The former is based on electrostatic
stabilization effects, whereas the various latter effects, such as a steric hindrance and/or
hydration repulsion due to sucrose, might be involved. The different aggregate sizes and
the viscosity influences the magnetophoresis process (Equations (5)–(10)). Particularly,
for a separation process with high viscous liquids, the efficiency is lower [26]. Moreover,
depending on the aggregate size, MNP–MNP interactions, as cooperative or convective
magnetophoresis and Brownian motion, have to be considered, as these effects influence
magnetophoretic processes, e.g., a microfluidic fractionation.

3. Materials and Methods

Coprecipitation of Fe2+/3+ ions was used to synthesize the BIONs [38]. For this,
28.9 g of sodium hydroxide (722 mmol, 4.10 equivalents (eq.), Carl Roth GmbH + Co.
KG, Karlsruhe, Germany) was dissolved in 400 mL of degassed water under a nitrogen
atmosphere. A solution, containing 86.6 g of FeCl3·6H2O (320 mmol, 1.82 eq., Sigma
Aldrich Merck KGaA, Darmstadt, Germany) and 35.0 g of FeCl2·4H2O (176 mmol, 1.0 eq.,
Sigma Aldrich Merck KGaA, Darmstadt, Germany) in 160 mL of degassed water, was
added slowly under continuous stirring. The temperature was kept constant at 27 ◦C via
a water bath. A black precipitate built up immediately, and the reaction was continued
under stable conditions for a further 30 min. Then, the precipitate was washed ~15 times
with deionized water via magnetic decantation with a neodymium iron boron magnet in a
glass bottle until the conductivity was below 200 µS cm−1. The BIONs were stored under
a nitrogen atmosphere at 4 ◦C. The magnetic susceptibility was analyzed by the SQUID
device Quantum Design MPMS XL-7 (Quantum Design GmbH, Darmstadt, Germany).
Therefore, the particles were lyophilized, and then they were glued into a small tube. TEM
was performed with the JEM 1400 Plus microscope (JEOL GmbH, Freising, Germany), and
the recorded images were subsequently evaluated by using ImageJ software.

All experiments were performed either in water (η = 0.888 mPa s, 25 ◦C) or in a 24%
(w/w) sucrose solution (η = 2.227 mPa s, 25 ◦C, Carl Roth GmbH + Co. KG, Karlsruhe,
Germany), fructose solution (η = 1.9858 mPa s, Carl Roth GmbH + Co. KG), or glucose
solution (η = 2.1201 mPa s, AppliChem GmbH, Darmstadt, Germany). The pH was
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adjusted by adding 0.1 M or 1 M sodium hydroxide (Carl Roth GmbH + Co. KG, Karlsruhe,
Germany) or hydrochloric acid (VWR International GmbH, Darmstadt, Germany). A
solution of 1 g L−1 BIONs was used, dispersed via an ultrasonication probe (5 min, 10 s on,
15 s off, 20%, Branson Ultrasonics Corporation, Danbury, United States of America). For
zeta potential and hydrodynamic diameter by DLS evaluation, a ZetaSizer XS (Malvern
Panalytical GmbH, Kassel, Germany) was used. Both measurements were performed
at 25 ◦C in 1 mL of a 1 g L−1 solution in five and three measuring cycles in duplicates,
respectively. The IEP was determined by applying a Boltzmann fit.

STEPs were recorded in duplicates at an optical wavelength of 870 nm (LUMiReader,
LUM GmbH, Berlin, Germany) to calculate the magnetophoretic velocity. According to
Newton’s second law of motion, magnetophoresis is composed of the gravitational force
Fgrav, the magnetic force Fmag and the viscous drag force Fdrag, pointing in the opposite
direction of the former two forces.

mpdu
dt

= Fgrav + Fmag + Fdrag (5)

Here, mp and u are the mass and the velocity of the particle, respectively. For simplicity,
the inertial term can be neglected [49,52].

0 = Fgrav + Fmag + Fdrag (6)

The magnetic force is determined by the magnetic field gradient ∇H, the permeabilities µ0
and µr, the relative permittivity K, and the particle radius r:

Fmag = 3·µ0·µr·K·∇H2·2·π·r3 (7)

According to Stokes’ law, the movement of a spherical particle in an incompressible fluid
can be described as follows, where η corresponds to the fluid viscosity:

Fdrag = −6·u·π·η·r (8)

The gravitational force is based on Newton’s law of gravitation,

Fgrav =
4
3

(
ρp – ρf

)
·g·π·r3, (9)

which is dependent on the density difference of particle and fluid ρp − ρf and the free-fall
acceleration g. The force balance, as written in Equations (6)–(9), can be solved for the
velocity as written in Equation (10):

v =
2·
(
ρp–ρf

)
·g·r2

9·η +
µ0·µr·K·∇H2·r2

2·η (10)

For the measurement, a disposable cuvette (1× 1× 4.4 cm) filled with 1 mL of solution
was placed onto a stack of five cylindrical neodymium boron ferrite (NdFeB) magnets
(diameter = 12 mm, height = 2 mm, N45, Webcraft GmbH, Gottmadingen, Germany).
The built-in temperature control assured a constant temperature of 25 ◦C. The magnetic
flux density was measured with a Hall detector PCE-MF M 3000 (PCE Instruments UK
Limited, Southampton Hampshire, United Kingdom). The obtained transmittance profiles
were integrated over the sample height, leading to an integral transmittance for each
measurement time. For data evaluation, it was converted into an integral extinction
value, which is directly proportional to the particle concentration after Lambert–Beer’s
law. Particle movement due to the magnetic and gravitational force induces the change in
particle concentration. Therefore, the time-dependent variation of the extinction enables
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calculating the magnetophoretic velocity vmag, where L is the mean length defined by half
of the sample height.

v =
< L >

t
(11)

A cumulative distribution function φ (vmag) is obtained by plotting the relative extinction
over the magnetophoretic velocity [53]. The relative extinction Erel is determined by
the initial extinction of the sample E0 and the minimal extinction Emin at the end of
magnetophoresis measurement.

Erel(t) =
E − Emin

E0 − Emin
, (12)

For better comparability, the value at t0.5 was used, which is the distribution function’s
median. It describes the velocity of 50% of the particles at the time t0.5, where the extinction
has fallen by half. The sedimentation analysis experiments were performed with a magnetic
flux density between 40 and 350 mT, which corresponds to a magnetization between 29.31
and 54.40 Am2 kg−1.

4. Conclusions

BIONs with an average diameter of 9.2 nm were synthesized via coprecipitation,
showing a high saturation magnetization [38]. Zeta potential and hydrodynamic diameter
measurements showed that pH and viscosity influence the colloidal stability of the particles.
pH values close to the IEP resulted in large particle agglomerates; however, electrostatic
stabilization was observed for high and low pH values. The particle distribution over
different pHs narrowed due to the increase in viscosity with sucrose. This could be
explained by the hydration repulsion and the steric stabilization effect of sucrose. The
aggregate size and viscosity directly influence a magnetophoretic process. The particle
diameter is proportional to the magnetophoretic velocity, which results in high velocities
for large aggregates and lower velocities for small particle diameters. By increasing
the viscosity, the drag force counteracts the magnetophoretic force and decreases the
magnetophoretic velocity of all aggregate sizes. This study emphasizes the underestimated
effect of viscosity by using the simple method of sedimentation analysis, in addition to
zeta potential and DLS measurement. In downstream processing or medical applications,
liquids such as cell suspension or blood will affect particle migration, resulting in a lower
separation. Particularly, the stabilizing effect of sucrose should be further examined, as
the formation of aggregates is one of the main reasons for using different coatings for the
steric stabilization of the BIONs [54]. In further studies, these new findings can be used to
control the aggregation behavior for applications in medicine or biotechnology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/magnetochemistry7060080/s1, Figure S1: Polydispersity Index of BION suspension from
pH 2 to 10 in deionized water (η = 0.888 mPa s) and sucrose solution (η = 2.227 mPa s), Figure S2:
Intensity distribution data of pH 2 to 10 for high viscous BION suspension. Technical triplicates are
shown for each duplicate, Figure S3: Intensity distribution data of pH 2 to 10 for low viscous BION
suspension. Technical triplicates are shown for each duplicate, Figure S4: Number distribution of
BIONs in fructose, glucose, and sucrose solution at pH 7.
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