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Zusammenfassung

Diese Dissertation behandelt einen zentralen Aspekt der Fusionsforschung: Die Physik
des Transportes in magnetisch eingeschlossenen Plasmen. Der Fokus liegt auf der Sim-
ulation von Turbulenz im äußeren Bereich des eingeschlossenen Plasmas in Tokamaks.
Einer der führenden gyrokinetischen Codes, GENE, wurde verbessert und großskalige
Simulationen wurden durchgeführt. Das Verständnis von turbulentem Transport wurde
durch die Simulation von Plasmaentladungen der Experimente JET und AUG erweit-
ert.

Das Ziel der Fusionsforschung ist die Stromerzeugung mit Hilfe von kontrollierter Kern-
fusion. Die entscheidende Herausforderung in der Fusion mittels magnetischem Ein-
schluss ist es ein heißes Plasma aus Wasserstoffisotopen so gut einzuschließen, dass
mehr Energie durch Fusionsreaktionen freigesetzt wird, als zur Aufrechterhaltung des
heißen Plasmas benötigt wird. Der mögliche Energiegewinn einer Fusionsanlage hängt
stark davon ab wie gut der radiale Transport von Energie und Teilchen aus dem Plasma
durch das Magnetfeld verhindert werden kann. In vielen Szenarien ist Turbulenz der
entscheidende Mechanismus für den Energieverlust. In Tokamak Experimenten kann
Turbulenz in einem schmalen Bereich nahe der letzten geschlossenen magnetischen
Flussfläche unterdrückt werden. Dies bildet das Pedestal der H-Mode. Die Eigen-
schaften des Pedestals haben einen wichtigen Einfluss auf die gesamte Einschlussqual-
ität des Plasmas. Da Turbulenz die Eigenschaften des Pedestals entscheidend mitprägt,
ist ein umfassendes Verständnis von Pedestalturbulenz ein wichtiger Beitrag für die En-
twicklung von verbesserten Plasmaszenarien.

Die entscheidenden turbulenten Transportmechanismen zu bestimmen, ist allerdings
eine große wissenschaftliche und numerische Herausforderung. Die starken Gradienten
stellen viel Energie für die Turbulenz bereit, weshalb viele physikalische Effekte im
Pedestal relevant werden. Diese umfassen global Effekte, elektromagnetische Fluktua-
tionen, Ionenskalen und Elektronenskalen Instabilitäten und Scherströmungen.

In dieser Arbeit werden diese Herausforderungen durch ein Upgrade des gyrokinetischen
GENE Codes angegangen. Mit Hilfe des Upgrades wurden die ersten globalen, nicht-
linearen, elektromagnetischen Turbulenzsimulationen eines ASDEX Upgrade Pedestals
durchgeführt. Neben dem ASDEX Upgrade Szenario (Type-I ELMy H-mode), konnte
der weiterentwickelte Code erfolgreich auf ein JET hybdrid-Szenario H-moden Pedestal
angewandt werde. Die globalen, nichtlinearen Simulationen ermöglichen die Analyse
der radialen Struktur von Ionenskalen-Turbulenz im gesamten Pedestal von Pedestal
Top bis Fuß. Eine detaillierte Charakterisierung von gyrokinetischen Instabilitäten
mit lokalen, linearen Simulationen und nichtlineare Simulationen auf Elektronenskalen,
vervollständigen die gyrokinetische Analyse.

In beiden untersuchten Pedestals von AUG und JET hat der Transport eine kom-
plexe radiale Struktur und umfasst viele Skalen und Transportkanäle. Der dominante
Elektronentransportkanal im AUG Pedestal wird von Strukturen verschiedener Größe
verursacht. Auf dem Pedestal Top sind Ionenskalen TEM (Gefangene Elektronen
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Mode)/MTM (Mikro Tearing Mode) Instabilitäten für den Transport verantwortlich,
während im Zentrum des Pedestals ETGs (Elektronen Temperatur Gradienten Mode)
auf Elektronenskalen den Transport übernehmen. Turbulenter Ionen Wärmefluss ist
auf dem Pedestal Top vorhanden, aber stark verringert im Pedestal Zentrum. Mag-
netische Verscherung führt lokal zu einer Stabilisierung der Instabilitäten und Re-
duktion des Wärmetransportes. Im JET Pedestal wird Transport auf dem Pedestal
Top von ITG (Ionen Temperatur Gradient) Moden getrieben und von ETG Moden
im Pedestal Zentrum. In beiden Pedestals ist die E × B Verscherung wesentlich für
eine Reduktion des Wärmeflusses in den globalen, nichtlinearen Simulationen. Des
Weiteren wird eine komplexe Struktur der Pedestal-ETG Moden in beiden Szenarien
beobachtet. Vergleiche zwischen linearen und nichtlinearen Modenstrukturen offen-
baren, dass Ionenskalen-Turbulenz in großen Teilen des Pedestals ausgeprägte quasi-
lineare Eigenschaften besitzt.

Zusammenfassend entwickelt diese Dissertation die gyrokinetische Analyse von H-
Moden Pedestals weiter und verbessert das Verständnis von Pedestalturbulenz durch
hochaufgelöste gyrokinetische Simulationen.

Teile der Ergebnisse, die in den Kapiteln 3, 4, and 5 präsentiert werden, wurden vorab
veröffentlicht in Leppin, L., Görler, T., Cavedon, M., Dunne, M., Wolfrum, E., Jenko,
F. & the ASDEX Upgrade Team. Complex Structure of Turbulence across the AS-
DEX Upgrade Pedestal. Journal of Plasma Physics 89, 905890605. doi:10.1017/

S0022377823001101 (2023). Teile der Ergebnisse, die in Kapitel 6 präsentiert wer-
den, wurden zur Veröffentlichung eingereicht in Leppin, L., Görler, T., Frassinetti, L.,
Saarelma, S., Hobirk, J., Jenko, F. & JET Contributors. The JET Hybrid H-mode
Scenario from a Pedestal Turbulence Perspective. Nuclear Fusion Submitted (2024).
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Abstract

This thesis deals with a central part of fusion research: The physics of transport pro-
cesses in magnetically confined plasmas. In particular, it focuses on the simulation of
turbulence in the outer confined region of tokamak fusion experiments. For this pur-
pose, one of the leading turbulence codes, GENE, has been upgraded, and large-scale
simulations on multiple national supercomputers have been performed. As a result, the
code’s applicability has been extended to new plasma regimes, and the understanding
of turbulent transport has been expanded through high-fidelity simulations of plasma
discharges from the JET and AUG tokamak experiments.

Fusion research aims to generate electricity using controlled nuclear fusion. The key
challenge in magnetic confinement fusion is to confine a hot plasma of hydrogen isotopes
well enough such that more energy is released by nuclear fusion than is required to
maintain the plasma at fusion conditions. The energy gain of a fusion reactor critically
depends on how well the outward transport of energy and particles can be controlled.
In many scenarios, turbulence is the dominant energy loss mechanism. In tokamak
experiments, turbulence can be suppressed in a narrow region close to the last closed
flux surface, the so-called pedestal of the high confinement mode (H-mode). The
properties of the pedestal, with its steep temperature and density profiles, strongly
influence the overall confinement. Since turbulence is one of the key ingredients in
shaping H-mode pedestals, a detailed understanding of pedestal turbulence is crucial
for developing improved plasma scenarios.

Identifying the relevant turbulent transport mechanisms in a pedestal, however, is a
great scientific and numerical challenge. The steep gradients provide large amounts
of free energy to the development of turbulence. Hence, in pedestal conditions, many
physical effects become relevant, including global effects, electromagnetic fluctuations,
the presence of ion-scale as well as electron-scale instabilities, and shear flows.

In this thesis, this challenge is addressed by upgrading one of the leading gyrokinetic
codes, the GENE code. Using the code upgrade, the first global, nonlinear, electromag-
netic turbulence simulations of an ASDEX Upgrade pedestal are performed. Besides
the ASDEX Upgrade scenario (Type-I ELMy H-mode), the new code capabilities are
successfully applied to a JET hybrid scenario H-mode pedestal. The global, nonlin-
ear simulations enable analyzing the (ion-scale) turbulent heat flux structure in the full
pedestal from pedestal top to foot. A detailed characterization of instabilities via local,
linear simulations at the pedestal top, center, and foot, as well as dedicated nonlinear
electron-scale simulations complete the gyrokinetic analysis.

In both investigated pedestals from AUG and JET, we find turbulent transport to have
a complex radial structure that is multi-scale and multi-channel. The dominant electron
transport channel in the AUG pedestal is found to transition in scale. At the pedestal
top, ion-scale TEM (Trapped Electron Mode)/MTM (Micro Tearing Mode) instabili-
ties fuel electron transport, whereas in the pedestal center, electron-scale ETG-driven
(Electron Temperature Gradient mode) transport takes over. Turbulent ion heat flux
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is present at the pedestal top and strongly reduces towards the steep gradient region.
Magnetic shear is found to locally contribute to the stabilization of microinstabilities
and reduction of heat flux. In the JET pedestal, transport due to ITG (Ion Temper-
ature Gradient) modes is found to play an important role on the pedestal top, and
ETGs are found in the pedestal center. In both pedestals, E × B shear is confirmed
to strongly reduce heat fluxes in the global, nonlinear simulations. Furthermore, a
complex structure of pedestal-ETG modes is identified in both scenarios. Comparisons
between linear and nonlinear mode structures reveal a remarkable quasilinear nature
of ion-scale turbulence in large parts of the pedestal.

Overall, this thesis pushes the frontiers of the gyrokinetic analysis of H-mode pedestals
and improves the understanding of pedestal turbulence by high-fidelity gyrokinetic
simulations.

Parts of the results presented in Chapters 3, 4, and 5 have been published in Leppin, L.,
Görler, T., Cavedon, M., Dunne, M., Wolfrum, E., Jenko, F. & the ASDEX Upgrade
Team. Complex Structure of Turbulence across the ASDEX Upgrade Pedestal. Journal
of Plasma Physics 89, 905890605. doi:10.1017/S0022377823001101 (2023). Parts of
the results presented in Chapter 6 have been submitted for publication in Leppin, L.,
Görler, T., Frassinetti, L., Saarelma, S., Hobirk, J., Jenko, F. & JET Contributors.
The JET Hybrid H-mode Scenario from a Pedestal Turbulence Perspective. Nuclear
Fusion Submitted (2024).
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1. Introduction

These are exciting times for fusion research! Multiple scientific performance records

have been broken in recent years, the interest of politics and the general public has

noticeably increased, and private investments in the field have reached unprecedented

levels. This progress and interest are motivated by the foremost goal of fusion research:

The generation of electricity by controlled nuclear fusion or - to put it more poetically

- building a sun on Earth.

This thesis deals with a central part of fusion research: The physics of transport pro-

cesses in magnetically confined plasmas. In particular, it focuses on the simulation

of turbulence in the outer confined region of tokamak fusion experiments. For this

purpose, one of the leading turbulence codes, GENE, has been upgraded (Chapter

3), and large-scale simulations on multiple national supercomputers have been per-

formed (Chapter 5 and 6). As a result, the code’s applicability has been extended to

new plasma regimes, and the understanding of turbulent transport has been expanded

through high-fidelity simulations of plasma discharges from the JET and AUG tokamak

experiments.

The first chapter introduces the field of fusion research and contextualizes the main

body of my thesis. In the beginning, I outline the case for fusion energy and introduce

the fusion process itself and the magnetic confinement of plasma. Then, the role of

plasma turbulence for heat and particle transport and its suppression in the high-

confinement mode (H-mode) is outlined.

1.1. The case for fusion energy

Humanity faces a global energy challenge. Important aspects of this challenge are il-

lustrated in Fig. 1.1. The left plot shows the CO2 emissions of selected countries as

a function of their gross domestic product (GDP) per capita in the year 2017. The

data shows a clear correlation between the wealth of a country and the emission of

greenhouse gases. As a consequence, countries can be roughly sorted into two groups.

One group is characterized by a lack of usable energy and the other by too high CO2

emissions. In light of climate change caused by the anthropogenic emission of green-

house gases [3], the desirable location for most countries in this figure would be the

lower right corner, characterized by high wealth at low CO2 emissions. The right plot

adds a time perspective to the discussed challenge. The global primary energy demand
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1. Introduction

Fig. 1.1.: Illustration of the global energy challenge. Left: CO2 emissions of countries as
a function of GDP (both per capita). Modified from [5]. Right: Global primary energy
consumption by source as a function of time. Modified from [4].

has increased more than 8-fold in the past century, and even in 2021, more than 80%

of it is provided by fossil fuels [4]. This illustrates the need to develop all possible

types of CO2-neutral electricity generation. Nuclear fusion promises to be one of them.

It would have the benefits of being a non-intermittent, baseload-capable method of

electricity generation.

Recent performance records demonstrate the growing scientific maturity of fusion re-

search. In December 2021, the Joint European Torus (JET), the world’s largest fusion

experiment, achieved a new record of 59 megajoules of sustained fusion energy [6]. In

the same month, the EAST tokamak in China achieved a world-record pulse length

of over 1000 seconds (or more than 17 minutes) [7]. In February 2023, Wendelstein

7-X, the world’s largest fusion experiment of the stellarator type, achieved a significant

milestone with an energy turnover of 1 gigajoule in an eight-minute-long plasma dis-

charge [8]. And in December 2022, the National Ignition Facility (NIF), a laser-driven

inertial confinement experiment, achieved scientific energy breakeven [9].

At the same time, public policy worldwide and private investments have increased

their support of fusion research. The German government has voiced its support for

fusion energy research in a recent position paper and funding program [10, 11]. In the

UK, the STEP program aims to develop a prototype fusion power plant in a public-

private partnership [12], and the US government is "developing a bold decadal vision

for commercial fusion energy" [13]. Fusion start-up companies have received more than

6 billion USD in private and public investments in the past years, the majority of which

is concentrated on a few companies [14]. Technological advances like magnets based on

high-temperature superconductors developed by Commonwealth Fusion Systems offer

promising paths to fusion pilot plants [15]. The number of newly founded companies

and the amount of investment they receive may be seen as signs of a forming fusion

energy industry that promises to take the science developed in the past decades at

2



1.2. Fusion process

Fig. 1.2.: Rendering of ITER plant. Plasma physics is a crucial but only one part contribut-
ing to realizing fusion energy. Credit: ITER Organization, https://www.iter.org/ .

national labs to application.

While this thesis is concerned with computational plasma physics, specifically plasma

turbulence, it is emphasized that many other fields of science, technology, and engi-

neering are indispensable for developing fusion reactors. Plasma-facing wall materials,

plasma heating systems, Tritium breeding, and magnet technologies - to name just a

few - are all essential areas of active research. This is illustrated by a rendering of

ITER (iter.org), the international next-step experiment currently under construction

in France, in Fig. 1.2.

1.2. Fusion process

The energy that fusion devices want to utilize is released when two light atomic nuclei

fuse. The resulting fusion product is slightly lighter than the sum of the reactants,

and the mass difference is released as kinetic energy. Fig. 1.3 shows the process for

the hydrogen isotopes Deuterium (1 proton + 1 neutron) and Tritium (1 proton + 2

neutrons). Deuterium and Tritium fuse to form a Helium nuclei or α-particle, which

carries about 20% of the released energy, and a neutron, which carries the remaining

80%.

The probability of fusion to occur under atmospheric conditions is negligibly small.

High temperatures and densities are required to reach meaningful probabilities for the

equally charged atomic nuclei to overcome the Coulomb barrier by quantum tunneling

3



1. Introduction

Fig. 1.3.: Left: Fusion of Deuterium D=2H and Tritium T=3H. Taken from
wikipedia.org/wiki/Nuclear_fusion. Right: Fusion reactivity for different fusion reactions.
Taken from [16].

and fuse due to the strong nuclear force. Such conditions are most notably present in

stars, which are powered by nuclear fusion.

While multiple fusion reactions take place in stars (CNO cycle, p-p cycle), the fuel of

choice for most fusion reactor concepts is a Deuterium-Tritium mixture. The reason is

the comparatively high reactivity in the achievable temperature range of 10 keV, see

Fig. 1.3 on the right. (Via the Boltzmann constant 1 eV =̂ 11605 K, so 10 keV ≈ 108

K = 100 million K.)

Even though a controlled, self-sustaining fusion reaction is the goal of this research,

the fusion process itself will be of no further interest in this thesis. In none of our

simulations, fusion is actually simulated. We are only concerned with simulating and

optimizing the conditions for fusion to occur in the experiments. The impact of fusion-

born fast α-particles on plasma dynamics in burning plasmas, however, is a topic of

active research. It is not part of this thesis.

1.3. Principles of magnetic confinement: The tokamak

The fundamental requirement to achieve fusion is to keep atomic nuclei hot enough and

dense enough for long enough. There are different routes for achieving this. In the core

of the sun, the gravitational force and sheer size are decisive for achieving temperatures

of about 15 million K, high densities (150 g/cm3), and very long confinement times

4



1.3. Principles of magnetic confinement: The tokamak

[17]. This route is not reproducible on Earth. Instead, one technical option is inertial

confinement fusion (ICF) [18], in which small hydrogen pellets are rapidly heated and

compressed by powerful lasers, and the inertia of the exploding pellet provides the

confinement time. Here, very high densities and high temperatures are reached, but

only for fractions of a second, as the pellet is rapidly expanding after its implosion. The

more widespread approach is magnetic confinement fusion (MCF), which uses magnetic

fields to confine a hot plasma of about 100 million K at low densities of about 10−7

g/cm3 at confinement times of several seconds.

In the presence of strong magnetic fields, the charged particles of the plasma are bound

to a spiraling motion along magnetic field lines by the electromagnetic Lorentz force.

If the magnetic field lines close on themselves (or end losses are minimized, see mirror

machines), the plasma is confined. The two dominant magnetic confinement fusion

concepts are the tokamak and the stellarator. Both are toroidal devices, but they

differ in how the magnetic field is created and the specifics of the magnetic field shape.

In stellarators, the magnetic field is entirely created by external coils and can have a

complex, non-axisymmetric shape. In tokamaks, on the other hand, an induced current

in the plasma creates a component of the magnetic field that is axisymmetric (up to

small ripples due to a finite number of coils). Following successes in the late 1960s,

most fusion research has been focused on tokamaks, while stellarators are profiting in

recent years from improved computational and optimization techniques that allow to

exploit the flexibility in stellarator design compared to tokamaks. This thesis deals with

tokamak plasmas, in particular with shots from the experiments JET (Joint European

Torus), UK and AUG (ASDEX Upgrade), Germany.

Fig. 1.4, top shows the tokamak concept. Toroidal field coils (blue) and plasma current

(green arrow) induced by the central solenoid/transformer (green) create a magnetic

field with helical field lines (black). The field lines form nested magnetic flux-surfaces

with the magnetic axis in the center and the last closed flux-surface (LCFS), also called

separatrix, at the boundary to the open field line region or scrape-off layer (SOL) (cf.

Fig. 1.4, right). In plasma (MHD) equilibrium, the flux-surfaces are surfaces of constant

plasma pressure. The ratio of poloidal to toroidal magnetic field strength, and hence

the pitch angle of the field lines, changes in general from flux-surface to flux-surface.

The magnetic field strength on a given flux-surface changes, being strongest on the

inside and weakest on the outside (see Fig. 1.4, left). The sides are referred to as the

high-field/inboard side (HFS) and low-field/outboard side (LFS).

The necessary temperatures for fusion can be generated by multiple heating systems.

In the start or ramp-up phase of experiments, the induced current heats the plasma

5



1. Introduction

due to its resistivity. As the plasma heats up, its resistivity reduces (ηSp ∝ 1/T 3/2
e ) and

the resistive heating becomes less effective. To further heat the plasma, microwaves

created by gyrotrons (Electron Cyclotron Resonance Heating (ECRH) or Ion Cyclotron

Resonance Heating (ICRH)) can be used. Alternatively, fast neutral particles can be

injected (neutral beam injection, NBI) that enter the plasma and deposit their energy

in the plasma. Typically used heating powers in large tokamak experiments are on

the order of 5-30 MW. In future reactors, the plasma is planned to be dominantly

self-heated by the fusion-born α particles. Fuelling is done by puffing gas or shooting

frozen Deuterium pellets into the plasma. Only a few milligrams of plasma are typically

in the vessel at a given point. The most common fuels in current experiments are

Hydrogen, Deuterium, or Helium. As of writing this thesis, JET is the only device

in operation that is approved to perform experiments with the radioactive Hydrogen

isotope Tritium. Plasma discharges, referred to as shots, typically last about 10 s (τE

is significantly smaller) in machines with copper magnet coils (e.g. JET, AUG, DIII-D)

and are limited by the cooling of the magnets. Devices with superconducting coils

(W7-X, EAST) can reach longer discharges on the order of tens of minutes.

In steady-state, by definition, the same amount of power that enters the plasma or is

generated by fusion leaves it. Three main channels transfer energy out of the plasma:

Bremsstrahlung from the gyrating charged particles, neutrons from the fusion reac-

tions, which are uncharged and hence not confined by the magnetic field, and plasma

transport by convection/diffusion. The magnetic field in modern tokamaks is designed

to direct the transport losses to a specific region in the vessel, the so-called divertor (cf.

Fig. 1.4, right). In high-performance discharges with several MW of heating power,

the divertor conditions approach the limits of all known materials (cooled tungsten

tiles are the leading choice). This is only amplified in reactor scenarios. Designing the

exhaust in a way that is simultaneously compatible with high-performance plasmas

and the heat load limits of materials is one of the grand challenges of fusion research -

for plasma physics as well as for materials science.

1.4. Transport & stability in tokamaks

The difficult part about magnetic confinement fusion is keeping the plasma confined.

Behind this rather obvious statement hides a plethora of physics ranging from colli-

sions to collective fluid-like motion, to (gyro-)kinetic turbulence, to large-scale self-

organization. All of these phenomena significantly alter the simplistic view of single

particles confined by the Lorentz force and mostly degrade plasma confinement. Gener-
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1.4. Transport & stability in tokamaks

Fig. 1.4.: Top: Tokamak magnet structure. Credit: EUROfusion. Left: Magnetic field
strength on a flux-surface in a tokamak. Example from DIII-D experiment. Reprinted from
[19], with the permission of AIP publishing. Right: Poloidal cross-section showing nested
flux surfaces in the confined region, separatrix, scrape-off layer, and divertor. Taken from
[20] with the permission from P. Manz.
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1. Introduction

ally, in the confined region, only the radial transport from flux-surface to flux-surface is

of interest since energy and particles that stay on a given flux-surface remain confined.

The first challenge is to maintain a plasma that is magneto-hydrodynamically (MHD)

stable. Since the plasma is a conducting medium, electric currents are created within

it (intentionally and unintentionally), which modify the magnetic field structure and

can cause instabilities (kink and tearing)[21]. These instabilities impose limits on the

accessible pressure (β limit) and density (Greenwald limit [22]) of the plasma. An

uncontrolled violation of these limits can cause disruptions, which are a violent loss of

plasma confinement that can damage the experimental device. Disruption avoidance

and mitigation are important research areas for the preparation of larger experiments

and pilot plants. But even in an MHD stable plasma, confinement is not perfect.

One effect degrading confinement is collisions. Through collisions, particles, and energy

can be transferred radially from one flux-surface to the next. Their impact is strongly

increased in toroidal geometry due to the presence of additional particle orbits (trapped

particles), which leads to the so-called neoclassical transport [23]. Nonetheless, colli-

sional transport is, in most regimes, not the dominant transport channel. Fusion would

be significantly easier and cheaper to achieve if collisional transport was the only trans-

port mechanism.

The more critical effect degrading confinement is turbulence. Historically, this has been

referred to as anomalous transport since the observed transport in experiments was up

to two orders of magnitude higher than the predicted collisional transport. Driven by

the large temperature and density differences between the plasma core and edge, the

plasma forms coherent structures that extend over several flux surfaces and are very

efficient in transporting heat and particles outwards. Turbulent transport is the focus

of this thesis.

Besides these convective and diffusive energy loss mechanisms, plasma energy is also

lost by radiation. The electrically charged ions and electrons constantly emit brems-

strahlung on their spiraling trajectory along field lines. Some of the radiation is reab-

sorbed by the plasma, but a substantial part transfers heat out of it.

While good confinement is desirable, the complete suppression of heat and particle

transport is not the goal. In particular, for the control of impurities in the plasma,

some outward transport is desirable. Even small amounts of heavy (high Z) impurities

can otherwise compromise the plasma by radiating away large amounts of energy. Also,

for effective fueling by gas puffs from the edge, radial transport is essential. In reactors,

the outward transport of the fusion product or "helium ash" also becomes important.

8



1.5. Plasma turbulence

1.5. Plasma turbulence

So far, my introduction has focused on the mission-driven aspect of this research: Con-

trol a plasma in a device to generate electricity. Besides this important application,

there is also an intrinsic, basic research motivation to study the rich dynamics of plasma

turbulence. While natural plasmas are not widespread on Earth (notable exceptions

are lightning and auroras), plasma turbulence is the prevalent state (>99%) of ordi-

nary matter in the observable universe. Stars, the interstellar medium, or accretion

disks of black holes are all examples of natural plasma turbulence. Historically, the

development of high-temperature plasma physics has been shaped by fusion research,

and its challenges remain at the forefront of the discipline.

Plasma turbulence shares many phenomenological properties with neutral fluid tur-

bulence. It is a dissipative, non-equilibrium state that requires constant energy input

to prevent its decay. The turbulent structures/eddies are multi-scale - they comprise

a wide range of sizes, from system scales to electron gyroradius scales. Turbulence

is a non-linear, non-local complex system with infinitely many degrees of freedom.

This leads to a chaotic and irregular motion that depends highly sensitively on initial

conditions. In effect, individual particle or field dynamics become unpredictable and

irreproducible, even though the underlying equations of motion are well known. This

necessitates a statistical perspective on the physics and renders averages and distribu-

tions the important observables.

There are, however, also multiple effects that differentiate plasma turbulence from its

neutral fluid counterpart. Most notably, kinetic effects, i.e. effects that depend on

the particular velocity distribution of the plasma, become relevant. The interaction

of electromagnetic waves and particles gives rise to Landau damping [24], which acts

as an additional channel of dissipation besides collisions. This alters the classic fluid

turbulence picture of Richardson’s energy cascade [25], involving a large-scale energy

injection, inertial cascade, and small-scale dissipation. Not only the dissipation range

is different, but also the energy injection is more complex, as can be seen by considering

the growth rate spectra of plasma instabilities (see later chapters). One typically finds

a wide range of unstable modes from reactor scales down to electron scales that all

interact in the full turbulent system. Plasma turbulence in a tokamak is not only

fuelled at a single scale but by a broad spectrum of modes. Consequently, there is no

known universal inertial range for plasmas that would be similar to Kolmogorov’s K41

theory [26, 27] for Navier-Stokes turbulence.

The strong magnetic field in a tokamak renders the turbulence quasi-2D, as is visualized
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1. Introduction

in Fig. 1.5. Along the magnetic field lines, transport is very fast, which creates strongly

elongated eddies that display complex dynamics, mainly in the poloidal cross-section.

Therefore, as in fluid 2D turbulence, energy cascades in both directions exist in tokamak

plasmas. Energy can be transferred to smaller structures as well as to larger ones. Large

zonal flows, for instance, are an established saturation mechanism for turbulence driven

by specific instabilities [28].

The free energy driving the turbulence in a tokamak is provided by radial temperature

and density gradients. In the edge region of tokamak plasmas - the focus of this

thesis - these gradients can become particularly large. The relation of different driving

gradients to each other and further physical parameters like collisionality and plasma

β determine the character of the turbulent state. More details on that are discussed

in the result sections of this thesis.

The study of plasma turbulence greatly profits from direct numerical simulations and

high-performance computing. Analytical results derived from first principles are even

less feasible for plasma turbulence than for the famously difficult Navier-Stokes equa-

tions of neutral fluids. However, since the governing equations of motion are compara-

tively easy to set up, plasma turbulence is a prime candidate for numerical simulations.

For plasma turbulence, a hierarchy of models has evolved. The highest fidelity models

are fully kinetic, taking into account the complete phase space dynamics of the plasma.

The next stage is gyrokinetic models, which try to retain most relevant kinetic effects at

drastically reduced computationally cost. This is the model of choice in this thesis and

is discussed in detail in the following chapter. The next stage is various fluid models

(MHD see e.g. JOREK code [29], Braginskii see e.g. GRILLIX code [30]) that do not

include kinetic effects but can be very effective in high collisionality regions of tokamak

plasmas, like the scrape-off layer. The fastest models with the least fidelity are quasi-

linear models that do not directly simulate the nonlinear turbulence but only solve for

linear instabilities and apply fixed saturation rules. For traditional core turbulence,

these models (e.g. TGLF [31, 32] or QuaLiKiz [33, 34]) are very successful in predicting

turbulent fluxes. The success of quasi-linear models demonstrates the strong influence

the driving instabilities have on the nonlinear turbulent state. For the edge region

and, in particular, the pedestal (see next section), quasi-linear models are just being

developed. Edge pedestal turbulence is much less well understood than tokamak core

turbulence due to strong gradients and the proximity to the open field line region. This

motivates code extensions and turbulence characterization like the ones presented in

this thesis.
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1.6. The High-confinement mode (H-mode)

Fig. 1.5.: 3D rendering of a GENE turbulence simulation of a tokamak. Taken from
genecode.org .

Fig. 1.6.: Left: Illustration of the H-mode pedestal. Reprinted from [35], with the permission
of AIP Publishing. Right: Comparison of typical L-mode with H-mode pressure profiles.
Reproduced from [36] with permission from IAEA.

1.6. The High-confinement mode (H-mode)

The high-confinement mode (H-mode) is characterized by the presence of an edge

transport barrier that lifts the pressure profile, see Fig. 1.6. In this pedestal, turbulent

transport is suppressed, and the gradients of temperature and density are increased.

The shape of the pressure profile in the core is usually stiff, i.e. an increase in heating

power does not significantly alter the profile but causes more turbulent transport at

barely changed profiles. Consequently, the plasma core pressure in H-mode is strongly

increased in comparison to the low-confinement mode (L-mode), since in H-mode, sim-

ilar core profile shapes are maintained at increased absolute values (see Fig. 1.6, right).

Hence, the H-mode pedestal, which is dominantly a plasma edge effect, influences the

whole plasma and improves fusion conditions in the core of the plasma device. In H-

mode, the energy confinement time increases by roughly a factor of two compared to
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1. Introduction

L-mode [37].

The H-mode was experimentally discovered in 1982 at the ASDEX tokamak [38]. It has

since then been reproduced at most large international tokamak experiments, including

JET and DIII-D [39]. It is the default high-performance scenario for ITER and many

demonstration reactor concepts.

H-mode is accessed by an increase in heating power, which triggers a bifurcation in the

plasma dynamics. It is a prime example of a self-organization phenomenon. Experi-

mental and theoretical studies show that a radial electric field and strong shear flows

build up that decorrelate turbulent eddies and thereby suppress turbulent transport.

The pedestal grows until it reaches large-scale stability limits that trigger modes that

flatten the gradients and destroy the pedestal. These Edge Localized Modes (ELMs)

have typical frequencies of 10-100 Hz and rapidly expel large amounts of energy and

particles (up to 15%) [40] from the plasma, which can damage the divertor. Hence,

ELMs have to be avoided in reactors, and a lot of experimental and theoretical re-

search is dedicated to the development of ELM suppression and ELM-free scenarios

with H-mode-like properties.

While a basic understanding of the H-mode is established, many open questions on

the precise dynamics, causal relationships, and parameter dependencies remain. In

particular, no predictive model exists for the threshold power of the L-H transition

PLH and many important properties of the pedestal. This means that state-of-the-art

predictions for essential properties of H-mode plasmas in future experiments are mainly

based on an extrapolation of experimental scaling laws rather than a physics-based

model. One approach to improving this situation is a first-principles characterization

of pedestal turbulence, as is performed in this thesis.

1.7. Figures of merit

In the last section of this chapter, I want to define more precisely what is meant by

good confinement and chart the progress achieved in fusion research towards net energy

gain.

The energy confinement time τE is defined as the ratio of the plasma energy W ≈
3V nT and the heating power P required to sustain the energy of the confined plasma:

τE = W/P . If the plasma was perfectly isolated, the confinement time would tend to

infinity, and if transport losses increase, the power to sustain the plasma energy has to

increase as well, lowering the energy confinement time.
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To achieve net energy gain, the goal is for the plasma to heat itself by the fusion born

α particles in a self-sustaining reaction. This is called ignition, and the ignited plasma

is referred to as a burning plasma. One can derive a condition on the combination of

density n, temperature T , and confinement time τE for the plasma to reach ignition,

the so-called Lawson criterion. The product nτE is called Lawson parameter, and the

product of all three essential quantities nTτE is called triple product.

The energy gain factor Q compares the power generated by fusion to the external

heating power: Q = Pfus/Pext. Breakeven (Q = 1) is reached when the fusion reac-

tions create the same amount of power as is externally applied. In a burning plasma,

Q reaches infinity since no external heating power is required (Pext = 0). There is

ambiguity in how to define the external heating power. One can either use only the

power that directly heats the plasma or the wall-plug power that is required to run

the heating systems, which takes into account their efficiency losses. The first option

yields the scientific Q factor Qsci, and the latter the engineering Q factor Qeng. For

an electricity-generating fusion device, Qeng > 1 is decisive. The record for Qsci in

a tokamak is 0.67, set up in 1997 at JET. Qsci > 1 has been achieved in an inertial

confinement experiment [9], where, however, Qeng ≪ 1 due to the low efficiency of

the driving lasers. The target for ITER is to achieve Qsci = 10. Fig. 1.7 shows the

progress in the achieved Lawson parameter and Qsci across many different experiments

in a log-log plot.

1.8. Thesis outline

This thesis is structured as follows: This first chapter has given a brief overview of the

field of fusion research and has provided the broad context for this thesis. Chapter

2 introduces the mathematical framework of gyrokinetics, which is used to describe

plasma dynamics throughout this thesis. Chapter 3 contains the first new results: Af-

ter a short description of the GENE code, a new electromagnetic upgrade, which has

been implemented within this thesis, is described. Furthermore, the applicability of

the GENE code in pedestal conditions is discussed. In particular, the MHD limit of

large modes is studied linearly, and the role of parallel hyperdiffusion is critically exam-

ined. Chapter 4 has two purposes: It introduces the machinery used in the following

chapters to analyze turbulence simulations and reviews the current understanding of

pedestal turbulence. Chapters 5 and 6 then analyze pedestal turbulence in two shots

from world-leading fusion experiments, AUG and JET, in a comprehensive gyrokinetic

analysis employing the new code upgrade presented in Chapter 3. Finally, in Chapter
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1. Introduction

Fig. 1.7.: Lawson parameter achieved in different experiments. Illustrating progress, variety
of approaches, and strong impact of tokamak experiments (red dots). Taken from [16].

7, conclusions are drawn, and an outlook is given.

Each chapter begins with a short overview and ends with a brief summary, which

includes, for the first chapters some recommended further literature.

The appendix contains more details on the derivation of the electromagnetic upgrade,

simulation settings and short introductions to the experiments AUG and JET, as well

as the supercomputers used for the simulations presented in this thesis. Symbols and

abbreviations are listed in the Nomenclature.

1.9. Summary

This introduction has motivated the study of plasma turbulence in nuclear fusion re-

search. The attractive promise of fusion power plants and the crucial role plasma tur-

bulence takes for plasma confinement, and hence the size and cost of power plants, have

been outlined. The academic interest in plasma turbulence as a not well-understood

prime example of complex, collective behavior featuring emergent phenomena has been

highlighted. Furthermore, the need for high-performance computing to simulate plasma

micro-dynamics on relevant scales has been outlined and the importance of an improved
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1.9. Summary

understanding of H-mode pedestal turbulence has been motivated. Before an upgrade

of the numerical tools used in this thesis is discussed and applied to experimental

scenarios in later chapters, the next chapter introduces the underlying mathematical

model: Gyrokinetics.

Recommended further literature

• Energy and economic charts: www.ourworldindata.org/energy and references

therein.

• On the history of fusion research: D. Clery, A Piece of the Sun: The Quest for

Fusion Energy, Overlook Press, 2013.

• Overview of fusion start-ups: www.fusionindustryassociation.org

• Online lecture on the basics of fusion research by Alf Köhn-Seemann from the

University of Stuttgart: https://www.youtube.com/@DerPlasma/

• Review on the H-mode: Wagner, F. A Quarter-Century of H-mode Studies.

Plasma Physics and Controlled Fusion 49, B1–B33. doi:10.1088/0741-3335/

49/12B/S01 (12B 2007)

• Turbulence in fluids - well-written background: Davidson, P. A. Turbulence: An

Introduction for Scientists and Engineers (Oxford University Press, Oxford; New

York, 2004)

• Most fusion plasma physics textbooks cover most of the topics introduced in this

chapter. E.g. in German: Stroth, U. Plasmaphysik: Phänomene, Grundlagen

und Anwendungen 2. Auflage (Springer Spektrum, Berlin, 2018) or in English:

Stacey, W. M. Fusion Plasma Physics (Wiley-VCH ; John Wiley [distributor],

Weinheim : Chichester, 2005).
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2. Mathematical framework:

Gyrokinetics

This chapter introduces the model used for the description of plasma dynamics through-

out this thesis. Starting from single-particle dynamics, the kinetic description of plasma

dynamics and the gyrokinetic Vlasov-Maxwell system are presented. The derivation of

gyrokinetics and its underlying assumptions is outlined, and its validity in the pedestal

is examined.

2.1. Particle trajectories in strongly magnetized

plasmas

The mathematical description of plasma dynamics starts simple: With the motion of

single particles under the forces of external electric and magnetic fields. The principal

force acting on the charged particles is the Lorentz force F = q(E + v × B), where q

is the charge of the particle, E an electric field, v the velocity of the charged particle

and B a magnetic field. Different kinds of motions are generated depending on the

spatial and temporal properties of the electromagnetic fields. Homogenous magnetic

fields will induce different motions than magnetic fields that have peaks and valleys,

and stationary electric fields will generate less varied trajectories than electric fields

that change in time, to name just a few examples. Under a strong anisotropic magnetic

field, the dynamics of particles can be sensibly decomposed in two kinds: The one along

the magnetic field lines and the one in the plane perpendicular to it. This is the case

for a tokamak.

The principal motion of charged particles in a homogeneous magnetic field without

electric fields is spiraling around the field line. Along the magnetic field line, the motion

is undisturbed and in the perpendicular plane the particle has a circular trajectory with

a frequency of ωc = qB/m, where m is the mass of the particle, called gyrofrequency

and a radius ρL = v⊥/ωc = mv⊥/qB =
√

2mT/qB. Associated with the periodic

gyromotion as an adiabatic invariant is the magnetic moment µ = ρLqv⊥/2 =
1/2mv2

⊥

B
.

It is conserved under sufficiently slow changes.
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2. Mathematical framework: Gyrokinetics

Fig. 2.1.: Illustration of the magnetic field structure and particle orbits in a tokamak. Taken
from [43]. Reproduced with permission from Springer Nature.

Fig. 2.2.: Illustration of guiding center and drifts in gyrokinetic theory. The full particle
motion consists of a gyromotion around the guiding center trajectory. The guiding center
trajectory follows the perturbed magnetic field line (solid, labeled B) in contrast to the
equilibrium magnetic field (dashed, labeled B0) and is subject to drifts, e.g. due to electric
fields. Reproduced from [44] with permission from G.Howes and AAS.
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2.1. Particle trajectories in strongly magnetized plasmas

2.1.1. Parallel motion: Trapped and passing particles

The motion along the field line becomes more complex when the magnetic field strength

varies along the magnetic field line. This is the case in a tokamak where B ∝ 1/R,

with the major radius R, i.e. the magnetic field is stronger on the inside than on the

outside of the torus. In this case, particles are decelerated towards the increasing

magnetic field, and if their initial parallel motion is slow enough, they are turned

around. This is also called magnetic mirror effect, as particles are reflected by the

increasing magnetic field. Whether a particle gets reflected is determined by the so-

called pitch angle between the magnetic field and the particle’s velocity: tanα = v⊥/v‖.

This effect can cause particles to be trapped at the outboard side of the tokamak. One

calls these trapped particles and the other passing particles. The orbits of the trapped

particles are named after their shape in the poloidal projection "banana orbits". They

play an important part in neoclassic transport theory, where they can appear as the

step widths. Depending on the reflection point of the particles, one can distinguish

between deeply trapped particles and others. The changing magnetic field strength has

a noteworthy consequence for the size of the Larmor radius. It is not constant around

the torus but is largest at the outboard midplane and gets smallest on the inboard

side.

2.1.2. Perpendicular motion: Drifts

The gyromotion of the particle in the perpendicular plane is modified if an additional

force is acting. In a strong magnetic field, the resulting motion can be viewed as a

superposition of the gyromotion and a drift motion with the velocity vD = F ×B/qB2.

Depending on the force, these drifts have different properties and may, for example,

be in equal or opposite directions for ions and electrons. The following subsections

introduce the most important drifts.

E × B drift

This drift occurs in the presence of a time-independent electric field. With the force

F = qE, the drift velocity becomes vD = vE×B = E×B/B2. This is a very important

drift for large-scale plasma motion and in the dynamics of plasma microinstabilities.

Notice that this drift does neither depend on the mass nor the charge of the particle.

So, electrons and heavy ions drift at the same speed in the same direction. Hence, the

E ×B drift does not create a current.
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2. Mathematical framework: Gyrokinetics

Polarization drift

This drift occurs in the presence of a time-varying electric field, where the change of the

electric field is much slower than the gyrofreqeuncy. The drift velocity is vpol = m
qB2

∂E⊥

∂t
,

where E⊥ is the electric field component perpendicular to the magnetic field lines.

The drift depends on the charge of the particle, so electrons and ions drift in opposite

directions. It depends on the mass, so it is more relevant for ions than for electrons.

The polarization drift is not included in standard gyrokinetics.

∇B drift

This drift occurs in the presence of a perpendicular magnetic field strength gradient.

With the force F = −1
2
mv2

⊥∇⊥B/B the drift velocity becomes v∇B = −mv2
⊥

2q
∇⊥B ×

B/B3, where ∇⊥B is the gradient of the magnetic field strength B in the direction

perpendicular to the magnetic field. The drift depends on the charge of the particle,

so electrons and ions drift in opposite directions. Furthermore, it depends on the

perpendicular energy of the particles.

Curvature drift

This drift occurs in the presence of curved magnetic field lines. With a centrifugal-

like force F = m
v2

‖

Rc

Rc

Rc
, where the radius of curvature Rc can be related to magnetic

field derivatives such that the drift velocity becomes vc =
mv2

‖

qB
(∇ × b̂)⊥. The drift

depends on the charge of the particle, so electrons and ions drift in opposite directions.

Furthermore, it depends on the parallel energy of the particles.

Diamagnetic drift

This drift does not occur in the single particle description because it is a collective phe-

nomenon relying on the concept of pressure p like e.g. in the fluid description. F = ∇p
then vdia = −∇p×B/(qnB2), where n is the density. The name of the drift is derived

from the diamagnetic current jdia = −∇p × B/B2, which reduces the magnetic field

strength in the plasma. The diamagnetic drift of ions and electrons points in opposite

directions. The diamagnetic drift is not explicitly included in standard gyrokinetics.
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2.2. Kinetic framework

2.2. Kinetic framework

Tracking each particle of the plasma individually is not a feasible approach to studying

the collective dynamics of the plasma, given plasmas of interest have particle densities

of about 1020m−3 in volumes of 10 − 100m3. A comprehensive description of plasma

dynamics is possible with kinetic theory. The central element of kinetic theory is the

distribution function f , which is a probability density in 6-dimensional phase space

spanned by 3 space and 3 velocity coordinates. Integrating f over some phase space

volume fdx3dv3 gives the probability of finding particles with a certain velocity at a

certain position. The phase space distribution f replaces individual discrete particles

with a continuum description in phase space, akin to the continuum description of fluids

in real space. By calculating moments of the distribution function, all important plasma

properties can be calculated: densities, velocities, temperatures, etc. Of particular

importance is the kinetic description when the plasma is not well thermalized, i.e. the

distribution of velocities deviates from a Maxwellian distribution, which is implicitly

assumed in an MHD description. In this case, the description becomes more accurate

when retaining the full velocity space distribution and not collapsing it to a single

scalar, the temperature. There are physical effects that are only revealed by a kinetic

treatment, Landau damping being the prime example. The time evolution of the phase

space distribution function f for a plasma species is given in the absence of collisions

by the Vlasov equation:

df

dt
=

∂

∂t
f +

∂x

∂t
· ∇f +

∂v

∂t
· ∇vf = 0, (2.1)

where
∂v

∂t
=

q

m
(E + v × B) (2.2)

is given by the Lorentz force. Each particle species (e.g. electrons and ions) is described

by its own distribution function. The equation is closed by the Maxwell equations,

which determine the E and B fields due to the generated current density j and charge

density ρ. Ampère’s law:

∇ × B =
4π

c
j +

1

c

∂E

∂t
(2.3)

Law of induction:

∇ × E = −1

c

∂B

∂t
(2.4)

Gauss’s law (takes the form of Poisson’s equation, when E is expressed via its potential

φ, such that E = −∇φ):

∇ · E = −∇2φ = 4πρ (2.5)
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Gauss’s law for magnetism:

∇ · B = 0 (2.6)

.

2.3. Gyrokinetics

The kinetic plasma description introduced in the previous section is a valid and compre-

hensive description of plasma dynamics. In fact, it is more complete and requires fewer

assumptions than the description we will employ, called gyrokinetics. However, while

the kinetic description is easy to understand conceptually, it carries a prohibitively

high computational cost in many real-world applications. Based on estimates of G.

Hammett for the speed-up due to gyrokinetics compared to a brute-force fully kinetic

algorithm (about at least 108) [45] and the experiences gained in this thesis (simulat-

ing 1 ms of an AUG pedestal in a global simulation took about 12 days on 6000 CPU

cores), one can conclude that a fully kinetic simulation of a realistic scenario would

take years on modern supercomputers. The name of the game is, therefore, to find

ways in which the computational cost can be reduced without giving up too much of

the relevant physics. The central insight underlying gyrokinetics is the time-scale sepa-

ration between the fast gyromotion and comparatively slow motions dominating radial

transport processes. Consequently, one can afford to ignore details of the gyromotion

and still capture plasma turbulence. This is achieved by averaging over the gyromotion

and treating particles as charged rings, following a guiding-center (or, more precisely,

gyro-center). The reduction in computational cost is realized by a larger time step

that does not have to resolve the fast gyromotion and by a reduction of phase space

dimensions from the 6D fully kinetic phase space to a 5D gyrokinetic phase space. De-

riving the appropriately modified Vlasov-Maxwell system is a formidable mathematical

challenge, in particular, if important properties of the system, like energy conservation,

should be retained exactly. The critical steps are outlined in the following subsections.

As we progress, we will trade in conceptual and mathematical simplicity for reduced

computational cost. In the end, we will arrive at a system that exploits many physical

properties of the plasma dynamics and can be simulated much faster. The numerical

implementation of this system is discussed in the next chapter.

We follow Ref. [46] in the derivation.
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2.3. Gyrokinetics

2.3.1. Hamiltonian formulation & guiding-center coordinates

The first important step for deriving the gyrokinetic plasma description is reformulat-

ing the dynamics in terms of Hamiltonian mechanics. This framework provides the

tools for a rigorous elimination of the fast gyromotion. Instead of the forces that were

the focus of attention in the Newtonian perspective on drifts in the previous sections,

the energetics of the system become central. The Hamiltonian for a particle in electro-

magnetic fields can be written as:

H =
p2

2m
+ eφ, (2.7)

where p = mv is the kinetic momentum, m the mass, e the charge and φ the electric

potential. The Lagrangian is

Γ =
(
e

c
A + p

)

· dx −H, (2.8)

where A is the magnetic vector potential. From the Hamiltonian, the equations of

motion can be derived via Hamilton’s equations or, equivalently, via the Euler-Lagrange

equations from the Lagrangian,

d

dt

(

∂Γ

∂q̇

)

− ∂Γ

∂q
= 0, (2.9)

where q are generalized coordinates. This puts the Hamiltonian or Lagrangian as the

central object. All necessary manipulations are performed on the Hamiltonian, and

then the equations of motion can be derived.

To render the fast gyromotion ignorable, we transform the phase space coordinates.

In naive cartesian coordinates, the gyromotion is, in general, part of all coordinate

dimensions. To eliminate part of it, it is desirable to construct a coordinate system

such that the gyromotion influences only one or a few of the coordinates. A clever

coordinate choice for this purpose is to align the velocity coordinates with the principle

particle motion, using essentially cylindrical coordinates in velocity space along the

magnetic field lines. One dimension is the velocity parallel to the magnetic field lines

v||, another dimension is the size of the gyroradius, which encodes the magnitude of the

perpendicular velocity v⊥ and the third dimension is an angle θ measuring the position

on the gyrocircle determining the direction of the perpendicular velocity (gyrophase).

Typically, not the gyroradius size but the magnetic moment µ = ρLqv⊥/2 =
1/2mv2

⊥

B

is used as the coordinate. It has the advantage of being an adiabatic invariant of the

particle motion, i.e. for slow changes in the magnetic field µ is conserved. Together with
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2. Mathematical framework: Gyrokinetics

three spatial coordinates that contain the position of the guiding center, this system

is called "guiding center coordinates". This has transformed the part of the motion we

are not interested in into a single dimension: The gyrophase angle θ.

The fast gyromotion angle and the magnetic moment µ can be identified as an action-

angle coordinate pair. The dependence of the Hamiltonian on θ is eliminated, and µ

is conserved. This allows one to derive the following Vlasov equation:

dF

dt
+
dX

dt
· ∇F +

dv‖

dt

∂F

∂v‖

= 0. (2.10)

Compare this equation to the original kinetic Vlasov equation Eq. 2.1. The velocity

derivative term is drastically reduced. Only the parallel derivative remains since, for the

other two velocity coordinates, one of the factors is zero (dµ/dt = 0 and dF/dθ = 0).

For a homogeneous plasma without any fluctuations, we have reached the goal: Eq. 2.10

does not depend on the gyroangle, and the new distribution function F lives in a 5D

phase space instead of the 6D kinetic one. However, the plasmas we are interested in are

neither homogeneous nor in equilibrium. The challenge is now to retain this structure

even though the electric and magnetic fields are, in general, changing in space and

time, which distorts the gyromotion, making it not exactly periodic. For arbitrarily

large and sudden changes of the electromagnetic fields, this is not possible. If particles

are not approximately gyrating, the whole guiding center approach ceases to make

sense. In this case, only the full 6D kinetic equation treats the dynamics appropriately.

If changes are, however, not too large and fast, there is a chance to salvage the 5D

phase space by a perturbative approach. This is done in two steps: The first for

small changes of the magnetic field in space, which will result in the guiding-center

Hamiltonian, whose equations of motion are the so-called drift-kinetic equations. The

second transformation is for small fluctuations of the E and B fields, which will result

in the gyro-center Hamiltonian, whose equation of motion is the gyrocenter Vlasov

equation. The following section specifies what is meant by small and slow changes.

2.3.2. Assumptions on the perturbations

The gyrokinetic equations are designed to be valid for dynamics in which averaging

over the gyroradius instead of fully resolving the gyromotion of particles is a good

approximation. This approximation is good if the dynamics fulfill several requirements

on their spatio-temporal properties. Here, we introduce them. The assumptions pre-

suppose a decomposition of the distribution function as well as electric and magnetic

field into time-independent background parts and time-dependent fluctuating parts,
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2.3. Gyrokinetics

Fig. 2.3.: Illustration of the gradient scale length using a fitted electron temperature profile
from a real AUG shot (#31529). Gradient scale lengths at two positions are shown.

e.g. F = F0 + f1 with the background F0 and fluctuations f1. Mathematically, the as-

sumptions are expressed in terms of small non-dimensional ordering parameters ǫ ≪ 1.

They also make frequent use of the gradient scale length LX as a measure for change

in space or time. Fig. 2.3 shows the gradient scale length concept. It is frequently

used to measure the change of profiles. Its geometric interpretation is the base of the

triangle spanned by the slope ∇rX of X at r and the height X(r). It is essentially a

scaled version of the gradient defined by the relation ∇rX = X(r)/ − LX . Resulting

in LX = −X/∇rX = 1/∇r ln(X). The figure illustrates that a change in the gradient

scale length is caused by a change in gradient and absolute value. In the following, Lr

refers to spatial gradient scales and Lt
X = ∂ ln(X)/∂t to temporal gradient scales.

The gyrokinetic ordering assumptions on perturbations employed in the following are:

• Relative fluctuations of the distribution F , the electric field E and the magnetic

field B are small: f1/F0 ≈ eδφ/Te ≈ δB/B ≈ ǫδ ≪ 1

• On the size of a gyroradius, the background magnetic field should not change too

much. Mathematically: ρi/L
r
B ≈ ǫB ≪ 1.

• During one gyroorbit, the background magnetic field should not change too much.

The duration of a gyroorbit is the inverse of the gyrofrequency ωc. Mathemati-

cally: 1/ωc1/L
t
B ≈ ǫ3

B ≪ 1.

• On the size of a gyroradius, the background distribution F0 should not change too

much. F0 contains information about temperature and density profiles. There-

fore, this is also a condition on the temperature and density gradients. Mathe-

matically: ρi/L
r
F ≈ ǫF ≪ 1.

• During one gyroorbit, the background distribution F0 should not change too
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2. Mathematical framework: Gyrokinetics

much. The duration of a gyroorbit is the inverse of the gyrofrequency ωc. Math-

ematically: 1/ωc1/L
t
F ≈ ǫ3

F ≪ 1.

• During one gyroorbit, the distribution function, and the electromagnetic fields

should not fluctuate too much. Mathematically: ω/ωc ≈ ǫω ≪ 1.

• Fluctuations of the distribution function and the electromagnetic fields in the

perpendicular direction are on the size of the gyroradius but much larger in the

parallel direction. Mathematically: k⊥ρi ≈ ǫ⊥ ≈ 1 and k⊥ ≫ k‖.

In summary, small fluctuations should be slow compared to the gyrofrequency, and

background changes should be large and slow compared to the gyromotion. These as-

sumptions define what is meant by small changes or small fluctuations in the following.

This ordering is the standard ordering inspired by core turbulence and is employed for

GENE. It is not unique.

2.3.3. Perturbative transforms to guiding-center and gyro-center

phase space

The transformation of phase space to guiding center coordinates has enabled us to

derive a Vlasov equation that is independent of the fast gyroangle θ. We want to

retain this independence even for small perturbations, in the sense defined in the pre-

vious section. Two types of perturbations will be considered: Changes of the magnetic

background field and fluctuations of the E and B field. For each perturbation, the

Hamiltonian/Lagrangian is transformed by a near-identity Lie transform (a method

from differential geometry, see e.g. Refs. [46, 47]) to a new Hamiltonian/Lagrangian

that restores the independence with respect to the fast gyromotion. The first trans-

formation dealing with changes of the magnetic background field yields the so-called

guiding-center Hamiltonian. It is an expansion in the small, non-dimensional parameter

ǫB.

Hgc =
p‖

2m
+ µB0. (2.11)

Γgc =
1

ǫB

e

c

(

A0 + ǫB
c

e
p‖b̂0 +O(ǫ2

B)
)

· dX + ǫB
mc

e
µdθ, (2.12)

where b̂0 = B0

B0
, e is the charge and m the mass of the particle species. Equations are

adapted from Ref. [46].

The second transformation, dealing with small fluctuations of the E and B fields,

yields the gyro-center Hamiltonian and Lagrangian. It is an expansion in the small,

non-dimensional parameter ǫδ. In the following 〈·〉 = 1/(2π)
∫

dθ denotes a gyroaverage
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2.3. Gyrokinetics

and {·} a Poisson bracket. The gyrocenter Hamiltonian is:

H̄gy = H̄0 + ǫδH̄1 + ǫ2
δH̄2, (2.13)

with

H̄1 = e〈δψgc〉 =e
〈

δφgc − v⊥

c
· δA⊥gc

〉

− ev‖

c
(1 − β)

〈

δA‖gc

〉

, (2.14)

H̄2 = − e2

2ω0

〈{

δΨ̃gc, δψ̃gc

}

0

〉

+
e2

2mc2

(〈

|δAgc|2
〉

−β
〈

δA‖gc

〉2
)

+ α 〈δA⊥gc〉 · b̂0

B0

× ∇H̄1,

(2.15)

where

δΨ̃gc =
∫

δψ̃gcdθ =
∫

δψgc − 〈δψgc〉dθ, (2.16)

and the first-order effective potential δψgc is defined in the equation for H̄1. The

gyrocenter Langragian is:

Γgy =
e

c

(

A0 + ǫδδAgy +
c

e
p̄‖b̂0

)

· dX̄ +
mc

e
µ̄dθ̄, (2.17)

with the gyrocenter magnetic perturbation

δAgy = α〈δA⊥gc〉 + β〈δA‖gc〉b̂0. (2.18)

Equations are adapted from Ref. [46]. If α = β = 0 the model is called Hamiltonian (or

p‖) gyrocenter model; if α = β = 1 the model is called symplectic (or v‖) gyrocenter

model. GENE uses a parallel symplectic gyrocenter model (α = 0, β = 1). It is

presented in the next section.

2.3.4. Gyrokinetic Vlasov equation

From the gyrocenter Hamiltonian, finally, the gyrokinetic Vlasov equation can be de-

rived. One arrives at an equation that appears identical to the Vlasov equation Eq. 2.10

we motivated earlier. However, note that F now denotes a different distribution func-

tion: It is the distribution of gyrocenters in gyrocenter phase space instead of the

unperturbed guiding-center distribution.

∂F

∂t
+
dX

dt
· ∇F +

dv‖

dt

∂F

∂v‖

= 0, (2.19)
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2. Mathematical framework: Gyrokinetics

where the equations of motion for dX
dt

and
dv‖

dt
can be calculated from the gyrocenter

Lagrangian or Hamiltonian using the Euler-Langrange or Hamilton equations, respec-

tively. The parallel velocity and perpendicular drifts are

dX

dt
= v‖b̂0 +

B0

B∗
0||

(vξ̄ + v∇B + vc), (2.20)

with the effective magnetic field B∗
0‖ = b̂ · B∗

0 = b̂∇ × (A0 + B0v‖/ωc). The parallel

acceleration is

dv‖

dt
= −dX

dt
·
(

q∇φ̄1 + +µ∇(B0 + B̄1||)
1

mv‖

)

− q

mc

∂Ā1‖

∂t
. (2.21)

In these expression the modified potential

χ̄1 := φ̄1 − v‖

c
Ā1‖ +

µ

q
B̄1‖, (2.22)

the generalized E ×B drift

vχ̄ =
c

B2
0

B0 × ∇χ̄1, (2.23)

the ∇B drift

v∇B0 =
µc

qB2
0

B0 × ∇B0, (2.24)

and the curvature drift

vc =
v2

‖

ωc

(

∇ × b̂0

)

⊥
(2.25)

were used. Equations are adapted from Ref. [48]. Overbars denote gyroaveraged fields,

with the gyroaverage operator G = 1
2π

∫

dθ. A crucial part of the dynamics described by

this equation is the advection by the generalized E ×B drift vχ̄, which enters directly

the advection term dX/dt · ∇F and also the parallel acceleration. It is determined

by the self-generated electric and magnetic potentials (see Maxwell’s equations in the

following subsection) and thereby introduces a nonlinear self-interaction of the plasma

that is a prerequisite for the occurrence of turbulent behavior.

The δf splitting

We analyze the gyrokinetic Vlasov equation further by explicitly splitting the distribu-

tion function F into a time-independent background F0 and a small perturbation f1.

This is referred to as δf splitting and is used in the GENE code. We obtain:
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2.3. Gyrokinetics

∂(F0 + f1)

∂t
− q

mc

∂Ā1‖

∂t

∂(F0 + f1)

∂v‖

+



v‖b̂ +
B

B∗
||

(v∇B + vχ + vc)





·
(

∇(F0 + f1) − 1

mv‖

(

µ∇(B + B̄1||) + q∇φ̄1

) ∂(F0 + f1)

∂v‖

)

= 0.

(2.26)

We can now identify terms of different order in the expansion parameter ǫ, where we

treat the different ǫB, ǫF , ǫδ to be of the same order. Due to the strong anisotropy,

derivatives of fluctuating quantities with respect to perpendicular directions are as-

sumed to be of order 1/ρref. In contrast, derivatives of fluctuating quantities in the

parallel direction are of order 1/Lref. To put it more intuitively: Fluctuating quan-

tities are small (f1 ≈ O(ǫ)), and they also change only little along the field lines

(∂f1/∂z ≈ O(ǫ)) but perpendicular to the magnetic field they may change so strongly

that ∂f1/∂x ≈ O(1). Derivatives of equilibrium quantities are assumed to be of or-

der 1/Lref in all directions. Furthermore, the drift velocities are in the perpendicular

direction, so dot products with the drift velocities select the perpendicular components.

0th-order terms:

v‖b̂ ·
(

∇F0 − 1

mv‖

µ∇B∂F0

∂v‖

)

= 0. (2.27)

1st-order terms:

∂f1

∂t
=
q

mc

∂Ā1‖

∂t

∂F0

∂v‖

− B

B∗
||

(v∇B + vχ + vc) ·
(

∇(F0 + f1) − 1

mv‖

(

µ∇(B + B̄1||) + q∇φ̄1

) ∂F0

∂v‖

)

+ v‖b̂ ·
(

∇f1 − 1

mv‖

(

µ∇B∂f1

∂v‖

− ∇(qφ̄1 + µB̄1‖)
∂F0

∂v‖

))

.

(2.28)

It has been shown that higher-order terms can be usually neglected [49]. Nonetheless,

for completeness, the 2nd order terms:

q

mc

∂Ā1‖

∂t

∂f1

∂v‖

− v‖b̂0 · 1

mv‖

[

µ∇B̄1|| + q∇φ̄1

] ∂f1

∂v‖

− B

B∗
||

(vB0 + vχ̄ + vc) ·
(

1

mv‖

[

µ∇B + µ∇B̄1|| + q∇φ̄1

] ∂f1

∂v‖

)

= 0.

(2.29)

Only 0th- and 1st-order terms are retained in the GENE code. Note that the first-

order terms contain linear terms as well as terms that contain products of derivatives
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2. Mathematical framework: Gyrokinetics

of fluctuating quantities - in that sense, they are nonlinear, but still of O(ǫ), due to

the perpendicular derivatives.

2.3.5. Gyrokinetic Maxwell equations

We have so far neglected the implications of the phase space transformations for the

Maxwell equations. However, they must be appropriately transformed as well, such

that they are defined on the same phase space as the Vlasov equation and can close

the Vlasov-Maxwell system using the moments of the correct phase space distribution.

Moments calculation

In general, the a-th moment in v‖ and b-th moment in v⊥ is defined as follows:

Mab(x) =
∫

fpc(x,v)va
‖v

b
⊥d

3v (2.30)

This definition uses the particle distribution function fpc. However, since we simulate

the evolution of the gyrocenter distribution, we need to express the moments in terms

of the gyrocenter distribution. The necessary transform from gyrocenter phase space to

particle phase space is done by the so-called pull-back operator (a term from differential

geometry) T ∗. The inverse transformation(from particle to gyrocenter phase space) is

done by the push-forward operator T . The pull-back operator is defined in terms of

generating functions G1, the details of which can be found e.g. in Ref. [50]:

T ∗f1 = f1 +GX
1 · ∇F0 +G

v‖

1

∂F0

∂v‖

+Gµ
1

∂F0

∂µ
(2.31)

Under the assumption of a local Maxwellian background distribution and in the limit

of small ǫB, it takes the form

T ∗f1 = f1 −
(

qφ̃1 − µB̄1‖

) F0

T0

(2.32)

The definition of moments becomes

Mab(x) =
1

m

∫

δ(X − x + ρ)T ∗fgy,1

(

X, v‖, µ
)

B∗
‖v

a
‖v

b
⊥ d3X dv‖dµdθ (2.33)

where fgy,1 is the gyrocenter distribution function. Based on this relation for the

moments, the field equations for the electric and magnetic potential can be formulated.
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Poisson equation for electric potential

The Poisson equation for the electric potential becomes

− ∇2φ = 4πρ = 4π
∑

s

qsn1s(x) = 4π
∑

s

qsM00,s(x) (2.34)

where the sum is over species s.

Two notable natural limits exist for the relation between the electric potential and the

particle densities, which allow one to simplify either the electron or ion dynamics. In

the limit of small electron mass me/mi → 0, electrons have vanishing gyroradius and an

instantaneous reaction to electrostatic potential fluctuations. The electron distribution

function is not evolved in time, and the Poisson equation for the electrons simplifies to

a modified Boltzmann relation:

e(φ1 − 〈φ1〉F S)

T0e

=
n1e

n0e

(2.35)

where 〈·〉F S denotes a flux surface average. This limit is referred to as adiabatic elec-

trons.

In the limit of short-wavelength fluctuations, gyroaverages over the ion gyroradius

vanish. The Poisson equation for the ions simplifies to the Boltzmann relation:

− qiφ1

T0i

=
n1i

n0i

(2.36)

This limit is referred to as adiabatic ions.

Ampère’s law for magnetic potential

Ampère’s law can be written as

∇ × B = ∇ × (∇ × A) = −∇2A =
4π

c
j (2.37)

where we have used the Coulomb gauge ∇ · A = 0 and have neglected the presence

of an equilibrium E field. To formulate field equations, the magnetic vector potential

is decomposed into parallel and perpendicular components. The field equation for the

parallel component of the vector potential, which expresses fluctuations perpendicular

to the magnetic field, is:

− ∇2
⊥Ā1‖ =

4π

c
j1‖ =

4π

c

∑

s

qsM10,s(x) (2.38)

31



2. Mathematical framework: Gyrokinetics

The field equation for the perpendicular components of the vector potential, which

expresses compressional magnetic fluctuations (B‖) along the magnetic field lines, is:

(∇ × B1)⊥ =
4π

c
j1⊥ =

4π

c

∑

s

qsM01,s(x) (2.39)

As in most gyrokinetic codes, B‖ fluctuations are, at the moment, only implemented

for local simulations in GENE.

2.3.6. Collisions

So far, our plasma model contains the interaction of charged particles via self-generated

electromagnetic fields. This is, however, only part of the full dynamics. There are also

direct interactions between two or more particles in the form of collisions. This requires

an extension of the collisionless Vlasov equation to a Boltzmann-type equation that

includes some kind of collision operator C.

∂F

∂t
+
dX

dt
· ∇F +

dv‖

dt

∂F

∂v‖

= C(F ) (2.40)

The collisions provide dissipation and can have an important influence on the stability

of modes. In general, collision frequencies in a hot plasma are low, but in particular, in

tokamak edge plasma, where temperatures decrease, the influence of collisions becomes

increasingly important. This can, for example, affect trapped particle modes that are

stabilized by the de-trapping of particles due to collisions. Throughout this thesis, I

will also refer to the equation with collisions as Vlasov equation.

2.3.7. Validity of gyrokinetics in the pedestal

Gyrokinetics has mainly been built on assumptions derived from experimental mea-

surements of tokamak core turbulence. The validity of gyrokinetics in the pedestal is,

therefore, a topic of active research.

One important aspect of the gyrokinetic assumptions is the gyroradius size compared to

changes of the background distribution F0, which should be small: ρi/LF ≪ 1. Fig. 2.4

shows this ratio for temperature and density profiles of an AUG pedestal. Over large

regions ρ/L < 0.05, but in the steepest gradient region, it peaks at around 0.15. This

shows that for ion scale turbulence, the limits of gyrokinetics are being tested locally

in the pedestal, and it is, to some extent, a matter of debate how well the assumptions
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Fig. 2.4.: Ratio of ion gyroradius and temperature/density scale lengths in the pedestal of
an ASDEX Upgrade shot (#31529).

still hold. Electron scale dynamics satisfies the limits more easily since the electron

gyroradius is a factor me/mD ≈ 1/60 smaller than the ion gyroradius.

A further gyrokinetic assumption that may be compromised in the pedestal concerns

the relative fluctuation amplitudes. In particular, close to the scrape-off layer, large

fluctuation amplitudes are being experimentally observed [51–53]. This is discussed in

some more detail in the context of δ-f and full-f models in Sec. 3.4.

These gyrokinetic limitations motivate the study of kinetic and hybrid kinetic-gyrokinetic

modes. In recent studies, kinetic corrections to ITG modes and the excitation of Ion

Bernstein waves have been investigated [54]. So far, these kinetic studies are restricted

to electrostatic simulations in slab geometry. It is, therefore, difficult to assess what

the role of these additional physics effects might be in real pedestal conditions, where

magnetic fluctuations and curvature are an essential part of the dynamics.

Since gyrokinetics is derived perturbatively, it is clear that not all aspects of kinetic

dynamics are captured and that kinetic simulations may modify the results of gy-

rokinetic simulations. The crucial question will be whether, in the full system, these

modifications are on the level of higher-order corrections or whether e.g. they introduce

additional relevant transport mechanisms. So far, no indications for the latter have

been reported. In light of the success of gyrokinetics in many tokamak conditions and

the above discussion, the approach for this thesis is to assume that gyrokinetics is able

to capture the vast majority of microturbulence in the pedestal.

2.4. Summary

This chapter has presented the mathematical equations used to describe plasma dynam-

ics in this thesis. The derivation of gyrokinetics has been outlined, and the gyrokinetic
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Vlasov-Maxwell system has been shown. Finally, possible limitations of gyrokinetics

in the pedestal were discussed. The next chapter will discuss the implementation of

these equations in the GENE code. Emphasis is put on an electromagnetic upgrade

and the challenges of applying GENE under pedestal conditions.

Recommended further literature

• Good introduction: Krommes, J. A. The Gyrokinetic Description of Microturbu-

lence in Magnetized Plasmas. Annual Review of Fluid Mechanics 44, 175–201.

doi:10.1146/annurev-fluid-120710-101223 (2012)

• The review paper: Brizard, A. J. & Hahm, T. S. Foundations of Nonlinear

Gyrokinetic Theory. Reviews of Modern Physics 79, 421–468. doi:10.1103/

RevModPhys.79.421 (2007)

• From a GENE perspective: Goerler, T. Multiscale Effects in Plasma Microtur-

bulence (Universität Ulm, Ulm, 2009) or Told, D. Gyrokinetic Microturbulence

in Transport Barriers PhD thesis (Universität Ulm, Ulm, 2012) or another PhD

thesis. They are all available on www.genecode.org.

• The derivation of gyrokinetics is heavily based on Hamiltonian and Lagrangian

mechanics as well as differential geometry. Any textbook on these topics can be

helpful. As a concise reminder, e.g. Stone, M. & Goldbart, P. Mathematics for

Physics: A Guided Tour for Graduate Students doi:10.1017/CBO9780511627040

(Cambridge University Press, Cambridge, 2009).
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3. Numerical implementation: The

GENE code

This chapter introduces the code used for all simulations presented in this thesis:

GENE, the Gyrokinetic Electromagnetic Numerical Experiment. The chapter begins

with a brief overview of GENE and its capabilities. The central part of this chapter is

an upgrade to the global, nonlinear, electromagnetic version of GENE, which has been

implemented within this thesis based on the proof-of-principle in [56]. Furthermore,

the bounds of applicability of GENE in the pedestal are highlighted. Linear, global

growth rates in the MHD limit are discussed, and the role of hyperdiffusion is critically

examined.

3.1. Overview

GENE is an efficient and versatile code for the simulation of plasma microturbulence

and analysis of gyrokinetic instabilities. It has a development history of more than 20

years [57], has been advanced in more than 15 PhD projects, comprises about 200,000

lines of code, and is used at a large number of research institutions worldwide. GENE

regularly runs on many of the largest supercomputers and is currently being ported

to GPUs to exploit the latest exascale HPC systems [58]. Together with a few other

codes like (C)GYRO, XGC, GTC, GKW, GEM, GYSELA, or ORB5, it is considered

to be one of the leading plasma microturbulence codes in the world.

Most parts of the code are written in object-oriented Fortran 2008, with extensive

diagnostic tools for post-processing written in IDL and Python. Development is co-

ordinated in a git repository, and CI/CD (continuous integration/continuous delivery)

practices are employed. For example, about 20 automated regression tests have to

be passed by each new pull request before it is merged into the master branch of

the development version. The extended development team comprises PhD students,

postdocs, and permanent staff at several different research institutes, with the core

development team based at IPP Garching. An official release version of the GENE

code is freely available upon request. Two other variants of the GENE code exist,

which are not further discussed or used within this thesis but mentioned for complete-

ness: GENE-3D [59, 60], the stellarator version of the GENE code, which is designed

for non-axisymmetric (3D) magnetic field geometries and GENE-X [61, 62], which is
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designed for studies of edge turbulence, including the scrape-off layer. Both are under

active development, and their most recent advances are documented in PhD theses by

Felix Wilms (GENE-3D) and Philipp Ulbl (GENE-X).

GENE provides many options for the numerical calculation of the time evolution of

the gyrokinetic Vlasov-Maxwell system introduced in the previous chapter. GENE

assumes δf splitting of the distribution function into an equilibrium and a fluctuating

part. Local Maxwellian and non-Maxwellian background distributions [63] can be used.

The algorithms are grid-based (Eulerian), in contrast to particle-based (Lagrangian)

Particle-In-Cell (PIC)-codes. GENE can solve the linearized and the full nonlinear

system of equations for an arbitrary number of plasma species. Linear simulations can

be performed as initial value simulations to identify the fastest-growing instabilities

and by an eigenvalue solver that solves for subdominant modes as well. Simulations

can be performed in radially local flux-tube geometry as well as in global simulation

domains [64]. In local simulations, background plasma densities and temperatures and

their gradients are radially constant across the simulation domain, whereas in global

simulations, they change. Simulations can be performed with fluctuations of only the

electric potential (electrostatic) and also with magnetic fluctuations (electromagnetic).

Also, neoclassic simulations can be conducted. Not all combinations of local/global,

linear/nonlinear, and electrostatic/electromagnetic can be used. In local flux-tube

geometry, all other combinations are possible. In global simulations, however, electro-

magnetic fluctuations are more difficult. In this thesis, an upgrade for perpendicular

magnetic fluctuations (Ā1‖) in global, nonlinear simulations is presented. The imple-

mentation of parallel, compressional magnetic fluctuations (B̄1‖) in global simulations

is currently under development. Multiple collision operators are available, ranging from

pitch-angle approximations to Sugama [56] and exact Landau-Boltzmann collision op-

erators [65]. Multiple magnetic geometries are available, including interfaces to g-eqdsk

(efit) for experimental geometries [50].

3.2. Coordinates & Numerics

3.2.1. Field aligned coordinates

The coordinates for the velocity space have been introduced in the previous chapter:

v‖ and µ. The real space coordinates remain to be fixed. To make use of the structure

of the plasma dynamics imposed by the background magnetic field, the real space

coordinates are chosen to be aligned with magnetic field lines. This is an efficient use

for the closed field line region but has a strong limitation for the simulation of the edge
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region of the plasma: At the separatrix and X-point, the field-aligned coordinates are

ill-defined, excluding this physically important part of the plasma from the simulation.

This drawback is addressed in the GENE-X code, which is based on the FCI (Flux-

Coordinate Independent) approach [66, 67]. In GENE, however, the simulation domain

remains restricted to the closed field line region.

The GENE coordinates are based on straight-field-line coordinates, with a radial coor-

dinate ρ that labels flux-surfaces, a modified poloidal angle (straight field-line angle) θ

and the unmodified toroidal angle φ. GENE uses the COCOS coordinate convention

index 12 [68]. The GENE coordinates are defined as:

x = ρ (3.1)

y = Cy[σIpq(ρ)θ − φ] (3.2)

z = θ (3.3)

where x is the radial coordinate, y the binormal coordinate or field-line label, z the

parallel coordinate. In the definition of y appear σIp , the sign of the plasma cur-

rent, and Cy. For most geometry interfaces Cy = ρ0

q0
σBt , where σBt is the sign

of the toroidal magnetic field. The specific choice for the flux-surface label ρ de-

pends on the geometry interface used. In GENE typically the normalized toroidal

magnetic flux ρtor =
√

(Ψtor − Ψtor(axis))/(Ψtor(separatrix) − Ψtor(axis)) is used, with

the toroidal magnetic flux Ψtor. The safety factor q = dΨtor/dΨpol = dφ/dθ ≈
toroidal turns/poloidal turns is the magnetic field line pitch or angle. Note that the

field line pitch, in general, changes from flux-surface to flux-surface, making the safety

factor a function of the radial coordinate and giving rise to the definition of the mag-

netic shear ŝ = x0/q0dq/dx. Subscripts 0 refer to the value at the reference position.

These coordinates are based on a representation of the background magnetic field as

B0 = C∇x× ∇y. The corresponding Jacobian is J−1 = (∇x× ∇y) · ∇z = B0·∇z
C

.

Note that the coordinates x, y, z do not form a cartesian but a curvilinear, non-

orthogonal coordinate system. This often renders interpretations of projections and

coordinates unintuitive since a direct identification of poloidal and toroidal directions

in the torus with the chosen coordinates is not possible. Fig. 3.1 illustrated the wind-

edness of a field line taken from the edge region of an ASDEX Upgrade discharge.

Additionally, the mapping is a function of the field line pitch, which, in general, is

different for each flux surface. The standard reference for field-aligned coordinates

is D’haeseleer, W. D., Hitchon, W. N. G., Callen, J. D. & Shohet, J. L. Flux Coordi-

nates and Magnetic Field Structure: A Guide to a Fundamental Tool of Plasma Theory
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Fig. 3.1.: One poloidal turn of a field line (coordinate line of z) in orange and the corre-
sponding contour of a poloidal cross-section (x = const.) in the edge of an ASDEX Upgrade
H-mode shot.

(Springer Berlin Heidelberg, Berlin, Heidelberg, 1991).

3.2.2. Velocity space grid

The velocity grid for each species is typically set up as follows: The parallel velocity v‖

is discretized with 32 equidistant grid points in the domain [−3
√

2T0/m,+3
√

2T0/m].

The magnetic moment µ is discretized with 16 grid points distributed following Gauss-

Laguerre in the domain [0,9T0/Bref ]. Box sizes and resolutions can be adapted for

each case. A difficulty arises in global simulations when the background temperatures

strongly change radially within the simulation domain. One has the option to either

use conventional velocity space resolutions, which then strongly under-resolve the ve-

locity space of the low-temperature region, or to use much higher resolutions, which

would not be necessary in the high-temperature region and cause a strongly increased

computational cost. In particular, in the edge pedestal region, where temperatures

may drop by a factor of ten from core to scrape-off layer temperatures in a few cm,

this challenge arises. A solution to this problem is to set up the velocity space non-

uniformly, i.e. differently in the low and high-temperature regions. One approach to

achieve this is a block-structured grid, where the number of velocity space grid points

is equal in each block, but the maximum and minimum values are modified in the

different regions/blocks, effectively adapting the resolution. This solution has been im-

plemented within the PhD thesis of Denis Jarema [70, 71] and is illustrated in Fig. 3.2.

In particular, the handling of gyroaverages across block boundaries is non-trivial.
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Fig. 3.2.: Illustration of block-structured velocity grids. Reprinted from [71] with permission
from Elsevier.

3.2.3. Boundary conditions

Radial direction

In local simulations, the radial boundary condition is periodic. This is possible because,

in local simulations, the background profiles of temperature and density are radially

constant. The radial coordinate is represented in Fourier space with kx = jkx,min =

j 2π
Lx

, utilizing the periodic boundary.

In global simulations, the radial boundary condition typically is a Dirichlet condition,

i.e. the perturbed distribution function is assumed to be zero outside the simulation

domain. To smooth the transition to the Dirichlet condition, Krook-buffer zones are

used, covering a few percent of the radial domain, which dampen the fluctuations

and/or drive close to the boundary. Their specific shape and width can be adjusted for

each simulation. The finite width of the buffer zones, in combination with the field-

aligned coordinates, imposes a limitation on how close to the separatrix global GENE

simulations can yield physical results. In global simulations, the radial coordinate is

represented in real space.

Binormal direction

In the binormal direction, periodicity is imposed based on the toroidal symmetry.

f(x, y, z) = f(x, y − Ly, z) (3.4)
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with Ly = 2πCy

n0
, where n0 is the lowest toroidal wave number. The binormal direction

is represented in Fourier space, with

ky = jky,min = j
2π

Ly

. (3.5)

Parallel direction

The parallel boundary condition is the most delicate one. Due to the appearance of

the straight field line angle θ in both the y and z coordinates, they get coupled. The

boundary condition for the global code is:

f(x, ky, z) = f(x, ky, z + 2π)ei2πjn0q(x). (3.6)

In local simulations, additionally, consistency with the radial boundary condition has

to be achieved. The consequence is a coupling of binormal and radial wavenumber.

The parallel boundary condition in the local code is:

f(kx, ky, z) = f(kx + 2πŝky, ky, z + 2π)ei2πky ŝr0 (3.7)

This imposes a condition on the box sizes N = 2πŝLx/Ly, where N has to be an

integer.

3.2.4. Background distribution

The standard choice for the background distribution function of each species in GENE

is a local Maxwellian. This means each flux surface has a Maxwellian background

adapted to the background temperature and density of the species on the flux surface.

It is defined as:

F0(x, v‖, µ) =
n0(x)

π3/2v3
T (x)

e
−

mv2
‖

/2+µB0(x)

T0(x) (3.8)

with vT =
√

2T0/m. Alternative choices for the background distribution can be found

in Ref. [63].

3.2.5. Sheared equilibrium flows

As introduced in previous chapters, the presence of an electric field causes an E×B drift

vE = E×B/B2. For E fields caused by the self-generated fluctuating electric potential,

these drifts are self-consistently included within the gyrokinetic GENE simulation. The
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effect of equilibrium background E-fields, however, has to be modeled explicitly. In the

pedestal, a radial electric field Er is considered to be of particular importance for the

regulation of turbulence. The exact physical mechanism for creating Er is a topic of

ongoing research, but it is established that neoclassic and turbulent effects contribute

to it. GENE is a gradient-driven, δf code, and neoclassic terms are often not included

in standard GENE simulations. The impact of the neoclassic terms has been studied

in Ref. [72, 73]. Therefore, the influence of the vEr has to be explicitly modeled to be

included in the simulations. An essential property of the radial electric field is that it

changes radially, and hence, the vEr introduces a shear to the plasma.

The effect of sheared equilibrium flows is modeled as follows in GENE simulations.

Different implementations for radially constant shearing rates exist for the local and

global code versions. They are based on the Hammet E × B shear model and docu-

mented in [50] and updated in [74]. Here, I focus on the implementation of a radially

changing shearing rate in global simulations, as this has been primarily used in the

simulations performed for this thesis.

Let us assume a purely toroidal rotation with an angular toroidal velocity Ωφ = φ̇.

Based on the definition of GENE’s coordinates, this corresponds to a velocity in the

binormal direction y = Cy[q(ρ)θ − φ]:

ẏ = −CyΩφ (3.9)

This background velocity is included as an additional term in the Vlasov equation:

∂f

∂t
= −ẏ ∂f

∂y
+ ... (3.10)

and an implicit solution is constructed using a Fourier Ansatz. One finds that any

distribution function of the form

f = Ae−iCyΩφkyt (3.11)

solves this additional part of the Vlasov equation, where A is an arbitrary prefactor.

Hence, in GENE, the appropriately normalized exponent −iCyΩφkyt is calculated from

an input profile of Ωφ, and the distribution function is multiplied by the exponential.

The current implementation is restricted to a purely toroidal rotation and does not in-

clude the effect of the velocity shear on the background distribution F0 itself. Thereby,

the so-called parallel flow shear instability [50] is not included in the global code un-

less a shifted Maxwellian is currently being implemented in [T. Jitsuk et al., to be
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submitted].

3.2.6. Collision operator

Several collision operators are implemented in GENE. For the simulations shown in

this thesis, a linearized Landau-Boltzmann collision operator ("landau" in GENE ter-

minology) has been the standard choice. It models binary (two-particle) collisions and

has the form

C(Fi, Fj) = ∇v · (D · ∇v −R)Fj (3.12)

for collisions of species i with species j where D is a diffusion tensor and R a friction

coefficient, see [75]. Besides the linearized Landau-Boltzmann collision operator, these

collision operators are available (listed in increasing order of fidelity): Pitch angle,

Landau-Boltzmann [75], Sugama, which satisfies conservation properties [56], and an

exact linearized Landau operator, including full finite Larmor radius (FLR) effects [65].

3.2.7. Sources and sinks

In global simulations, artificial sources and sinks for energy and particles are necessary

to keep temperature and density profiles constant on average. This avoids a flattening

of gradients and eventual violation of the δf approach by too strong profile variations.

They are implemented by Krook-type operators and defined in [64]. These Krook-type

source and sink terms are distinct from the Krook-buffer zones used at the boundaries

of global simulations mentioned previously.

3.2.8. Numerical schemes

The overall discretization scheme used by GENE is the method of lines. All space

and velocity derivatives and integrations are discretized first before a time-stepping

scheme integrates the resulting ordinary differential equation. The time integration

is typically done with a fourth-order Runge-Kutta method. Differentiation for direc-

tions with a Fourier representation is a simple product. Derivatives of directions in

real space are implemented via fourth-order centered finite differences. Higher-order

derivatives are available. The parallel space and velocity derivatives are implemented

with a second-order Arakawa scheme [76]. The nonlinearity in the local code version is

calculated by differentiation in Fourier space and multiplication in real space. Thanks

to FFT algorithms, the Fourier transformation is computationally cheaper than eval-

uating the product by a convolution in Fourier space. In the global code version, an
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Arakawa scheme [76] is used to discretize the nonlinearity. The gyroaverage operator

is implemented by a finite element method. Velocity space integration is implemented

via Gaussian quadrature.

A variety of averages like heat flux and fields are evaluated at regular timestep intervals

and written out as diagnostics for analysis of the simulation. The full distribution func-

tion is usually only written out to checkpoints for the continuation of the simulation.

This drastically reduces the disk storage required, which still can easily reach tens to

hundreds of GB per Simulation.

GENE is heavily MPI parallelized and runs routinely on several hundred compute nodes

comprising, in total, several thousand CPUs. A GPU-version of GENE based on the

purpose-built library GTENSOR is also in development and has already demonstrated

good utilization of GPUs [58].

3.2.9. Verification and Validation

The aim of performing simulations is generally to gain insights into the properties

and dynamics of a (physical) system. Two questions have to be confirmed to be able

to make statements about the physical system based on the simulation output: 1)

Are we solving the equations correctly? and 2) Are we solving the correct equations?

The first question can be answered by verification, i.e. by assuring that the numerical

implementation actually solves the analytical equations we want to solve. Verification

can be done by numerical tests, like e.g. code benchmarks, regression tests, comparisons

with analytic results in simplified setups, or the method of manufactured solutions. The

second question can be answered by validation, i.e. by confirming that the equations

we are solving are actually describing the system we are interested in. Validation can

be done by a detailed comparison of simulation results to experimental measurements.

For core turbulence simulations, GENE has been extensively tested and validated

against other gyrokinetic codes and experimental results. See for example Refs. [64,

77–79]. For pedestal scenarios, the validation of gyrokinetic codes is a topic of active

research. This thesis contributes to this topic by a detailed heat flux comparison in

this challenging environment and enables a more comprehensive validation of GENE

in future studies.
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3.3. Electromagnetic upgrade

This section presents an upgrade to the global electromagnetic code version. It ad-

dresses a challenge with global, nonlinear, electromagnetic GENE simulations, which

tended to be numerically unstable. Previously, the only viable option was to reduce the

strength of magnetic fluctuations by artificially reducing the plasma beta used in the

simulation. With the new upgrade, this is no longer necessary, and global, nonlinear,

electromagnetic GENE simulations at experimental β values have been observed to be

stable. This enables more realistic turbulence simulations of various tokamak plasma

scenarios, particularly of the edge pedestal. It has also already been successfully em-

ployed for studying electromagnetic modes in the core [80].

First, I present how magnetic fluctuations used to be treated in the GENE code by

introducing a modified distribution function. Then, the influence of possibly relevant

analytical differences on higher-order terms is investigated. This investigation finds

that analytical differences are not responsible for the observed instability of electro-

magnetic fluctuations. Then, the solution for the instabilities, involving a change of

the main distribution function, which leads to an additional field equation and an

additional nonlinear term, is presented. It is based on previous work by [81], and a

proof-of-principle implemented in [56]. Finally, a few technical explanations are pro-

vided on the code changes that the new implementation involves. The solution has now

been implemented in the refactored, object-oriented version of the GENE code and is

compatible with most of its functionalities, in particular the use of block-structured

velocity grids. This renders global, nonlinear, electromagnetic turbulence simulations

of the pedestal stable and computationally feasible.

Parts of this section have been published in Leppin, L., Görler, T., Cavedon, M.,

Dunne, M., Wolfrum, E., Jenko, F. & Team, A. U. Complex Structure of Turbulence

across the ASDEX Upgrade Pedestal. Journal of Plasma Physics Accepted (2023).

3.3.1. Vlasov equation in GENE

Section 2.3.4 has shown the gyrokinetic Vlasov equation in a general form. As it is

presented there, it is not yet ready for a numerical implementation. Several steps have

to be taken first, for which different choices are possible and that may differ from code

to code. The first step was already shown: A δf splitting of the distribution function.

Furthermore, a coordinate system for the real space part of the phase space has to

be chosen. As discussed earlier (see Sec. 3.2.1), in GENE, a field-aligned coordinate

system is used. Next, the background distribution F0 has to be chosen. In GENE, it
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Fig. 3.3.: Electrostatic heat flux of a global, nonlinear, electromagnetic simulations with
unmodified GENE compared to a saturating heat flux as it would be expected in a stable
simulation.

is typically a local Maxwellian. Finally, all quantities should be normalized to obtain

dimensionless quantities of similar magnitude for the numerical algorithms. In GENE

notation, reference temperature, mass, and length are, for example, denoted by Tref ,

mref , Lref , and the non-dimensional quantities by a ·̂ such that e.g. mi = m̂mref . All

the steps mentioned here can be found in detail in Ref. [48]. One obtains the following

GENE Vlasov equation (cf. Eq. (2.60) in Ref. [48]):

∂ĝ1σ

∂t̂
= − 1

Ĉ
B̂0

B̂∗
0‖



ω̂nσ + ω̂T σ




v̂2

‖ + µ̂B̂0

T̂pσ

− 3

2







 F̂0σ∂ŷ
ˆ̄χ1

− B̂0

B̂∗
0‖

T̂0σ (x0)

q̂σ

µ̂B̂0 + 2v̂2
‖

B̂0

K̂xΓ̂σ,x

− B̂0

B̂∗
0‖




T̂0σ (x0)

q̂σ

µ̂B̂0 + 2v̂2
‖

B̂0

K̂y − T̂0σ (x0)

q̂σB̂0

v̂2
‖

Ĉ
βref

p̂0

B̂0

ω̂pσ



 Γ̂σ,y

− B̂0

B̂∗
0‖

1

Ĉ
(

∂x̂
ˆ̄χ1Γ̂σ,y − ∂ŷ

ˆ̄χ1Γ̂σ,x

)

− v̂T σ (x0)
Ĉ
ĴB̂0

v̂‖Γ̂σ,z +
v̂T σ (x0)

2

Ĉ
ĴB̂0

µ̂∂ẑB̂0
∂F̂1σ

∂v̂‖

+
B̂0

B̂∗
0‖

T̂0σ (x0)

q̂σ

µ̂B̂0 + 2v̂2
‖

B̂0

K̂x



ω̂nσ + ω̂T σ




v̂2

‖ + µ̂B̂0

T̂pσ

− 3

2







 F̂0σ

(3.13)

where the ω̂Xσ denote inverse background gradient scale lengths and K̂x, K̂y, Ĉ, Ĵ are

45



3. Numerical implementation: The GENE code

geometry related constants. As an example, the density gradient scale length:

ω̂nσ =
1

Ln

= − Lref

n0σ(x)

∂n0σ(x)

∂x
. (3.14)

The subscript σ is a species index. The effective magnetic field B̂∗
0‖ is defined as

B̂∗
0‖ = b̂ · B̂∗

0 = b̂ · ∇ × A∗
0 = b̂ · ∇ × (A0 + B0v‖/ωc) (3.15)

and the abbreviation Γ has been introduced:

Γi =
∂g1

∂xi

− q

mv‖

∂F0

∂v‖

∂χ̄1

∂xi

. (3.16)

In the above equations, the modified potential

χ̄1 := φ̄1 − v‖

c
Ā1‖ +

µ

q
B̄1‖ (3.17)

has been used. In Ref. [48], the modified potential is denoted by the Greek letter ξ. It

denotes the same quantity. χ = ξ.

Note that the GENE Vlasov equation does not contain the distribution function f1. It

has been replaced by the new redefined distribution function

g1 = f1σ − qσ

mσc
Ā1‖

∂F0σ

∂v‖

. (3.18)

The motivation for the redefinition is the time derivative of the gyroaveraged parallel

magnetic vector potential Ā1‖, which appears as part of the parallel acceleration in

Eq. 2.21 and is a 1st-order term, see Eq. 2.28. It is the only remaining time derivative

in the Vlasov equation, except for the partial time derivative of the distribution function

itself. For the use of an explicit time scheme, the time derivatives must not appear on

both sides of the equation. Hence, the usual ansatz of GENE has been to combine all

terms with a time derivative into the new distribution function g. This implementation

works well in many cases but tends to be unstable in global, nonlinear, electromagnetic

simulations.

3.3.2. Role of higher-order terms

Before the working solution is presented, it is worthwhile to investigate whether analyti-

cal differences caused by the use of the modified distribution function g and associated
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approximations are the cause for the numerical instabilities. From a computational

standpoint, this would be preferable: Fixing the analytical differences might be com-

putationally less expensive and would require fewer code changes.

For this purpose, the 1st-order terms identified in Eq. 2.28 are analyzed and sorted by

the power of fluctuating quantities.

The terms that are independent of fluctuating quantities:

0 =
B

B∗
||

(v∇B + vc) ·
(

∇F0 − 1

mv‖

(µ∇B)
∂F0

∂v‖

)

. (3.19)

The terms that are linear in the fluctuating quantities:

∂f1

∂t
− q

mc

∂Ā1‖

∂t

∂F0

∂v‖
︸ ︷︷ ︸

∂g1/∂t

= − B

B∗
||

(v∇B + vc) ·
(

∇f1 − 1

mv‖

(

µ∇B̄1|| + q∇φ̄1

) ∂F0

∂v‖

)

− B

B∗
||

vχ ·
(

∇F0 − 1

mv‖

(µ∇B)
∂F0

∂v‖

)

+ v‖b̂ ·
(

∇f1 − 1

mv‖

(

µ∇B∂f1

∂v‖

+ ∇(qφ̄1 + µB̄1‖)
∂F0

∂v‖

))

.

(3.20)

The terms that are quadratic in the fluctuating quantities:

0 =
B

B∗
||

vχ ·
(

∇f1 − 1

mv‖

(

µ∇B̄1|| + q∇φ̄1

) ∂F0

∂v‖

)

=
c

B∗
||

b̂0 × ∇
(

φ̄1 − v‖

c
Ā1‖ +

µ

q
B̄1‖

)

︸ ︷︷ ︸

χ

·
(

∇f1 − 1

mv‖

(

µ∇B̄1|| + q∇φ̄1

) ∂F0

∂v‖

)

︸ ︷︷ ︸

Γ

.
(3.21)

Of these terms, the non-linear (quadratic) terms are the numerically most expensive.

The analysis demonstrates the origin of the terms χ and Γ in the nonlinearity.

One can express Γ through g1 instead of f1:

Γi =
∂f1

∂xi

− 1

mv‖

∂F0

∂v‖

∂

∂xi

(qφ̄1 + µB̄1‖)

=
∂g1

∂xi

− q

mv‖

∂F0

∂v‖

∂χ̄1

∂xi

+
q

mc
Ā1‖

∂

∂xi

(

∂F0

∂v‖

) (3.22)

Currently, the last term of this equation is neglected because it is of higher order

than the other terms (it directly depends on a fluctuating quantity and not only on
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derivatives thereof; cf. [48], p. 131). The order of ǫ = ρref/Lref of the terms is explicitly

investigated in the following, comparing Γ expressed through f1 and g1.

Start with Γ in terms of f1:

[

∂f1

∂xi

]

=
ρref

Lref

1

ρref

=
1

Lref
[

1

mv‖

∂F0

∂v‖

]

=
1

mrefcref

1

cref
[

∂

∂xi

qφ̄1

]

=
1

ρref

e
Tref

e

ρref

Lref

=
Tref

Lref
[

∂

∂xi

µB̄1‖

]

=
1

ρref

Tref

Bref

Bref
ρref

Lref

=
Tref

Lref

(3.23)

where xi = x, y. So with Tref = mrefc
2
ref, the total dimension is 1/Lref.

Now consider Γ in terms of g1:

[

∂g1

∂xi

]

=

[

∂f1

∂xi

− q

mc

∂Ā1‖

∂xi

∂F0

∂v‖

− q

mc
Ā1‖

∂

∂xi

∂F0

∂v‖

]

(3.24)

with

[
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Lref
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=
e
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=
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Lref
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∂

∂xi

∂F0
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]
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e
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ρrefBref

ρref

Lref

1

Lref

1

cref

=
Ωref

cref

ρ2
ref

L2
ref

=
ρref

Lref

1

Lref

(3.25)

One finds that ∂xi
g1 contains terms of zeroth order and 1st order in ǫ = ρref/Lref. The

first order term is exactly canceled by the last term in Eq. 3.22 so that the order of

Γi remains unaffected by the change from f to g as it should be. However, in the

current implementation of GENE, the last term in Eq. 3.22 is omitted. This has two

consequences: First, the order of truncation is not consistent anymore (due to the

order ǫ term implicitly contained in ∂xi
g1) and second, Γi retains an Ā1‖ dependence

through ∂xi
g1, which was not present before. To investigate if this analytical difference

is responsible for the observed instabilities, the neglected last term of Γ and associated

terms have been implemented in GENE. In the appendix A.1.1, the exact terms that

had to be added are derived. The result of the investigation is that the inclusion of all

terms in Γ does not resolve the numerical instabilities, as is shown in Fig. 3.5, left. Both

GENE versions, with and without the additional Ā1‖ term, diverge within a short time
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3.3. Electromagnetic upgrade

for the same scenario. Therefore, I now turn to the successful change: A redefinition

of the main distribution function used in GENE.

3.3.3. Redefining the main GENE distribution function: The

f-version

As explained in a previous section, GENE uses the distribution function g1 := f1 −
q

mc
Ā1‖

∂F0

∂v‖
as the main distribution function to make the Vlasov equation solvable by

an explicit time stepping scheme. There is, however, another way to achieve this,

which retains f1 as the main distribution function. This solution is based on work

in [81] and has been derived for GENE in the Ph.D. thesis of Paul Crandall [56].

Here, the analytical idea of the solution is presented, followed by an outline of the new

implementation of the f-version in the object-oriented production branch of GENE,

which has been implemented within this thesis. Importantly, the new implementation

is integrated with the block-structured velocity grids. The same electromagnetic model

has recently also been implemented in GENE-3D [60], the stellarator version of the

GENE code. Related approaches are also being followed in gyrokinetic particle-in-cell

(PIC) codes [83].

The numerical instabilities can be avoided by solving for Ā1‖ with an additional field

equation derived from Ampère’s law ∇2
⊥A1‖ = (−4π/c)j. By applying a time derivative

to Ampère’s law, using

Eind
‖ = −1

c

∂A1‖

∂t
(3.26)

and writing the time derivative of f1 as

∂F1

∂t
=

q

m
Ēind

‖

∂F0

∂v‖

+R, (3.27)

where R denotes all remaining terms, one finds:

∇2
⊥E

ind
‖ =

4π

c2

∑

i

qi

∫

d3vv‖G†

{

qi

mi

Ēind
‖

∂F0,i

∂v‖

+Ri

}

, (3.28)

where the current j has been expressed as a velocity space integral over the gyrocenter

distribution function F1, and the sum goes over all species i. Collecting all terms con-

taining Eind
‖ on one side of the equation, the final field equation becomes (cf. Eq. (5.8)

in Ref. [56]):

(

∇2
⊥ +

4π

c2

∑

i

qi
2

mi

∫

d3vG†v‖
∂F0,i

∂v‖

G
)

Eind
‖ =

4π

c2

∑

i

qi

∫

d3vG†v‖Ri, (3.29)
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which is solved numerically. The operator G denotes the gyroaverage operator, and G†

denotes a backwards gyroaverage, as discussed in Ref. [50].

Effectively, Eind
‖ = (−1/c)∂A1‖/∂t is treated as an additional independent field that is

calculated from the distribution function f1 each time step. Next, the necessary code

changes are outlined.

3.3.4. Implementation details

This subsection has been part of an internal report distributed to GENE users. The dif-

ferences between the Vlasov equation underlying standard GENE and the new f-version

are highlighted. Furthermore, the most important code changes are summarized.

In standard GENE the Γσ,i appearing in the Vlasov Eq. 3.13 are expressed through g1σ

and only terms in lowest order of ǫ = ρref

Lref
are retained. By plugging in the resulting

Γσ,i in Eq. 3.13, one obtains the Vlasov equation as implemented in standard GENE

(cf. Ref. [48], p. 132, Eq. (A.1)).

For the f-version, we plug in the Γσ,i expressed through f1σ. In addition, we plug in

g1σ = f1σ − qσ

mσc
Ā1‖

∂F0σ

∂v‖
on the left-hand side and rearrange, so that we have ∂f̂1σ

∂t
= ....

We obtain an equation that is very similar to the Vlasov equation as implemented in

standard GENE (cf. Ref. [48], p. 132, Eq. (A.1)). The differences are highlighted in

the following equation:
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(3.30)

The changes are:

• ĝ1σ is replaced by f̂1σ.

• ˆ̄χ1’s stemming from Γσ,i’s are replaced by ˆ̄φ1. To retain all parts of ˆ̄χ1 from the

first term of Eq. 3.13 the Ā1‖ term is explicitly added (first line of Eq. 3.30).

(The B̄1|| terms are neglected since, at the time of this derivation, they were not

implemented for global simulations.)

• A second nonlinear term. (Third line from the bottom.) Further details on the

additional nonlinear term are documented in the Appendix A.1.2.
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• An additional term containing the parallel induced E field Eind|| = 1
c

∂A||

∂t
. The

normalized field equation to calculate this parallel induced E-field or plasma

induction is given in Eq. 3.29.

These modifications of the underlying equations cause the following code changes:

• A new boolean input parameter is introduced in the general namelist to differenti-

ate between standard GENE (f_version=F) and the new f-version (f_version=T).

• The distribution function ĝ1σ is never calculated. Instead dist_func_g contains

f̂1σ. Therefore the computation of f in compute_f.F90 changes to f = g in the

f_version. This solution is not optimal (same data stored twice) but avoids larger

code changes.

• In emfields_base.F90 and emfields_i_global.F90

bar_phi_block, bar_dphidij_block, bar_dphidij_block arrays and associ-

ated subroutines are introduced in the same way as their chi counterparts.

• In dchidxy_terms.F90 the new type dphidxy_df_t and the corresponding sub-

routines are introduced. The common parent type of the dchidxy types and the

dphidxy type is renamed to dfielddxy_term_t.

• A new nonlinear type df_arakawa_nonlinear_term_fversion_t is introduced

as an extension of df_arakawa_nonlinear_term_t in

df_arakawa_nonlinear_term.F90. The corresponding add subroutine adds both

nonlinearities.

• A new module and type for the plasma induction term is added:

plasma_induction.F90. Its add subroutine is called in calc_rhs.F90.

• In fieldsolver_df.F90 new subroutines calc_induced_efield,

solve_for_E_par_induced are introduced for the calculation of Eind||.

• Ampere’s law changes when one uses f̂1σ instead of ĝ1σ to calculate A1||. Compare

Eq. (2.95), p.30 and Eq. (2.97), p.30 in [48] and note the additional term on the

left-hand side in Eq. (2.97). This is accounted for by an if(.not.f_version)

block in fieldsolver_df.F90.

Next to the additional field equation for the plasma induction, this approach requires

an additional nonlinear term between the fields. In total, these changes increase the

computational time per time step by approximately 30%. The new electromagnetic

model is furthermore compatible with the use of block-structured velocity grids [71].

The f-version is only implemented for global simulations since, in local simulations, the
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3.4. Applicability of the GENE code to the pedestal

Fig. 3.4.: Growth rate (left) and frequency (right) comparison between unmodified global
GENE and the new f-version in a scan over plasma β. Standard GENE data from Ref. [77].

existing implementation had no stability problems. The f-version can be easily used by

setting the flag f_version=T in the &general namelist of the GENE input parameter

file.

The implementation has been tested in global, linear simulations against an existing

benchmark of GENE global and the ORB5 code. Excellent agreement for growth

rates and frequencies in the investigated range of plasma β values has been found, see

Fig. 3.4.

It has been confirmed that the new implementation indeed solves the numerical insta-

bilities in global, nonlinear, electromagnetic GENE simulations by running the same

scenario with and without the new implementation. Fig. 3.5 shows the electrostatic

heat flux as a proxy for the stability of the simulations for two scenarios simulated with

unmodified GENE and the new f-version. Only the f-version is stable in these cases.

The only difference in the input parameter files between the simulations shown is the

flag f_version=T or f_version=F. The stability of the f-version has been confirmed

in additional cases, e.g. the JET case shown in Chapter 6. For all global, nonlinear

simulations presented in this thesis, the new f-version has been used.

3.4. Applicability of the GENE code to the pedestal

The GENE code was initially developed for the study of tokamak core turbulence.

Therefore, it had not been designed to adequately deal with all of the challenging

physics effects that influence pedestal physics. Nonetheless, it has been extended in
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3. Numerical implementation: The GENE code

Fig. 3.5.: Electrostatic heat fluxes as a proxy for the stability of the simulations. Unmodified
GENE and the version with the additional Ā1‖ term in Γi are both unstable. The new f-
version is stable for the same parameters. Left: NSTX-derived scenario. Right: ASDEX
Upgrade pedestal of shot #31529.

recent years and PhD projects to improve its applicability to pedestal scenarios. Some

of the upgrades and limitations have already been mentioned throughout this chapter,

but they are compiled here for reference. Most design choices described below have in

common that they significantly reduce the computational cost of gyrokinetic simula-

tions while having a negligible impact on the fidelity of core turbulence simulations.

For pedestal parameters, however, their impact can become significant.

In section 2.3.7, possible bounds of the validity of gyrokinetics in the pedestal have

been discussed. These apply to all codes that are based on similarly derived models.

In addition to these, code-specific implementation choices can influence its readiness

for edge and pedestal simulations.

For the GENE code, one of the important choices is the field-aligned coordinate system.

While it is computationally very well suited for the closed field line region, it principally

excludes the separatrix from the simulation domain and limits the study of the open

field line region, though slab-like simulations have been performed [84]. In combination

with the radial buffer zones required in global simulations for the Dirichlet boundary

condition, this places the outer limit of the region accessible to physics studies a few

mm inside of the separatrix.

A further important decision is the explicit splitting of the distribution function in the

δf scheme. This limits the relative fluctuation amplitudes that the model can capture.

In the scrape-off layer, relative fluctuation amplitudes have been experimentally and

in full-f codes observed to approach 100% in the form of blobs [51–53, 85, 86]. In

particular, close to the separatrix at the pedestal foot, large fluctuation amplitudes
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3.4. Applicability of the GENE code to the pedestal

could hence be expected. This aspect amplifies the limitations discussed with respect

to field-aligned coordinates, that GENE is not well suited to study the region very

close to the separatrix (ρtor > 0.99).

A related aspect is the gradient-driven approach, which fixes the density and temper-

ature profiles and gradients on average. This is a double-edged feature: On the one

side, it allows a direct simulation of turbulence in experimentally measured scenarios.

No extra work is required to recreate the experimental scenario since geometry and

profiles are direct inputs to the simulation setup. On the other side, this approach

does not allow for a self-consistent evolution of the profiles, in contrast to flux-driven

simulations. Artificial sources and sinks always compensate the effect of the simulated

turbulent heat fluxes on the profiles. The GENE-Tango framework (see Refs. [80, 87]

and Chapter 5 aims to bridge this gap by coupling GENE to a transport solver.

Furthermore, while GENE simulations can include an arbitrary number of gyrokinetic

charged particle species, the effects of neutral particles are not included. In particular,

as a particle source and in determining particle fluxes, their dynamics can become

significant. Generally, the study of neutrals and turbulence interaction is just starting.

Nonetheless, within the discussed limits, the GENE code is well suited for studying

pedestal turbulence. In particular, the full range of fluctuation scales from ion to

electron gyroradius scale can be covered in GENE simulations. As will be discussed

in more detail, the ability to simulate electron scale fluctuations becomes especially

important for capturing turbulence in the pedestal center. Typically, the resolution of

electron scale dynamics is not possible for flux-driven codes. Furthermore, the ability

to perform linear and nonlinear simulations in local and global domains with the same

code enables a detailed and comprehensive analysis of turbulence and its underlying

instabilities. Also, the limitations of local simulation domains can be easily tested.

Several upgrades have improved the efficacy of GENE in pedestal scenarios: Block-

structured velocity grids [70] have made global simulations with large temperature

gradients computationally more feasible, improved collision operators [56] have further

increased the ability to assess the accuracy of simulations, and the upgrade of the

electromagnetic model, presented in this thesis, has improved the stability of global,

nonlinear simulations. From a practical standpoint, these upgrades aim to bring the

knowledge and extensive experience encoded in the GENE project to the pedestal

region.

In parallel to the extension of established gyrokinetic codes like GENE, many of the

outlined limitations are approached by the community with a new generation of codes

like XGC, Gysela-X, and GENE-X, that feature complementary design choices to core
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gyrokinetic codes: They are flux-driven, full-f codes, and use coordinate systems that

are not limited by the separatrix. Such codes promise to enable very valuable studies

of pedestal physics. However, one of the factors making pedestal studies so challenging

is that, very likely, the most suitable code for the pedestal top is not simultaneously

the most suitable code for the pedestal foot when taking into account model complex-

ity and computational cost. This is rooted in the substantial difference in important

physics mechanisms between the pedestal top and foot. Presumably, only a combina-

tion of simulation codes will be able to provide a comprehensive explanation of pedestal

turbulence.

3.5. MHD limit of global gyrokinetics

This section expands on a specific aspect of the validity of gyrokinetics in the pedestal:

The ability of global gyrokinetic simulations to capture large-scale MHD modes. Impor-

tant elements of pedestal dynamics, like edge localized mode cycles, can be captured by

magnetohydrodynamic simulations [40], and MHD modes are an essential constituent

in reduced predictive pedestal models (EPED [88, 89]). These are strong indications

that system-scale modes with low toroidal wave numbers n are a crucial ingredient of

pedestal stability and dynamics. In the derivation of gyrokinetics, however, the size of

perpendicular fluctuations is assumed to be small compared to the system scale (high

n). This has motivated a recent study comparing growth rates of large-scale electro-

magnetic modes between the MHD code MISHKA and gyrokinetic code ORB5 [90].

Here, we add global GENE simulations to this comparison.

Fig. 3.6 shows growth rates obtained with MISHKA, ORB5, and global GENE for

a scenario designed for the presence of kinetic ballooning modes. GENE simulations

were performed with the same geometry and temperature profiles as shown in [90].

ORB5 and GENE simulations were performed at different values of ρ∗ = ρi/a, where

a is the minor radius and ρi the ion gyroradius. This modifies the size of background

profile variations in relation to the gyroradius size in global simulations. Effectively,

as ρ∗ → 0, a fixed number of gyroradii see a smaller and smaller fraction of the full

profile. The limit of ρ∗ → 0 is also called the local limit since, in local gyrokinetic

simulations, profiles and gradients are constant across the simulation domain. At low

n ORB5 and global GENE show a good agreement and similar deviations w.r.t to the

MHD code MISHKA. Gyrokinetic low-n growth rates are systematically lower than

the MHD growth rates. The reduction of growth rates at high n in the gyrokinetic

codes compared to MISHKA is expected [91]. It is caused by the effective averaging
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3.5. MHD limit of global gyrokinetics

Fig. 3.6.: Growth rate spectrum of (Kinetic) Ballooning modes for different ρ∗ calculated
with ORB5, MISHKA, and global GENE. ORB5 and MISHKA data from Collar et al.,
PPCF, 2020 [90].

of fluctuations due to the fast gyromotion of particles, which takes a central role in

gyrokinetics but is not included in MHD fluid descriptions of the plasma. Often, this

is referred to as Finite Larmor Radius (FLR) effects.

Fig. 3.7 adds local GENE simulations at the steepest gradient position to the growth

rate comparison. Local GENE simulations were performed with different magnetic

fluctuations. One scan was performed with A‖ and B‖ fluctuations, and one scan only

with A‖ fluctuations, but a modification to the ∇B-drift compensating for the missing

B‖ fluctuations. The latter is the same model employed in the global simulations,

which currently can not include B‖ fluctuations. The comparison of the two local

scans allows a first estimate of the possible influence of the missing B‖ fluctuations in

global simulations. In the given scenario, at low n, the difference is small. However,

local and global growth rates deviate more strongly at the lowest n. This is likely

due to a mode transition caused by the stronger drive in the local simulation, which

only sees the steepest gradient, whereas, in global simulations, the effective drive is an

average of higher and lower gradient areas. Frequencies in global and local simulations

agree well.

Further extensions for improved consistency of MHD and gyrokinetics are being inves-

tigated in the community. For example, the generalization of the background distribu-

tion function to a shifted Maxwellian, which includes the effect of background currents,

would e.g. enable tearing mode studies and promise a more realistic gyrokinetic descrip-
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Fig. 3.7.: Growth rate (left) and frequency (right) spectra of (Kinetic) Ballooning modes for
global GENE compared to local results. ORB5 and MISHKA data from Collar et al., PPCF,
2020 [90].

tion. Such a distribution function is currently being implemented in GENE [T. Jitsuk

et al., to be submitted]. Furthermore, higher-order corrections to gyrokinetic theory

are being studied [92, 93]. For the purposes of this thesis, it is acknowledged that

discrepancies to MHD for system-scale modes exist, but no attempts to mitigate them

are pursued.

3.6. Parallel hyperdiffusion

The last section of this chapter considers a numerical issue that has been found to re-

quire renewed attention under pedestal conditions. The central finite difference scheme,

which is used in GENE to calculate parallel derivatives, produces high k‖ aliases on

the grid scale, which need to be damped. This is achieved by introducing a parallel

hyperdiffusion term, which provides a numerical dissipation designed to dampen the

alias modes [50, 94]. The growth rate of the alias modes depends on the growth rate

of the original mode. Hence, the strength of parallel hyperdiffusion hyp_z can be con-

trolled by an input parameter, which should be adjusted to match the growth rates.

Since hyperdiffusion is a non-physical term designed to compensate numerical artifacts

of the differentiation scheme, it should not influence the simulation results. For suffi-

ciently strong hyp_z e.g. heat fluxes of the simulations should converge for some range

of hyp_z values. For very large damping amplitudes, the parallel hyperdiffusion, of

course, modifies the dynamics. In this thesis, pedestal scenarios were found in which

convergence was unexpectedly challenging to achieve in local nonlinear electron scale

simulations. Hence, here, the basics of parallel hyperdiffusion and its implementation

in GENE are discussed.
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The parallel hyperdiffusion term in GENE is defined as [94]:

Dn(f1) = hyp_z

(

∆z

2

)n
∂nf1

∂zn
(3.31)

It is constructed such that the damping amplitude of the alias modes is independent of

the parallel resolution. The alias modes always appear at the highest k‖ available in the

system. This means as the parallel resolution increases the highest k‖ increases and its

damping increases with kn
‖ , due ∂nf1

∂zn . This is compensated by the term
(

∆z
2

)n
, which

reduces the damping as the grid spacing ∆z gets smaller. As a result, the highest k‖

modes in the system are damped with the same amplitude for all resolutions, while a

fixed k‖ mode is damped less as the resolution is increased. Standard choice in GENE

is a 4th order operator n = 4, following the default 4th order finite-difference scheme.

It is emphasized that the occurrence of alias modes is an intrinsic property of the central

finite difference scheme. Therefore, a finite hyperdiffusion is necessary, regardless of

how high the parallel resolution is. The use of the Arakawa scheme for the parallel

derivative (also an option in GENE) prevents an energy accumulation on the highest

k‖ but does not get rid of the aliasing problem itself, see Fig. 3.8.

A few aspects of setting the parallel hyperdiffusion in GENE are pointed out:

• As implemented, the hyperdiffusion operator does not have a mass dependence.

Other parts of the Vlasov equation have it. As a consequence, the chosen hy-

perdiffusion amplitude has to take into account the mass normalization chosen

for the simulation. E.g. if the simulation is normalized to the electron mass me

hyp_z has to be set
√

me/mD ≈ 1/60 smaller than for a simulation normalized to

the deuterium mass mD, see Fig. 3.9. For two species simulations, this presents

a challenge since, typically, the growth rates of electron scales are an order of

magnitude larger than ion-scale growth rates hence, either one of the species will

be overdamped or underdamped. A partial solution to that is using an additional

prefactor (see below), which, however, currently introduces a v‖ dependence as

well.

• For easier comparison with dissipative upwind finite difference schemes, the hy-

perdiffusion operator can be modified to mimic the dissipation of an upwind

stencil. This is achieved by including the additional factor 4/(3∆z) in the diffu-

sion operator. Note that this changes the dependence of the hyperdiffusion on

the resolution (or grid spacing): The highest k‖ modes are no longer damped

with the same amplitude for all resolutions, and the reduction in damping for a

fixed k‖ is reduced compared to the original operator. The modified operator can
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3. Numerical implementation: The GENE code

Fig. 3.8.: Fluctuation amplitudes of multiple quantities as a function of the parallel coordi-
nate. From a nonlinear, local, electron-scale simulation with hyp_z=0 and Arakawa scheme
for the parallel derivative. Demonstrates grid scale oscillations in the absence of parallel
hyperdiffusion.

be selected by specifying negative hyp_z values in the input parameter file. In

my opinion, this option is only a good choice if a comparison to upwind schemes

is being investigated, e.g. for a direct comparison with codes that use an upwind

scheme.

• To achieve full equivalence with upwind schemes, one has to include a v‖ depen-

dence in the hyperdiffusion operator. This can be added with setting

hypz_with_dz_prefactor=T. This includes the factor
√

2T̂0σ/m̂σĈ/JB̂0v̂‖ in the

hyperdiffusion operator. Note that the v‖ dependence changes the effective am-

plitude of the hyperdiffusion, depending on the velocity space distribution of

f1. Hence, hyp_z values of simulations with and without this prefactor are not

directly comparable, see Fig. 3.10.

In conclusion, a good strategy for setting the parallel hyperdiffusion is as follows: Set

a positive hyp_z value close to a typical growth rate of modes in the simulation. If

necessary, adjust hyp_z accounting for the mass normalization of the simulation. Check

if the parallel amplitude structure is free of grid-scale oscillations. If not, increase

hyp_z. Check convergence in the parallel resolution with fixed hyp_z. If still in doubt,

vary hyp_z by some 10% and assess impact.
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3.6. Parallel hyperdiffusion

Fig. 3.9.: Demonstration of the influence of the mass normalization on hyperdiffusion. From
a nonlinear, local, electron scale pedestal simulation.

Fig. 3.10.: Left: Sketch of hyp_z amplitude with and without v‖ dependence through pref-
actor. For a distribution peaking at v‖ = 0, the hyperdiffusion is effectively lowered. Right:
Heat fluxes for different hyp_z settings with and without prefactor. With prefactor, the
damping is reduced and the heat flux is increased. The simulations are based on the AUG
scenario discussed in Chapter 5

.
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3.7. Summary

This chapter has introduced the GENE code, which is used for all simulation results

presented in the following chapters. Emphasis has been put on the electromagnetic

upgrade implemented within this thesis based on the proof-of-principle in [56]. The

numerical challenges of applying the code to pedestal scenarios have been discussed,

particularly the limit of large ballooning modes and the sensitivity of local nonlinear

simulations to hyperdiffusion.

Recommended further literature

• Global GENE code version: Görler, T., Lapillonne, X., Brunner, S., Dannert, T.,

Jenko, F., Merz, F. & Told, D. The Global Version of the Gyrokinetic Turbulence

Code GENE. Journal of Computational Physics 230, 7053–7071. doi:10.1016/

j.jcp.2011.05.034 (2011)

• Website with all GENE PhD theses: www.genecode.org

• The reference for field-aligned coordinates: D’haeseleer, W. D., Hitchon, W. N. G.,

Callen, J. D. & Shohet, J. L. Flux Coordinates and Magnetic Field Structure: A

Guide to a Fundamental Tool of Plasma Theory (Springer Berlin Heidelberg,

Berlin, Heidelberg, 1991)

• First derivation of f-version for GENE: Crandall, P. C. Collisional and Electro-

magnetic Physics in Gyrokinetic Models (University of California Los Angeles,

2019)

• Original GENE-hyperdiffusion paper: Pueschel, M., Dannert, T. & Jenko, F. On

the Role of Numerical Dissipation in Gyrokinetic Vlasov Simulations of Plasma

Microturbulence. Computer Physics Communications 181, 1428–1437. doi:10.

1016/j.cpc.2010.04.010 (2010). Previous discussion in ETG context: Told, D.

Gyrokinetic Microturbulence in Transport Barriers PhD thesis (Universität Ulm,

Ulm, 2012).
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4. The H-mode pedestal and its

instabilities

This chapter serves as a primer for the following two simulation result chapters. First,

the properties and challenges of the edge pedestal are analyzed. The analysis focuses

on common aspects of pedestals that apply to the gyrokinetic study of pedestals in

general. It may be viewed as a summary of lessons learned during the gyrokinetic

analysis presented in the following chapters. Then, stability analysis, common types of

instabilities, and quasilinear models are introduced. Next, the criteria to characterize

turbulence and distinguish instabilities are introduced using examples of the result

chapters. Finally, pedestal microinstabilities are summarized.

4.1. The pedestal from a turbulence perspective

"Pedestal" refers to the shape of the temperature and density profiles in the outermost

few centimeters (roughly ρtor = 0.85−1 or ρpol = 0.94−1) of the closed field line region

in high confinement mode (H-mode) shots. This region is characterized by profiles that

are much steeper than core profiles (cf. Fig. 1.6 and Fig. 4.1). Hence, gradients are

much larger, and normalized gradient scale lengths reach values of approx. 20 - 30

instead of 2 - 3 in core conditions.

But not only temperature and density vary substantially inside the pedestal. Many

other important plasma parameters change as well. This includes directly depending

parameters like the plasma β (decreases), the gyroradius (decreases), or the collisional-

ity (increases), but also magnetic field properties like the magnetic shear, safety factor,

and also a radial electric field with an associated velocity shear. See Fig. 5.4 and 6.2

Fig. 4.1.: Temperature and density pedestal profiles from an AUG H-mode.
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4. The H-mode pedestal and its instabilities

for examples from AUG and JET. Hence, the overall physical conditions differ sub-

stantially between the pedestal top and foot. This has significant consequences for

instabilities and dynamics in the different pedestal regions, which will be analyzed in

this and the following chapters.

It is helpful to define some nomenclature to distinguish between different regions of

the pedestal. I will use the terms pedestal top, pedestal center, and pedestal foot

(see dashed vertical lines in Fig. 4.1). Pedestal top or pedestal shoulder refers to

the innermost part of the pedestal. Some authors use a modified hyperbolic tangent

(mtanh) function to fit pedestal profiles and use the fit parameters to define the pedestal

top position [95]. With this convention, the pedestal top typically coincides with the

inner knee of the profile, where gradients have already begun to increase. From a

gyrokinetic instability perspective, it is more natural to use a position where gradients

are still flat just before the onset of strongly increasing gradients. This region between

outer core and the mtanh pedestal knee has no established name. I will refer to it

by pedestal top as well. The pedestal center is easier to define: It is the steepest

gradient region. However, I want to emphasize that the steepest gradient region does

not necessarily coincide with the region of strongest instability drive. The gyrokinetic

instabilities are driven by the ratio of gradient and absolute value, the gradient scale

length. Since the absolute densities and temperatures decrease rapidly, the peak of the

gradient scale lengths is typically shifted outwards towards the separatrix (cf. Fig. 4.1).

The pedestal foot or pedestal bottom is the outermost region of the pedestal. It

is very close to or at the separatrix. The discussion above implies the existence of

the pedestal. While it is possible to define one pressure pedestal, a closer look at

experimental measurements shows that density pedestal and temperature pedestals can

exhibit slight differences in the position of the pedestal top, center, or foot. In general,

for exact comparisons across different shots and studies, it is worthwhile to directly

compare profiles instead of relying on the terminology presented in this paragraph.

The extraordinary property of the L-H transition is that an increase in heating power

achieves steeper gradients in temperature and density profiles in the pedestal. In

contrast, in typical core scenarios, profiles are stiff, i.e. an increase in heating power

does not significantly steepen gradients but causes more turbulent transport at barely

changed profiles. It is instructive to consider this aspect from a power balance per-

spective. In quasi-steady state, the total (turbulent+ neoclassic+ radiation) heat and

particle transport through each flux surface is radially constant. If it were not, e.g. tem-

peratures would change in regions with higher heat influx than outflux, and the state

would not be quasi-steady by definition. For simplicity, it is assumed in the following

that changes in radiation losses are small compared to the turbulent heat flux. While
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4.1. The pedestal from a turbulence perspective

the full turbulent transport mechanism is a complex interplay of diffusive, convective,

and other contributions that are encoded in the Vlasov-Maxwell system, it is a typ-

ical choice to derive an effective diffusivity χ from the turbulent heat fluxes Q. In

its simplest form (ignoring particle diffusivity): χ ∝ Q/∇T . This implies that for a

radially constant Q and increasing ∇T , the effective diffusivity has to reduce in the

edge. In other words, the pedestal is enabled by an edge transport barrier. Having in

mind that the majority of transport is typically caused by turbulence, which is driven

by temperature and density gradients, this yields an almost paradoxical situation. In

the region with increased turbulence drive, the turbulent diffusivity is reduced. At

the same time, only due to the small diffusivity could the profiles steepen, and the

turbulent drive could become so strong. Hence, an additional mechanism is required

that suppresses turbulent transport and is thereby able to establish and sustain the

pedestal against the turbulent drive. In the pedestal, shear flows driven by a radial

electric field play a crucial role in this suppression [96–98].

Microinstabilities can change their character and relevance in pedestal conditions com-

pared to core conditions. Multiple aspects of pedestal physics contribute to that. An

obvious difference is the strongly increased drive in the pedestal center and foot. The

concurrently strong drive for modes driven by electron temperature, ion temperature,

and density gradients can lead to hybrid modes that share properties of different mode

types, as also observed in core turbulence [99]. Additionally, the steep gradients lower

the critical threshold βcrit for electromagnetic fluctuations [100, 101], that can trigger

new types of modes (KBM, MTM, see sections below) and also influence the saturation

of predominantly electrostatic modes [102]. Besides the gradients also, the magnetic

field geometry influences the microinstabilities. This can affect the instability mech-

anism, the poloidal position of the mode, and its orientation relative to the magnetic

field. This will be discussed in more detail, particularly for electron temperature gra-

dient modes, in later sections and chapters. Furthermore, due to the strong changes

in the pedestal, even modes with a small radial extent may experience different drives

across their widths. Additionally, the increasing collisionality may reduce the number

of trapped particles and thereby lower the impact of trapped particle modes like TEMs.

Finally, the suppression of turbulence by shear flows in the pedestal alters the relative

importance of modes. While core turbulence is traditionally dominated by so-called

ITG and TEM modes (see next section), they are prone to shear flow suppression. The

current understanding in the community is that dominantly ETG and MTM modes

can prevail in pedestal conditions. This has been summarized and established with

the fingerprint concept by Kotschenreuther et al. [103]. In summary, the pedestal

conditions create a complex and multi-faceted turbulent state that changes on a length
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4. The H-mode pedestal and its instabilities

Fig. 4.2.: Left: Contour plots of a nonlinear, local, ion-scale simulation in the steep gradient
region of an ASDEX Upgrade pedestal. Top: Electric potential, middle: parallel magnetic
potential, bottom: density. Eddies short-circuit around the periodic radial boundary condi-
tion (horizontal axis) even with a width of 256ρi. Right: Radial profile of electrostatic heat
fluxes of a nonlinear, global pedestal simulation (AUG) with (orange) and without (blue)
electromagnetic fluctuations for electrons (solid) and ions (dashed).

scale of just a few mm. I will put an emphasis on this radial structure of the pedestal

in the analysis performed in the following two chapters.

The pedestal conditions and their implications for instabilities and turbulence put high

demands on gyrokinetic simulations. First, the modeling of E × B shear in the sim-

ulations is unavoidable for realistic turbulent saturation levels and heat fluxes (see

Fig. 5.14). The same is true for electromagnetic fluctuations. Even the electrostatic

heat flux is strongly influenced by the inclusion of electromagnetic fluctuations (see

Fig. 4.2). Furthermore, nonlinear local simulations on ion scales become more diffi-

cult. The strong drive causes large eddies, which require wide simulation domains to

prevent the eddy from short-circuiting across the radial periodic boundary condition,

which would yield unphysically large heat fluxes (see Fig. 4.2). Since the gradients

are assumed to be constant in the local approach, the total drive of the system in the

local simulation ends up much higher (maximum drive in the whole simulation domain

possibly hundreds of gyroradii wide) compared to the very localized steep gradient

region (∼ten gyroradii) and may prevent convergence at all. Resolution demands are

also increased in the pedestal. A high radial resolution is required due to the strong
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4.1. The pedestal from a turbulence perspective

changes in kinetic profiles and magnetic geometry, and a high parallel resolution can

become decisive, particularly for electron scale modes (see [104, 105] and next chapter).

Additionally, instability spectra show unstable modes over a wide range of scales (see

Fig. 5.7), which generally interact in the turbulent system. A comprehensive analysis

of transport has, hence to take into account a wide range of scales. In core conditions,

ion and electron instabilities are often well separated in size, such that they can be

simulated separately to good approximation. In pedestal conditions, however, instabil-

ity spectra can become continuous in scale, which might increase scale interactions and

render a separate simulation of electron and ion scales more difficult. In particularly

challenging cases, multi-scale simulations can become unavoidable.

Pedestal properties and dynamics are not only shaped by gyrokinetic turbulence but

also by large-scale MHD and neoclassics. A standard H-mode pedestal does not remain

stable for long. The pedestal soon hits MHD stability boundaries (peeling-ballooning,

see EPED model by Snyder et al. [88, 89]), which cause the pedestal to quickly relax.

These edge localized modes (ELMs) expel large amounts of particles and energy (about

10%) from the plasma. An ELM cycle lasts only a few ten ms, such that ELMs may

have a repetition rate of 50 - 100 Hz. There also exist other, smaller types of ELMs,

depending on the experimental conditions, called Type-II or Type-III ELMs in contrast

to the large, bursty Type-I ELMs. It has recently been shown that an ELM cycle can

be qualitatively modeled within extended MHD [40].

The shear flows that suppress turbulence in the pedestal are dominantly E × B flows

caused by a radial electric field Er [97]. The radial electric field can be related to the

pressure gradient and currents via a force balance equation derived from the MHD

momentum equation. For a single fluid, the MHD momentum equation is:

ρ

(

∂u

∂t
+ u · ∇u

)

= ρqE − ∇ · P + J ×B, (4.1)

with the mass density ρ, velocity u, charge density ρq, electric field E, pressure P ,

current density J , and magnetic field B. In steady state without flows, this can be

written as

E = 1/ρq(∇ · P − J ×B) (4.2)

and the radial component of this is

Er = 1/ρq(∂rP − JφBθ + JθBφ) (4.3)

In the pedestal, the radial electric field is mainly balanced by the pressure gradient.
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4. The H-mode pedestal and its instabilities

While this force balance is known and extensions to include turbulent effects are being

investigated [106], a clear, dynamic understanding of the Er generation during the L-H

transition has not yet been developed.

4.2. Instability types

I have used the term instability several times in the previous sections and chapters,

assuming an intuitive understanding of the term without giving a precise technical

definition. This is rectified in this section. I will explain this central part of the

gyrokinetic analysis in more detail, in particular highlighting what is unstable with

respect to what and introducing three instability mechanisms.

The basic idea of stability analysis is the following: Consider a small perturbation of

an equilibrium state. In the case of a plasma, this might be a temperature or density

perturbation or perturbation of the electric or magnetic field. The question is, what

happens to the initial perturbation if the system evolves? Does the perturbation decay,

and does the system return to equilibrium? Does the perturbation remain unchanged?

Or does the perturbation grow? The first case is called stable, the second marginally

stable, and the third unstable. For a plasma, this is a very important consideration

since the probability for the plasma to be in a perfect equilibrium is negligibly small.

The plasma is, in general, constantly being perturbed on micro- and macroscales, and

the crucial question is whether these perturbations remain small and stable or if there

are mechanisms of self-amplification that cause them to grow. The short answer is -

unfortunately for fusion - that there are many unstable kinds of plasma perturbations

on many scales.

The technical stability analysis starts with the underlying equations of motion. The

stability of perturbations is part of the dynamics encoded by the equations of motion,

like the Vlasov-Maxwell system or MHD equations. Unfortunately, the stability of a

perturbation cannot be directly decided from the full nonlinear differential equations.

For a linearized system, however, this is possible. The linearization enables one to use

an exponential wave ansatz for the perturbation, which is known to solve the linear

differential equation. Such a general ansatz does not exist for nonlinear differential

equations. The resulting complex dispersion relation then allows one to decide on the

stability of different modes. More generally, one could also solve for the full eigenvalue

spectrum of the linear operator, which is, however, usually computationally unfeasible.

The modes are characterized by their wavenumber k and a complex frequency ω that

consists of a real frequency and the growth rate γ. In the numerical solution of the
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4.2. Instability types

Fig. 4.3.: Illustration of drift wave instability. Taken from [20] with permission from P.
Manz, based on [41].

linearized system, unstable modes show exponential growth. Such simulations are

performed for the linear growth rate scans shown in the following chapters. The linear

ansatz neglects all complex, non-linear dynamics of the system, but it importantly

allows one to make statements on stability. In the full system, nonlinear interactions

eventually impede the exponential growth of instabilities and cause them to saturate

on a certain level. It should be noted that the instabilities of the linear system may

not be equivalent to the instabilities of the full system. Additional instabilities may

arise, or fast-growing modes may have very low saturation amplitudes, diminishing

their relevance, or vice versa. The nonlinear saturation level can typically only be

determined by a numerical solution of the nonlinear system. These are the nonlinear

turbulence simulations presented in the following chapters. In many plasma physics

textbooks, the instability analysis is explained in more detail for the example of MHD

instabilities. The general mathematical foundation of stability analysis is developed in

the field of dynamical systems.

In the following subsections, three instability mechanisms relevant to gyrokinetic tur-

bulence are presented.

4.2.1. Drift wave instability

The drift wave instability is common in tokamak plasmas. It is caused by the desta-

bilization of a drift wave. The drift wave mechanism is explained first. Consider the

situation depicted in Fig. 4.3—a plasma with a density gradient in a uniform magnetic

field. The darker blue region has a higher density, and the light blue region has a

lower density. A perturbation is applied, which alters the radial gradient and has a

finite parallel wavelength. Note that the perturbations in the two snapshots along the

magnetic field lines are out of phase. Now, the different inertia of ions and electrons
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4. The H-mode pedestal and its instabilities

are crucial. The electrons react much faster to the density gradient and stream from

the high-density to the low-density region, creating a surplus of electrons in the low-

density region. This creates in the perpendicular plane an electric field from high- to

low-density region. And in the presence of an electric field, the E ×B drift transports

the whole plasma. Suppose the potential and density perturbation are in phase, as

shown in the illustration. In that case, the E×B drift shifts the density such that the

density perturbation effectively drifts downwards in the illustration. The amplitude

is constant. The drift wave is marginally stable. A delay of the electron response

to the density perturbation destabilizes the drift wave. Then density and potential

perturbation are out of phase, and the E × B drift might act such that the pertur-

bation is amplified. This is a typical situation. Different effects like collisions and

Landau damping delay the electron response. While we have used a density gradient

and perturbation in the example, the mechanism also applies to temperature or, more

generally, to pressure gradients and perturbations.

In summary, the drift wave mechanism: A pressure perturbation creates a potential

perturbation (by the species-dependent parallel response) creates E × B drift creates

an effective drift of the perturbation. It is destabilized by a delayed electron response.

The drift wave mechanism does not depend on specifics of the magnetic geometry, i.e. it

is not curvature-driven. A drift wave has a finite parallel wavenumber k‖.

Examples of drift waves are slab-ETG and slab-ITG.

4.2.2. Interchange instability

The interchange instability is common in tokamak plasmas. It requires a magnetic field

with finite curvature. All dynamics take place in the perpendicular plane. Consider

the situation depicted in Fig. 4.4 — a plasma with a pressure gradient in a curved

magnetic field. The relative orientation of pressure gradient and curvature is crucial

for the stability of the perturbation. Therefore, two situations are depicted: Right on

the outboard side and left on the inboard side of the tokamak. The curvature at both

sides points in the same direction. However, the pressure gradient points in opposite

directions since the pressure peaks in the center of the plasma. A radial perturbation

is applied to the pressure gradient. The curvature drift moves electrons and ions from

the high-density region in opposite directions. In the illustration, ions are moved up,

and electrons are moved down. This charge separation by the curvature drift creates

an electric field, which causes an E×B drift of the whole plasma. On the inboard side

(left), the good curvature region, E×B drift, and pressure perturbation align such that

the perturbation is damped. On the outboard side (right), the bad curvature region,
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Fig. 4.4.: Illustration of interchange instability. Taken from [20] with permission from P.
Manz, based on [41].

E ×B drift, and pressure perturbation align such that the perturbation is amplified.

In summary, the interchange instability: A pressure perturbation creates a potential

perturbation (by the species-dependent curvature drift) creates an E ×B drift, which

dampens or amplifies the perturbation.

Modes that are driven by the interchange instability have a ballooning structure. They

have large fluctuation amplitudes on the outboard side and small fluctuation amplitudes

on the inboard side. Or, in different terms: They are unstable on the low field side but

stable on the high field side.

Examples of interchange instabilities are toroidal ITG and toroidal ETG. While the

exact instability mechanisms differ from a pure interchange mode, TEMs (involving

trapped electrons) and KBMs (involving electromagnetic fluctuations) also possess a

ballooning structure [20].

4.2.3. Tearing instability

The tearing instability is an instability of the magnetic field. A perturbation in the

parallel current locally changes the magnetic field topology and creates a magnetic

island, see Fig. 4.5. This is particularly likely to happen at low-order rational surfaces,

where the safety factor has rational values, e.g., q=2/1, 4/3, 5/2, such that the magnetic
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Fig. 4.5.: Illustration of a magnetic island chain by a Poincáre plot of field lines. Reprinted
from [107], with the permission of AIP Publishing.

field lines close on themselves after only a few turns around the torus. The magnetic

island has its own magnetic X-points and flux surfaces. Since transport is fast on flux

surfaces, the island radially connects areas that would have been separated by several

flux surfaces without the island’s presence. This flattens the pressure gradient across

the island. The flattened pressure gradient further reduces the parallel current via the

MHD force balance. Hence, the magnetic island is amplified and can grow. For large

islands in so-called Neoclassic Tearing Modes, this can have a strong impact on plasma

stability and transport and can lead to disruptions.

On smaller scales, at higher wave numbers, Micro-Tearing Modes (MTMs) are driven

by a similar mechanism and contribute to turbulent transport.

4.3. Quasilinear models

Quasilinear models aim to circumvent nonlinear simulations by deducing the nonlinear,

saturated state from the results of linear simulations. In the previous section, the

difference between linear and nonlinear simulations has been explained. While the

linearized system allows an analysis of instabilities, only the nonlinear system can reveal

fluctuation amplitudes in the developed, turbulent state. By using ad-hoc saturation

rules or fits to databases of nonlinear simulations, quasilinear models sidestep the need

for expensive nonlinear simulations. The most established quasilinear codes in the

plasma turbulence community are TGLF [31, 32] and QuaLiKiz [33, 34]. These codes

do not use the full linearized gyrokinetic equation but use further reduced models

to calculate the growth rate spectrum to further speed up the model. More recent

approaches use Neural Network predictions based on large linear simulation databases

of fully gyrokinetic simulations as an alternative option [108].
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A simple dimensional estimate for the heat flux is the mixing length model. It is

based on a random walk diffusivity χ = (∆r)2/∆t, with a characteristic step size ∆r

and a characteristic time between steps ∆t. The step size is assumed to be the ion

gyroradius ρi, and the time between steps is estimated from the drift frequency ω,

yielding: χi = ρ2
iω. The drift frequency can be estimated as ω =

v2
th

Ω
k⊥

L⊥
[48]. With the

thermal velocity vth =
√

T0/m0, perpendicular mode number k⊥ and the gradient scale

length L⊥. This yields:

χgB =
k⊥ρ

2
i

L⊥

v2
th

Ω
=
ρi

a

T

qB
(4.4)

This is called gyro-Bohm diffusivity [23, 48]. In the last step, k⊥ = 1/ρi and the as-

sumption that the gradient scale length is given by the minor radius L⊥ = a was used.

The latter is a reasonable estimate for core profiles in L-mode; however, for pedestal

profiles and turbulence, this is not a justified assumption. Therefore, alternative def-

initions using the actual pedestal gradient have recently received increased attention

[104, 109]. From the gyro-Bohm diffusivity, a gyro-Bohm heat flux can be derived:

QgB = χgBn0∇T =
ρi

a

T

qB
n0
T0

a
=
ρ2

i

a2
n0T0vth (4.5)

It is worthwhile to note the dependencies of QgB on temperature: QgB ∝ T 5/2. QgB

is a very common normalization for gyrokinetic heat fluxes. It allows one to compare

heat fluxes of different scenarios based on how much they deviate from the mixing

length expectation. This is well suited for local simulations to which one can assign a

single value of QgB. In global pedestal simulations, the QgB normalization has to be

used with care since QgB itself varies strongly across the pedestal. Therefore, it partly

loses its interpretive value and is best used if scalings are explicitly studied as done in

e.g. [104, 109].

A standard quasilinear estimate for the heat flux in units of QgB is [110, 111]:

QQL =
a

LT

max
ky

(

γ

〈k2
⊥〉

)

(4.6)

with the growth rate γ and the eigenmode-averaged perpendicular wavenumber 〈k2
⊥〉.

Here, the mode characteristics γ and 〈k2
⊥〉 have been used in a mixing length ansatz as

∆t and ∆r, respectively.
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Fig. 4.6.: Example of a growth rate and frequency spectrum of the most unstable mode.
The scenario is an ASDEX Upgrade H-mode at ρtor = 0.86 (detailed discussion in Chapter
5).

4.4. Distinguishing between modes

There exists a host of criteria to categorize different microinstabilities. Here, a selection

of important criteria is presented. Many of them are applicable to linear simulations.

In the next section, they are used to characterize important gyrokinetic instabilities.

4.4.1. Size or wavenumber

The first criterion is the size or wavenumber of the mode. Typically, the binormal

wavenumber ky is considered. A distinction can be made between modes with wave-

lengths comparable to or larger than the ion gyroradius, which could be driven by either

ion or electron dynamics, and modes with wavelengths much smaller than the ion gy-

roradius, which can only be excited by electron dynamics. Modes much larger than the

ion gyroradius border on magnetohydrodynamic modes and the accurate reproduction

of such modes within gyrokinetics is a topic of ongoing research, see Sec. 3.5.

4.4.2. Frequency and drift direction

The second criterion is the frequency of the mode and the associated drift direction.

Modes may propagate either in the ion or the electron diamagnetic direction, deter-

mined by the diamagnetic drift velocity. In GENE conventions, a positive frequency

corresponds to the ion diamagnetic drift direction, and a negative frequency to the

electron diamagnetic direction. The propagation velocity, i.e. frequency amplitude,

can also contain valuable information. Typically, sudden jumps in the frequency spec-

trum of the dominant mode can reveal mode transitions that are not as visible in the
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4.4. Distinguishing between modes

corresponding growth rate spectrum. See e.g. Fig. 4.6 as an example for a growth rate

and frequency spectrum and notice the frequency jump around ky = 0.3/ρi.

The frequency is useful for comparing linear simulations with nonlinear simulations

and experimental measurements. For comparisons of local with global simulations and

measurements, a precise knowledge of underlying large-scale flows, e.g. E × B, and

plasma rotation, which shift the apparent mode frequency, is important.

4.4.3. Diffusivity ratios

Another helpful criterion is the ratios of ion and electron diffusivities or heat and par-

ticle diffusivities. Since only ratios are considered, this criterion remains applicable to

linear simulations, in which the absolute diffusivity values grow without bounds and are

hence meaningless. This criterion can also be applied to experimental measurements,

allowing a relatively easy comparison of theoretical predictions with experiments. This

ansatz and specific values have been formalized recently under the name of fingerprints

in [103].

4.4.4. Parallel structure

The parallel structure of the mode contains further important information. Due to the

helical shape of the field lines, the parallel structure is tightly linked with the poloidal

structure of the mode. The parallel structure can be elongated, with a low k‖, peaking

at the outboard midplane as is typical for interchange instabilities. It can also have

a strong structure with high k‖, which is observed in some pedestal ETG modes. Of

particular interest is the parity of the mode. It describes the symmetry of the electric

and magnetic potential fluctuation amplitudes (real and imaginary parts) with respect

to the outboard midplane along the magnetic field line. Most modes have a ballooning

parity with a mirror-symmetric electric potential and a point-symmetric magnetic po-

tential. Tearing modes have a tearing parity with a point-symmetric electric potential

and a mirror-symmetric magnetic potential. See Fig. 4.7 for an example of the different

parities. One can also define a parity factor [112].

4.4.5. Ballooning angle/ tilt at the outboard midplane

Another characteristic of the mode is its radial wavenumber at the outboard midplane,

corresponding to the tilt of the mode in the poloidal cross-section or a finite balloon-

ing angle in the ballooning representation. The ballooning angle θ0 is an angle-like
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4. The H-mode pedestal and its instabilities

Fig. 4.7.: Example of a ballooning (top) and tearing (bottom) parity. The scenario is an
ASDEX Upgrade H-mode at ρtor = 0.86 (detailed discussion in Chapter 5).

coordinate for the parallel direction [113]. It is used to analyze the amplitude of fluc-

tuations along a field line and may extend beyond [−π, π] for modes with large parallel

correlation lengths, wrapping around the torus more than once. The number of paral-

lel connections of a mode nc resolved in a given flux-tube simulation depends on the

binormal wavenumber of the mode ky, the radial size of the simulation box Lx, the num-

ber of radial grid points nx0 and the magnetic shear ŝ: nc = nx0/(Lx|Cyq0/x0|ŝky).

In GENE simulations, θ0 = 0 corresponds to the outboard midplane. The balloon-

ing angle is related to the radial wavenumber at the outboard midplane kx,center by

θ0 = kx,center/(ŝky). It is instructive to consider the dependence of this relation on ky.

As ky increases, kx,center has to increase as well to keep the ballooning angle constant.

A consequence is that growth rate scans in ky with a fixed kx,center probe quite different

modes than scans with a fixed ballooning angle. This is illustrated in Fig. 4.8 and 4.9.

4.4.6. Velocity space structure

Of further relevance can be the velocity space structure, see Fig. 4.10. In principle,

trapped and passing particles can be distinguished due to the relation of parallel and

perpendicular velocity. Hence, their relative contribution to the heat flux can be iden-
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Fig. 4.8.: Illustration of an untilted (left) and tilted (right) mode at the outboard midplane.
The tilted mode has a finite radial wave number at the outboard midplane.

Fig. 4.9.: Illustration of the relation between ballooning angle θ0 and radial wavenumber
kx,center at the outboard midplane as a function of the binormal wavenumber ky. Left: Lines
of constant θ0 in a kx,center-ky plot. Right: Lines of constant kx,center in a θ0-ky plot.
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4. The H-mode pedestal and its instabilities

Fig. 4.10.: Example of a velocity space structure. Absolute value of the distribution (left)
and heat flux (right). The scenario is a TEM in an ASDEX Upgrade H-mode at ρtor = 0.86
(detailed discussion in Chapter 5).

tified. In practice, it rarely allows for drawing clear conclusions, but it can be helpful

as an additional indicator.

4.4.7. Cross phases

Another criterion is the phase difference between different fluctuating fields. Typically,

phase differences between electric potential fluctuations and density fluctuations or

temperature fluctuations are considered. Phase differences between the magnetic fields

(Ā1‖, B̄1‖ ) and density/temperature fluctuations can also be considered for a complete

analysis of transport fluxes. The transport is most effective at a phase difference of

π/2 and vanishes at 0. This can be motivated by the instability mechanisms described

previously or by the definition of the fluxes, which are calculated from a correlation

of T , n fluctuations and the generalized E × B velocity, see e.g. Ref. [48]. The cross

phases are useful for comparing linear and nonlinear simulations and for validation

against experimental measurements. Fig. 4.11 shows an example of cross phases from

a nonlinear simulation (blue background) and linear simulations (orange circles). A

detailed discussion of these simulations is done in the next chapter.

4.4.8. Parameter dependencies

While the previous criteria have been passive in the sense that they can be performed

on a given simulation, now a collection of sensitivity studies is described, which require

additional simulations. This approach exploits that typically modes are driven by

one of the gradients, e.g. the electron temperature gradient, and stabilized by another
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Fig. 4.11.: Example of cross phases. Left: Electric potential φ and density n. Middle:
Electric potential and parallel temperature. Right: Electric potential and perpendicular
temperature. Blue background: Nonlinear simulation. Orange circles: Linear simulations.
The scenario is an ASDEX Upgrade H-mode at ρtor = 0.86 (detailed discussion in Chapter
5).

gradient, e.g. the density gradient. By performing additional simulations at artificially

changed gradients (e.g. ±30%) and comparing resulting growth rates, one can identify

the driving gradients. Such scans have been performed for the cases shown in the

following two chapters. Similarly, modes may depend on other parameters, like e.g. the

plasma β or collisionality. By performing scans in these parameters and comparing

growth rates, these can be identified.

A typical property of gyrokinetic instabilities is a nonlinear dependence of the growth

rate on the driving gradients. Often, growth rates remain low until a critical gradient

is reached, after which growth rates strongly increase as a function of the gradient.

Famous examples of this behavior include ETG modes [114] and ITG modes [115,

116]. In nonlinear simulations, the critical gradient for the heat flux may be shifted

to higher gradient values compared to the critical gradient for growth rates. For ITG

turbulence this is referred to as Dimits shift [117, 118].

A principal challenge for such parameter scans is that one risks transitioning to a

different mode instead of probing the dependence of one mode at nominal parameters.

A good indication of such transitions is the mode frequency. If the frequency changes

smoothly with parameter changes, chances are high that just details of a given mode

are changed. If, however, sudden jumps in the frequency can be observed, most likely,

the dominant mode has changed under the new parameters. This problem can also be

circumvented by eigenvalue simulations, which solve for more unstable modes than the
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4. The H-mode pedestal and its instabilities

fastest-growing one.

Results of parameter scans are shown and discussed in the following chapters, see

e.g. Fig. 5.10 or Fig. 6.14.

4.5. (Pedestal) microinstabilities

This section introduces important gyrokinetic instabilities and their characteristics.

Emphasis is on modes that are most likely relevant for transport in the pedestal (ETG,

MTM, KBM), but other modes (ITG, TEM) are also described. A short profile/

fact sheet summarizes the properties of each instability. Further important questions

regarding the instabilities are: What drives them? How do they saturate? How much

transport can they cause? Could they be suppressed in specific conditions? What

makes them unique/how can they be identified?

4.5.1. Electron Temperature Gradient (ETG) mode

Profile

• Size: Usually much smaller than the ion gyroradius. kyρi ≈ 10−200. Can extend

down to ion scales in pedestal conditions.

• Frequency: Electron diamagnetic drift direction, high frequency.

• Drive: Destabilized by electron temperature gradient 1/LTe stabilized by the

density gradient 1/Ln. Hence, has a critical ηe = Ln/LTe .

• Parity: Ballooning

• electrostatic

• Two branches: Toroidal (interchange drive) and slab (drift wave drive) ETG

• Alternative name: ηe-mode

Based on the gyro-Bohm estimates (see Sec. 4.3), only low levels of electron heat

transport are expected since QgB ∝ ρspecies and ρi ≈ 42ρe, see Ref. [48]. However,

experiments and gyrokinetic simulations show that electrons can carry significant heat

transport [119, 120]. One of the essential driving mechanisms for this transport is ETG

modes. The significant contribution of ETG modes to electron transport was shown

in the early 2000s by Jenko et al. [57, 121]. A critical gradient formula was developed
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4.5. (Pedestal) microinstabilities

that estimates the onset of ETG instabilities as a function of gradients and magnetic

geometry [114].

Recently, ETGs have received a lot of attention as a driving mechanism of electron

transport in the H-mode pedestal [78, 104, 109, 122, 123]. Changes in the structure of

ETG modes in pedestal conditions have been analyzed [105, 124, 125] and a quasilinear

model for ETG transport in pedestals has been developed [126]. A further important

research question concerns the possible impact of cross-scale interactions between elec-

tron and ion scale modes [127–129].

ETGs are unique as modes in the gyrokinetic framework that can be unstable on scales

much smaller than the ion gyroradius. Two branches of ETGs exist with distinct char-

acteristics: The slab branch produces modes with an isotropic morphology, i.e. kx ≈ ky,

and has a high k‖. The toroidal branch produces radially elongated streamers kx < ky

and has a low k‖. The two branches have been observed to dominantly occur in differ-

ent regions of ky in the pedestal, with toroidal ETGs at lower kyρi ≈ 1 − 10 and slab

ETGs at higher kyρi ≈ 50 − 150 [104, 105].

A principal challenge in the validation of ETG physics against experiments is that

ETG mode dynamics are faster and smaller than can be resolved by most available

diagnostics [130]. Usually, only effective quantities like the resulting heat flux can be

compared.

ETG transport plays a crucial role in the structure of pedestal turbulence investigated

in this thesis (cf. following two chapters).

4.5.2. Micro Tearing Modes (MTM)

Profile

• Size: Typically larger than the ion gyroradius. kyρi ≈ 0.1 − 1.

• Frequency: Electron diamagnetic drift direction.

• Drive: Destabilized by electron temperature gradient 1/LTe and parallel current

perturbations.

• Parity: Tearing

• Electromagnetic

• Located at rational surfaces.
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Micro tearing modes have been identified as one of the prime candidates for causing

electron transport in the pedestal [103]. They have been found to be relevant in

pedestals of DIII-D [131, 132] and JET [133, 134]. The first GENE simulations of

microtearing turbulence were performed in [135].

The MTM is unique as a microinstability with tearing parity. It can be distinguished

from KBMs, which also cause electromagnetic transport on large scales, by the drift

direction and parity.

4.5.3. Kinetic Ballooning Mode (KBM)

Profile

• Size: Ion gyroradius and larger. kyρi ≈ 0.1 − 1.

• Frequency: Ion diamagnetic drift direction, high frequencies

• Drive: Destabilized by pressure gradient and plasma β.

• Parity: Ballooning

• Electromagnetic

• Can be excited by higher plasma β in an ITG scenario (see ITG-KBM transition

e.g. in Ref. [101]).

• Alternative name: drift-Alfven mode

KBMs are employed as one of the constraints in the EPED model for limiting the

pedestal height and width [89]. While linear KBM simulations are established [77,

100], the nonlinear saturation of KBMs, particularly in global simulations, is a topic

of active research [136, 137].

4.5.4. Resistive Ballooning Mode (RBM)

Profile

• Size: Ion gyroradius and larger. kyρi ≈ 0.1 − 1.

• Frequency: Electron diamagnetic drift direction

• Drive: Destabilized by collisionality

• Parity: Ballooning
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RBMs have been proposed to be important in L-H transition dynamics at the edge of

tokamak plasmas [138, 139]. They have mainly been studied with fluid-type codes [139,

140], but some linear gyrokinetic studies for L-mode scenarios have been performed

[141].

4.5.5. Trapped Electron Mode (TEM)

Profile

• Size: Ion gyroradius kyρi ≈ 0.5 − 1.5.

• Frequency: Electron diamagnetic drift direction.

• Drive: Destabilized by electron pressure gradient. Can be driven by an electron

temperature and/or density gradient. Stabilized by high collisionality due to

de-trapping of particles. Suppressed by E ×B shear.

• Parity: Ballooning

• Electrostatic

• Related to the ubiquitous mode [142, 143].

The TEM is one of the classic core turbulence modes [110]. Since TEMs require

trapped particles - a kinetic effect - they are typically not captured by codes based

on fluid closures. A TEM can be distinguished from an ITG mode, which causes

electrostatic transport on similar ky ranges by the drift direction, the stabilization by

collisionality, and independence from the ion temperature gradient. Furthermore, most

of its transport is caused by trapped particles (see velocity space distribution). In the

steep gradient region of the pedestal, it is usually suppressed by E ×B shear.

4.5.6. Ion Temperature Gradient (ITG) mode

Profile

• Size: Slightly larger than the ion gyroradius kyρi ≈ 0.1 − 1.

• Frequency: Ion diamagnetic drift direction.

• Drive: Destabilized by ion temperature gradient. Stabilized by density gradient.

Hence, critical ηi = Ln/LTi
Stabilized by plasma β before transition to KBM.

Suppressed by E ×B shear.

• Parity: Ballooning
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• Electrostatic

• Saturation mainly via zonal flows [144, 145].

• Two branches: Toroidal (interchange drive) and slab (drift wave drive) ITG

• In idealized conditions, it is linearly isomorphic to ETG with reversed roles of

ions and electrons. The saturation mechanisms differ.

• Alternative name: ηi mode

The ITG mode is considered one of the classic core turbulence modes [115, 146]. In

the steep gradient region of the pedestal, it is usually suppressed by E×B shear, even

though for some JET pedestals, ITGs have been found to be important [133].

4.5.7. Synopsis

A host of different microinstabilities have been introduced. In real-world pedestals,

these modes do not appear as clear as the description of the prototypes might suggest.

Hybrids may form that have some characteristics of one mode and some of another.

Drift directions may be altered, and the dominant drive may subtly change across

the spectrum, for example, from TEM to ETG modes. Gradual changes may also be

observed radially as one drive weakens and another strengthens, and the geometric

properties of the magnetic field change. So, while these modes are useful to iden-

tify driving mechanisms of transport channels, no real pedestal is in a pure state of,

e.g. ETG-turbulence or MTM-turbulence.

In recent years the following picture of pedestal microinstabilities and transport has

emerged: ETG and MTM have been identified to be strong candidates for the most

relevant instabilities in the steep gradient region of the pedestal [103–105, 131–134]. In

ASDEX Upgrade also, TEMs and KBMs are relevant [147] and in JET-ILW (ITER-like

Wall) ITG has been found to be present [148, 149]. In simulations with drift-kinetic

electrons, KBMs and Kinetic Peeling-Ballooning modes (KPBM) have been found to be

important for pedestal stability [137]. Most of these studies are based on local/linear,

local/nonlinear, global/linear, or reduced β simulations. However, to study which

turbulent mechanisms drive transport under real pedestal conditions, global/nonlinear

simulations at experimental β values are indispensable. Such simulations are presented

in this thesis.
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4.6. Dealing with experimental uncertainties

The character of instabilities and how much heat flux they drive depends sensitively

on the driving temperature and density gradients. In the pedestal, measurement un-

certainties of gradients can typically reach values of ±30%, see e.g. Fig. 5.2. Hence, an

appreciation of these inherent experimental uncertainties is essential for the setup and

interpretation of gyrokinetic studies.

Experimental uncertainties do not affect all quantities equally. While electron tem-

perature measurements are possible with different diagnostics simultaneously, ion tem-

perature measurements are notoriously more difficult. They are not always directly

accessible but may be inferred from temperature measurements on impurities, which

adds additional uncertainties concerning the relation between main ion and impurity

temperatures. The measurement uncertainties also apply to the relative position of

profiles to each other and the reconstructed magnetic field. Since electron tempera-

ture and density can be measured simultaneously with Thomson scattering, there is

no uncertainty on their relative position. The ion profile position, however, is more

uncertain. It is typically set such that the steepest gradient of Te and Ti coincide. The

relative position to the magnetic field has an uncertainty of a few mm. It is usually

fixed by imposing realistic separatrix temperature values.

In local, linear instability analyses, the strategy to deal with experimental uncertainties

is straightforward. By varying the input gradients, the sensitivity of a spectrum or

individual wavenumbers can be mapped out. For local, linear simulations, this is

computationally affordable but can become challenging, such that the use of dedicated

uncertainty quantification methods becomes advantageous [150]. In local, nonlinear

simulations, the same approach for determining the sensitivity of heat fluxes can be

followed. For the comparison to experimental transport measurements, the use of

transport fingerprints (diffusivity ratios and mode frequency) as described in [103] can

augment this ansatz.

For global, nonlinear simulations, the sensitivity analysis is more complicated. Since a

changing profile with changing gradients drives the instabilities in global simulations

instead of one single gradient value in local simulations, no straightforward gradient

scan is possible. A systematic approach to changing the profiles to match experimen-

tal power balance in global simulations is the GENE-Tango framework, discussed in

Sec. 5.5. This is a flux-driven approach and hence relies on an accurate knowledge

of sources and sinks instead of temperature and density profiles. An alternative ap-

proach is to shift the focus on trends and dependencies of physical effects. With this
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perspective, the absolute heat flux is mainly a sanity check to see if the simulations

are consistent with the experiment. Even factors of three of four difference in heat

flux may be acceptable, as typically slightly different profiles would show very good

agreement with the experiment. Of primary interest is then how heat fluxes react to

different physical effects like flow shear, gradients, or impurities.

4.7. Summary

This chapter has prepared the simulation results presented in the following chapters.

Pedestal physics has been analyzed from a turbulence perspective, emphasizing the

strong changes in many parameters and shear flow suppression of turbulence. Further-

more, the basic concept of stability analysis, the difference between linear and nonlinear

simulations, and relevant instability mechanisms have been outlined. Finally, the most

important microinstabilities and criteria to identify these modes were discussed. The

current understanding of pedestal turbulence has been summarized, and its bound-

aries have been highlighted. With this, the stage is set for the following chapters,

in which the presented machinery will be applied to two experimental pedestals. By

combining the new electromagnetic code upgrade with comprehensive linear studies,

the understanding of pedestal turbulence is advanced.

Recommended further literature

• The fingerprint concept for gyrokinetic modes: Kotschenreuther, M., Liu, X.,

Hatch, D., Mahajan, S., Zheng, L., Diallo, A., Groebner, R., the DIII-D TEAM,

Hillesheim, J., Maggi, C., Giroud, C., Koechl, F., Parail, V., Saarelma, S., Solano,

E., Chankin, A. & JET Contributors. Gyrokinetic Analysis and Simulation of

Pedestals to Identify the Culprits for Energy Losses Using ‘Fingerprints’. Nuclear

Fusion 59, 096001. doi:10.1088/1741-4326/ab1fa2 (2019)

• Background literature on stability analysis and nonlinear dynamics: Strogatz,

S. H. (2001). Nonlinear Dynamics and Chaos: with Applications to Physics,

Biology and Chemistry. Perseus.
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5. AUG pedestal simulations

This is the first of two simulation result chapters. The presented analysis aims to

identify the dominant turbulent transport mechanism in the H-mode pedestal of a real

experimental plasma discharge. The shot we investigate in this chapter is a type-I

ELMy ASDEX Upgrade discharge. The main focus is on the time point 6ms after the

ELM crash, where the profiles show a well-developed pedestal. First, the experimental

scenario is presented. Next, linear instabilities in different regions of the pedestal

are characterized. Then, nonlinear, global, ion-scale simulations, as well as nonlinear,

local, electron-scale simulations, are presented. Preliminary results on the behavior of

instabilities and fluxes at different times of the ELM cycle are also discussed. Finally,

an outlook on quasi-flux-driven simulations of the pedestal by coupling GENE with

the transport code Tango is given.

Parts of this chapter have been published in Leppin, L., Görler, T., Cavedon, M.,

Dunne, M., Wolfrum, E., Jenko, F. & the ASDEX Upgrade Team. Complex Structure

of Turbulence across the ASDEX Upgrade Pedestal. Journal of Plasma Physics 89,

905890605. doi:10.1017/S0022377823001101 (2023).

5.1. Experimental scenario

We investigate the particularly well-diagnosed and studied shot AUG #31529 [151,

152]. Edge density, temperatures of electrons and ions, and flows have been measured

in this discharge with advanced edge diagnostics, achieving very high time (65 µs) and

spatial resolution during an ELM cycle [151]. These measurements and their analysis

provide well-resolved temperature and density profiles at different time points of the

ELM cycle for the gyrokinetic analysis.

The AUG #31529 shot has NBI (Neutral Beam Injection) and ECRH (Electron Cy-

clotron Resonance Heating) heating, with a total heating power of Ptot = 8.7 MW,

an on-axis B-field of -2.5 T and a plasma current of 0.8 MA. From this shot, we

employ ELM-synchronised temperature and density profiles from [151] and pressure-

constrained magnetic equilibria, see Fig. 5.1. We focus on the time point 6 ms after the

ELM crash, where the pedestal is mostly recovered, and profiles are almost pre-ELM,

with a slightly (≈ 7%) reduced electron temperature at the pedestal top.

Fig. 5.2 shows the profiles and corresponding gradient scale lengths used in this study.

87

http://dx.doi.org/10.1017/S0022377823001101


5. AUG pedestal simulations

Fig. 5.1.: Poloidal shape of several flux surfaces in the pedestal region of AUG #31529.
Generated from the experimental magnetic equilibria.

Fig. 5.2.: Profiles and gradient scale length 1/LX = −X−1∂X/∂ρtor of ion temperature
(orange), electron temperature (blue) and density (green) of AUG #31529 6ms after the
ELM crash. It is assumed that ne = ni. Data points show experimental measurements
(see main text for details), solid lines show the best mtanh fit, and dashed lines illustrate
alternative mtanh fits within the statistical uncertainty of fit parameters. Grey vertical lines
indicate positions where instabilities have been characterized in detail (see Sec. 5.2).
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Data points are from experimental measurements; lines are modified hyperbolic tangent

(mtanh) fits. The Te and ne data points show results of the integrated data analysis

algorithm (IDA) [153] combining measurements from lithium beam emission (Li-BES)

spectroscopy and electron cyclotron emission (ECE) radiometry. The Ti data points

show measurements of the edge charge exchange recombination spectroscopy (CXRS)

and averaged values of the core-CXRS. For more details, see Ref. [151].

As input for the gyrokinetic simulations, the pedestal profiles were fitted with mtanh

functions as defined in [95] in the radial domain ρtor = [0.8, 1]. mtanh(z) = a((1 +

αz)ez − e−z)/(ez + e−z) + b, where z = (rsym − r)/hwid. The uncertainty of the fits has

been estimated by varying the fit parameters within a 3σ interval of the best fit, where

the standard deviation σ was determined from the least squares fit. Fit parameters were

varied such that profiles with maximal and minimal average gradients were achieved.

For the high gradient case we choose the parameters [a+3σa, b+3σb, rsym −3σr, hwid −
3σh, α+3σα] and for the low gradient case [a−3σa, b−3σb, rsym+3σr, hwid+3σh, α−3σα].

The range of gradients spanned by these fits is shown by the shaded areas in the

gradient scale lengths plot (lower right panel of Fig. 5.2). Note that this uncertainty

is just a statistical uncertainty of the mtanh fit, which takes into account the variance

of experimental data, but does not account for systematic errors in e.g. the relative

position of ion and electron temperature profiles or the separatrix position. Hence, it

illustrates only part of the total measurement uncertainty, which might be considerably

larger.

The vertical, grey, dashed lines in Fig. 5.2 and Fig. 5.3 indicate representative positions

for pedestal top/shoulder, an intermediate region, pedestal center, and pedestal foot,

where linear, local instability scans have been performed (see Sec. 5.2). With pedestal

top/shoulder, I refer to the radial position (ρtor = 0.86) just before the increase of

temperature and density gradients, where the growth rate spectrum is still clearly

distinct from the pedestal center, as explained in more detail in the previous chapter.

Fig. 5.3 contextualizes the pedestal profiles by showing fits to the complete profiles in

the range ρtor = [0, 1] (left) and ρtor = [0.5, 1] (right).

In Fig. 5.4, the radial profiles of further quantities determining edge physics and mi-

croinstabilities are shown: plasma β (strongly falls off from pedestal top to foot),

collisionality (strongly increases), the gyroradius (decreases), and the safety factor q

(increases but exhibits an intermediate flat region). The flat region in the q profile

is caused by the bootstrap current and will be shown to have a stabilizing effect on

ion-scale instabilities.

Fig. 5.5 shows the E×B velocity due to the radial electric fieldEr and the corresponding
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Fig. 5.3.: Fits to complete temperature and density profiles from core to edge of AUG
#31529. Left from ρtor = 0, right from half-radius ρtor = 0.5. The upper coordinate axis
shows the radial position in units of ρpol. Vertical dashed lines mark the same positions as
in Fig. 5.2.

Fig. 5.4.: Profiles of further relevant quantities influencing microinstabilities and edge tur-
bulence: Plasma β (top left), collisionality (top right), ρ∗ (bottom left) and safety factor q
combined with magnetic shear ŝ (bottom right).
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Fig. 5.5.: E × B velocity vEr×B = Er × B/B2 (left) and corresponding shear (right) caused
by the edge radial electric field Er.

Fig. 5.6.: Relative strength of instability drive: ηi, ηe and LTe/LTi .

shear. The E × B velocity has the highest amplitude in the pedestal center. The

resulting E × B shear in the regions adjacent to the pedestal center is important in

suppressing turbulent heat flux.

Fig. 5.6 shows the relative drive of instabilities in the investigated pedestal. ηi peaks in

the steep gradient region, whereas ηe increases monotonically from ρtor = 0.9, indicating

a growing ETG drive towards the pedestal foot.

In the next section, I continue with an instability characterization in this scenario with

local, linear simulations.

5.2. Instability characterization

To characterize the instabilities present in the given pedestal, we have performed scans

with linear local simulations in the binormal wavenumber ky from 0.05ρi
−1 to 350ρi

−1

(corresponding to toroidal mode numbers of e.g. n = [4, 29954] at ρtor=0.86 or n =
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Fig. 5.7.: Growth rate spectra of the dominant mode for four radial positions maximized
over ballooning angle. cs =

√

Te/mi and ρi are local normalisations evaluated at each radial
position. Lref = 0.65 m. Shaded regions indicate the wavenumber ranges used in nonlinear
heat flux simulations.
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[7, 48365] at ρtor=0.99), the radial wavenumber at the outboard midplane kx,center from

−40ρi
−1 to 40ρi

−1 (connected to the ballooning angle θ0 = kx,center/(ŝky)) and the

radial position ρtor from 0.85 to 1. Fig. 5.7 shows the growth rate spectra at four

positions (pedestal top, intermediate, pedestal center, and pedestal foot) maximized

for each ρtor and ky over the ballooning angle. At selected wavenumbers, ballooning

angles, and radial positions, we have additionally performed scans in temperature and

density gradients (±30%), collisionality (0 - 18ν∗
e ), and plasma β (0% - 1%). In total,

about 7000 simulations were performed to characterize linear instabilities. Simulation

settings are detailed in the Appendix Sec. A.2.

Following the mode characteristics presented in the previous chapter, I use the follow-

ing criteria to distinguish between the different instabilities: Parity of the parallel mode

structure in ballooning representation (tearing or ballooning), size (ion or electron gy-

roradius), drift direction (ion or electron diamagnetic), sensitivity on gradients (Te, Ti,

n), dependence on collisionality and plasma β as well as diffusivity and heat flux ratios

following the fingerprint approach [103]. An alternative way to identify tearing modes

is the tearing or parity factor, see [112], which has been used to verify the identifica-

tions. An electromagnetic mode on scales > ρi with tearing parity is called MTM. An

electromagnetic mode on scales > ρi with ballooning parity and drift in ion diamag-

netic direction is called KBM. An electrostatic mode on scales ≈ ρi, which is stabilized

by collisionality and is not destabilized by ∇Ti, is called TEM. An electrostatic mode

on scales ≈ ρi, which is destabilized by ∇Ti and propagates in ion diamagnetic direc-

tion, is called ITG. An electrostatic mode on scales / ρi that is destabilized by ∇Te

is called ETG. However, it should be emphasized that precisely categorizing modes

on ion scales in the region of very strong drive close to the separatrix is particularly

challenging. Different drive mechanisms interact and excite instabilities with charac-

teristics that do not fall neatly in the mode prototypes developed in the study of core

turbulence.

At the pedestal shoulder (ρtor = 0.86, violet triangles in Fig. 5.7), we find MTMs on the

largest scales, TEMs at ion scales, a region of stable wavenumbers and then ETGs on

electron scales. In agreement with [103], the linear TEMs produce significant outward

particle transport (De/(χi + χe) ≈ 0.15, with particle diffusivity D, heat diffusivity

χ) compared to MTMs. At the intermediate position (ρtor = 0.94, blue squares in

Fig. 5.7), where the magnetic shear has a minimum, a growth rate gap without any clear

mode on ion scales exists. On intermediate scales, more ETG modes occur that were

not present at the pedestal shoulder. In the steep gradient region (ρtor = 0.97, green

crosses in Fig. 5.7) on ion scales, we find ITG modes that are close to a KBM transition,

as discussed later in Fig. 5.10. At smaller scales, ETG-driven modes are present,
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5. AUG pedestal simulations

Fig. 5.8.: Growth rate (top )and frequency spectrum (bottom) at ρtor=0.97 in a 3D surface
visualization with ky and kx,center as axes. The color bar corresponds to growth rate and
frequency, respectively.

which extend to larger scales towards the pedestal center and foot. At the pedestal

foot (ρtor = 0.99, yellow circles in Fig. 5.7) on ion scales modes show an ETG/TEM

character but tend to be destabilized with increasing collision frequency. The ETG

modes at pedestal center and foot tend to peak increasingly at finite ballooning angle,

indicating the presence of toroidal ETG modes [105, 124]. While the fastest growing

ETG modes we find tend to be toroidal-ETGs, subdominant slab-ETGs turn out to

play an important role in the nonlinear simulations (see Sec. 5.3). Overall growth rates

increase from pedestal top to foot.

It is insightful to visualize the results of the growth rate scan differently. I select just one

position, the pedestal center, but show the entire ky-kx,center surface. Fig. 5.8 shows

this dependence of growth rates (top) and frequencies (bottom) on ky and kx,center.

Notice the trough in growth rates at kx,center = 0 up to kyρi = 100 − 150. Until then,

finite kx,center have larger growth rates than kx,center = 0. The frequency (lower plot)

regularly peaks above the ω = 0 surface, showing that, in particular, at finite kx,center
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5.2. Instability characterization

Fig. 5.9.: Growth rates and frequencies as a function of kx,center in the pedestal center ρtor =
0.97 at an intermediate ETG wavenumber kyρi = 50 (top) and a high ETG wavenumber
kyρi = 140.

modes with positive frequencies are present at ky ranges that are ETG dominated.

This indicates that under certain conditions, ETGs can have an ion diamagnetic drift

direction. Similar observations have recently been reported in [122].

The analysis of the 3D growth rate representation is corroborated by 2D cuts through

the instability landscape at kyρi = 50 and kyρi = 140 (see Fig. 5.9). At kyρi = 50

growth rates peak off-kx,center = 0 with positive frequencies. At kyρi = 140, how-

ever, growth rates peak at kx,center = 0. This shows that for pedestal ETGs, the ra-

dial wavenumber at the outboard midplane can have a significant influence on growth

rates. The kx,center changes correspond to only minimal ballooning angles at high ky.

Nonetheless, they cause noticeable changes in growth rates. For a complete instability

characterization, a fine scan of radial wavenumbers with kx,center almost as well re-

solved as the binormal wavenumber ky seems necessary. A further investigation is left
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5. AUG pedestal simulations

Fig. 5.10.: Growth rates as a function of plasma β at different radial positions. The vertical
orange lines indicate the nominal plasma β value at the respective position.

for future work.

Scans over plasma β at different radial positions show that the pedestal in these linear

local simulations sits close to a KBM threshold - being closer at the pedestal foot

than at the pedestal top (cf. Fig. 5.10). The closeness to the KBM threshold in the

pedestal center resembles the use of a KBM constraint in the EPED model [88] for

the prediction of the pedestal width. It has, however, been reported that the radial

structure of KBMs may not be compatible with the narrow pedestal region [133, 149],

suggesting that the local approximation may skew the details of the KBM threshold.

Fig. 5.11 shows a collisionality scan at pedestal top and center for two wavenumbers.

On the pedestal top (upper two panels), the TEM presence is visible as the mode sta-

bilizes with increasing collisionality. The reason for the stabilization is a de-trapping of

trapped particles as the collision frequency increases. At kyρi = 0.5, a mode transition

occurs where a further increase in collisionality increases the growth rate again. In the

pedestal center (lower two panels), the dependence on collisionality is less severe. The

TEM is no longer present (or at least dominant). Note the slight destabilization with

collisionality. This suggests a partly RBM-like character of these modes.

Fig. 5.12 shows the growth rate spectrum for different parallel resolutions. Only small

differences are observed between nz = 36 and higher resolutions. The resolution nz =

72 is sufficient for convergence, as all other resolutions up to nz = 288 show the same

results. This is in contrast to the JET case (see next chapter) in which resolutions of

nz = 360 are necessary for convergence of the fastest growth rates. This indicates that

in AUG, most of the fastest growing ETG modes have toroidal character, which have a

coarser parallel structure compared to slab-ETG modes. It should be emphasized that

this finding applies only to the linearly most unstable mode. Subdominant modes with

slab character may exist that require a higher resolution. This will become important

for nonlinear simulations in which dominant and subdominant modes interact and may
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5.2. Instability characterization

Fig. 5.11.: Growth rates as a function of collisionality at pedestal top (ρtor = 0.86, top) and
center (ρtor = 0.97, bottom) and two ion scale wavenumbers kyρi = 0.5 (left) and kyρi = 0.8
(right). Nominal collisionality in orange. The collisionality as defined in Eq. (6.87) of [154]
is ν∗

e =
√

2aB0/(Bp0vT,eǫ3/2τe), with the minor radius a, thermal velocity vT,e =
√

2Te/me,
inverse aspect ratio ǫ = a/R and the electron collision time τe.

Fig. 5.12.: Growth rate and frequency spectrum at ρtor = 0.97 for different parallel resolu-
tions nz0.
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5. AUG pedestal simulations

Fig. 5.13.: Linear, local growth rates as a function of the toroidal mode number Ntor for
three magnetic shear (ŝ) values at two different radial positions. Left: pedestal shoulder
ρtor = 0.86. Right: low shear region ρtor = 0.94. Black crosses are nominal growth rates.

have relevant contributions to the heat flux. So even though nz = 72 is sufficient to

capture the maximum linear growth rate accurately, one can not deduce that nz = 72

is sufficient for nonlinear simulations. Indeed, as we will show later in this chapter, it

is not.

5.2.1. Pressure and magnetic shear effect: 2nd stability region

The low growth rates on ion scales in the intermediate region (ρtor = 0.94) between

pedestal top and steep gradient are caused by the interplay of low magnetic shear and

already increased pressure gradient. Their interplay locally stabilizes ballooning modes

(2nd stability region). This can be shown by a scan over the magnetic shear at this

position (see Fig. 5.13, right plot). At nominal parameters (black crosses), no clear ion

scale mode is present, but with increasing magnetic shear ŝ (green triangles and yellow

circles), the system leaves the 2nd stability region, and an ion scale mode becomes

unstable. At the pedestal shoulder, where a lot of transport is driven on ion scales,

lowering the magnetic shear, unfortunately, does not decrease growth rates significantly

since the pressure gradient is too low to access the 2nd stability region (Fig. 5.13, left

plot green triangles). In contrast, a high magnetic shear lets the pedestal shoulder enter

the 1st stability region, where TEMs are suppressed (yellow circles). The influence of

the 2nd stability region on microinstabilities has previously, for example, been observed

for Internal Transport Barriers [155, 156]. Further scans with e.g. modified profiles are

not within the scope of this thesis, but these results illustrate the potential of reducing
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5.3. Nonlinear simulations

Fig. 5.14.: Volume-averaged heat fluxes (electrostatic Qes and electromagnetic Qem) for
electrons (blue, left) and ions (red, right) as a function of time in MW. The green con-
tinuations include an external background velocity shear corresponding to experimentally
measured E × B shear.

microturbulence instabilities through careful tailoring of safety factor and pressure

profiles.

5.3. Nonlinear simulations

To calculate heat fluxes, we have performed nonlinear, global simulations on ion scales

and nonlinear, local simulations on electron scales. This separation is motivated by

a strongly reduced computational cost compared to a global multi-scale simulation

that resolves all scales in a single simulation. I begin the discussion with the ion-scale

simulations.

These are gradient-driven, global, nonlinear, electromagnetic simulations at experimen-

tal β values, enabled by the code upgrade presented in Chapter 3. These simulations

cover ρtor = 0.85 − 0.995 in radius (almost the full width shown in Fig. 5.2) and

kyρi = 0.05 − 1.6 in binormal wavenumber (corresponding to a toroidal wavenumber

Ntor ≈ 4 − 124), indicated by the left shaded region in Fig. 5.7. They are two species

simulations (Deuterium and electrons) with correct mass ratio (me/mD = 1/3670),

collisions (Landau collision operator), perpendicular magnetic fluctuations Ā1‖, but

without compressional magnetic perturbations B1,‖. When indicated, the simulations

include the effect of E×B rotation due to the radial electric field Er (cf. Fig. 5.5). For

numerical reasons, the background flow in GENE is restricted to the toroidal direction

(cf. 3.2.5). To approximate the E × B shear effect, we retain the magnitude of vE×B
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5. AUG pedestal simulations

Fig. 5.15.: Heat flux spectra (electrostatic Qes (solid) and electromagnetic Qem (dashed))
of electrons (blue) and ions (red) for the global nonlinear simulation with E × B shear.

but rotate it to be purely toroidal. In total, the nonlinear global simulations required

about 2.5 × 106 CPUh. More details on e.g. grids are specified in the appendix A.2.

The obtained heat fluxes are shown in Fig. 5.14 as a function of time, averaged over

real space (flux surface and radius, including the radial buffer zones (see appendix)).

In both, the ion and electron channel, the electrostatic heat flux dominates. But while

the ions show vanishing electromagnetic heat flux, the electron heat flux is about 1/4

electromagnetic. When including E × B shear in the simulations, the heat flux is

strongly damped in all channels. The electrostatic heat flux is damped by a factor of

three, and the electromagnetic heat flux is damped even stronger.

Fig. 5.15 shows the binormal (ky) heat flux spectrum of the simulation with E × B

shear, analyzed in the time window [200,309] (black bar in Fig. 5.14). Electrostatic

transport peaks around kyρi = 0.4, i.e. in the TEM region. The peak of electromagnetic

transport is shifted to slightly larger ky’s, in agreement with the linear MTM presence.

At the highest ky resolved in the simulation, the heat flux is strongly reduced, justifying

the cut-off at this scale.

The analysis of the radial heat flux profile is performed in its own subsection, see

Sec. 5.3.3. Convergence tests are presented in subsection 5.3.4.
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5.3. Nonlinear simulations

Fig. 5.16.: Comparison of frequencies of global ion scale simulations with linear simulations
at two radial positions. Left: Frequency spectra at three radial positions from the linear
simulations in a co-moving frame with the plasma. Right: Superposition of the frequency
distribution from two positions of the global simulation (blue). Overlayed are the linear
frequencies shifted to the lab frame. See main text for details.

5.3.1. Connecting linear and nonlinear results: Frequencies and

cross phases

To identify the dominant turbulent transport mechanisms, results from linear and

nonlinear simulations have to be connected to test if linear features remain visible and,

hence, relevant in the nonlinear saturated state. This can, for instance, be achieved by

comparing frequencies and cross phases.

Fig. 5.16 shows the mode frequencies of the linear and nonlinear simulations. The left

plot shows the frequency spectrum of the local, linear simulations for three radial posi-

tions (pedestal shoulder at ρtor = 0.86, center at ρtor = 0.97 and foot at ρtor = 0.99) in

the co-moving frame of reference. In the pedestal shoulder spectrum (violet triangles),

the transition from MTM to TEM is visible, and at the pedestal center (yellow circles),

the transition from ITG to TEM/ETG. The right plot shows the frequency spectrum

of the global, nonlinear simulation analyzed at two positions (pedestal shoulder and

center) overlaid by the local, linear spectra. Usually, frequencies from local simulations

are specified in a frame co-moving with the E ×B rotation. Since the E ×B rotation

depends on the radial position, frequencies of global simulations are specified in the

lab frame. For the comparison of both, we transform the local frequencies also to the

lab frame, using:

ωlab = ωco-mov. − ΩtorCy
Lref

ρref

Lref

cref

ky (5.1)
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5. AUG pedestal simulations

Fig. 5.17.: Cross-phases of electric potential φ and electron density fluctuations n from
nonlinear simulations (blue background) and linear simulations (orange circles).

with the angular toroidal velocity Ωtor. The sign of Ωtor has to be carefully determined

in the chosen coordinate system and conventions on the direction of Ip and Bt. The

sign of Ωtor may change with radius, as Er changes sign.

The comparison shows that at the pedestal shoulder and even center, the linear fre-

quencies persist in the nonlinear simulations. This indicates that the linearly fastest

growing modes remain important in the saturated turbulent state. However, one crucial

difference appears: At the pedestal shoulder (ρtor = 0.86) and kyρi ≈ 0.3 the nonlinear

simulation (right plot, upper red line) does not show the mode transition that linear,

local simulations present (right plot, violet triangles). This suggests that MTMs are

suppressed or at least restricted to the very largest scales in global, nonlinear simula-

tions compared to the local, linear ones. Neither the global nor the local simulations

included B̄1‖ fluctuations. These might impact the presence of MTMs.

The cross-phases of electric potential and electron density fluctuations (see Fig. 5.17)

support this picture: Linear mode structures survive in the nonlinear simulations, but

on largest scales at the pedestal top differences are visible (left plot), corroborating

the suppression of MTM in global, nonlinear simulations observed in the frequency

comparison. In the pedestal center (right plot), linear and nonlinear simulations show

a cross-phase of φ × n = π ≡ 0 for most of the analyzed kys, indicating vanishing

turbulent particle transport.

Overall, the remarkable agreement in the frequency and cross-phase comparison be-

tween local/linear and global/nonlinear simulations at pedestal shoulder and center

encourages the extension of quasilinear models to the pedestal region.
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Fig. 5.18.: Heat flux due to ETGs at ρtor = 0.97 as a function of time. Lref = 0.65 m, vT e =
√

2Te/me. Left axis in units of modified electron gyroBohm units QgB,e,mod = QgB,e ×1/LT e
2

following [104], right axis in units of MW. QgB,e,mod is evaluated at ρtor = 0.97 for the tuned
profiles.

5.3.2. Local, electron scale simulations

Local, nonlinear electron scale simulations have been performed at multiple radial

positions between pedestal top and foot. They complement the global, nonlinear sim-

ulations, which only cover ion scales up to kyρi = 1.6 at the reference flux-surface.

The dedicated ETG simulations cover kyρi = 2.5 − 157.5, i.e. kyρe = 0.04 − 2.6, as

indicated by the right shaded region in Fig. 5.7. The simulations use adiabatic ions.

Resolutions and further simulation settings are given in the appendix. Fig. 5.18 shows

the ETG heat flux obtained in the steep gradient region (ρtor = 0.97) with nominal

profiles and tuned profiles that are designed to increase ETG drive but remain within

experimental uncertainties at all locations, see Fig. 5.22. At ρtor = 0.97, the tuned

profiles have approx. 30% increased 1/LT e and 30% decreased 1/Lne, resulting in a

change of ηe = Lne/LT e from approx. 1.5 to 3. To make a connection to recent ETG

transport scalings for JET and DIII-D [104, 109, 123] heat fluxes are shown in mod-

ified electron gyroBohm units (see figure caption) and MW. At nominal parameters,

the ETG heat flux is very small, whereas with tuned profiles, ETGs drive substantial

transport of about 0.9 MW. This indicates a strong stiffness of ETG transport in the

pedestal center. By artificially neglecting magnetic drifts in the simulation, we can se-

lectively turn off the drive of the toroidal ETG branch to assess the relative importance

of slab and toroidal ETG for heat transport. The pure slab-ETG simulation produces

less than half of the original transport. This shows that nonlinearly, both, slab and

toroidal branches contribute substantially to the ETG heat transport in this scenario.

Fig. 5.19 shows the heat flux spectrum of the nonlinear ETG simulations with and
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5. AUG pedestal simulations

Fig. 5.19.: Heat flux spectra of the nonlinear ETG simulation with and without magnetic
drifts.

Fig. 5.20.: Cross-phases of electric potential φ and electron density fluctuations n (left),
parallel temperature component (middle), and perpendicular temperature component (right)
from nonlinear simulations (blue background) and linear simulations (orange circles).

without magnetic drifts. Without magnetic drifts the toroidal mode at ky ≈ 0.2ρ−1
e ≈

12ρ−1
i is not present. Towards high ky, the heat flux strongly reduces, justifying the

cut-off of the simulation at this scale.

Fig. 5.20 establishes a connection between the linear and nonlinear ETG simulations

by comparing different cross-phases. As expected, ETGs do not contribute to particle

transport and φ× n = π linearly and nonlinearly. In the potential-temperature cross-

phases φ × T , linear and nonlinear simulations show some resemblance but no clear

agreement.

Fig. 5.21 shows scans in the parallel hyperdiffusion and resolution performed for the

nonlinear ETG simulations. For different parallel resolutions (nz = 144, 288, 576),
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5.3. Nonlinear simulations

Fig. 5.21.: Dependence of heat flux on parallel hyperdiffusion and resolution.

the influence of the hyperdiffusion amplitude was scanned. The hyperdiffusion values

given here correspond to simulations with the following settings: Ion mass normaliza-

tion (m̂i = 1), hypz_with_dz_prefactor=F, arakawa_zv=T, edge_opt=0 and positive

hyp_z values. As discussed in Sec. 3.6, for hyp_z=0, artificial grid-scale oscillations are

present. As the hyperdiffusion amplitude is increased, these oscillations are damped,

and the heat flux converges (see blue line). An increase in the parallel resolution shifts

the damping of the hyperdiffusion to modes with higher k‖ as explained in Sec. 3.6.

This allows a wider range of physical k‖ modes to exist in the system. The resolution

increase to nz = 288 (orange) shows that these modes contribute to the total heat

flux. A further resolution increase to nz = 576 (green) shows no further increase in the

total heat flux, i.e. convergence. For hypz = 20, the heat flux converged at a parallel

resolution of nz = 288.

5.3.3. Heat flux profile

To study how turbulent transport changes across the pedestal, we consider the heat flux

averaged over time and flux surface as a function of the radius. Fig. 5.23 shows essential

aspects of the turbulent heat flux profile in the studied ASDEX Upgrade pedestal.

Particular care has to be taken with regard to the normalization of the heat flux. Due

to the substantial temperature changes across the pedestal, the commonly used gyro-

Bohm heat flux based on mixing-length estimates QgB = cspiρ
∗2 = (Ti/mi)

1/2niTiρ
∗2

changes by two orders of magnitude across the pedestal (top left plot). A modified gyro-

Bohm heat flux Qgb,mod = Q gb × max (a/LT i, a/LT e)
2, in which the gradient length

replaces the minor radius as the macroscopic length scale, exhibits strong variations

across the pedestal as well. We will, therefore, focus the analysis on the heat flux in

SI units.
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5. AUG pedestal simulations

Fig. 5.22.: Tuned electron temperature and density profiles (dashed) used to test the sensi-
tivity of ETG heat flux in comparison to nominal profiles (solid).

Fig. 5.23 (top right) shows the profiles of the different heat flux components (electro-

static, electromagnetic, electron, ion). The dominant component over most of the

pedestal is electrostatic electron heat flux (blue solid line), with the exception of

ρtor ≈ 0.97, where the electrostatic ion heat flux has a local peak. This peak cor-

responds to the ITG/KBM mode identified in the linear analysis, which occurs at the

peak of the ion temperature gradient. Interestingly, the turbulent ion scale heat flux

is strongly reduced in all channels from pedestal top to pedestal center and foot - even

without E × B shear. The onset of this reduction coincides with the region of linear

stabilization, discussed in Sec. 5.2.1.

Fig. 5.23 (bottom left) illustrates the influence of E×B shear on the heat flux profiles:

It reduces the ion scale heat flux strongly and widens the region of almost vanishing

turbulent heat flux. The responsible E × B shear profile is shown in Fig. 5.5. The

shear is non-zero in the whole simulation domain, increasing noticeably starting from

ρtor=0.9 and having local peaks at ρtor=0.94, 0.96, and 0.98. This corresponds well to

the almost complete suppression of ion-scale heat flux from ρtor ≈ 0.92. The small ion

heat flux peak in the pedestal center ρtor = 0.97 corresponds to the minimum of the

E ×B velocity, where the shear vanishes.
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5.3. Nonlinear simulations

Fig. 5.23.: Turbulent heat flux profile in an ASDEX Upgrade pedestal from pedestal top
to foot. Top left: Gyro-Bohm heat flux profile. Top right: Components of the ion scale
heat flux profile without E × B shear. Bottom left: Total heat flux (Qes+Qem) due to ion
scale turbulence with and without E × B shear. Bottom right: Total heat flux due to ion
scale turbulence from global simulations (red and blue solid line) as well as ETG heat fluxes
from local simulations at nominal values (light blue stars) and increased electron temperature
gradient (dark blue stars) compared with power balance calculations (broad lines). Region
of increased measurement uncertainty in grey.
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Fig. 5.23 (bottom right) shows that the turbulent heat flux on electron scales behaves

oppositely across the pedestal compared to the ion scale turbulent heat flux: It vanishes

at the pedestal top and strongly increases down the pedestal (stars).

A comparison to power balance and neoclassical calculations shows qualitative agree-

ment in heat flux structure and trends (bottom right plot). The electron channel is

dominant throughout the pedestal. Our gyrokinetic simulations reveal that the elec-

tron heat flux transitions in scale. At the pedestal top/shoulder, it is driven by ion

scale TEM/MTM turbulence, while at the pedestal center and foot, it is driven by

small-scale ETG turbulence. While power balance considerations suggest a roughly

constant electron heat flux across the pedestal, our gyrokinetic simulations find a re-

duction towards the pedestal center. The discrepancy might, e.g. be due to Ti and Te

profile uncertainties influencing simulations as well as the implicit uncertainties of the

interpreted power balance results.

The region around ρtor = 0.92 where the total gyrokinetic electron heat flux reaches

a minimum likely indicates a limitation of our separate scale ansatz. At this location,

heat flux is likely driven by scales that are neither resolved in our global simulations nor

the electron scale simulations (cf. Fig. 5.7) and would require multi-scale simulations

to be adequately resolved. The ion channel contributes substantially to the total heat

flux at the pedestal top/shoulder and reduces to neoclassic values towards the pedestal

center. At the pedestal foot, our gyrokinetic simulations do not show the increase of

ion heat flux suggested by power balance. The differences in the grey-shaded region

are possibly due to increased measurement uncertainties in the ion profile that affect

both power balance (see [152]) and gyrokinetic simulations.

For the power balance comparison, the turbulent ion heat flux component was esti-

mated by subtracting neoclassic heat flux calculated with NEOART from the ASTRA

result (both from [152]). The total ion heat flux due to power balance is constant

[152], and the minimum in the turbulent heat flux is compensated by an increased

neoclassical heat flux, which has a roughly constant diffusivity across the pedestal so

that its heat flux follows the increasing ion temperature gradient.

The following picture emerges for the investigated scenario: Turbulent heat flux at the

pedestal top is dominated by electrostatic TEMs with electromagnetic MTM contribu-

tions. The interplay of low magnetic shear and increasing pressure gradient stabilizes

modes locally before the steep gradient region (ρtor ≈ 0.94) and reduces turbulent heat

flux. E×B shear suppresses turbulent heat flux strongly in all channels and widens the

region of vanishing turbulent ion scale heat flux. Turbulent electron heat flux changes

scale across the pedestal, and turbulent ion heat flux strongly reduces towards the
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Fig. 5.24.: Convergence test: Double precision.

pedestal center.

5.3.4. Convergence tests

Convergence tests for linear simulations and local, nonlinear ETG simulations have

been shown in previous sections. Parallel resolution and parallel hyperdiffusion were

discussed. In this section, several convergence tests for the global, nonlinear simulations

are discussed.

A principal challenge for convergence tests of the global, nonlinear simulations is the

high computational cost of these simulations. Any further increase of the resolution

increases this cost even more. Additionally, the high number of degrees of freedom

in setting up the simulation (resolution of all five phase space dimensions, time step

size, source, sink and boundary settings, hyperdiffusion amplitudes, collision operator

settings, and further discretization settings (block-structured grids setup, edge_opt))

renders exhaustive convergence tests unfeasible. A pragmatic compromise has to be

found between computational cost and the verification of results. Here, a few conver-

gence tests are discussed on the basis of the resulting heat flux.

Fig. 5.24 compares simulations run with single-precision floating-point format and

double-precision floating-point format. They show good statistical agreement, such

that most global, nonlinear production runs were performed in single precision. The

use of single precision speeds up the simulations almost by a factor of two. Within

a collaboration with MPCDF the use of half-precision floating-point format in GENE

simulations is currently being evaluated, which promises additional speed-up in partic-
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Fig. 5.25.: Convergence test: Parallel resolution

Fig. 5.26.: Convergence test: Radial resolution.

ular in combination with the use of GPUs.

Fig. 5.25 shows a continuation of a global, nonlinear simulation with increased parallel

resolution, nz = 72 instead of nz = 48. No strong change in the average heat flux level

is observed.

Fig. 5.26 shows a continuation of a global, nonlinear simulation with increased and

decreased radial resolution. No strong sudden changes are observed, and a good overlap

of time traces between different resolutions is observed. To assess the impact on the

average heat flux values, the test simulations are not yet long enough.

Fig. 5.27 shows a continuation of a global, nonlinear simulation with decreased radial

hyperdiffusion. No strong changes are observed in the simulated time window.
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Fig. 5.27.: Convergence test: Radial hyperdiffusion hypx.

Fig. 5.28.: Convergence test: Initial condition.
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Fig. 5.29.: Convergence test: Heat flux profile without sources and a different initial condi-
tion.

Fig. 5.28 shows a test of the influence of the initial condition on the heat flux. While

the initial linear phase develops differently, as expected, the saturation occurs on the

same heat flux level, independent of the initial condition. Initial conditions "density

blob" (a Gaussian in x, ky and z) and "ppjrn" (a power law in kx, ky with random

phases and powers of the Jacobian in z) are compared.

Fig. 5.29 investigates the possible influence of sources and initial conditions on the heat

flux profile. This is done to confirm that the heat flux structure obtained in the global,

nonlinear simulations is not an artifact of a specific initial condition or settings in the

energy and particle sources. In the simulation without Krook-type heat and particle

sources, the kinetic profiles are not maintained, so only a short time interval just after

the initial linear phase is investigated. Radial buffers for the boundary conditions were

kept. The comparison shows that the heat flux structure with vanishing heat flux in

the steep gradient region is also obtained with changes to the initial condition and

sources.

5.4. Further ELM timepoints

The previous three sections have analyzed one timepoint of the ELM cycle (6ms after

the ELM crash) in detail. It is also interesting to investigate how turbulence changes

during an ELM cycle, considering how strongly an ELM crash changes the temperature

and density profiles. This section presents the beginning of such a study. Profiles,

growth rates, and heat fluxes at the time points +2ms and +4ms are compared with

the +6ms time point.

Fig. 5.30 shows the profiles and gradient scale lengths at the time points +2ms (top),
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5.4. Further ELM timepoints

Fig. 5.30.: Profile and gradient comparison for other time points in ELM cycle. From top to
bottom: +2ms, +4ms, +6ms. The case +6ms has been investigated in detail in the previous
sections.
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5. AUG pedestal simulations

Fig. 5.31.: Growth rate spectra comparison. From left to right: +2ms, +4ms, +6ms. The
case +6ms has been investigated in detail in the previous sections.

+4ms (middle), and +6ms (bottom). Shortly after the ELM crash (+2ms) the pedestal

has not yet recovered, and gradients are comparatively flat. At +4ms, the pedestal

has already partly recovered, in particular, ion temperature and density pedestal have

formed. At +6ms, the electron and ion temperature gradients have further increased

to conditions very close to the pre-ELM state. During the ELM cycle also, the radial

electric field Er changes, collapsing to L-mode levels at the ELM crash and recovering

on time scales of the ion temperature gradient [151]. Hence, the shear flow in the

pedestal region changes as well.

The delayed recovery of the electron temperature pedestal in comparison to the density

and ion temperature pedestal has been described in Ref. [151]. This has been recently

attributed to transport dynamics dominated by heat flux from the core in contrast

to local turbulent transport effects in Ref. [152]. Their analysis suggests that the

difference in the recovery time is rooted in the different depletion of ion and electron

temperatures in the outer core by the ELM. The electron temperature is more strongly

reduced in the outer core; hence, it takes longer until the Te-pedestal is reestablished.

Fig. 5.31 shows growth rate spectra obtained with linear, local simulations for the three

time points (left to right) at three positions (colors). For a better direct comparison

of growth rates, the x and y axes use units that do not depend on temperature or

density normalizations: The toroidal wavenumber Ntor instead of kyρi and 1/s instead

of cs/Lref . Scans were performed in the same setup as the +6ms simulations described

above, and results are maximized over the ballooning angle. At ρtor = 0.86 on ion

scales, a very similar TEM peak is visible during all time points. On electron scales, a

second peak exists at +2ms and +4ms. At ρtor = 0.94, the stabilization on ion scales

seems present at all time points, showing no clear mode at this position. At ρtor = 0.98
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(yellow), an ion-scale peak is present, which is not as prominent in the other time

points.

Fig. 5.32 shows a comparison of heat fluxes obtained with global, nonlinear simulations

for the three time points. Top: +2ms, Middle: +4ms, Bottom: +6ms. The simulation

setup is identical for all three cases. The simulations have been performed without E×
B shear. Hence, they do not include the fact that the shear flows change during an ELM

cycle, which influences the turbulent heat fluxes. At all three time points, electrostatic

heat transport is dominant, with slightly higher electron heat flux and a non-negligible

electromagnetic component in the electron channel. The radially averaged heat fluxes

exhibit large fluctuations at all time points. Average turbulent heat fluxes are higher

at +2ms and +4ms compared to the +6ms case. Fig. 5.33 reveals that most of the

transport visible in these time traces is pedestal top transport. This corroborates the

results of the linear comparison that TEM and MTM at the pedestal top are present

throughout the ELM cycle. Fig. 5.33 shows that shortly after the ELM crash (top

panel), relatively more turbulent heat flux is present at ρtor = 0.97 compared to the

later time points.

The time-resolved power balance analysis of [152] finds a strongly reduced electron

heat diffusivity directly after the ELM crash and an electron heat flux lower than the

ion heat flux at +4ms in the ELM cycle. This is not observed in the turbulent ion-

scale heat fluxes calculated here. Pedestal top turbulent transport at all time points

seems to be dominated by TEM/MTM turbulence with slightly more electron than ion

heat flux. In the pedestal center, turbulent transport is suppressed, with the highest

non-vanishing flux at the time point +2ms.

Further analysis of these simulations is left for future work. Global simulations with

E×B shear and dedicated nonlinear, electron-scale simulations would be natural next

steps in this study of turbulent transport at the different inter-ELM time points.

5.5. GENE-Tango approach in the pedestal

The nonlinear simulations presented in the previous sections are all gradient-driven.

They rely on given profiles and calculate the resulting heat fluxes. Matching power

balance results with gradient-driven simulations typically requires scans in the input

gradients. This is straightforward to do for local simulations that are driven by a single

constant gradient but is more complicated to do systematically for global simulations.

The coupling of gradient-driven GENE simulations with the transport solver Tango

[80, 87] offers an automated way of adjusting the input profiles for GENE simulations
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5. AUG pedestal simulations

Fig. 5.32.: Heat flux comparisons (radially averaged), without E × B shear. From top to
bottom: +2ms, +4ms, +6ms. The case +6ms has been investigated in detail in the previous
sections.
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Fig. 5.33.: Heat flux profiles without E ×B shear corresponding to the time traces shown in
Fig. 5.32. From top to bottom: +2ms, +4ms, +6ms. The case +6ms has been investigated
in detail in the previous sections.
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5. AUG pedestal simulations

Fig. 5.34.: Profiles of ion temperature (left), electron temperature (center), and density
(right) in the simulation domain. Initial experimental profile (dashed), Tango results for five
iterations, and the final profiles used in GENE.

to iteratively fit power balance.

The GENE-Tango approach reverses the usual gradient-driven heat flux calculation

approach. Instead of using profiles as input and comparing the resulting heat fluxes to

power balance, this approach takes the power balance heat flux as input and adjusts the

profiles via iterations of transport solver and GENE to find the profiles that produce

the defined flux. Then, these GENE-Tango profiles can be compared to experimentally

measured profiles. If they are close, this confirms that the model captures all relevant

transport phenomena. If substantial differences remain, it indicates that essential parts

of transport are not yet included in the model. This could, for example, be neoclassical

transport if just turbulent heat flux from GENE simulations is used in the loop.

Here, we build on the successful application of the GENE-Tango approach in core

simulations [80] and investigate its application to pedestal scenarios. The GENE-Tango

simulations and their analysis have been performed in collaboration with Alessandro

di Siena.

Some code development was initially necessary to make the full numerical capabilities

of the GENE code usable within the GENE-Tango framework. In particular, block-

structured velocity grids, which are required to keep the realistic pedestal scenario

computationally tractable and ensure efficient use of computational resources, were

employed for the first time in this framework. In the end, we could successfully couple
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5.5. GENE-Tango approach in the pedestal

Fig. 5.35.: Evolution of the ion heat flux (left), electron heat flux (middle), and particle flux
(right) with the updated profiles in comparison to the power balance model (dashed).

global, nonlinear, electromagnetic gyrokinetic GENE simulations of a realistic pedestal

to the transport solver Tango. GENE simulations were performed with E × B shear.

Neoclassic transport and changes to the magnetic equilibrium were not included in the

Tango iterations.

The first iterations in the GENE-Tango loop yield strong changes in the electron and

ion temperature profiles (see Fig. 5.34) due to the initial distance of the heat fluxes to

power balance (see Fig. 5.35). We have kept the density profiles constant due to the

high uncertainties of particle sources in the plasma edge and to facilitate convergence.

At the pedestal top (ρtor = 0.88), the GENE-Tango loop finds profiles that show an

improved match with power balance within just a few iterations. In the steep gradient

region (ρtor = 0.97), however, even strongly increased gradients are not sufficient to

produce transport that is as high as power balance demands. This finding underlines

the crucial importance of transport processes other than ion scale turbulence in the

pedestal. It supports previous studies on the steep gradient region showing that ion

transport approaches neoclassic levels [152] and our GENE stand-alone simulations

showing that electron transport is dominated by small, electron-scale fluctuations (see

previous sections). The results obtained with these GENE-Tango calculations corrob-

orate that these findings are robust against uncertainties in the profiles. They also

highlight the need to include further physics like neoclassical transport and electron

scale transport for accurate profile predictions in the pedestal.

Given the computational cost of these nonlinear pedestal simulations and the needed

number of GENE-Tango iterations, this approach has not been investigated beyond

the proof-of-principle within this thesis.
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5.6. Summary

In this chapter, the gyrokinetic analysis of an ASDEX Upgrade ELMy H-mode pedestal

has been presented. The most unstable microinstabilities from just inside the pedestal

top to foot were characterized with extensive linear, local scans. At the pedestal

top/shoulder, MTM, TEM, and ETG modes were found. In the intermediate region,

before the pedestal center modes on ion scales are stabilized by the interplay of magnetic

shear and pressure gradient, while on intermediate electron scales, additional ETG

modes become unstable. In the pedestal center, ITG modes close to the threshold

to KBMs were observed, and at the pedestal foot, modes with TEM/ETG character,

which are destabilized with increasing collision frequency, are present. With nonlinear,

global, electromagnetic ion scale simulations and nonlinear, local ETG simulations,

we have analyzed the heat flux in the pedestal - resolved in radius and scale. The

ion scale simulations are enabled by an upgrade of the GENE code (cf. Chapter. 3).

We find TEM-driven turbulence with electromagnetic components due to MTMs to

be dominant at the pedestal top/shoulder. A combination of linear stabilization and

E ×B shear suppresses ion scale turbulence towards the steep gradient region. While

the turbulent electron heat flux is picked up by small-scale ETG modes, the ion channel

reduces to neoclassic heat flux levels.

The global electromagnetic simulations presented in this study are among the most

realistic pedestal turbulence simulations performed to date. Together with dedicated

local ETG simulations and the extensive linear instability characterization, they help

to confirm the important role of E ×B shear stabilization for pedestal turbulence and

demonstrate the transition in scale of electron turbulence from ion scales at pedestal

top to electron scales in the steep gradient region.

The investigation of other time points in the ELM cycle has found a similar instability

and heat flux structure as in the pre-ELM time point. TEMs and MTMs at the pedestal

top cause most of the transport visible in these simulations. Shortly after the ELM

crash, more turbulent electron transport in the steep gradient region is observed, and

overall, the turbulent heat flux is higher than in the +6ms time point.

Furthermore, a proof-of-principle of quasi-flux-driven global pedestal simulations with

the GENE-Tango approach was demonstrated. The first iterations of this ansatz un-

derline the importance of electron scale and neoclassic contributions for the total heat

flux in the pedestal. Global ion-scale simulations alone are not sufficient to capture

pedestal transport.

The presented study, including the high-fidelity global simulations, confirms, refines,
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and extends the current picture of pedestal turbulence. We find a similar mixture

of relevant gyrokinetic modes (TEM, MTM, ETG) in the pedestal as identified in

previous flux-tube studies of the AUG pedestal and confirm the linear closeness of

the pedestal to the KBM threshold [147]. Our global, nonlinear simulations and their

detailed comparison to linear results reveal the persistence of TEM/MTM turbulence

at the pedestal top in the fully developed turbulent state, including global effects. In

agreement with interpretative modeling [152, 157], the turbulent ion heat flux in the

pedestal center is found to strongly reduce, such that the total ion heat flux approaches

neoclassic levels. Our simulations suggest that already a linear stabilization mechanism

contributes to this suppression, which is strengthened by E×B shear. Consistent with

the fingerprint analysis of Ref. [103], we do not find significant contributions of ITGs

or TEMs to the heat flux in the pedestal center. Our simulations show a transition

of electron heat flux from TEM-driven transport at the pedestal top to ETG-driven

transport in the pedestal center. In contrast to gyrokinetic studies on JET [133, 134]

and DIII-D [131, 132], we do not find significant electromagnetic transport due to

MTMs in the pedestal center. MTMs are present linearly and in the global simulations

on the pedestal top but not the pedestal center. Hence, turbulent transport in the

pedestal center is dominated by ETG transport in our analysis. Particularly in the

nonlinear simulations, we find a complex ETG mode structure, as has been recently

also described for JET pedestals [104, 105, 125].

In the next chapter, a similar study for a pedestal of the JET tokamak will be presented.
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This is the second of two simulation result chapters. It presents the gyrokinetic analysis

of an ELMy H-mode pedestal from the JET tokamak. The structure is very similar to

the previous chapter: It begins with the physical scenario, followed by an analysis of

instabilities and heat flux calculations.

The aim of this study is the characterization of turbulence in the pedestal of a type-I

ELMy hybrid H-mode JET discharge. The successful characterization is the basis of

possible next steps investigating particle/impurity transport or the influence of the

main isotope on pedestal turbulence in this scenario. From a code testing perspective,

the hybrid scenario is attractive because its elevated plasma β increases electromagnetic

fluctuations, which the new code upgrade is designed to handle. This is the first study

investigating ion-scale turbulence in a JET hybrid H-mode pedestal.

Parts of this chapter have been submitted for publication in Leppin, L., Görler, T.,

Frassinetti, L., Saarelma, S., Hobirk, J., Jenko, F. & JET Contributors. The JET

Hybrid H-mode Scenario from a Pedestal Turbulence Perspective. Nuclear Fusion

Submitted (2024).

6.1. Experimental scenario

A main difference compared to the previous chapter is the experimental device. In

the current chapter, a pedestal of the Joint European Torus (JET) located in Culham,

UK, is being analyzed. JET is the largest tokamak fusion experiment that has been

operated to date and holds the world record for the highest sustained fusion energy

produced in a discharge with 59 MJ [6, 158]. In linear dimensions, JET is two times

larger than AUG (major plasma radius 2.96m vs 1.6m). Hence, heating power and

temperatures are considerably larger than in AUG.

We are considering a pre-ELM H-mode pedestal from a JET hybrid scenario, shot

#97781. This is a Deuterium discharge with NBI and ICRH heating with a total

heating power of Ptot = 33 MW, an on-axis B-field of 3.45 T, a plasma current of

2.3 MA and 12 MW bulk radiation [159]. The discharge has improved confinement of

H98,y2 ≈ 1.2 − 1.4. It has been used as a Deuterium reference discharge in the scenario

development of the record-breaking JET D-T experiments [158, 159].

The hybrid scenario, also called high-β route or improved H-mode, features improved
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6. JET pedestal simulations

Fig. 6.1.: Left: Temperature and density profiles of the JET #97781 pedestal. Right: The
corresponding gradient scale lengths.

confinement properties compared to the H98,y2 confinement scaling and is, therefore,

an attractive candidate for ITER operation [160–162]. The hybrid scenario derives

its name from being a hybrid of the standard tokamak scenario and the advanced

tokamak scenario. In the standard scenario, the plasma current, which is required for

the poloidal magnetic field, is generated by induction via the central solenoid. The

standard scenario is, therefore, inherently pulsed. The advanced tokamak scenario

aims to drive the current by self-generated bootstrap currents and external current

drive mechanisms, such that this scenario is steady-state capable. The hybrid scenario

has a larger bootstrap current fraction and a higher plasma β compared to standard

H-modes.

The improved confinement in the hybrid scenario on JET is observed to be due to

a combination of reduced core transport and increased pedestal pressure [162]. In

core turbulence studies of the hybrid H-mode, electromagnetic stabilization, and fast

particle effects have been identified to contribute to reduced core transport [163–165].

The experimental density and temperature profiles, as well as geometry files, were

generated through fits to experimental data by the JET Team, in particular Lorenzo

Frassinetti and Samuli Saarelma, within the JET pedestal task T17-05.

Fig. 6.1 shows the temperature and density profiles for the pedestal region of JET

#97781 pre-ELM. For the presented profiles, particular care was put on fitting the

steep gradient region at ρtor = 0.97 well. Grey, dashed, vertical lines indicate positions

at which linear stability has been investigated. The position ρtor = 0.9 for the pedestal

top, ρtor = 0.95 for the local magnetic shear minimum, ρtor = 0.97 for the pedestal

center, and ρtor = 0.99 for the pedestal foot. While best fits to experimental data
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Fig. 6.2.: Radial profiles of plasma β, collisionality, ρ∗, safety factor q and magnetic shear
ŝ.

are shown in the figure, the ion temperature measurements have comparatively large

uncertainties. For instance, Ti = Te lies within the uncertainties and will be investigated

in the instability characterization and heat flux calculation.

Fig. 6.2 shows additional important plasma profiles. Similarly to the AUG case, the lo-

cal plasma β strongly reduces from pedestal top to bottom, the collisionality increases,

the gyroradius decreases, and the safety factor increases. The magnetic shear also ex-

hibits a local minimum between pedestal top and center, but it is less pronounced than

in the AUG case.

Fig. 6.3 shows the E×B velocity (left) and the associated shear used in the simulations.

Since no Er measurements are available for this shot, we use a neoclassic estimate for

Er and calculate from that the corresponding rotation velocity. The script to calculate

Er was originally written by David Hatch based on derivations in [166]. We will test

the sensitivity of heat fluxes on the E × B shear level by using a 50% larger rotation

velocity, as shown in orange.

Fig. 6.4 shows density profiles for different assumed effective ion charges. If impurities

are present, one may identify an effective ion charge by the density-weighted average

of the individual species Zeff =
∑

i niZi
2/ne. The solid lines are the resulting main

ion densities, and the dashed lines are the impurity densities. The range of possible
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Fig. 6.3.: E × B velocity vEr×B = Er × B/B2 (left) and corresponding shear (right) due to
a neoclassic radial electric field Er. For comparison, the E × B velocity increased by 50% in
orange.

Fig. 6.4.: Density profiles for different assumed effective ion charges Zeff and assumed main
impurities.
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6.2. Instability characterization

Fig. 6.5.: Left: The ratio of electron to ion temperature, assumed effective ion charge
Zeff = 1.6, and resulting τ . Right: Ratios of density and temperature gradients.

Zeff is based on experimental analysis [M. Sertoli et al., private communication, 2020]

using methods from Ref. [167]. For the modeling, we have focussed on Beryllium as an

impurity because among possible candidates, due to its small charge number (Z=4),

it causes the strongest dilution of the main ion species for a given Zeff and is hence

expected to have the most significant effect. Nickel, for example, has a charge number

of Z=28. So, Beryllium is well suited to examine the upper bound of impurity influence.

Fig. 6.5 (left) shows the ratio of electron to ion temperature and the related quantity

τ . The ratio influences stability properties and can become important in adiabatic

ion simulations, correcting the effect of the collision operator. Fig. 6.5 (right) shows

the ratio of density and temperature gradients. The gradient ratios ηe and ηi peak at

comparatively large values at the pedestal top, around ρtor = 0.9. This indicates a

strong instability drive at this position.

6.2. Instability characterization

To characterize instabilities, I have performed scans with linear, local simulations in ky,

kx,center, and ρtor. Scans have been performed in the same setup as the characterization

of the AUG case, detailed in the previous chapter. The presentation is purposefully

comprehensive to illustrate important aspects of a linear gyrokinetic analysis and doc-

ument findings for future reference. Growth rate spectra at nominal parameters in

different visualizations are shown, and several sensitivity scans and convergence tests

are discussed.
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Fig. 6.6.: Top: Growth rate and frequency spectra of the dominant mode at different radial
positions from pedestal top to pedestal bottom in a local flux-surface normalization cs/Lref .
Bottom: The same data in SI units 1/s.
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6.2.1. Nominal parameters

The instability characterization starts with linear, local scans at nominal parameters.

Fig. 6.6 shows growth rate (left) and frequency (right) spectra in two normalizations:

In a local flux-surface normalization depending on the local temperature at the in-

vestigated position (top) and in SI units (bottom). Growth rates are maximized over

kx,centerρi = [−40, 40]. Following the mode characterization introduced in the previous

two chapters, these modes are identified: The pedestal top on ion-scales is dominated

by an ITG mode, followed by an ETG peak on electron scales. In contrast to AUG,

already the pedestal top growth rate spectrum shows no stable region at intermediate

ky. Also, at ρtor = 0.95 in the magnetic shear minimum, no clear growth rate gap on

ion-scales is apparent. In the pedestal center, large parts of the spectrum have ETG

character down to ion-scales. The bottom plot in SI units reveals that while the growth

rates at the pedestal bottom are large compared to the reduced temperatures, they are

lower than in the pedestal center in absolute units.

Fig. 6.7 shows the same growth rate and frequency spectra as in Fig. 6.6 emphasiz-

ing different aspects of the instability spectrum. The top panels show the data in a

lin-lin plot, revealing more details of the smallest electron scales and demonstrating

the difference in growth rates between the different radial positions, which is usually

skewed in the logarithmic visualization. The bottom panels highlight the ion-scale

instabilities that are responsible for substantial parts of heat transport, particularly

at the pedestal top. Specifically, the zoomed-in frequency plot (bottom right panel)

allows one to identify mode transitions. The pedestal top ρtor = 0.9 (violet triangles)

is ITG dominated (positive frequency branch) up to kyρi ≈ 1 before an ETG branch

takes over. At ρtor = 0.95 (blue squares), the transition happens earlier (kyρi ≈ 0.4),

and at the pedestal center ρtor = 0.97 (green crosses) even earlier (kyρi ≈ 0.08). At

the pedestal foot (yellow circles), no positive ITG frequencies are visible.

The previous figures have provided an analysis of the spectra of the most unstable mode

at different positions within the pedestal. These spectra have maximized over kx,center.

Particularly for pedestal ETG modes, however, the kx,center structure is non-trivial.

Fig. 6.8 shows the full growth rate structure in ky- kx,center space at the pedestal center.

It is not well suited to show precise values, but it gives an intuitive understanding of the

dependencies in the plane. Notice the two approaching flanks at kyρi = 10 − 90 where

γ peaks at finite kx,center. This is a signature of the complex ETG structure present

in the pedestal. Both toroidal and slab ETG modes are present at a given ky but at

different radial wavenumbers/ballooning angles, as will be discussed in the following.

Notice also that the frequencies (bottom plot) sometimes cross the ω = 0-plane and
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Fig. 6.7.: Top: Growth rate and frequency spectra of the dominant mode at different radial
positions in a lin-lin plot. Bottom: Zoom to the ion-scale range in a log-log plot.
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6.2. Instability characterization

Fig. 6.8.: Growth rate (top) and frequency (bottom) surface of the dominant mode in a
ky-kx,center plane at ρtor = 0.97.
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Fig. 6.9.: Growth rates and frequencies of the dominant mode at ρtor = 0.97 for two kys as
a function of kx,center.

become positive. This is even better illustrated when considering a cut along kx,center

for a given ky as done in Fig. 6.9. The overall picture is similar to the linear ETG

observations in the AUG case.

The findings deduced from the full ky- kx,center-plane can be corroborated by cuts along

the kx,center-dimension at a fixed binormal wavenumber ky. Fig. 6.9 shows a cut along

kx,center at ρtor = 0.97 and kyρi = 10 (left) and kyρi = 100. At kyρi = 10, toroidal

ETG modes at finite kx,center values have the highest growth rate. They show positive

frequencies. At kyρi = 100 however kx,centerρi = 0 dominates. The slab-ETG branch

has become more relevant at this wavenumber (see Fig. 6.10).

An indicator for the different ETG branches is the parallel structure of the modes.

Fig. 6.10 shows the parallel structure from a high parallel resolution run (nz = 360).

At kx,centerρi = 0, the mode has an intricate parallel structure indicating a slab-like

character. At kx,centerρi = 20, the parallel structure is much simpler, indicating the

toroidal branch.
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Fig. 6.10.: Parallel structure of the kyρi = 20 mode in the pedestal center. Top: kx,centerρi =
0, bottom: kx,centerρi = 20.
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Fig. 6.11.: Linear, local plasma β scan at kyρi = 0.075: Growth rates at different radial
positions (left to right: pedestal top, center, foot) as a function of β. The orange bar indicates
the nominal β value at the respective position and acts as a yardstick across the plots, always
ranging from 0 to 1.

This concludes the analysis of instabilities at nominal parameters. The following sub-

section investigates the robustness of selected modes against variations of several phys-

ical parameters.

6.2.2. Sensitivity scans

This subsection studies the sensitivity of instabilities against changes in plasma β,

impurity content, temperature and density gradients, and ion temperature.

Fig. 6.11 shows the closeness to the KBM transition at large-scale modes kyρi = 0.075.

As in the AUG case, pedestal center (middle plot) and foot (right plot) are very close to

the KBM threshold at nominal parameters in local, linear simulations. This indicates

a limitation of the pedestal due to KBM modes.

Fig. 6.12 shows growth rate spectra at the pedestal top (purple) and center (yellow)

with changing impurity content of Zeff = 1.4 and Zeff = 2.0. As the impurity content

increases and the main ion species is increasingly diluted, growth rates are reduced.

The mode type, however, seems robust and is not changed by the additional impurities.

Simulations were performed with three kinetic species, using densities as illustrated in

Fig. 6.4.

The inherent uncertainties in the measured density and temperature profiles motivate

growth rate scans in the driving gradients. These scans reveal how robust a specific

mode is against small changes in the kinetic profiles. I show such scans for three

selected modes: The ITG mode at the pedestal top, the ETG/TEM mode on ion

scales at the pedestal center, and, for reference, the pure ETG mode at smaller scales

at the pedestal center. For each mode 3D scans in the inverse gradient scale lengths
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Fig. 6.12.: Growth rate and frequency spectra at pedestal top and center with changing
impurity content.

ωT i, ωT e, ωn have been performed. Each gradient has been varied by [-30%,-20%,-

10%,0,10%,20%,30%]. The individual plots show cuts through these 3D scans. In each

panel, one of the gradients is kept at its nominal value, and the axes correspond to the

other two gradients. Growth rates and frequencies are color-coded. The normalization

of the color bars changes from panel to panel.

The robustness of the pedestal top ITG mode is investigated in Fig. 6.13. The left

column shows growth rates and the right column shows the corresponding frequencies.

The dependence on the ion temperature gradient is visible in the top and middle plots

of the right column. An additional dependence on the electron temperature gradient

is visible as well. The frequency plots show that in the range of scanned gradients, the

frequency remains positive and is not strongly changing. In conclusion, the pedestal

ITG mode appears robust under the tested gradient changes.

I now turn to the sensitivity of pedestal center modes. Fig. 6.14 shows gradient scans

in the pedestal center (ρtor = 0.97) at two wavenumbers, ky = 0.2/ρi (left) and ky =

10/ρi. The right column (ky = 10/ρi) shows a clear ETG dependence: Growth rates

are independent of ωT i, but increase with ωT e (top plot) and decrease with ωn. At

ky = 0.2/ρi (left column), the ωT e dependence is strong as well, and no ωT i dependence

is visible. However, the ωn dependence is more complicated (middle panel). This would

indicate an ETG/TEM mixture since TEMs possess a more complex dependence on

ωn. Fig. 6.15 shows the corresponding frequencies. Frequencies remain dominantly

in the electron diamagnetic direction (negative) in the scanned gradient ranges. The
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Fig. 6.13.: Growth rates (left) and frequencies (right) scanned over the driving inverse
gradient scale lengths ωT i, ωT e, ωn at the pedestal top at kyρi = 0.7. Axes of each subplot
are variations of the gradient scale lengths from -30% to +30%. Colors show the growth
rate/frequency in cs/Lref . Normalizations are different from panel to panel. Top: ωT i vs
ωT e, Middle: ωT i vs ωn, Bottom: ωT e vs ωn

.
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Fig. 6.14.: Growth rates scanned over the driving gradient scale lengths ωT i, ωT e, ωn at the
pedestal center. Axes of each subplot are variations of the gradient scale lengths from -30%
to +30%. Colors show the growth rate in cs/Lref . Normalizations are different from panel to
panel. Left: ky = 0.2/ρi, right: ky = 10.0/ρi. Top: ωT i vs ωT e, Middle: ωT i vs ωn, Bottom:
ωT e vs ωn

.
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Fig. 6.15.: Frequencies in the gradient scan at the pedestal center corresponding to Fig. 6.14.
Axes of each subplot are variations of the gradient scale lengths from -30% to +30%. Colors
show the frequencies in cs/Lref . Normalizations are different from panel to panel. Left:
ky = 0.2/ρi, right: ky = 10.0/ρi. Top: ωT i vs ωT e, Middle: ωT i vs ωn, Bottom: ωT e vs ωn

.
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6.2. Instability characterization

Fig. 6.16.: Influence of Ti = Te (dashed) on growth rates and frequencies of the dominant
mode on ion-scales at pedestal top (purple) and center (yellow).

two middle plots offer an interesting comparison. The magnitude of the frequency at

ky = 10/ρi (right column) increases with decreasing density gradient corresponding to

the destabilization of the ETG mode. This trend is much less pronounced for the ion

scale mode (left column), which, as discussed, is likely a TEM/ETG mode.

Fig. 6.16 investigates the impact of absolute ion temperature uncertainties on the

instability spectrum. Growth rates and frequencies obtained with the best fit Ti profile

and with Ti = Te are compared at the pedestal top (purple) and center (yellow). At

the pedestal, the top growth rates are slightly increased, and the frequencies show that

the transition from ITG to ETG is shifted to higher ky compared to the best fit Ti

profile. At the pedestal center, growth rates are reduced.

6.2.3. Convergence tests

These scans investigate the influence of the parallel resolution and B̄1‖ fluctuations on

the growth rates.

Fig. 6.17 tests convergence for the parallel resolution. On ETG scales, high parallel

resolutions are necessary to reach convergence in the growth rate of the fastest-growing

mode. Even between nz0=288 and nz0=360 parallel grid points, small differences are

visible. Only nz0=360 and nz0=432 show overlapping growth rates. High parallel

resolution demands for JET pedestal ETG modes have also been observed in [104,

133].
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Fig. 6.17.: Convergence test: high-ky growth rate spectra for different parallel resolutions
at fixed box size and increasing number of parallel grid points nz0.

Fig. 6.18.: Growth rate spectra at different radial positions (different panels) with and
without B|| fluctuations.
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6.3. Nonlinear, global simulations

Fig. 6.19.: Snapshot of electric potential fluctuations from the nonlinear phase of a global
JET simulation without Er × B shear. φ in units of (Tref/e)ρ∗

ref ≈ 1.85 V.

Fig. 6.18 investigates the influence of B̄1‖ fluctuations on the linear growth rates. At

the time of this analysis, global GENE simulations could not include B̄1‖ fluctuations.

Therefore, sensitivity is tested in these local scans. The comparison of the spectra

obtained without B̄1‖ fluctuations but with drift correction and the spectra with B̄1‖

fluctuations shows very small differences at all radial positions for this case. This

suggests that B̄1‖ fluctuations in this case do not influence the instabilities strongly

and/or that the drift approximation is widely applicable. This is encouraging for global

simulations.

6.3. Nonlinear, global simulations

This section presents results from nonlinear, global, ion-scale simulations. The same

simulation setup as for the nonlinear, global, ion-scale AUG simulations was used.

Fig. 6.19 shows a snapshot of electric potential fluctuations. It illustrates the radial

extent of the simulation domain. Furthermore, it shows the ballooned structure of

ion-scale turbulence in this scenario with clear eddies on the outboard side. The figure

is a projection of the actual simulation domain, which follows magnetic field lines and

winds around the torus, to a poloidal plane.
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6. JET pedestal simulations

Fig. 6.20.: Turbulent heat flux from global nonlinear simulations as a function of time.
Averaged over ρtor = 0.92 − 0.99 and flux surface.

Fig. 6.20 shows heat flux (averaged over flux surface and radius ρtor = 0.92 − 0.99) of

electrons (left) and ions (right) as a function of time. The simulations are started with

two species (electrons, deuterium) and no E×B shear (blue and red). Then neoclassic

E×B shear is included (green), which strongly reduces both the electron and ion heat

flux channel. Next, a three-species simulation (electrons, Deuterium, Beryllium) tests

the influence of an impurity species on the heat flux (yellow). The electron channel is

unaffected, but the main ion heat flux is reduced. Finally, the sensitivity to the E×B

shear amplitude is tested by increasing E × B shear by a factor of 1.5 (purple). Both

channels are slightly reduced. This underlines the importance of E × B shear on the

total heat flux level and of impurities on the main-ion-to-electron heat flux ratio. A

detailed comparison to experimental power balance has not yet been performed, but a

first comparison to the heating power of the discharge is possible. The shot had a total

heating power of 33 MW and radiation losses of about 12 MW [Hobirk et al., private

communication, 2023]. Hence, 21 MW should be transported on average by turbulent

and neoclassic heat flux channels. The turbulent fluxes in the analyzed radial domain

reach comparable magnitudes but only if E×B shear is included in the simulations. It

is, however, important to note that the turbulent fluxes show strong radial variations,

as discussed in Fig. 6.25. For the pedestal top, the total heat flux remains a factor five

too high even with E ×B shear.
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Fig. 6.21.: Linear-nonlinear frequency comparison. Left: Linear results in the co-moving
frame for two positions. Middle: Comparison of linear (purple triangles) and nonlinear
frequencies (blue distribution, analyzed in ρtor=[0.89,0.91]) at pedestal top. Right: Com-
parison of linear (green crosses) and nonlinear frequencies (blue distribution, analyzed in
ρtor=[0.96,0.98]) at pedestal center. The red line indicates the mean of the nonlinear fre-
quency distribution. Analyzed was the nonlinear simulation with three species and E × B
shear (see orange line in 6.20) in the time interval 50-194, corresponding to the black average
on top of the orange line.

6.3.1. Comparison to linear frequencies and cross phases

As explained in the analysis of the AUG scenario, nonlinear modes, and linear instabil-

ities should be compared to gain confidence that the linear instabilities remain relevant

in the turbulent state. Fig. 6.21 compares linear and nonlinear frequencies. The left-

most plot is in the co-moving frame and allows one to distinguish between ion and

electron diamagnetic drift directions. The other plots show the nonlinear frequency

distribution as a blue background at two selected positions (pedestal top and center)

overlayed by frequencies from the linear scan. For the comparison, the linear frequen-

cies are shifted to the lab frame, taking into account the additional E × B drift due

to the radial electric field, which shifts the apparent frequencies. At the pedestal top,

linear and nonlinear frequencies coincide very well - the nonlinear phase retains linear

characteristics. In the pedestal center, the match is worse, but some linear properties

seem to survive as well. However, the nonlinear frequency distribution at the pedestal

center has a greater variance than the pedestal top distribution.

The two cross-phase plots Fig. 6.22 and Fig. 6.23 compare linear and nonlinear cross-

phases. In particular, at the pedestal top, a good agreement can be observed. But also

at the pedestal center φ × T⊥ seems to retain linear structures in the nonlinear state.

The crossphases of φ×n give insight into the particle transport. At the pedestal top, the

dominant mode has a finite φ× n at kyρi = 0.3, which indicates transport of particles

(transport is maximal at a phase difference of π/2). This coincides with the peak of
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Fig. 6.22.: Cross-phases of density and parallel and perpendicular temperature with electric
potential at the pedestal top ρtor = 0.89. The blue background shows the nonlinear distri-
bution, and linear results are shown as orange circles. The nonlinear simulation with three
species and E × B shear was analyzed (see orange line in 6.20) in the time interval 50-194,
corresponding to the black average on top of the orange line.

Fig. 6.23.: Cross-phases of density and parallel and perpendicular temperature with electric
potential at the pedestal center ρtor = 0.97. The blue background shows the nonlinear
distribution, and linear results are shown as orange circles. The nonlinear simulation with
three species and E × B shear was analyzed (see orange line in 6.20) in the time interval
50-194, corresponding to the black average on top of the orange line.
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6.3. Nonlinear, global simulations

Fig. 6.24.: Heat flux spectrum of the global, nonlinear simulation with three species and
increased E × B shear. Averaged over ρtor = 0.85 − 0.99, flux surfaces and time.

the heat flux spectrum at kyρi = 0.3 (cf. Fig. 6.24), corroborating the dominance of

ITG transport at the pedestal top derived from the linear analysis. In the pedestal

center, however, the φ × n cross phases indicate vanishing particle transport. This is

in agreement with the transport driver being ETG.

6.3.2. Heat flux analysis

This subsection analyses the turbulent ion-scale heat flux in more detail. The binormal

spectrum and radial distribution of the heat flux from the simulation with three species

and increased E ×B shear (purple line Fig. 6.20) is analyzed.

Fig. 6.24 shows the radial heat flux spectrum of main ions (red) and electrons (blue)

of the nonlinear phase of the three species simulation with increased E × B shear.

A strong peak at ky ≈ 0.3 is present, which is driven by the pedestal top ITG. A

slight increase in the electron channel at the high-ky end of the distribution indicates

the relevance of ETGs. They are not fully resolved in this simulation, and only their

low-ky tail extends into the range of scale included in the simulation.

Fig. 6.25 shows the heat flux profile for the global nonlinear three species simulation

with increased E × B shear. Even though this is the simulation with the lowest heat

fluxes (strong E × B shear, inclusion of impurities), the peak heat fluxes that are

reached in the pedestal top/ outer core region (ρtor ≈ 0.9) are unreasonably high

with Qtot ≈ 100 MW. This is most likely due to too steep temperature profiles in

this region. The structure of the heat flux is also interesting in comparison to the
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6. JET pedestal simulations

Fig. 6.25.: Heat flux profile of the global, nonlinear simulation with three species and in-
creased E × B shear. Averaged over flux surfaces and time.

AUG case. As previously seen, turbulent ion transport is suppressed in the steep

gradient region, beginning from around ρtor = 0.95, meaning the total ion transport is

predominantly neoclassic. In contrast to AUG, an electron transport peak is present

at ρtor = 0.97 in the steepest gradient region. This indicates that in the JET scenario,

an effective electron transport mechanism in the pedestal center remains. Our linear

analysis suggests that these are low-ky tails of ETG modes, which extend due to the

strong drive in the pedestal down to ion scales. Dedicated electron-scale simulations

have not yet been completed.

6.3.3. Sensitivity scan

Fig. 6.26 shows the sensitivity of the calculated heat fluxes to gradients. The ion tem-

perature profile is notoriously difficult to measure; hence, the best-fit profiles (green)

and the assumption Ti = Te (yellow) are tested. This change corresponds to almost a

factor two in the calculated heat fluxes, underlining the sensitivity and limitations on

the absolute heat flux values calculated here.

6.4. Summary

In this chapter, instabilities and ion-scale turbulent transport in a pre-ELM JET

pedestal of a hybrid H-mode shot have been characterized. The successful applica-

tion of global, nonlinear simulations to the JET hybrid scenario pedestal confirms the

capabilities of the new code upgrade. The dominant contribution to ion-scale transport

on the pedestal top is identified to be ITG-driven turbulence. Towards the pedestal
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Fig. 6.26.: Sensitivity study: Ti=Te. Heat flux from global nonlinear simulations as a
function of time. Averaged over ρtor = 0.85 − 0.99 and flux surfaces. Blue/red: Without
Er × B shear. Green: With Er × B shear. Yellow: With Er × B shear and Ti=Te.

foot, ETG modes become more prevalent, extending down to ion-scales. As for the

AUG pedestal, E × B shear has been shown to be a crucial component in setting the

turbulent heat flux level. Additionally, impurities have been shown to lower the main

ion heat transport. In contrast to AUG, ETG-driven electron transport on ion scales

is found in the pedestal center. Nonlinear electron-scale simulations have been started

to complete the turbulent transport characterization - their results are left for future

work.

Linear and nonlinear sensitivity scans show a robust presence of ITG turbulence at the

pedestal top and sensitive dependence of the heat flux on the ion temperature profile.

ITG modes in the JET-ILW pedestal have been reported before [133] but extended

to the steep gradient region in this study. In the simulations of our scenario, low-

ky tails of ETG modes drive most of the transport in the pedestal center, and ITG

is restricted to the pedestal top. The linear analysis of ETG modes has revealed a

complex mode structure and high parallel resolution demands as described recently in

[104, 105]. Similar to the AUG pedestal, a very good agreement between nonlinear

and linear mode properties at the pedestal top has been observed, and there is still

good agreement in the pedestal center. This is a further encouraging finding for the

development of quasilinear pedestal models.
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This thesis has addressed an important challenge of fusion research: The simulation

of turbulent transport in the H-mode pedestal. Since tokamak core profiles are typi-

cally stiff against increases in the heating power, the H-mode pedestal is particularly

relevant for the overall confinement of energy and particles in tokamak experiments.

Gyrokinetic turbulence is one of the key ingredients shaping the pedestal. The sim-

ulation of pedestal turbulence, however, is a great scientific and numerical challenge,

as outlined in Chapter 4. Many physical effects have to be taken into account due to

the steep profiles and strong changes in the H-mode pedestal. These include global

effects, electromagnetic fluctuations, the presence of ion-scale as well as electron-scale

instabilities, and shear flows.

To address these challenges, the capabilities of the GENE code have been extended, and

gyrokinetic turbulence in two experimental H-mode pedestals has been investigated.

This thesis has thereby pushed the frontiers of gyrokinetic analysis of H-mode pedestals

and has improved the understanding of pedestal turbulence. The main achievements

of this thesis are:

• An upgrade of the global, electromagnetic GENE code capabilities. The new

implementation of the f-version enables global, nonlinear, electromagnetic simu-

lations of pedestals at experimental β values. After ruling out that the omission

of analytical higher-order terms was causing the code instability, more substantial

code changes based on the proof-of-principle in [56] have been implemented. The

main distribution function of GENE has been adapted, changes to the Vlasov

equation and field equations have been implemented, and the changes have been

made compatible with block-structured velocity grids. Details can be found in

Sec. 3.3.

• The first global, nonlinear, electromagnetic turbulence simulation of an ASDEX

Upgrade pedestal. Using the new code upgrade, one of the first global, nonlinear,

electromagnetic gyrokinetic pedestal simulations has been performed. Supported

by linear, local scans and nonlinear, local ETG simulations, the global simula-

tions reveal a complex radial structure of turbulence in the pedestal. A linear

stability mechanism related to the magnetic shear and the pressure gradient is

found to be active. Furthermore, the crucial role of Er ×B shear in suppressing

pedestal turbulence is confirmed in these high-fidelity simulations. Overall, ion-

scale turbulence in the pedestal center is found to be suppressed, and a transition
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of electron transport from ion-scales at the pedestal top to electron-scales in the

pedestal center has been found. Details can be found in Sec. 5.3.

• Global, nonlinear turbulence simulation of a JET hybrid scenario pedestal. The

code upgrade could also be successfully applied to an ELMy H-mode pedestal

from a JET hybrid scenario. The global simulations reveal a similar heat flux

structure as in the AUG pedestal, with a substantial reduction of heat flux in

the pedestal center. However, low-ky tails of ETG modes prevail in the JET

case and drive electron transport on ion-scales. Impurities are shown to reduce

the turbulent transport of the main ions and the importance of Er × B shear

in setting the turbulent heat flux has been confirmed. Details can be found in

Sec. 6.3.

• Well-resolved characterization of turbulence across two pedestals. Scans involving

several thousand local, linear gyrokinetic simulations were performed to develop

a radially resolved understanding of the microinstabilities present in the AUG

and JET pedestals. These include scans in the binormal wave number ky and

radial wavenumber kx,center at nominal parameters, sensitivity scans in gradients,

plasma β, or collisionality and convergence tests. In AUG at the pedestal top,

TEMs and MTMs have been identified as relevant instabilities. In the pedestal

center, ETGs have been found to be prevalent. In JET at the pedestal top, ITG

has been found to be dominant. In the pedestal center, again, ETGs have been

found to be the most relevant. Furthermore, both pedestals have been found to

be close to a linear KBM threshold at pedestal center and foot. Details can be

found in Sec. 5.2 and Sec. 6.2.

• Complex structure of pedestal-ETG modes. In both pedestals, ETG modes with

toroidal and slab character have been identified that can require high parallel

resolutions. In AUG, the slab-ETG modes are linearly subdominant but are

relevant in the nonlinear simulations. In JET, linear convergence studies suggest

that slab-ETG modes are the fastest-growing modes at high-ky. The modes are

found to have an intricate dependence on the ballooning angle. Details can be

found in Sec. 5.3.2 and Sec. 6.2.

• Quasilinear nature of ion-scale pedestal turbulence. Frequencies and cross-phases

of linear, local and nonlinear, global simulations have been compared for the AUG

and JET pedestal. In both pedestals, a very good agreement between mode

signatures at the pedestal top has been found, and still a good agreement in

the pedestal center. This suggest that the linearly fastest-growing modes remain

relevant in the saturated turbulent state. Hence, these findings are encouraging
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for the development of quasilinear pedestal turbulence models. Details can be

found in Sec. 5.3.1 and Sec. 6.3.1.

These results extend and refine the current understanding of pedestal turbulence. In

agreement with interpretative modeling [152, 157], the turbulent ion heat flux in the

pedestal center is found to strongly reduce, such that the total ion heat flux approaches

neoclassic levels. Consistent with the fingerprint analysis of Ref. [103], we do not find

significant contributions of ITGs or TEMs to the heat flux in the pedestal center. Their

suppression by E×B shear has been confirmed by our high-fidelity global simulations.

Additionally, we identify a linear stabilization mechanism linked to the magnetic shear

and pressure gradient to locally suppress turbulent transport, even without E×B shear.

In contrast to other gyrokinetic studies on JET [133, 134] and DIII-D [131, 132], we do

not find significant electromagnetic transport due to MTMs in the pedestal center. In

AUG, MTMs are present linearly and in the global simulations on the pedestal top but

not the pedestal center. Hence, turbulent transport in the pedestal center is dominated

by ETG transport in our analysis. Overall, our results highlight the importance of

distinguishing between the different radial domains of the pedestal and demonstrate

that the total turbulent pedestal transport is multi-channel and multi-scale.

7.1. Discussion and Outlook

The current GENE model and the implemented upgrade allow insightful studies of

pedestal physics, as presented in this thesis. Several simulations of this thesis are

among the highest-fidelity and most realistic pedestal turbulence simulations performed

to date. In particular, they include global effects, electromagnetic fluctuations, and col-

lisions (Landau operator). They use real experimental profiles, experimental magnetic

equilibria (g-eqdsk), and the true electron-to-ion mass ratio. Nonetheless, to identify

possible extensions, it is worthwhile to recall the limitations of the employed simulation

framework.

Some limitations apply to the fluctuations that can simulated. In particular, the rel-

ative fluctuation amplitudes are limited due to GENE’s δf ansatz for the distribution

function. Very close to the separatrix, the ability to include larger fluctuation ampli-

tudes would be desirable. Furthermore, not all types of magnetic fluctuations were

included in the simulations. While the code upgrade enables stable simulations with

perpendicular magnetic fluctuations Ā1‖, compressional, parallel magnetic fluctuations

are not included. Linear tests performed in this thesis for the JET case suggest that

the currently employed drift correction works well. Nonetheless, B‖ fluctuations could
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further increase the fidelity of global simulations. The implementation of B‖ fluctua-

tions for global GENE simulations is currently being pursued. Additionally, the current

implementation of E × B flows in GENE limits them to be in the toroidal direction.

In contrast, the dominant direction of Er × B flows at a high safety factor in the

pedestal is the poloidal direction. While the current implementation yields convincing

results, it would be desirable to test if the flow direction has an impact on the resulting

turbulence suppression.

Furthermore, to reduce the computational cost of simulations, electron scales and ion

scales were not simulated in a single multi-scale simulation but in separate simula-

tions. The separation of ion and electron scale simulations prohibits any mutual scale

interaction and excludes a range of wavenumbers in our setup. Several effects have

been observed in simulations that include cross-scale interactions: In JET pedestal

conditions ion scale ETGs were found to decrease ETG transport [125] and in DIII-

D pedestal top-like conditions an increase of ion-scale and decrease of electron-scale

transport was reported [168]. In core conditions, a suppression of MTMs by ETG tur-

bulence [169], a suppression of electron-scale turbulence by ion-scale turbulence, and an

enhancement of ITGs by electron-scale transport have been found [127]. Furthermore,

an overall increase of turbulent heat fluxes in multi-scale simulations was reported [128,

129]. Overall, these studies suggest that cross-scale interactions may decrease the ETG

heat flux we observe by a few 10%.

Other limitations apply to the temperature and density profiles in the simulations.

While real experimental profiles and equilibria have been used, the gradient-driven

approach does not include the effect of the simulated turbulent fluxes on the background

profiles. Instead, they are kept constant on average. A flux-driven approach would

include the profile changes self-consistently. The proof-of-principle of the GENE-Tango

approach in the pedestal has, however, highlighted the challenges of flux-driven pedestal

simulations. Both, ion-scale and electron-scale fluctuations contribute to the turbulent

fluxes in the different regions of the pedestal and would need to be included in some

form in a flux-driven pedestal simulation.

A further limitation is the use of field-aligned coordinates, which strictly restricts our

simulation domain to the region of closed flux surfaces. In combination with the Dirich-

let boundary conditions of global simulations, this excludes any influence of scrape-off

layer physics on the pedestal simulations. Approaches that can cross the separatrix

would be well suited to expand the study of pedestal foot turbulence.

More generally, while present-day models successfully capture several important aspects

of pedestal turbulence, the complexity of the pedestal suggests that one code alone can
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hardly capture all relevant physics effects in a full pedestal. The strong differences in

plasma conditions between pedestal top and foot and the wide range of scales involved

in pedestal dynamics are large challenges to all computationally affordable models.

Joint efforts of multiple codes applied to the same scenario with a flexible coupling,

therefore, offer a path to a further improved understanding of pedestal physics.
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A. Appendix

A.1. Derivation of additional terms

This section documents additional details for the derivation of the f-version and higher-

order terms discussed in Chapter 3.

A.1.1. Γi terms in Vlasov equation

Here, the additional terms in the Vlasov equation arising from retaining all terms of Γi

in the g-version are documented. This provides additional details to the discussion in

Sec. 3.3.2. I start with the normalized GENE Vlasov equation (cf. Eq. 3.13) and plug

in Γi and ∂F0

∂v‖
= − mv‖

T0(x)
F0. The terms containing Γi are listed.

1st term containing Γx:

− B0

B∗
0||

T0(x0)

q

µB0 + 2v2
‖

B0

Kx

×
(

∂xg1 +
q

T0

F0∂xχ1 +
ρref

Lref

vT (x0)qv‖Ā1‖
1

T0(x)
(−∂xF0 +

∂xT0(x)

T0(x)
F0)

)

(A.1)

2nd term containing Γy:

− B0

B∗
0||
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q
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) (A.2)

3rd term containing Γy (Note that a q
T0
F0∂yχ1 part does not occur since it cancels with

parts of the 4th term):
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1
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1
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4th term containing Γx (Note that a q
T0
F0∂xχ1 part does not occur since it cancels with

parts of the 3rd term):
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5th term containing Γz:

− vT (x0)
C

JB0

v‖

(

∂zg1 +
q

T0

F0∂zχ1 +
ρref

Lref

vT (x0)qv‖Ā1‖
1
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(−∂zF0)

)

(A.5)

Not all of these terms are implemented in GENE (cf. Eq. (A.1) in Ref. [48]): All

terms with the partial derivatives ∂xF0 and ∂yF0 are missing. The 5th term is fully

implemented. To proceed, we assume a specific form of the background distribution

(Maxwellian in velocity space, normalized):

F0(x, v‖, µ) =
np(x)

(πTp(x))3/2
e

−
v2

‖
+µB0(x)

Tp(x) (A.6)

with np(x) = n0(x)
n0(x0)

, Tp(x) = T0(x)
T0(x0)

. The normalized spatial derivatives are:

∂xF0 = F0

[
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− 3

2

)
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T0(x)

]

(A.7)

with ωn = −Lref∂xn0(x)
n0(x)

, ωT = −Lref∂xT0(x)
T0(x)

. The derivatives with respect to y and

z, which lie on flux-surfaces on which the background temperature and density are

constant, simplify to:

∂yF0 = F0

[

−∂yB0

B0

µB0T0(x0)

T0(x)

]

(A.8)

Implementation in GENE The additional terms have been implemented. They

are calculated in the subroutine set_new_Apar_terms in the module dgdxy_terms.

They are then added to dgdxy in the x-global versions of add_dgdxy (add_dgdxy_df1,

add_dgdxy_df2, add_dgdxy_df3) and in the global version of the nonlinearity before

the Fourier transformation to real space. Translated to GENE variables, the new terms

have the form:

ρref

Lref

vT (x0)qv‖Ā1‖
1

T0(x)
(−∂xF0) = eps · qvTvpar · bar_Apar · dF0dvdi (A.9)

with (cf. Appendix of Ref. [48])

ρref

Lref

= eps = rhostar · minor_r (A.10)

qvTvpar = qvT (x0)v‖ = q

√

2T0(x0)

m
v‖ (A.11)
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dF0dvdi = − 1

mv‖

∂

∂x

(

∂F0

∂v‖

)

= −∂xF0
1

T0(x)
+
∂xT0(x)

T 2
0 (x)

F0

=
F0

T0(x)

[

ωn + ωT

(
v2

‖ + µB0

T0(x)/T0(x0)
− 5

2

)

+
∂xB0

B0

µB0T0(x0)

T0(x)

] (A.12)

dF0dvdj = − 1

mv‖

∂

∂y

(

∂F0

∂v‖

)

= −∂yF0
1

T0(x)
=
F0

T0

[

∂yB0

B0

µB0T0(x0)

T0(x)

]

(A.13)

bar_Apar = Ā1‖ (A.14)

Adaptation of the numerical scheme for the nonlinearity In GENE, the nonlinear-

ity is discretized using the Arakawa scheme [76], which ensures conservation of energy

(cf. Ref. [50], p. 43). The nonlinear term is formulated in terms of a Poisson bracket

NL = − B0

B∗
0||

1

C
(∂xχ1Γy − ∂yχ1Γx)

= − B0

B∗
0||

1

C
(∂xχ1∂yg1 − ∂yχ1∂xg1)

=
B0

B∗
0||

1

C
{g1, χ1}x,y

(A.15)

which is implemented as

NL =
B0

B∗
0||

1

C

1

3
[(∂yχ1∂xg1 − ∂xχ1∂yg1) + ∂y(χ1∂xg1 − g1∂xχ1) + ∂x(g1∂yχ1 − χ1∂yg1)] ,

(A.16)

cf. Ref. [50]. Numerically, the derivatives are calculated in Fourier space, and the

products in real space. As we want to retain the full Γi term, this changes as follows:

NL = − B0

B∗
0||

1

C
(∂xχ1Γy − ∂yχ1Γx)

= − B0

B∗
0||

1

C

[

∂xχ1

(

∂yg1 +
ρref

Lref

vT (x0)qv‖Ā1‖
1

T0(x)
(−∂yF0)

)

−∂yχ1

(

∂xg1 +
ρref

Lref

vT (x0)qv‖Ā1‖
1

T0(x)
(−∂xF0 +

∂xT0(x)

T0(x)
F0)

)]

=
B0

B∗
0||

1

C

[

{g1, χ1}x,y − ρref

Lref

vT (x0)qv‖Ā1‖{
F0

T0

, χ1}x,y

]

(A.17)

Note that Ā1‖ is a function of x and y, which prevents us from drawing out the derivative

and writing the nonlinearity in terms of only one Poisson bracket. This translates to

157



A. Appendix

the following terms in the Arakawa scheme:

NL =
B0

B∗
0||

1

C

[
1

3
((∂yχ1∂xg1 − ∂xχ1∂yg1) + ∂y(χ1∂xg1 − g1∂xχ1) + ∂x(g1∂yχ1 − χ1∂yg1))

− ρref

Lref

vT (x0)qv‖Ā1‖
1

3

(

(∂yχ1∂x(F0/T0) − ∂xχ1∂y(F0/T0))+

+∂y(χ1∂x(F0/T0) − F0/T0∂xχ1)

+∂x(F0/T0∂yχ1 − χ1∂y(F0/T0))
)]

(A.18)

A.1.2. The nonlinearity expressed by distribution functions f , g or

h

This subsection documents the different forms the nonlinear term in GENE’s Vlasov

equation can have depending on which distribution function is used.

The nonlinearity has the following general form (omitting the prefactor − B0

B∗
0||

1
C

):

NL = ∂xχ̄1Γy − ∂yχ̄1Γx, (A.19)

It is desirable for numerical reasons to express the nonlinearity as a Poisson bracket

{A,B}x,y = ∂xA∂yB − ∂yA∂xB. By expressing Γi through the different distribution

functions f1, g1, or h1, the nonlinearity can be cast in different forms.

When using f1 one obtains:

NLf1 = {χ̄1, f1}x,y + q
F0

T0

{χ̄1, φ̄1 +
µ

q
B̄1‖}x,y (A.20)

This version (without the B̄1‖ term) has been implemented for the f-version within

this thesis. Note that F0 and T0 are functions of x (the radial coordinate) in global

simulations. Hence, the two Poisson brackets cannot be combined into one single

nonlinear term.

When using g1 = f1 − q
mc
Ā1‖

∂F0

∂v‖
= f1 +

qv‖

c
Ā1‖

F0

T0
one obtains:

Γi =
∂g1

∂xi

− q

mv‖

∂F0

∂v‖

∂χ̄1

∂xi

+
q

mc
Ā1‖

∂

∂xi

(

∂F0

∂v‖

)

=
∂g1

∂xi

+ q
F0

T0

∂χ̄1

∂xi

− qv‖

c
Ā1‖

∂

∂xi

(
F0

T0

)

(A.21)
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and hence:

NLg1 = {χ̄1, g1}x,y + q
F0

T0

{χ̄1, χ̄1}x,y − qv‖

c
Ā1‖{χ̄1,

F0

T0

}x,y

= {χ̄1, g1}x,y − qv‖

c
Ā1‖{χ̄1,

F0

T0

}x,y

(A.22)

The GENE standard g-version approximates this to: NLg1 = {χ̄1, g1}x,y. An advantage

of this approach is that it uses only one Poisson bracket. However, the standard version

using this variant tends to be unstable in global, electromagnetic simulations. The

inclusion of the omitted term F0

T0
was tested in this thesis. The g-version remained

unstable.

When using h1 = f1 + q F0

T0
(φ̄1 + µ

q
B̄1‖) one obtains:

Γi =
∂h1

∂xi

− q
∂

∂xi

(
F0

T0

)

(φ̄1 +
µ

q
B̄1‖), (A.23)

and hence:

NLh1 = {χ̄1, h1} − (qφ̄1 + µB̄1‖){χ̄1,
F0

T0

}. (A.24)

Based on the same argument as in the g-version, the F0

T0
term could be neglected. The

h-version has not been comprehensively explored in this thesis.

A.2. AUG simulation settings

Linear, local simulations

• 2 species, experimental β, realistic electron to ion mass ratio me/mD = 1/3670,

Landau collision operator, arakawa_zv=F, tracer_efit geometry interface.

• E ×B shear was not used to avoid Floquet modes.

• Resolution: nx = 18, nky = 1, nz = 36, nv = 32, nw = 16.

• Box size: lv=3.1, lw=11.

• hyp_z=-1

• Convergence tests with increased parallel resolutions and increased velocity space

resolution (nv = 128, nw = 32) were performed.

• Performed in double-precision floating-point format.

159



A. Appendix

• Simulations were performed with GENE code version

GIT_MASTER = 9a09515c6e9b8b5dd1bfda383bcae1a330c7ce9.

Nonlinear, local ETG simulations

• 1 kinetic species (electrons), adiabatic ions, experimental β, Landau collision

operator, arakawa_zv=T, tracer_efit geometry interface.

• No E ×B shear.

• Resolution: nx = 512, nky = 64, nz = 288, nv = 32, nw = 16.

• Box size: lv=3, lw=9, lx=3.5.

• Convergence tests for radial resolution, radial box size and parallel resolution (up

to nz=576) were performed for the position ρtor = 0.97.

• GyroLES=T, hyp_z settings are discussed in the main text.

• Performed in single-precision floating-point format. Double-precision conver-

gence tests were performed.

• Simulations were performed with GENE code version

GIT_MASTER = 59331b56545cdd88b3bb55bceb0bfa46a721bcea.

Nonlinear, global, ion scale simulations

• 2 species, experimental β, realistic electron to ion mass ratio me/mD = 1/3670,

Landau collision operator, arakawa_zv=F, tracer_efit geometry interface.

• With E ×B shear when indicated.

• Resolution: nx = 512, nky = 32, nz = 48, nv = 32, nw = 16.

• Box size: lv=3.45, lw=14.23, lx=72.

• Boundary conditions: Dirichlet with radial buffer zones (5% of domain at both

boundaries), in which the distribution function is damped by fourth-order Krook

operators.

• hyp_x=1, hyp_z=-1.

• Performed with block-structured velocity grids [71] with 4 blocks.

• Performed in single-precision floating-point format. Double-precision conver-

gence tests were performed.
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• Simulations were performed with GENE code version

GIT_MASTER = 59331b56545cdd88b3bb55bceb0bfa46a721bcea.

Definitions

• lv is the extension of the simulation box in the v|| direction, in units of the thermal

velocity vT = (2T0/m)1/2.

• lw is the extension of the simulation box in the µ direction, in units of T0/Bref .

• lx is the extension of the simulation box in the radial direction in units of the ion

gyroradius at the reference position. In global simulations, the reference position

is the center of the simulation domain. In most cases shown here, this is at

ρtor = 0.9225.

A.3. JET simulation settings

A.3.1. Simulation parameters

Linear, local simulations

• 2 species, experimental β, realistic electron to ion mass ratio me/mD = 1/3670,

Landau collision operator. tracer_efit geometry interface.

• E ×B shear was not used to avoid Floquet modes.

• Resolution: nx = 18, nky = 1, nz = 36, nv = 32, nw = 16.

• Box size: lv=3.1, lw=11.

• Convergence tests in the parallel resolution are discussed in the main text. Tests

with B̄1‖ were performed and are discussed in the main text.

• Performed in double-precision floating-point format.

• Simulations were performed with GENE code version

GIT_MASTER = 9a09515c6e9b8b5dd1bfda383bcae1a330c7ce9.

Nonlinear, global, ion scale simulations

• 2 species, experimental β, realistic electron to ion mass ratio me/mD = 1/3670,

Landau collision operator. With E ×B shear when indicated.

• Resolution: nx = 512, nky = 32, nz = 48, nv = 32, nw = 16.
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• Box size: lv=3.39, lw=13.74, lx=106.18.

• Boundary conditions: Dirichlet with radial buffer zones (5% of domain at both

boundaries), in which the distribution function is damped by fourth-order Krook

operators.

• hyp_x=1, hyp_z=-1.

• Performed with block-structured velocity grids [71] with 4 blocks.

• Performed in single-precision floating-point format.

• Simulations were performed with GENE code version

GIT_MASTER = 59331b56545cdd88b3bb55bceb0bfa46a721bcea.

Definitions

• lv is the extension of the simulation box in the v|| direction, in units of the thermal

velocity vT = (2T0/m)1/2.

• lw is the extension of the simulation box in the µ direction, in units of T0/Bref .

• lx is the extension of the simulation box in the radial direction in units of the ion

gyroradius at the reference position. In global simulations, the reference position

is the center of the simulation domain. In most cases shown here, this is at

ρtor = 0.9225.

A.4. ASDEX Upgrade (AUG) tokamak

ASDEX Upgrade (see Fig. A.1)is a tokamak operated since 1991 at the Max Planck

Institute for Plasma Physics. ASDEX stands for Axially Symmetric Divertor Experi-

ment. It features a major plasma radius of 1.65 m, a minor plasma radius of 0.5 - 0.8 m,

and a plasma volume of 14 m3. It is part of the EUROfusion Medium-Sized Tokamak

program and is strongly involved in the preparation of future tokamak reactors. More

info at: https://www.ipp.mpg.de/16195/asdex

A.5. Joint European Torus (JET) tokamak

JET, the Joint European Torus (see Fig. A.2), is, as of writing, the world’s largest

tokamak in operation. It started operation in 1983. It has played a crucial role in the

progress of fusion research as it was one of only two experiments with the capability to
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Fig. A.1.: Left: Photograph of the ASDEX Upgrade torus hall. Right: Photograph of the
inner vessel with superimposed magnetic flux surfaces. Source: IPP Garching.

use Tritium in the experiments. JET holds the world record for the highest sustained

fusion energy produced in a discharge. It features a major plasma radius of 2.96 m,

a minor plasma radius of 1.25 - 2.1 m, and a plasma volume of 80 m3. More info at:

https://ccfe.ukaea.uk/programmes/joint-european-torus/

and https://www.ipp.mpg.de/16701/jet

A.6. High-performance computing systems

A.6.1. Cobra at MPCDF

Parts of the simulations for this thesis were performed on the Cobra Supercomputer

of the Max Planck Computing and Data Facility of the Max Planck Society.

A.6.2. Raven at MPCDF

Parts of the simulations for this thesis were performed on the Raven Supercomputer

of the Max Planck Computing and Data Facility of the Max Planck Society. Raven

provides in total 1592 CPU compute nodes with 72 cores (Intel Xeon IceLake-SP 8360Y)

and 256 GB of RAM per node as well as 192 GPU-accelerated nodes. For typical

simulations 64 - 192 Nodes were used in parallel. For more information, see:

https://www.mpcdf.mpg.de/services/supercomputing/raven
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Fig. A.2.: Photograph of the JET torus hall (left) and the inner vessel with a superimposed
plasma discharge (right, reproduced with permission from UKAEA).

A.6.3. JFRS at IFERC

Parts of the simulations for this thesis were performed on the Japanese supercomputer

JFRS at the IFERC Centre. Compute time was made available via a proposal within

the Broader Approach framework.

A.6.4. Marconi at CINECA

Most of the simulations for this thesis were performed on the EUROfusion A3 par-

tition of the Marconi supercomputer at the Italian supercomputing center CINECA.

Marconi-A3 provides 2912 nodes with 48 cores (2 x 24-cores Intel Xeon 8160 CPU

(Skylake)) and 192 GB per node. For a typical simulation, 128 Nodes were used in

parallel. Some simulations were performed on the GPU-accelerated partition MAR-

CONI100. Compute time was made available via the EUROfusion TSVV1 project. For

more information, see:

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide
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Fig. A.3.: Photograph of racks of the Marconi supercomputer during installation. Taken
from Marconi @Cineca (ph. MMLibouri) [170].
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Nomenclature

Notation

Vectors are denoted by bold letters, e.g. B, with components Bi and magnitude B =

||B|| =
√
B · B. Unit vectors are lower-case, bold letters with a hat, e.g. b̂.

Scalars are denoted by roman or greek letters, e.g. q, ρ.

Averages are denoted by 〈·〉.

Overbars ·̄ denote gyroaveraged quantities.

Symbols

Not all symbols are used uniquely in this thesis, e.g. q is used in earlier Chapters

to denote a charge and, in later chapters, the safety factor. Similarly, χ denotes

the modified potential in the Vlasov equation but is occasionally used to denote the

heat diffusivity. This approach has the advantage of adhering to conventions in the

respective contexts.

Symbol Meaning

β plasma beta. Ratio between plasma pressure and

magnetic pressure. β = p/(B2/2µ0), with p = kBnT

the plasma pressure, B the magnetic field, µ0 the mag-

netic permeability.

βN normalized plasma beta. βN = β/(I/aBφ) with I the

plasma current, a the tokamak minor radius, Bφ the

toroidal magnetic field. Derived for the Troyon beta

limit.

H98 H-factor. H98 = τE/τIP B98(y,2) Measure for energy

confinement quality of a shot by normalization to an

empirical scaling factor.

v‖ = v · b̂ parallel velocity (w.r.t. to the magnetic field)

v⊥ = |v− v‖b̂| perpendicular velocity (w.r.t. to the mag-

netic field)
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Symbol Meaning

ωc = qB/m gyrofrequency, with charge q, magnetic field

strength B, mass m.

ρi mv⊥/qB ion gyroradius.

χ modified potential or heat diffusivity

τ = ZeffTe/Ti.

Zeff effective ion charge Zeff =
∑

i niZi
2/ne with ni the ion

density of species i, Zi the charge state of species i

and ne the electron density

ρtor normalized toroidal magnetic flux. The default radial

coordinate in GENE for tracer_efit interface.

ρpol normalized poloidal magnetic flux.

ρ∗ = ρi/a, ratio of (ion) gyroradius to minor radius

τE energy confinement time

ηe = Ln/LT = ne∇Te/Te∇ne

ωT e = 1/LTe = −∇Te/Te inverse gradient scale length

ŝ magnetic shear ŝ = r
q

dq
dr

q Either a charge, of the safety factor, i.e. pitch of

magnetic field lines. Approximately the number of

toroidal turns per poloidal turn of a magnetic field

line or

QgB gyro-Bohm heat flux

ky binormal wavenumber

kx,center Radial wavenumber at the outboard midplane. Re-

lated to the ballooning angle θ0 = kx,center/(ŝky).

Abbreviations

Abbreviation Meaning

H-mode High-confinement mode

AUG ASDEX Upgrade

ASDEX Axi-symmetric Divertor Experiment

GENE Gyrokinetic Electromagnetic Numerical Experiment

JET Joint European Torus
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Abbreviation Meaning

ILW ITER-like wall. Plasma facing wall of JET after up-

grade from carbon wall. Beryllium wall material and

Tungsten divertor.

ELM Edge Localized Mode

IPB98 ITER Physics Base

ITER International Thermonuclear Experimental Reactor

MHD Magnetohydrodynamics

HPC High Performance Computing

SOL Scrape-off layer

LCFS Last-closed flux surface

FLR Finite Larmor Radius (finite meaning "not zero")

ITG Ion Temperature Gradient mode

ETG Electron Temperature Gradient mode

TEM Trapped Electron Mode

KBM Kinetic Ballooning Mode

RBM Resistive Ballooning Mode

MTM Micro Tearing Mode

169





List of Figures

1.1. Illustration of the global energy challenge. Left: CO2 emissions of coun-

tries as a function of GDP (both per capita). Modified from [5]. Right:

Global primary energy consumption by source as a function of time.

Modified from [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Rendering of ITER plant. Plasma physics is a crucial but only one part

contributing to realizing fusion energy. Credit: ITER Organization,

https://www.iter.org/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Left: Fusion of Deuterium D=2H and Tritium T=3H. Taken from

wikipedia.org/wiki/Nuclear_fusion. Right: Fusion reactivity for differ-

ent fusion reactions. Taken from [16]. . . . . . . . . . . . . . . . . . . . 4

1.4. Top: Tokamak magnet structure. Credit: EUROfusion. Left: Magnetic

field strength on a flux-surface in a tokamak. Example from DIII-D

experiment. Reprinted from [19], with the permission of AIP publishing.

Right: Poloidal cross-section showing nested flux surfaces in the confined

region, separatrix, scrape-off layer, and divertor. Taken from [20] with

the permission from P. Manz. . . . . . . . . . . . . . . . . . . . . . . . 7

1.5. 3D rendering of a GENE turbulence simulation of a tokamak. Taken

from genecode.org . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6. Left: Illustration of the H-mode pedestal. Reprinted from [35], with the

permission of AIP Publishing. Right: Comparison of typical L-mode

with H-mode pressure profiles. Reproduced from [36] with permission

from IAEA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7. Lawson parameter achieved in different experiments. Illustrating progress,

variety of approaches, and strong impact of tokamak experiments (red

dots). Taken from [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1. Illustration of the magnetic field structure and particle orbits in a toka-

mak. Taken from [43]. Reproduced with permission from Springer Nature. 18

2.2. Illustration of guiding center and drifts in gyrokinetic theory. The full

particle motion consists of a gyromotion around the guiding center tra-

jectory. The guiding center trajectory follows the perturbed magnetic

field line (solid, labeled B) in contrast to the equilibrium magnetic field

(dashed, labeled B0) and is subject to drifts, e.g. due to electric fields.

Reproduced from [44] with permission from G.Howes and AAS. . . . . 18

171



LIST OF FIGURES

2.3. Illustration of the gradient scale length using a fitted electron tempera-

ture profile from a real AUG shot (#31529). Gradient scale lengths at

two positions are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4. Ratio of ion gyroradius and temperature/density scale lengths in the

pedestal of an ASDEX Upgrade shot (#31529). . . . . . . . . . . . . . 33

3.1. One poloidal turn of a field line (coordinate line of z) in orange and

the corresponding contour of a poloidal cross-section (x = const.) in the

edge of an ASDEX Upgrade H-mode shot. . . . . . . . . . . . . . . . . 38

3.2. Illustration of block-structured velocity grids. Reprinted from [71] with

permission from Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3. Electrostatic heat flux of a global, nonlinear, electromagnetic simulations

with unmodified GENE compared to a saturating heat flux as it would

be expected in a stable simulation. . . . . . . . . . . . . . . . . . . . . 45

3.4. Growth rate (left) and frequency (right) comparison between unmodified

global GENE and the new f-version in a scan over plasma β. Standard

GENE data from Ref. [77]. . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5. Electrostatic heat fluxes as a proxy for the stability of the simulations.

Unmodified GENE and the version with the additional Ā1‖ term in Γi
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