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Aims: To assess children’s acceptance to wear a 3D-accelerometer which is attached to

the waist under real-world conditions, and also to compare gait speed during supervised

testing with the non-supervised gait speed in every-day life.

Methods: In a controlled observational, cross sectional study thirty subjects with

cerebral palsy (CP), with level I&II of the Gross Motor Function Classification System

(GMFCS) and 30 healthy control children (Ctrl), aged 3–12 years, were asked to perform

a 1-min-walking test (1 mwt) under laboratory conditions, and to wear an accelerometric

device for a 1-week wearing home measurement (1 WHM). Acceptance was measured

via wearing time, and by a questionnaire in which subjects rated restrictions in their daily

living and wearing comfort. In addition, validity of 3D-accelerometric gait speed was

checked through gold standard assessment of gait speed with a mobile perambulator.

Results: Wearing time amounted to 10.3 (SD 3.4) hours per day, which was comparable

between groups (T = 1.10, P = 0.3). Mode for wearing comfort [CP 1, Range (1,4),

Ctrl 1, Range (1,6)] and restriction of daily living [CP 1, Range (1,3), Ctrl 1, Range (1,4)]

was comparable between groups. Under laboratory conditions, Ctrl walked faster in the

1 mwt than CP (Ctrl 1.72 ± 0.29 m/s, CP 1.48 ± 0.41 m/s, P = 0.018). Similarly, a

statistically significant difference was found when comparing real-world walking speed

and laboratory walking speed (CP: 1 mwt 1.48 ± 0.41 m/s, 1 WHM 0.89 ± 0.09 m/s, P

= 0.012; Ctrl: 1mwt 1.72 ± 0.29, 1 WHM 0.97 ± 0.06, P < 0.001).

Conclusion: 3D-accelerometry is well-enough accepted in a pediatric population of

patients with CP and a Ctrl group to allow valid assessments. Assessment outside

the laboratory environment yields information about real world activity that was not

captured by routine clinical tests. This suggests that assessment of habitual activities

by wearable devices reflects the functioning of children in their home environment.

This novel information constitutes an important goal for rehabilitation medicine.
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The study is registered at the German Register of Clinical Trials with the

title “Acceptance and Validity of 3D Accelerometric Gait Analysis in Pediatric

Patients” (AVAPed; DRKS00011919).

Keywords: wearables, cerebral palsy, gait speed, laboratory conditions, real-world conditions

INTRODUCTION

Successful rehabilitation enables patients to perform activities
of daily living (ADL) in their own home setting. Therefore,
to monitor the success of rehabilitation will ultimately require
assessments in the patient’s home setting. In this respect, there
is an obvious knowledge gap, as rehabilitation success is typically
assessed in a clinical setting, which can only indirectly reflect the
patients’ functioning in their free-living environment (1). This
could lead to the result that patients are prepared to pass clinical
assessments but fail in their ADL. Smart wearable devices present
an appealing way to circumvent this.

Within the last decade, it has become possible to assess
patients in their free-living environment (2). Such wearable
devices have great potential for medicine, and assessment of
physical activity through commercial companies is already
widespread in the public domain (3). In the adult population,
accelerometric devices are being used to attempt the assessment
of, for example, daily physical activity, as a surrogate for the
bones’ mechanical environment (4), and as a predictor of
hospitalization and mortality (5). Notably, accelerometric data
can nowadays also be used to accurately derive real-world gait
speed, walking distance (6) and walking and running activity (7),
and if worn at the wrist they are well-tolerated in healthy infant
population (8).

Children often have more difficulties in following verbal test
instructions (9), even if they are as simple as to walk as fast
as possible. It is therefore advisable in pediatrics to acquire
information in an intuitive or implicit way. In the context
of gait analysis, this could, for example, occur through 3D-
accelerometric assessments of gait speed, as this would only
require acceptance of a measurement device, but not adherence
to a specific walking test. In previous studies, it was demonstrated
that wearable gait analysis devices work not only in adults, but
also in children (8, 10), at least as far as afixment of recording
boxes is concerned, as well as obtaining readings of gait speed
that are apparently meaningful. Hence, it seems very promising
in pediatrics to expand functional assessments from laboratory
settings to the real world. However, the crucial question is
whether children would accept such measurements.

Cerebral palsy (CP) is the most common cause of impairment
in children world-wide with an incidence of 2–3 out of 1,000 live
births (11, 12). CP comprises a heterogeneous etiological group,
that is often associated with permanent functional deficits, and
with impaired development of movement and posture (13). The

Abbreviations: 1 mwt, 1-minute-walking test; 1 WHM, 1-week wearing home
measurement; ADL, activities of daily living; CP, cerebral palsy; Ctrl, control
children; GMFCS, gross motor function classification scale; LME, linear mixed
effect model.

neuromotor deficits “are often accompanied by disturbances
of sensation, perception, cognition, communication, and
behavior”(13), which introduce additional problems for testing
physical functions in this patient group.

Rehabilitation of patients with CP at an early stage is
paramount to the development of muscle and bone strength in
early life, and thus for a healthy skeleton in the adult lifespan
(14). One must also bear in mind that improving motor skills
in children with cerebral palsy underpins cognitive development,
non-verbal intelligence, word decoding and arithmetic function
(15, 16).

Therefore, we were interested whether accelerometric data
could also be collected in the assessment of children with and
without CP. This question implies whether healthy children
and pediatric patients and their parents would tolerate this
type of measurement, and whether meaningful data can be
collected. To have this information would not only be beneficial
in CP children, for the reasons outlined above, but also in a
wider pediatric population, given that lack of physical activity
has been recognized as an increasingly important problem.
Thus, we ventured to perform gait speed assessments with
3D-accelerometry recording boxes during a wearing-time of 1
week in children, to assess the children’s acceptance of this
novel approach (primary aim), to validate 3D-accelerometric
assessment against a gold standard method, and to explore
whether the laboratory-based assessment of maximal gait speed
is related to gait speed in the children’s habitual environment.
No specific hypotheses were made a priori regarding any group
difference in acceptance of 3D-accelerometric measurements.

SUBJECTS AND METHODS

Participants
Sixty participants aged 3–12 years were recruited between
May and October 2018 for this controlled, monocentric,
not randomized, observational, cross sectional study. Thirty
children with CP were recruited among patients of our
rehabilitation clinic, and 30 able-bodied control children
(Ctrl) were recruited from CP-participants’ and from hospital
staff ’s families. Groups were age-matched through continuously
monitoring anthropometric data throughout the recruitment
process. One of the inclusion criteria for CP children was,
amongst others, classification with Gross Motor Function
Classification Scale (GMFCS) level I and II (full list given in
Table 1). CP children were excluded from study participation
when they had a vagus stimulator or a ventro-peritoneal shunt.
Given that no prior experience existed, no formal sample size
estimation was performed, and a number of 30 children per
group was deemed as (a) small enough to be feasible with existing
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TABLE 1 | Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

CP- group -age 3–12 years

-gross motor function

classification scale (GMFCS) I&II

-Patient of the

Queen-Rania-Rehabilitation

Center for Children, Center of

Prevention and Rehabilitation,

University of Cologne, Cologne,

Germany

-willingly to participate

-Vagus stimulator

-ventriculo-peritoneal shunt

Control group -age 3–12 years

-healthy brother or sister of an

included cerebral palsy (CP)

child

-related to a member of the staff

of the Cologne Children’s

Hospital, University of Cologne,

Cologne, Germany or of the

Center of Prevention and

Rehabilitation, University of

Cologne, Cologne, Germany

-disability to appear for the

baseline evaluation at the

Queen-Rania-Rehabilitation

for Children, Center of

Prevention and

Rehabilitation, University of

Cologne, Cologne,

Germany

resources, and (b) as large enough to assess effect sizes on the
planned endpoints. The study flow is reflected in Figure 3.

All participants gave their written informed consent before
study inclusion, where needed with support from their parents
or through their parents. The study had been approved by
the responsible local Ethical Committee, and it complied with
the declaration of Helsinki. Before the study was commenced,
it had been registered with the German clinical trials register
(registration number DRKS00011919).

Study Flow and Data Acquisition
The primary aim of the study was to assess the children’s
acceptance of a waist-borne 3D-accelerometer within their
habitual environment. Acceptance was operationalized as the
amount of wearing time and also via a questionnaire. The second
aim was to compare gait speed during supervised testing with
non-supervised gait speed in every-day life. In addition, we
planned to explore the data acquired in this study in order to
generate novel hypotheses with regards to validity.

Data collection started no sooner than the day after
participants had given their consent (see Figure 1). First, the 1-
min-walking test (1 mwt) was performed on a standardized
parkours representing “laboratory conditions.” A 3D-
accelerometric recording box (actibelt R©, Munich) contained in
a belt buckle was worn close to the child’s body center of mass
in proximity of the anterior symmetry axis (Figure 2A). During
the 1 mwt, one operator followed the children’s course as close
as possible with a mobile perambulator (Figure 2B), and the
distance measured thereby served to calculate gold standard
walking speed. An acoustic start signal implemented in the study
tablet was provided, and the children were instructed to walk
as fast as possible, whilst avoiding running, along the outlined

course. After the 1 mwt, the recording box was handed over for
the 1-week wearing period at home (1WHM) for measurement
under “real-world conditions.” In addition to the recording box,
we also handed over a questionnaire to assess wearing comfort
(see Table 2). Acceptance of wearing was quantified as (a) hours
of wearing per day, (b) wearing comfort as per questionnaire and
(c) restriction in ADL (also per questionnaire).

Material
The 3D-accelerometric device used in this study was an actibelt R©

RCT2 recording box. It is containing a recording box (battery
capacity: 1,000mA, battery life: >35 days, storage capacity: 4 GB,
interface: USB 2.0, built in sensor: 3D accelerometer, hall effect
sensor) and a wearing belt placed close to the child’s center of
mass. The wearing belt was equipped with a magnetic closure
contact used to verify the self-reported wearing time. Three
of the children had been supported with a prototype of the
next generation of belts. Specifications of the 3D-accelorometric
components of these new devices are compatible with the other
devices used in this study.

For the assessment of the gold standard speed, the walking
path of each individual child was tracked during the 1 mwt wth
mobile perambulator (M10, Geofennel, Baunatal, Germany) in
order to measure the distance covered. By dividing the distance
by the completion time (1min by definition), one arrives at the
gold standard speed. In order to identify discrepancies between
the gold standard and gait speed as provided by the actibelt R©,
children also wore the actibelt R© during the 1 mwt.

For the measurement protocol under laboratory conditions
and data readout from the recoding boxes a tablet (Toshiba,
AT10LE-A) with the corresponding study app (Trium Analysis
GmbH, Munich, Germany) were used.

Subjects were weighted [standing scale, Kern, type MPB
300K100P (9V, 100mA), Germany] without shoes in their daily
clothing. Their height was measured by a mobile stadiometer,
type Seca 213 (Seca, Germany).

Statistical Methods
For statistical analysis we used SPSS Statistics 24 (17) and the
R-environment in its version 3.5.1 (18).

All data analyses followed the intent–to-treat principle, given
that partly missing data (e.g., due to non-compliance or technical
problems) should be reflected in the final analyses. Singular
imputation was used for missing data, with mean for continuous
variables (wearing time) and mode for ordinal variables (comfort
and restriction).

Normal distribution was tested with Shapiro-Wilks and
homogeneity of variances with Levene test. Wearing comfort
and restriction in ADL data were statistically analyzed with the
Whitney–Mann U test. Wearing time was tested with unpaired
t-test. Pearson’s correlation analyses was performed to assess
commonality between gait speed by actibelt R© and via gold
standard in the 1 mwt. Bland-Altman plots were used in order
to compare gait speed assessment with 3D-accelerometry against
the gold standard. Statistically, the Bland-Altman plot data
were then assessed with linear mixed effect (LME), using R’s
command “lme” from the package “nlme.” LME models differ
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FIGURE 1 | Study flow.
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FIGURE 2 | (A) 3-year old child wearing an actibelt®. (B) Mobile perambulator used in this study.

TABLE 2 | Questionnaire Items.

Item Scale

Which days had the accelerometric device been

worn?

Date specification

How comfortable was wearing the accelerometric

device?

1 = very comfortable

6 = very uncomfortable

How much has the accelerometric device restricted

the child’s ADL?

1 = no restriction

6 = very restricted

Has the child refused to wear the accelerometric

device partially or completely? If so, are there some

reasons?

Open answers possible

Are there some ideas how to improve the device? Open answers possible

from traditional analysis of variance in that normal distribution
is only assumed for the residuals, but not necessarily for the
data themselves. This has, for example, the advantage that LME
models can deal with non-normality in body dimensions by
adjustments per individual. LME-models were constructed with
y-data (i.e., differences in Bland-Altman plots) as dependent
variable, subject as random effect and x-data (i.e., means in
Bland-Altman plots) and group (CP or Ctrl) as fixed effects.
Likewise, effects of height on gait speed on Bland-Altman y-data

was assessed with such LME models. To check validity of LME
models, we produced residual plots and Q-Q plots and found
assumptions to be valid. Furthermore, partial regression analysis
was performed, using the R-package r2glmm, in order to account
for the relative contribution of group, height and gait speed
on discrepancies between gold standard and actibelt-assessed 1
mwt speed.

Finally, differences between groups in laboratory speed and in
real-world gait speed were tested with a paired t-test after normal
distribution and homogeneity of variances were ascertained with
Shapiro’s test and with F-test, respectively.

Alpha-level was set at 0,05; all variables are expressed as mean
± standard deviation.

RESULTS

Recruitment Process
Out of 88 recruited children (67 via personal recruitment, 21
via email recruitment), 61 children performed the 1 mwt. In
one child, it was found only after the 1 mwt that this child was
occasionally using a walking aid, and all data were excluded from
this child. In total, 21 children of the Ctrl group were recruited
via email between July 2018 and August 2018. Thus, 60 children
performed the 1 WHM (Figure 3).
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FIGURE 3 | Enrolment and recruitment.

Baseline characteristics of study participants (n = 60) are
given in Table 3. Mean age ± SD in the Ctrl was 7.6 ± 3.0 years,
and in the CP group 8.0 ± 3.1 years. For the Ctrl mean BMI ±
SD was 16.5± 2.2. For the CP mean BMI was 15.7± 2.1.

Acceptance
The majority of participants rated no or only little restrictions in
ADL in 93.3 and 90.0% of the CP and Ctrl groups, respectively
(see Figure 4, no group difference, U = 428, P = 0.9). Wearing
comfort was rated as “very comfortable” in 66.6% (n = 20)
of cases in Ctrl, and 70% (n = 21) in CP. Only 3.3% (n
= 1) of participants in Ctrl scored wearing comfort as “very
uncomfortable,” while none of the participants in CP scored it
as “very uncomfortable” (no group difference, U = 441, P= 0.7).
Wearing time amounted to 10.3 (SD 3.4) hours per day, which
was comparable between groups (T = 1.10, P = 0.3).

In 8 cases we found a discrepancy between the actibelt R©

measured wearing time and the subject reported wearing time (5
Ctrl, 3 CP). In these cases, the recorded time from the actibelt R©

was used.

Accuracy of Gait Speed With Actibelt®

Although there was a significant correlation between walking
speed assessed with actibelt R© and with the gold-standardmethod
[Person’s r = 0.78, adjusted R² = 0.60, F(1, 52) = 81.4, P <

0.001, dashed line in Figure 5A], the regression curves deviated
from the line of identity [intercept = 0.74m/s as obtained from

Pearson’s regression, P < 0.001)]. When comparing both gait
speed assessment methods in a Bland-Altman plot (Figure 5B),
and when testing with an LME model built on those Bland-
Altman data, a difference was found between the two methods
[F(1, 51) = 3,574, P < 0.001], suggesting that actibelt R© over-
estimated gait speed by 0.23 (SD 0.25) m/s. In addition, a
significant linear trend [F(1, 51) = 86.0, P < 0.01, see red line
in Figure 5B] suggested that this over-estimation was greater at
smaller gait speeds than at faster speeds. As gait speed scaled
linearly with body height in both groups [Figure 5C, F(1, 51)
= 28.1, P < 0.001], we also explored the relationship between
method-differences (= y-axis in Figure 5B) and body height.
As can be seen in Figure 5D, the method-differences were
inversely related to body height [F(1, 51) = 19.6, P < 0.001],
and regression lines were approaching 0 (meaning no difference)
toward adult body height. Partial correlation analysis yielded
significant contributions by group (T = −2.7, partial R² = 0.13,
P = 0.010) and by body height (T = −2.6, partial R² = 0.12, P
= 0.013), but not by gold standard speed (T = −1.55, partial R²
= 0.05, P= 0.13), indicating that accuracy of the actibelt-derived
gait speed was more affected by body stature than by gait speed.

Exploratory Analyses of Gait Speed
When comparing 1 mwt gait speed in both groups, we found
a difference between CP and Ctrl under laboratory conditions
(P = 0.018), indicating a 14.0% (95% CI: 3.1% to 25.0% greater
gait speed in Ctrl than in CP (P < 0.05, Figure 6A). In
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TABLE 3 | Group characteristicsa.

Merged Groups CP- group (n = 30) Control group (n = 30) P-value group

differences

Total Male Female Total Male Female Total Male Female

Distri-bution 60

(100%)

36

(60%)

24

(40%)

30

(50%)

20

(33.3%)

10

(16.7%)

30

(50%)

16

(26.7%)

14

(23.3%)

Age (years) 7.8 ± 3.0 7.6 ± 2.9 8.0 ± 3.2 8.0 ± 3.1 7.1 ± 2.9 9.7 ± 2.8 7.6 ± 3.0 8.3 ± 2.9 6.9 ± 3.1

BMI (kg/m²) 16.2 ± 2.2 16.1 ± 2.2 16.1 ± 2.1 15.7 ± 2.1 16.6 ± 2.1 16.0 ± 2.1 16.5 ± 2.2 16.8 ± 2.2 16.2 ± 2.1

Comfort of wearing

mode (range)

1

(1,6)

1

(1,4)

1

(1,6)

1

(1,4)

1

(1,3)

1

(1,4)

1

(1,6)

1

(1,4)

1

(1,6)

Restriction of daily

living mode

(range)

1

(1,4)

1

(1,3)

1

(1,4)

1

(1,3)

1

(1,3)

1

(1,3)

1

(1,4)

1

(1,3)

1

(1,4)

1 mwt gait speed (m/s) 1.42 ± 0.6 1.4 ± 0.7 1.5 ± 0.3 1.3 ± 0.3 1.3 ± 0.3 1.2 ± 0.3 1.6 ± 0.3 1.6 ± 0.3 1.6 ± 0.4 <0.001

Average 1 WHM gait

speed (m/s)

0.75 ± 0.4 0.69 ± 0.3 0.83 ± 0.5 0.64 ± 0.3 0.62 ± 0.3 0.66 ± 0.4 0.86 ± 0.3 0.79 ± 0.2 0.94 ± 0.4 <0.001

Maximum 1 WHM gait

speed (m/s)

1.95 ± 0.22 1.98 ± 0.20 1.93 ± 0.24 1.87 ± 0.20 1.89 ± 0.19 1.82 ± 0.25 2.05 ± 0.18 2.08 ± 0.20 2.01 ± 0.17 0.0011

Total wearing time

(hours/day)

10.3 ± 3.4 10.2 ± 3.2 10.5 ± 3.6 9.8 ± 3.4 9.6 ±3.8 10.4 ± 2.6 10.8 ± 3.2 11.0 ± 2.2 10.6 ± 4.3 0.3

aThe data contain the number (%) or mean ± SD.

FIGURE 4 | Acceptance, in terms of rating of perceived restriction and of perceived comfort (both by questionnaire) and weekly wearing time (as read from the

actibelt® ).

comparing real-world gait speed (assessed via actibelt R©) between
both groups, there was likewise a higher speed in Ctrl than in
CP (P < 0.01, Figure 6B).

Although there is a moderate correlation between real-world
gait speed and 1 mwt gait speed [P = 0.002, r = 0.26 (CP),
r = 0,27 (Ctrl), see Figure 6C] the regression line deviated

very strongly from the line of equality (intercepts 0.79 m/s and
0.85 m/s for CP and Ctrl, respectively), indicating that both
variables have different information content. In addition, four
children from the CP group had greater walking speed under
real-world conditions than during the 1 mwt, with the latter
being a maximal test. As can be seen from Figure 6D, the 1
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FIGURE 5 | (A) Correlation plot between gold standard walking speed and walking speed provided by actibelt® during the 1-min walking test (1 mwt). Dashed lines

represent regression lines for the CP group (blue) and the Ctrl group (green). The black solid line is the line of identity. (B) Bland-Altman plot for 1 mwt gait speed

assessed via actibelt® and via gold standard method; the gray shaded area marks the ±2SD range of differences, and the dashed line denotes a linear relationship (P

< 0.05). For color code refer to sub-plot A. (C) 1 mwt gait speed assessed by gold standard method vs. body height; significant effects of gait speed were found for

group and body height, but the interaction term was non-significant. (D) Difference in gait speed between the two methods vs. body height; significant effects on the

method-difference were found for group and body height, but not for the interaction term. For line colors refer to legend in sub-plot C.

mwt:1 WHM speed ratio was unrelated to body height (P =

0.13), suggesting that factors other than stature account for sub-
maximal gait speed during 1 mwt in some CP children. Finally, a
somewhat stronger correlation was observed between maximum
1 WHM gait speed and 1mwt speed, both obtained via actibelt
(P = 0.004, r = 0.40).

DISCUSSION

Data collected from this first effort in assessing children’s
acceptance of 3D-gait accelerometric devices aged 3–12 years
yielded very good ratings of comfort, and also low ratings for
restrictions in ADL. In the past, a wearing times of 10 h per

Frontiers in Pediatrics | www.frontiersin.org 8 January 2021 | Volume 8 | Article 574443

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Wiedmann et al. Acceptance of 3D-Accelerometry in Children

FIGURE 6 | Exploratory data analysis. (A) Boxplot for walking speed by group in the 1-min walking test (1 mwt). (B) Boxplot for walking speed by group under

real-world conditions. (C) Correlation plot between actibelt® calculated speed under real-world conditions vs. 1 mwt. Dashed lines represent regression lines for the

CP and Ctrl group. (D) Speed ratio (obtained by dividing 1 mwt-gait speed by real-world gait speed, both assessed via actibelt® ) vs. body height. No significant

correlation was found (P = 0.13). *P < 0.05; **P < 0.01. For symbol colors refer to legend in sub-plot C.

day had been regarded as the minimum, but this position has
eroded and there is currently no generally accepted minimal
wearing time for mobile sensor technology (19). Given that
sleep is substantially longer in children than in adults, wearing
times will always be shorter due to the shorter daily activity
span. Results from this study demonstrate an average wearing

times of 9.9 and 10.8 h in CP and control children respectively,
which is considered as representative for daily activity in adults
(20). This is all suggesting that children within this study have
accepted wearable technology for gait speed assessment well-
enough in order to provide meaningful outcomes. One could
argue that CP children are already exposed to many therapeutic

Frontiers in Pediatrics | www.frontiersin.org 9 January 2021 | Volume 8 | Article 574443

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Wiedmann et al. Acceptance of 3D-Accelerometry in Children

interventions and additional measurements. On the one hand,
this could reduce hesitance to accept another device, but it could
also induce aversion against yet another measurement. It has
therefore been established that no group differences were found
for wearing comfort and for restrictions in ADL, suggesting that
children with and without a medical condition showed similar
acceptance. This lets us hope that these results can be generalized
to a wider pediatric population, although future studies will of
course have to demonstrate this point.

In addition, many parents mostly gave positive feedback
regarding easiness of use and acceptancy by their children.
Negative feed-back about the device only concerned
coloring (black) and material, that induced sweating during
summer period.

Previous studies have almost exclusively focused on adults.
Thus, a recent systematic review (21) concluded that evidence
for validity and reliability for body center worn accelerometery
in adults with neurological diseases is limited, and numerous
conflicts in generating reliable analyses have to be solved before
these devices could be used under real world conditions.

With regards to the accuracy of the gait speed measurements
in the 1-min walking test, it was found that actibelt R© over-
estimates gait speed, as assessed with by the gold-standard
method (see Figure 5B). This was evident especially at lower
gait speeds, as previously also shown by Motl et.al. (22). This
effect, in the population of this study, is mostly explained by
variation in body height. However, it has to be noted here
that existing algorithms have been validated on data from an
adult population. Nevertheless, we conclude from the significant
correlation between actibelt R© and the gold standard method
(Figure 5A) that accelerometric assessment of gait speed is
principally possible also in children. One has to bear in mind
here that the algorithm used to derive real-world walking
speed was validated on data from an adult population (22).
It therefore is possible that a validation study similar to that
described by Aigner et al. (23) could remedy the problems.
That this may be worthwhile is depicted in Figure 6: Gait speed
differs between Ctrl and CP children both under laboratory
and under real-world conditions. This was found both for
the mean real-world speed as well as the maximal real-world
gait speed, which confirms a recent study in patients with
multiple sclerosis (24). A further look at Figure 6C suggests,
that interindividual variation is lesser in the 1 WHM than
in 1 mwt. We would anticipate, therefore, that within-group
variation of both variables may also contain clinically meaningful
information, that is, that gait speed assessment in CP children
can help to judge severity of disease state and effectiveness of
therapeutic strategies, or also compensatory strategies in CP
children.Most importantly, assessment of real-world speed yields
information that is complementary to the laboratory assessments.
This is clearly evidenced by 4 children that had greater gait
speed under real world conditions than when they gave their
supposedly maximal effort in the 1 mwt. A trivial explanation
for this surprising finding would be lack of motivation in the
test. An alternative explanation would be that CP children can
become over-excited duringmaximal efforts, and that augmented
spasticity (25) during such tests limits their performance.

STUDY LIMITATIONS

As with any study, there are a number of limitations. First, this
had been a pilot study. Readers can now derive effect sizes from
our results for their own sample size calculations. For example,
for wearing time, we arrive at a sample size estimate of n =

99 per group to find significant group difference (α = 0.05, β

= 0.2). Second, we should consider a possible selection bias.
As we used two different recruitment mechanisms, that is, via
personal contact for CP andmerely via e-mail for Ctrl acceptance
during 1 WHM is representative for both groups, but we are not
able to evaluate how many healthy control children had refused
participation in advance. This information, which is clearly
linked to motivation, would have been helpful to judge whether
the general interest in participating in a study was comparable
between CP and Ctrl children. However, whilst this could have
affected group differences in wearing time, we feel that such bias
is unlikely to explain group differences in outcomes related to gait
speed. Third, we registered the loss of two sets of data from the
1 WHM by losing the recording boxes during the reshipment
process. One possible solution is to amend to the institutional
address on the return envelope with a personal addressee from
the research team. In having produced some invalid values in
evaluation of wearing comfort and restriction of daily living we
consider for future studies a more detailed written description
for the use of the actibelt R© and the questionnaire.

Moreover, we received feedback that recording boxes tended
to slip down from their center of body mass. Thus, a solution
could be to find alternatives and adaptations to the belt used by
the children to position the recording box close to the body center
of mass.

Another limitation regarded to the gold-standard
measurement is that not having had a video recording and
an accelerometer signal of the perambulator, as previously
described elsewhere (23), the walking speed derived from the
perambulator is given only by dividing the meters registered by
the perambulator with the time to complete the test under the
assumption it was always 60 s. This has some implications and
limitations since it is operator-dependent and it has more room
for mistakes compared to a more algorithm-based approach
(accelerometer signal and video recording of toe-off/heel-strike
of subjects during the test).

However, since the main objective of this study was to validate
the acceptance of accelerometer in pediatric population with and
without CP, more focus was given to ensuring a good compliance
with the usage of the accelerometer in home environment.

CONCLUSION

In conclusion, this study has demonstrated that wearable
accelerometric technology can be accepted also in a
pediatric population.

Based on the discrepancy of the data we received from the
recording boxes of the actibelt R© and the reported wearing time
from the questionnaire in several cases we may presume that
accelerometric devices will prove as a useful assessment of the
subject’s behavior in real world.
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However, some adjustments are probably necessary to further
miniaturize hardware, and to extend software for application
in children.
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