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Abstract— We address a Newton-based extremum seeking
algorithm for maximizing higher derivatives of unknown maps
in the presence of known time delays. Different from all
previous works on this topic, we employ stochastic instead of
periodic perturbations in order to achieve better convergence
rates, we allow arbitrarily long output delays as well as
a dynamic map that is to be optimized. We incorporate a
novel predictor feedback for delay compensation and show
exponential stability and convergence to a small neighborhood
of the unknown extremum point by using a backstepping
transformation and averaging theory in infinite dimensions
for stochastic systems. Moreover, simulations highlight the
effectiveness of the proposed predictor-feedback scheme.

I. INTRODUCTION

Extremum Seeking (ES) control is a nonmodel-based
adaptive technique for real-time optimization that became
very popular in recent years with Newton-like schemes being
the most popular [1], [13]. However, there are two noticeable
challenges in ES. First challenge is not the optimization of
the map itself, but rather of the map’s higher derivative [3],
[7], [20]. Second, and an even more challenging issue, is
the effect of time delays in implemented ES, leading to a
degradation of the system’s behavior or even its instability.

In order to solve the problem of maximizing map sen-
sitivity, the generalization of Newton-based ES [6] was
presented in [11] to optimize arbitrary higher derivatives
of an unknown map employing sinusoidal perturbations. In
addition, by using the mathematical foundation introduced
in [16] to handle ES for functional differential equations
(FDEs), the authors in [17] expanded the application of the
results of [11] to the case of static maps with time delays.

Furthermore, it is a known issue that ES techniques based
on periodic perturbations suffer with higher dimensionality
[2]. Orthogonality requirements on the elements of the pe-
riodic perturbation vector pose an implementation challenge
[10]. Limitations of the deterministic ES scheme also include
the fact that learning using a periodic excitation signal is rare
in probing-based learning and optimization approaches [10],
which may lead to slower converge rates. Furthermore, ES
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algorithms inspired by biomimicry and others sensitive to
deterministic perturbation signals suggest other perturbation
techniques rather than periodic ones [10]. Hence, in a more
general context, there is a huge demand in developing nonpe-
riodic ES techniques such as stochastic methods [12], with all
its remarkable advantages including faster convergence rate
and the possibility of achieving global maximum/minimum
in the presence of local extremum points [10].

The key contribution of this letter is the extension of the
stochastic method for dynamic maps presented in [12] for
the cases where constant output delays occur. We prove
the local stability of the proposed predictor-feedback for
delay compensation and show convergence to a small neigh-
bourhood of the unknown extremum point. As in [15], we
employ a semi-model-based approach due to the treatment
of the delay. While assuming known delay, our predictor
construction follows a model-free approach. Moreover, we
show that the stochastic method outperforms the periodic
one in terms of faster convergence rate.

II. PROBLEM FORMULATION
We are interested in maximizing (w.l.o.g.) the constantly

delayed output of an arbitrary, unknown, nonlinear map

ẋ = f(x, u) (1a)
y = g(x) , (1b)

where x ∈ Rm is the m-dimensional state vector, u ∈ R
and y ∈ R represent the scalar input and output, respectively,
and f : Rm × R → Rm as well as g : Rm → R are smooth
[9]. Establishing that a smooth control law α : Rm×R→ R

u = α(x, θ) (2)

is acting upon the plant, one obtains the closed-loop system

ẋ = f
(
x, α(x, θ)

)
. (3)

Its equilibria, characterized by the scalar parameter θ, are
specified through the following assumptions [12].
Assumption A1: Let l : R → Rm be an existing, smooth
vector field, such that only when the state vector x follows
the assignment

x = l(θ) , (4)

the closed-loop system (3) is in equilibrium

f
(
x, α(x, θ)

)
= 0 . (5)

Assumption A2: For every value of the parameter θ ∈ R,
the equilibrium (5) is exponentially stable with decay and
overshoot constants uniform in θ.

For D ≥ 0, the delayed output y is

y(t−D) = g
(
l
(
θ(t−D)

))
, (6)
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which is only true in equilibrium (Assumption A1 - A2).
Input delays are not considered since, in the case of dynamic
maps, they cannot be simply transformed to output delays.

Defining ν : R→ R as the composition of the SISO output
function g in (1b) and the state vector function l in (4)

ν(·) = (g ◦ l)(·) , (7)

with n ∈ N0, we formulate our optimization problem as

max
θ∈R

ν(n)(θ(t−D)) := max
θ∈R

dnν

dθn
(θ(t−D)) , (8)

where the corresponding maximizing value is denoted by θ∗.
Assumption A3: Consider the set

Θmax =
{
θ | ν(n+1)(θ) = 0, ν(n+2)(θ) < 0

}
6= ∅ (9)

including all stationary points which are local maxima, i.e.
locally concave. We assume that ∃θ∗ ∈ Θmax.

III. SYSTEMS AND SIGNALS
We only require the map g (1b) itself to be measurable.

Moreover, all constants, i.e. the perturbation amplitude a and
frequency ω, the integrator gains

kI = εωk′I = O(εω) (10a)
kR = εωk′R = O(εω) , (10b)

the time scale separation ε, the entailing gains k′I and k′R
are user-assignable, and have to be positive [12]. For the
averaging theory it applies 0 < ε << 1.

The analysis strategy leads to multiple time scales with
the plant dynamics (3) being the fastest [14]. We employ a
stochastic perturbation of the unknown map via the sinusoid
of a Wiener process about the boundary of a circle [12],

θ(t) = θ̂(t) + a sin(η(t)) , (11)

where
η(t) = ωπ

(
1 + sin(Wωt)

)
(12)

represents a homogenous ergodic Markov process. The
special demodulation signals

Υk(t) = Ck sin
(
kη(t) +

π

4

(
1 + (−1)k

))
, (13)

with the normalizing gain

Ck =
2kk!

ak
(−1)

k −
∣∣∣∣sin(kπ2

)∣∣∣∣
2 . (14)

allow a sufficiently precise estimate of the gradient and
Hessian in an average sense.

Using the stochastic chain rule, one obtains

dη = −ωπ
2

sin(Wωt)dt+ ωπ cos(Wωt)dWωt (15)

as the perturbational middle time scale [12].
With θ̂ being the best estimate of the maximizing value

θ∗, and from the block diagram in Fig. 1, we can write
dθ̂

dt
= −εωk′IU(t) , (16)

where the controlling signal U(t) is generated through our
proposed predictor in Sec. V.

Furthermore, we use a Riccati filter [6]
dγ

dt
= εωk′Rγ(t)

(
1− γ(t)ν̂(n+2)(t)

)
(17)

to dynamically estimate the inverse Hessian of ν(n)(θ). In
addition, by setting the sign of the initial value sgn(γ(0)) =
sgn
(
ν(n+2)(θ∗)

)
one can switch from a maximization to a

minimization. Altogether, these differential parameter update
equations (16), (17) follow the slowest time scale.

The demodulated signals are defined as

ν̂(k)(t) = Υk(t−D)y(t−D). (18)

The estimates for the Gradient (1st derivative) and Hessian
(2nd derivative) of the nth derivative map ν(n) in (7)–(9)
is obtained by means of (18) by setting k = n + 1 and
k = n + 2, respectively. They are also delayed by D time
units in order to cope with delayed output y. Additionally,
dvancing the perturbation signal (12) by D time units would
lead to the same solution [17].

Lastly, we define the measurable signal

z(t) = γ(t)ν̂(n+1)(t) , (19)

where γ(t), the inverse Hessian estimate, is updated accord-
ing to (17), and ν̂(n+1)(t) represents the gradient estimate
(18) [17].

IV. AVERAGING ANALYSIS
Consider the error transformations

θ̃(t) = θ̂(t)− θ∗ (20a)
γ̃(t) = γ(t)− γ∗ , (20b)

with the inverse Hessian

γ∗ =
1

ν(n+2)(θ∗)
(21)

being the corresponding optimum value of γ.
Lemma 1: For maximizing any higher derivative of the

unknown, dynamic, nonlinear and time delayed map y(t−D)
satisfying Assumptions A1 - A3, the reduced, averaged and
linearized version of the measurable signal z(t) as stated in
(19) can be expressed as

za
r (t) = θ̃a

r (t−D) , (22)

when using the stochastic perturbation η(t), given by (11)
- (12) and being a homogenous ergodic Markov process, as
well as the estimative demodulated signals (18).
Proof of Lemma 1:
For the uncompensated case where U(t)=z(t), using (16)
and (20a) as well as (17) and (20b), we can express the
error dynamics as

dθ̃

dt
= −εωk′I

(
γ̃(t) + γ∗

)
Υn+1(t−D)g

(
x(t−D)

)
(23a)

dγ̃

dt
= εωk′R

(
γ̃(t) + γ∗

)(
1−

(
γ̃(t) + γ∗

)
Υn+2(t−D)g

(
x(t−D)

))
. (23b)

After employing a singular perturbation reduction [12] in
order to freeze the delayed state vector x(t − D) in (3) at
its quasi-steady state value

x(t−D) = l
(
θ̃(t−D) + a sin

(
η(t−D)

))
, (24)
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Fig. 1. Block diagram of the basic prediction scheme for time delay compensation in Newton-based extremum seeking with stochastic perturbation and
an unknown, nonlinear, dynamic map for maximizing arbitrarily high derivatives.

we obtain the reduced error system of the form

dθ̃r

dt
= −εωk′I

(
γ̃a(t) + γ∗

)
Υn+1(t−D)ν

(
θ̃r(t−D) + a sin

(
η(t−D)

))
(25a)

dγ̃r

dt
= εωk′R

(
γ̃r(t) + γ∗

)(
1−

(
γ̃r(t) + γ∗

)
Υn+2(t−D)ν

(
θ̃r(t−D) + a sin

(
η(t−D)

)))
. (25b)

We assume the maximizing value θ∗ to remain constant in
the reduced system, since the parameter differential equations
follow the slowest time scale. For sufficiently small ε, the
reduced parameter error system is applicable to the theory
of averaging. Now, for the averaging method we replace the
frozen quantities θ̃r and γ̃r with autonomous values θ̃a

r and
γ̃a

r , respectively. Then, comparing (25a) and (25b), we focus
on the evaluation of the average

ξa
r,k = AVE

{
ν̂(k)

(
θ̃a
r (t−D)

)}
(26)

exploiting the ergodicity and invariant distribution. The
average of the reduced-demodulated error signal ξa

r,k (26) can
be solved for arbitrary k ∈ N. and one obtains the expression

ξa
r,k = ν(k)

(
θ̃a
r (t−D)

)
+
ν(k+2)

(
θ̃a
r (t−D)

)
4(k + 1)

a2 +O(a4) . (27)

Consequently, we can now express the averaged-reduced
error system as

dθ̃a
r

dt
= −εωk′I

(
γ̃a

r (t) + γ∗
)
ξa
r,n+1 (28a)

dγ̃a
r

dt
= εωk′R

(
γ̃a

r (t) + γ∗
)(

1−
(
γ̃a

r (t) + γ∗
)
ξa
r,n+2

)
. (28b)

We use a local quadratic approximation of the objective
function [17] at θ = θ∗, which yields

ν(n)(θ) = Q∗ +
ν(n+2)(θ∗)

2

(
θ(t)− θ∗

)2
, (29)

with a positive constant Q∗ > 0 by linearization. Thus, the
equilibria of (28a) and (28b) become

θ̃a,e
r = 0 (30a)
γ̃a,e
r = 0 . (30b)

After plugging (29) into (27) for k = n+ 1, we obtain

ξa
r,n+1 = ν(n+2)(θ∗)θ̃a

r (t−D) . (31)

Finally, consider the averaged-reduced version of (19):

za
r (t) =

(
γ̃a

r (t) + γ∗
)
ν(n+2)(θ∗)θ̃a

r (t−D) . (32)

Performing linearization at the desired extremizing operating
point corresponding to the error equilibrium (30a)–(30b) we
get

za
r (t) = θ̃a

r (t−D) , (33)

which completes the proof of Lemma 1. �

V. PREDICTOR FEEDBACK DESIGN
The idea is to derive a controller which, taking (33) as

the input, feeds back the future state into the equivalent
averaged-reduced system

Ua
r (t) = za

r (t+D) = θ̃a
r (t+D −D) = θ̃a

r (t) . (34)

Using (16) and (20a), we consider
˙̃
θ(t−D) = −kIU(t−D) (35)

as well as its shifted, averaged-reduced version
˙̃
θa

r (t) = −kIUa
r (t). (36)

Applying the known time delay D to (36) and using (33),
we obtain

ża
r (t) = −kIUa

r (t−D) . (37)

Now, applying Laplace-Transformation to ((37)) we are able
to express the future state as

za
r (t+D) = −kI

t∫
0

Ua
r (τ)dτ . (38)

Since we are only interested in predicting the change over
the next D time units, we herefore transform (38) into

za
r (t+D) = za

r (t)− kI

t∫
t−D

Ua
r (τ)dτ . (39)

Thus, we arrive at the following expression for our predictor-
based controller ∀t ≥ D:

Ua
r (t) = za

r (t)− kI

t∫
t−D

Ua
r (τ)dτ . (40)
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Now, we propose the usage of the nonaverage and unre-
duced version of (40)

U(t) =
c

s+ c

{
z(t)− kI

t∫
t−D

U(τ)dτ

}
, (41)

employing an additional low-pass filter with a sufficiently
large c > 0. The braces {·} in (41) are used to indicate the
effect of the frequency-domain transfer function of the filter
as an operator on the according time-domain signal.

VI. STABILITY ANALYSIS
In the following, utilizing the approaches of [16], [17],

[18] we prove the stability of the closed-loop, stochastic
perturbation-based ES system from Sec. III applying the
predictor (41). Note that we only consider its mathematically
reduced form via singular perturbation reduction in order to
cope with the unknown nonlinear dynamics.

Theorem 1: There exists a low-pass filter constant c∗ > 0
such that, ∀c ≥ c∗, the reduced closed-loop system described
by (16), (17) and (41) with error signals (20a)–(20b), and
states θ̃r(t − D), Ur(τ), γ̃r(t) has a unique, locally expo-
nentially stable solution, ∀t ≥ 0,∀s,∀τ ∈ [t − D, t] which
satisfies the following upper bound for the expectation:

E(s)

{∣∣γ̃r(s+ t)
∣∣2 +

∣∣θ̃r(s+ t−D)
∣∣2

+ U2
r (s+ t) +

∫ s+t

s+t−D
U2

r (τ)dτ

}
≤ a1e

−a2tε|ϕ|2 + ∆(ε) , (42)

with ∆(ε) > 0 such that ∆(ε)→ 0 as ε→ 0, some positive
constants a1, a2 and any continuous three-dimensional vector
function ϕ ∈ C3 as defined in [8] with initial condition

ϕ(δ) =

 θ̃r(s+ δ −D)
Ur(s+ δ)
γ̃r(s+ δ)

 , −D ≤ δ ≤ 0 . (43)

Moreover, there exist constants r > 0, M > 0, λ > 0, ∆1 >
0 and function T (ε) : (0 , 1) → N such that for any initial
condition |ϕ| < r and any ∆1 > 0 the error vector norm
|ϕ(t)| converges below a residual value ∆1 exponentially
fast almost surely (a.s.) and in probability:

lim inf
ε→0

{
∀t ≥ 0 : |ϕ(t)| > M |ϕ(0)|e−λt + ∆1

}
=∞ , a.s. ,

(44)

lim
ε→0

P
{
|ϕ(t)| ≤M |ϕ(0)|e−λt + ∆1 , ∀t ∈ [0 , T (ε)]

}
= 1 ,

(45)

with lim
ε→0

T (ε) =∞. Finally, by choosing ∆1(ε) = O(ε), we can
conclude

lim
ε→0

P
{

lim sup
t→∞

|θr(t)− θ∗|
}

= O(a+ ε) . (46)

y

The proof of Theorem 1 is organized in the following steps
A-E.

A. Reduced ODE-PDE System

Using (16) and (20a), we consider

˙̃
θ(t−D) = −kIU(t−D). (47)

We define
u(x, t) = Ur(t+ x−D) , (48)

where t is time, D is the delay, and x the state enabling the
following representation of (47) as an ODE-PDE system:

˙̃
θr(t−D) = −kIu(0, t) , (49a)
∂tu(x, t) = ∂xu(x, t) , x ∈ [0, D] , (49b)
u(D, t) = Ur(t) . (49c)

Consequently, (48) represents the solution of the PDE sub-
system (49b)–(49c) above, with (49a) being an ODE.

Employing a singular perturbation reduction [12] in order
to freeze the delayed state vector x(t−D) in (3) at its quasi-
steady state value

x(t−D) = l
(
θ̃(t−D) + a sin

(
η(t−D)

))
, (50)

we derive an expression for the delayed and reduced output
yr(t − D) in terms of θ̃r(t − D) by plugging (7), (4) and
then (50) into (1b)

yr(t−D) = ν
(
θ̃r(t−D) + a sin

(
η(t−D)

))
. (51)

Then, we rewrite the integrand of the reduced version of
our predictor (41) using (48) to

Ur(t) =
c

s+ c

{
zr(t)− kI

∫ D

0

u(τ, t)dτ

}
. (52)

Following the same steps as in [18], using (52) we derive
the averaged version of the reduced ODE-PDE system

˙̃
θa

r (t−D) = −kIua(0, t) , (53a)
∂tu

a(x, t) = ∂xu
a(x, t), x ∈ [0, D] , (53b)

ua(D, t) =
c

s+ c

{
za

r (t)− kI
∫ D

0

ua(τ, t)dτ

}
. (53c)

B. Exponential Stability in the Sense of the Full State Norm
Next, we consider the following infinite-dimensional back-

stepping transformation of the delay state

w(x, t) = ua(x, t)−
(
ϑ̃a

r (t)− kI
∫ x

0

ua(τ, t)dτ
)
, (54)

mapping the local version the system (53a)–(53c) into

˙̃
ϑa

r (t) = −kI
(
ϑ̃a

r (t) + w(0, t)
)
, (55a)

∂tw(x, t) = ∂xw(x, t) , x ∈ [0, D] , (55b)
∂tu

a(D, t) = −cw(D, t) . (55c)

Using (53a), we partially derive the transformed state w(x, t)
(54) with respect to time t and for the delay state x = D

∂tw(D, t) = ∂tu
a(D, t) + kIu

a(D, t) . (56)

Furthermore, consider the inverse transformation of (54)

ua(x, t) = w(x, t) + e−kIxϑ̃a
r (t)− kI

∫ x

0
e−kI (x−τ)w(τ, t)dτ . (57)

After plugging (55c) and (57) into (56), we obtain

∂tw(D, t) = −cw(D, t) + kIw(D, t) + kIe
−kIDϑ̃a

r (t)

− k2
I

∫ D

0

e−kI(D−τ)w(τ, t)dτ . (58)
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Given the following Lyapunov-Krasovskii Functional

V (t) =

(
ϑ̃a

r (t)
)2

2
+
b

2

∫ D

0

(1 + x)w2(x, t)dx+
1

2
w2(D, t),

(59)
as already done in [18], one can show that

V̇ (t) ≤ −µV (t) (60)

is guaranteed for some µ > 0. Thus, the closed-loop system
is exponentially stable in the sense of the full state norm√

|ϑ̃a
r (t)|2 + w2(D, t) +

∫ D

0

w2(x, t)dx , (61)

i.e. in the transformed variable (ϑ̃a
r , w).

C. Exponential Stability Estimate of the Averaged-reduced
System

To obtain exponential stability in the sense of the norm√
|θ̃a

r (t−D)|2 +
(
Ua

r (t)
)2

+

∫ t

t−D

(
Ua

r (τ)
)2
dτ , (62)

we need to show

α1Ψ(t) ≤ V (t) ≤ α2Ψ(t), (63)

where α1 and α2 are positive numbers and

Ψ(t) , |θ̃a
r (t−D)|2 +

(
Ua

r (t)
)2

+

∫ t

t−D

(
Ua

r (τ)
)2
dτ . (64)

This is done by utilizing a similar approach as in [17].
Ultimately, one obtains

Ψ(t) ≤ α2

α1
e−µtΨ(0) , (65)

which completes the proof of exponential stability for the
averaged-reduced system.

D. Invoking the Averaging Theorem
Using (47), (41), (23b) while plugging in (10a),

(19), (10b) as well as (18) and (13), we obtain
d

dt

 θ̃(t−D)
U(t)
γ̃(t)

 =

 0
−cU(t)

0



+ε


−ωk′IU(t−D)

−c
(
(γ̃(t) + γ∗) 1

ε
ν̂(n+1)(t)− ωk′I

t∫
t−D

U(τ)dτ
)

ωk′R(γ̃(t) + γ∗)
(
1− (γ̃(t) + γ∗)ν̂(n+2)(t)

)
 (66)

with

ν̂(k)(t) =
2kk!

ak
(−1)b

k
2
cy(t−D)

sin
(
kη(t−D) +

π

4

(
1 + (−1)k

))
. (67)

We define the state vector

uε(t) =

 θ̃(t−D)
U(t)
γ̃(t)

 , (68)

which allows us to generally express (66) in form of the
three-dimensional stochastic functional differential equation

d

dt
uε(t) = G(uεt ) + εF (t,uεt , η(t), ε) . (69)

Therefore, since η(t) is a homogenous ergodic Markov
process with invariant measure µ(dη) and the property of
exponential ergodicity, uεt (δ) = uε(t + δ) for −D ≤ δ ≤ 0
and G : C3([−D, 0])→ R3 as well as the Lipschitz F : R+×
C3([−D, 0]) × Y × [0, 1) → R3 with F (t, 0, η, ε) = 0 are
continuous mappings, we can apply the averaging theorem
in [8] together with its exponential p-stability result for the
initial random system using ε.

E. Asymptotic Convergence to the Extremum
By defining the stopping time [10]:

τ∆1(ε)
ε := inf

{
∀t ≥ 0 : |ϕ(t)| > M |ϕ(0)|e−λt +O(ε)

}
, (70)

as the first time when the norm of the error vector does
not satisfy the exponential decay property. The error vector
norm |ϕ(t)| converges below a residual value ∆1(ε) = O(ε)
exponentially fast almost surely (44) and in probability (45).
From (44) it is clear that τ∆1(ε)

ε most surely approaches
infinity as ε goes to zero. Similarly in (45), the determin-
istic function T (ε) tends to infinity as ε goes to zero. It
follows from (44) and (45) that the exponential convergence
is satisfied over an arbitrarily long time interval. Either
component of the error vector converges to below ∆1(ε) =
O(ε), particularly the θ̃r(t) component. Then, we can write

lim
ε→0

P
{

lim sup
t→∞

|θ̃r(t)|
}

= O(ε). From (11) and (20a), one

has that θ(t)− θ∗ = θ̃(t) + a sin(η(t)). Since the first term
in the right-hand side for the reduced system is ultimately of
order O(ε) and the second term is of order O(a), then we
state (46). Hence, the proof of Theorem 1 is completed. �

Remark 1: In the stochastic ES for dynamical systems
with output equilibrium map, we focus on the stability of
the reduced system [10], where the the closed-loop system
has stochastic perturbations and thus generally, there is no
equilibrium solution or periodic solution so that the singular
perturbation (SP) methods [9] are not applicable. Despite the
lack of such a SP theorem for FDEs, for the reduced system
we could analyze properties of the solution by the developed
averaging theory in [8] to obtain the approximation to the
maximum of the higher-derivative for the equilibrium map.

VII. SIMULATIONS
In order to show the effectiveness of the stochastic per-

turbation technique, we compare it with the periodic method
[17] considering the following map

ẋ = −
1

√
100π

exp
(
−

(t− 40)2

100

)
+ θ̇, x(0) = θ(0) (71a)

y = g(x) = −
1

6
x3 + 3x , (71b)

where we are interested in the maximization of ν(1)(θ) (7).
We assume D = 5s. For the periodic algorithm, we apply

(30) from [17], and for the stochastic case, the predictor
(41). Both scenarios have identical paramteres: c = 20, ε =
1/1000, a = 0.1, ω = 35, k′I = 1, k′R = 0.25. The stochastic
perturbation process’ standard deviation is σ = 0.1.

As shown in Fig. 2, all signals converge to the expected
values, despite the delay. The convergence rate of the
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stochastic method outperforms the periodic one when using
identical simulation parameters. This confirms the theoretical
train of thought in [10, Chapter 2].

In order to improve the performance of the deterministic
method it is prohibited in theory to increase arbitrarily
the perturbation frequency ω due to the application of the
singular perturbation reduction [9] to dynamic maps.

Additionally, we state that the predictor is vital for the
compensation of the delays, since the delays massively
degrades the ES performance or leads to instability.

Remark 2: High-frequency switching leads to chattering
or limit cycles in actuators. The inability to remove it
and achieve equilibrium stabilization in ES may also be
associated with actuator constraints, such as magnitude and
rate saturation. Here, the best control requirement could be to
enforce a stable, “smallest” limit cycle [21], [2, Chapter 5].
However, ES-based controllers whose control efforts vanish
as the system approaches equilibrium have been proposed
[22] . In [19] and [5], Lie bracket-basedES was introduced
to obtain ES feedback with bounded update rates. Thus, limit
cycle can be reduced or completely eliminated.

VIII. CONCLUSIONS
In this letter, we presented the design of a Newton-

based ES for higher derivatives of unknown dynamic maps
using stochastic perturbations in the presence of known
time delays. We proposed a predictor feedback for delay
compensation and stated the application of the stochastic
averaging theorem for the stability proof. Simulation shows
that the stochastic version outperforms the periodic one in
terms of faster convergence rates.In addition, for unknown
constant delays the results would necessarily be local due to
nonlinear parametritation of the delay (the initial estimate of
the delay would have to be close to the actual delay). This
would offer little advantage over the existing robustness of
the predictor feedback to small perturbations in the delay
(proved in [4]).
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[2] K. Ariyur. and M. Krstić. Real-Time Optimization by Extremum-
Seeking Control. John Wiley & Sons, Inc., 2003.

[3] F. E. Azar and M. Perrier. Slope seeking control using multi-units.
Conf. on Control Applications, pages 1041–1045, 2014.

[4] N. Bekiaris-Liberis and M. Krstić. Robustness of nonlinear predic-
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