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Providing high degree of personalization to a specific need of each patient

is invaluable to improve the utility of robot-driven neurorehabilitation. For the

desired customization of treatment strategies, precise and reliable estimation of

the patient’s state becomes important, as it can be used to continuously monitor

the patient during training and to document the rehabilitation progress. Wearable

robotics have emerged as a valuable tool for this quantitative assessment as the

actuation and sensing are performed on the joint level. However, upper-limb

exoskeletons introduce various sources of uncertainty, which primarily result from

the complex interaction dynamics at the physical interface between the patient

and the robotic device. These sources of uncertaintymust be considered to ensure

the correctness of estimation results when performing the clinical assessment of

the patient state. In this work, we analyze these sources of uncertainty and quantify

their influence on the estimation of the human arm impedance. We argue that

this mitigates the risk of relying on overconfident estimates and promotes more

precise computational approaches in robot-based neurorehabilitation.

KEYWORDS

reliable automated assessment, sensitivity analysis, human-exoskeleton interaction,
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1. Introduction

Medical robotics have advanced greatly with application in many domains, such as

robot-assisted surgery (D’Ettorre et al., 2021), service robots in healthcare (Holland et al.,

2021) or rehabilitation robotics (Laut et al., 2016). Particularly in the field of physical

rehabilitation, an ever-increasing demand for automation technology is observed. Stroke,

for instance, is the second leading cause of death worldwide (Feigin et al., 2014) with

an increasing trend due to rising life expectancy in many parts of the world (Boehme

et al., 2017; Donkor, 2018). However, while stroke is a highly relevant cause for motor

impairment, many other neurological disorders, such as cerebral palsy, multiple sclerosis

or Parkinsons disease, require similar treatment strategies during rehabilitation to improve

or retain motor functions (Krebs et al., 2008). In particular, high-intensity (Ringleb et al.,

2008) and repetition training (Kwakkel et al., 1999) have been shown to produce promising

recovery results. Due to these requirements, effective rehabilitation is time- and labor-

intensive, therefore, both patients and healthcare professionals can benefit greatly from

robot-assisted rehabilitation strategies.
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In recent years exoskeletons, also referred to as wearable
robotic devices (Lo and Xie, 2012), have emerged as a powerful

tool for rehabilitation. Since they are designed in a manner that

the kinematic chain aligns with the user, sensing and actuation
can be performed at the joint level here. One of the main

benefits of rehabilitation robotics lies in their application during
robot-aided patient assessment. Here, robotic devices are used

to monitor patients before. after, or during training, thereby
tracking the recovery progress and informing the treatment

strategy. In the case of neurological disorders, there are multiple
functional impairments, e.g., arm hemiparesis, limited hand

dexterity or over-rigid joints, that inhibit motor functions of
affected individuals (Carvalho-Pinto and Faria, 2016). Thus, the

quantitative estimation of the dynamic parameters underlying

these effects using wearable robotic devices can greatly benefit

neurorehabilitation. Particularly relevant in the case of stroke

is spasticity, a motor disorder described by hyperactivity in

tonic stretch reflexes (Mclellan, 1981) which leads muscles to be

overly resistive to elongations and thus reduced mobility of the

affected limb (Sommerfeld et al., 2004). In current clinical practice,

spasticity assessment scales, such as the Modified Ashworth Scale

(MAS) are used to evaluate the muscle tone of patients. Here,

the clinician induces a passive motion by manually perturbing the

target joint of the patient. Concurrently, the muscle tone is assessed

by tactually observing the movement resistance. Even though this

method has been proven to be useful in clinical practice (Gregson

et al., 1999), there are shortcomings that could be alleviated through

robotic assessment. Specifically, the coarse and discrete nature of

the scales limit the level of precision. Additionally, the evaluation

is subjective at its core, which can lead to possibly unreliable and

biased estimates that are not consistently reproducible (Blackburn

et al., 2002; Raghavan, 2015).

Hence, the deployment of robot-aided assessment is

expected to improve the objectivity and repeatability of

clinical evaluations (Lambercy et al., 2012). In particular,

joint impedance is commonly used as a concise measure for

the patient state (Maggioni et al., 2016), since it describes the

relationship between joint motion and opposing torque, which

is often abnormally increased (Chung et al., 2004). In recent

years, a multitude of these assessment approaches based on

exoskeletons for upper-limb rehabilitation have emerged. In Ren

et al. (2013), an upper-limb exoskeleton quantitatively estimates

the joint stiffness of the shoulder, elbow and wrist joints. More

recently, a decomposition of the coupled human arm dynamics is

proposed to allow the estimation of local and inter-joint stiffness

effects following stroke (Zhang et al., 2017). A more extensive

impedance estimation is conducted in Wang et al. (2021), where

an exoskeleton is used to identify the inertia, viscosity and stiffness

components of the elbow joint of patients’ with spastic arms

using genetic algorithms. Despite the fact that the benefits of

robot-aided assessment in comparison to human-administered

clinical scales have been demonstrated in studies (Bosecker et al.,

2010), exoskeleton applications suffer from the introduction of

unintended interaction forces to the user (Jarrassé et al., 2010)

with adverse effects on the clinical evaluation. These interaction

forces cannot be avoided completely due to uncertainties in the

complex physical human-exoskeleton interaction. In particular,

sources of uncertainty are known to arise due to kinematic

incompatibilities, soft coupling and inaccuracies in the human

dynamics model (Pons, 2008). So far, the influence of these sources

of uncertainty on the arm impedance estimation has not been

analyzed sufficiently, and a quantitative ranking of their impact is

missing. However, since the assessment is used to guide the therapy

of patients, it is paramount to make these uncertainties explicit

in order to increase precision and ensure that clinicians are not

misinformed by overconfident assessment results. Therefore, it is

important to investigate how uncertain the obtained impedance

parameter estimates are and how to effectively reduce uncertainty

for exoskeleton-based automated assessment.

1.1. Related work

The influence of uncertainties on the robot-aided impedance

estimation can be quantified bymean of a sensitivity analysis. These

methods investigate how uncertainty in the output of a system, e.g.,

the result of the automated assessment, is influenced by variations

in the input of a system (Pianosi et al., 2016), e.g., sources of

uncertainty in the complex human-exoskeleton interaction. Thus,

by analyzing these sensitivities and ascribing quantitative measures

of importance to each source of uncertainty, the robustness of the

automated assessment can be quantified (Thabane et al., 2013).

Previously, it has been shown how sensitivity analysis methods are

used to support efforts in uncertainty reduction (Hamm et al., 2006)

and facilitate robust decision making under uncertainty (Nguyen

and de Kok, 2007; Singh et al., 2014).

In general, sensitivity analysis can be approached in multiple

ways, with three principle classes identified in Christopher Frey

and Patil (2002): analytical, statistical and graphical methods.

Typically, analytical methods, such as Kohberger et al. (1978) and

Ma et al. (2021), require access to a differential equation model

of the system and perform analysis by monitoring the partial

derivative over the uncertain parameters (Abraham et al., 2007).

In Schiele (2008), an analytical 1 DoF model of the interaction

forces induced by kinematic incompatibilities on the elbow joint is

proposed.While the presentedmodel was validated experimentally,

remaining sources of uncertainty are not considered and it

limits the utility of the model as interaction effects cannot be

captured by it. Due to the complexity of the human-exoskeleton

interaction dynamics, a closed-form description that captures all

sources of uncertainty concurrently is not available, which makes

analytical sensitivity analysis methods impractical. On the other

hand, statistical and graphical approaches solely require access to

input-output samples of the system (Christopher Frey and Patil,

2002). Here, samples are generated by evaluating the examined

system for a factorial combination of all sources of uncertainty to

obtain pertinent statistical information and gain rigorous insights,

which is infeasible to do experimentally. Thus, simulations are

often used instead (Iooss and Saltelli, 2017). However, to the

best of the authors’ knowledge, no human-exoskeleton simulation

environment considers all of the key sources of uncertainty present

during the complex, physical interaction. In Agarwal et al. (2010),

for instance, the authors analyzed challenges due to kinematic

misalignments on the elbow joint to inform the simulation-based

design of an arm exoskeleton. On the other hand, the effect of the

human musculoskeletal model on lower-limb exoskeleton control
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during gait is investigated in Khamar et al. (2019). Lastly, Kühn

et al. (2018) present an upper-limb simulation of the human,

exoskeleton and their respective coupling where simplified 6

DoF springs are used to model soft-contacts. However, in order

to fully understand the effect of uncertainty in exoskeleton-

based impedance assessment, all sources of uncertainty and their

interaction effects must be considered. Thus, a simulation platform

which can systematically express the uncertain human-exoskeleton

interaction is required in order to quantify the impact of sources of

uncertainty on the estimated impedance parameter.

1.2. Contribution

In this work, we perform a sensitivity analysis that

quantitatively investigates the influence of various sources of

uncertainty on the exoskeleton-based arm impedance estimation.

Through this process, a more precise understanding of the

uncertainty composition and their prioritization is achieved,

which facilitates effective measures to increase the performance

of exoskeleton-based automated assessment and reduces the risk

of relying on overconfident results. We propose a two-phase

approach, where initially the negligible sources of uncertainty

are identified, and then a ranking of the most influential factors

is performed in the second phase. Due to the complexity of the

human-exoskeleton interaction dynamics, we adopt a sampling-

based sensitivity analysis which allows us to quantify the influence

of each source of uncertainty independently as well as the

interaction effects among them. In order to generate the samples

required for the analysis, we develop a high-fidelity simulation

environment of the human-exoskeleton system that includes the

key sources of uncertainty, which are informed by the physical

understanding of the system and identified in the literature.

2. Materials and methods

In this section, the technical problem is formulated and

the relevant material and methods are shown. An overview of

the proposed uncertainty quantification procedure is shown in

Figure 1. From top to bottom the colored blocks illustrate the phase

selection, the process of obtaining input parameter samples, the

process of obtaining output samples and the evaluation procedure

using quantitative sensitivity analysis methods. First, during the

phase selection the sampling strategy is determined, which is

chosen in accordance to the objective of the respective sensitivity

analysis method. Following this, the input parameter samples

are generated. Here, the examined sources of uncertainty are

sampled depending on the previously selected sampling strategy.

Then, the input parameter samples are retrieved in the form

of parameterized human-exoskeleton simulation instances, where

the varied parameters are associated with different sources of

uncertainty. Subsequently, the output sample block is applied.

Here, the exoskeleton-based automated assessment is run for

the sampled simulation parameterizations to obtain impedance

parameter estimates for the human arm. Finally, the sensitivity

analysis is performed. Depending on the sampling strategy chosen

beforehand, different sensitivity analysis methods are deployed on

the estimated impedance parameters to investigate the impact of

the modeling uncertainties with respect to the observed estimation

error. By deploying this sensitivity analysis scheme we are able to

derive the most influential sources of uncertainty that influence the

exoskeleton-based arm impedance estimation.

The remainder of the section is structured as follows: in

Section 2.1, the dynamics governing the human-exoskeleton system

are introduced and a qualitative account on uncertainties in the

automated assessment is provided. Subsequently, a high-fidelity

simulation of the human-exoskeleton interaction is presented in

Section 2.2 with particular focus on including the key sources of

uncertainty present in the system. In Section 2.3, the proposed

assessment procedure is explained and technical details regarding

the estimation process are provided. Finally, in Section 2.4, the

deployed sampling strategies and sensitivity analysis methods

are presented.

2.1. Uncertainty during human-exoskeleton
interaction

In order to perform the sensitivity analysis in an interpretable

manner it is necessary to have an understanding of the investigated

system. To this end, we first formulate the nominal human-

exoskeleton interaction model. Subsequently, uncertainties are

introduced to the nominal model.

2.1.1. Nominal human-exoskeleton interaction
model

The instrumented assessment using an upper-limb exoskeleton

is considered in this work. Therefore, we start by establishing the

dynamics governing motion of the human arm. We model the

dynamics using Euler-Lagrange equations (Featherstone, 2007) of

the form,

MMMh(qqq)q̈̈q̈q+CCCh(q, q̇q, q̇q, q̇)q̇̇q̇q+ gggh(qqq) = τττhum + τττ int,h. (1)

Here, qqq ∈ R
d is the d-dimensional state vector containing the

joint configuration of the human arm, with q̇̇q̇q ∈ R
d describing the

angular velocities and q̈̈q̈q ∈ R
d describing the angular accelerations.

On the left side of (1) the matrix MMMh : R
d → R

d×d denotes

the human inertia matrix, CCCh : R
d × R

d → R
d×d the human

Coriolis matrix and gggh : R
d → R

d the human gravitational

component. In addition to the human generated joint torques

τττhum, an interaction torque τττ int,h acts on the human arm, due

to the contact with the robotic system. In (1), τττhum represents

the projected joint-level torques induced through variations of

muscle lengths, muscle activation and the resulting tensions (Shin

et al., 2009). Therefore, τττhum describes the summed dynamics of

internal origin and contains the relevant joint dynamics parameter

necessary to quantify the patient’s inner state. In the case of stroke,

a viscoelastic model of the human-generated torque during passive

mobilization tasks is proposed (McCrea et al., 2003). Thus, we can

formulate the human-generated torque τττhum as

τττhum = KKKh(qqq, q̇qq)qqq+DDDh(qqq, q̇qq)q̇qq, (2)
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FIGURE 1

Depiction of the complete, proposed sensitivity analysis scheme. From top to bottom the blocks illustrate the di�erent steps taken during the

proposed scheme. First, during the phase selection the sampling strategy is determined. Subsequently, in the input parameter sample block input

samples in the form of human-exoskeleton simulation instances are drawn. The output sample block illustrates the generation of output samples

using the automated assessment process. Lastly, the input-output samples are used to obtain sensitivity measures which is visualized in the sensitivity

analysis.
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where KKKh : R
d × R

d → R
d×d and DDDh : R

d × R
d → R

d×d

correspond to the joint stiffness and viscosity matrix, respectively.

In McCrea et al. (2003) the validity of linear viscoelasticity

parameters for the modeling of resistive torques in personas with

chronic stroke is demonstrated. Therefore, it can additionally

be assumed that the parameters are independent of the current

configuration, which allows the application of standard regression

methods. Thus, the instrumented assessment of the patient’s state

can be reformulated as a linear regression problem using the

parametric model

τττhum = KKKhqqq+DDDhq̇qq. (3)

In order to estimate the impedance parameters KKKh and DDDh,

it is first necessary to extract the human generated torque

τττhum in (1). This is not trivial in general, as the intrinsically

generated human muscle torque cannot be measured directly.

Hence, τττhum has to be inferred using the available measurements

and dynamics knowledge. For wearable robots deployed in

clinical applications, measurements regarding joint positions and

motor torques are typically available (e.g., Trigili et al., 2020).

Unless additional expensive and possibly inconvenient force-

torque sensors are mounted at the physical interface between

human and exoskeleton (An and Hollerbach, 1987), the interaction

torque τττ int,h is also unknown. To overcome this issue, knowledge

regarding the dynamics model of the robotic system can be

exploited to replace the unknown interaction torque τττ int,h.

Similar to the human, the exoskeleton is described by its rigid

body dynamics

MMMe(θθθ)θ̈̈θ̈θ +CCCe(θ , θ̇θ , θ̇θ , θ̇)θ̇̇θ̇θ + ggge(θθθ) = τττm − τττ int,e, (4)

whereMMMe : R
n → R

n×n is the inertia, CCCe : R
n × R

n → R
n×n the

Coriolis matrix and ggge : R
n → R

n the gravitational component

of the exoskeleton dynamics. The joint positions, velocities and

accelerations of the robotic system are given by θθθ ∈ R
n, θ̇̇θ̇θ ∈ R

n and

θ̈̈θ̈θ ∈ R
n respectively. In the following, we assume that the kinematic

chain of human and exoskeleton align, thereby, resulting in n = d.

Furthermore, the movement of the joints is driven by the motor

torques τττm and analogs to (1), an interaction torque τττ int,e is exerted

on the exoskeleton, which acts in the opposing direction in (4).

In the nominal model, three idealized assumptions are made:

first, a perfect alignment of the human and exoskeleton kinematic

chain is assumed. Second, no displacement of the attachments

occurs during movement. Third, a completely rigid interface

transmits forces between the human and exoskeleton. If these

assumptions hold, both the human’s and exoskeleton’s joint

kinematics match qqq = θθθ and the interaction torques can be

written to

τττ int,h = τττ int,e . (5)

For the sake of the derivation of the nominal model we hypothesize

the dynamics of the robotic system and human to be known. Then,

it is possible to derive the human generated torque τττhum from (1),

(4), and (5):

τττhum = MMMh(θθθ)θ̈̈θ̈θ +CCCh(θ , θ̇θ , θ̇θ , θ̇)+ gggh(θθθ)

+MMMe(θθθ)θ̈̈θ̈θ +CCCe(θ , θ̇θ , θ̇θ , θ̇)+ ggge(θθθ)− τττm
︸ ︷︷ ︸

τττ int,h

(6)

Since the motor torque τττm and exoskeleton kinematics {θθθ , θ̇θθ , θ̈θθ} are

measurable and the dynamics are assumed to be known, the human

torque τττhum, as given in (6), is directly computable. Therefore,

all the necessary input and output information are available to

estimate the human joint viscoelasticity parameters KKKh and DDDh via

linear regression using the parametric model (3):

yyy = XXXωωω, (7)

where the labels yyy follows from the human torque computation

according to (6), the input matrix XXX contains the human joint

measurements under the assumption that qqq = θθθ and the

viscoelasticity parameters of interest are described by ωωω. Thereby,

performing the regression analysis for each joint yields









τ 1hum,i

τ 2hum,i
...

τThum,i









︸ ︷︷ ︸

yyy

=









q1i q̇1i
q2i q̇2i
...

...

qTi q̇Ti









︸ ︷︷ ︸

XXX

[

kh,ii
dh,ii

]

︸ ︷︷ ︸

ωωω

, (8)

with
{

τ thum,i

}T

t=1 denoting the computed human torques and
{

qti , q̇
t
i

}T

t=1 representing the kinematics measurements of the i-th

joint at discrete time step t over the duration T of the assessment.

Here, kii and dii are the i-th main diagonal entries of the joint

stiffness and viscosity matrices, respectively. The parameter vector

ωωω can be computed directly given access to inputs XXX and labels yyy

as such:

ωωω =
(

XXX⊺XXX
)−1

XXX⊺yyy. (9)

However, while the approach is mathematically convenient and can

straight forwardly be implemented, it can result in large estimation

errors, because it does not account for the uncertainties in the

human-exoskeleton interaction dynamics.

2.1.2. Sources of uncertainty
There are multiple factors that introduce uncertainties

to the above described nominal model, which stem from

variations in the biomechanics of individuals. In particular three

key sources of uncertainty that adversely affect the physical

interaction are identified in the literature (Pons, 2008): kinematic

incompatibilities, soft contact dynamics and inaccuracies in the

nominal dynamics model. In the following these sources of

uncertainty and their impact on the nominal dynamics are

presented in more detail.

2.1.2.1. Kinematic incompatibilities

First, we consider kinematic incompatibilities between the

exoskeleton and human, which are particularly prevalent in

wearable robots with kinematic chains mirroring the human

kinematics. These kinematic incompatibilities arise due to

anatomical variations between users and variations within a user

that occur during motion. Therefore, achieving a perfect alignment

is infeasible (Jarrassé and Morel, 2012). Depending on the extent of

the mismatch, it is considered a macro-misalignment or a micro-

misalignment. Here, macro-misalignments are typically induced by

offsets in the center of rotation (CoR) between the human and
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exoskeleton joints. These CoR offsets are the result of a multiple

factors, such as an imprecise donning procedure or translations

that occur in the instantaneous center of rotation of human

joints for certain movements (Grant, 1973). In Figure 2A, the

macro-misalignment due to CoR offsets is shown conceptually for

a simplified two-link human-exoskeleton-system moving in the

vertical plane. The top and bottom links represent the upper arm

and forearm, respectively, emulating motion in flexion/extension

direction. Here, the CoR offsets are visualized by xoff and yoff
using red arrows. While macro-misalignment can be reduced

by performing careful donning and including redundant DoFs

in the robotic kinematic chain, micro-misalignments still occur

despite these mitigation strategies. This is for instance because

the human kinematic chain is not comprised of idealized, circular

joints. Therefore, misalignments cannot be removed completely

in practice and must be explicitly considered for a robust

automated assessment.

The main consequence of these kinematic incompatibilities is

induced displacements of the attachments between the exoskeleton

and human limb during joint motion. Consequently, these

displacements result in forces at the physical interface. The

resulting impact on the nominal dynamics of the human-

exoskeleton interaction can be observed at multiple points. First,

the previously assumed joint alignment does not hold anymore,

leading to a discrepancy in the joint angles, i.e., qqq 6= θθθ in general.

Moreover, an offset and joint angle dependent displacement of

the attachments along the axial direction occurs, which leads to a

change in the interaction torque transmission (5):

∼
τττ int,h = BBB

(

xxxoff,yyyoff,qqq,θθθ
)

τττ int,e , (10)

where BBB : Rd×d is a d-dimensional diagonal matrix with the main

diagonal entries describing the displaced attachment points. In

(10),
∼
τττ int,h represents the uncertain interaction torques which

now depends on the CoR offsets denoted by xxxoff and yyyoff .

Similarly, the induced displacement torques depend on the CoR

offsets and joint angles deviations (Schiele, 2008). Therefore, we

obtain following uncertain human torque under consideration of

kinematic incompatibilities:

∼
τττ hum =MMMh(qqq)q̈̈q̈q+CCCh(q, q̇q, q̇q, q̇)+ gggh(qqq)+

∼
τττ int,h

(

xxxoff,yyyoff,qqq,θθθ
)

+
∼
τττ d

(

xxxoff,yyyoff,qqq,θθθ
)

, (11)

where
∼
τττ d denotes the uncertain displacement torques. In addition

to
∼
τττ int,h and

∼
τττ d, uncertainty also arises in (11) due to the

dependence on qqq, since the human joint angle cannot be measured

directly and cannot be inferred accurately from θθθ , since qqq = θθθ

no longer holds. Note that, given completely rigid bodies, these

kinematic incompatibilities would theoretically make movements

impossible and lead to extremely high interaction forces, due to

the kinematic system being hyperstatic (Jarrassé and Morel, 2012).

However, in practice deformation occurs at the physical interface,

since the human limb is not rigid, which allows to retain mobility.

The uncertainty that arises due to this plasticity is addressed in

the following.

2.1.2.2. Soft-tissue contact dynamics

The second important aspect that introduces uncertainty to the

physical human-exoskeleton interaction are morphological factors

at the coupling between the robot and human. Specifically, the

robotic system induces the desired movement by transmitting

forces through the soft-tissue of the human limb at the attachment

straps. Here, the considered soft-tissue primarily includes muscles,

fat tissue and skin, but may also include smaller anatomical parts,

such as ligaments, tendons or blood vessels. This is in contrast to the

nominal dynamics model which assumes a rigid connection (11).

Therefore, the dynamic properties of the human soft-tissue impact

the description of the physical interaction.

Soft-tissue is most commonly modeled by elastic or viscoelastic

components (Maurel, 1999). Viscoelastic dynamic behavior can

for instance be represented by Voight-elements as illustrated

in Figure 2B. Here, the soft coupling between the human and

exoskeleton link is achieved via a Voight-element at the attachment.

Hence, the displacement torques
∼
τττ d and the interaction torque

∼
τττ int,h become functions of the viscoelastic parameters, since all

interaction forces are transmitted through soft contacts. It leads to

∼
τττ hum = MMMh(qqq)q̈̈q̈q+CCCh(q, q̇q, q̇q, q̇)+ gggh(qqq)

+
∼
τττ int,h

(

xxxoff,yyyoff,qqq,θθθ ,KKKst,DDDst
)

+
∼
τττ d

(

xxxoff,yyyoff,qqq,θθθ ,KKKst,DDDst
)

, (12)

where KKKst and DDDst denote the lumped viscoelastic properties of

the coupling due to soft-tissue. In Schiele (2008) a more detailed

analysis of the displacement forces and their transmission through

soft-tissue modeled as Voight-elements is presented. However,

while linear, uniaxial models as shown in (12) are used for

practicality, they describe the complex relationship between applied

pressure and resulting deformation of the soft-tissue in a simplified

manner. A more rigorous approach is to use discrete finite

element to approximate the continuous medium and propagating

the evolution of the deformation in simulations (Maurel et al.,

2002). However, since this is an iterative procedure, it cannot

straightforwardly be translated to an analytical model.

2.1.2.3. Inaccuracies in the human dynamics model

Another source of uncertainty that needs to be considered

are inaccuracies in the human dynamics model. This is due to

significant variations in the biomechanics of each human. To

mitigate this, precise measurements of geometrical and inertial

properties of the anatomical links are necessary to compute the

personalized model parameters required for the human rigid

body dynamics (1). However, gathering the information needed

to estimate the human model parameter can be expensive,

cumbersome and time-intensive (Zajac et al., 2002). Therefore, in

clinical practice most commonly standard tables of anthropometric

parameters are used (de Leva, 1996) to infer model parameters by

scaling the default dynamics model to the height and weight of

a particular individual. However, since the approach only yields

an approximate measure, uncertainties are introduced. Thus, the

uncertain human torque
∼
τττ hum under additional consideration of
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FIGURE 2

Two-link mechanical model of an interaction between a human (blue) and exoskeleton (gray) arm. (A) Illustrates kinematic incompatibilities and the

resulting CoR o�sets depicted with xo� and yo�. (B) Visualizes soft coupling between the human and exoskeleton link using a Voight-element.

the modeling inaccuracies is

∼
τττ hum =

∼
MMMh(qqq)q̈̈q̈q+

∼
CCCh(q, q̇q, q̇q, q̇)+

∼
gggh(qqq)

+
∼
τττ int,h

(

xxxoff,yyyoff,qqq,θθθ ,KKKst,DDDst
)

+
∼
τττ d

(

xxxoff,yyyoff,qqq,θθθ ,KKKst,DDDst
)

, (13)

where
∼
MMMh,

∼
CCCh, and

∼
gggh denote the uncertain inertial, Coriolis and

gravitational component of the human arm dynamics, which differ

from the approximation obtained from the anthropometric tables.

We summarize the torque due to the uncertain passive dynamics of

the human limb with

∼
τττ rbd,h =

∼
MMMh(qqq)q̈̈q̈q+

∼
CCCh(q, q̇q, q̇q, q̇)+

∼
gggh(qqq). (14)

Thereby, we can write (13) to a more compact form for

improved readability

∼
τττ hum =

∼
τττ rbd,h +

∼
τττ int,h +

∼
τττ d. (15)

Here,
∼
τττ rbd,h denotes the uncertain rigid body dynamics of the

human arm due to unknown parameters in
∼
MMMh,

∼
CCCh and

∼
gggh.

Differently to the human limb, the model parameters governing the

dynamics of the exoskeleton (4) can reasonably be assumed to be

known or can be obtained accurately using classical identification

procedures (Hollerbach et al., 2008). Note that in (15), both
∼
τττ int,h and

∼
τττ d are in principle torques that are induced by the

interaction with the exoskeleton. However, they differ in the sense

that
∼
τττ int,h represents the desired loads that should be transmitted

to the human limb, while
∼
τττ d are purely undesired torques due

to kinematic incompatibilities. Since the human torque under

consideration of uncertainties
∼
τττ hum (15) differs from the nominal

human torque τττhum (6) used in the regression analysis (8),

errors are introduced to the estimated impedance parameters. In

particular, deploying (6) for the computation of the human torque

τττhum implicitly allocates torques that are unaccounted for by the

nominal dynamics model to be generated due to joint spasticity.

Thus, solving the regression problem will not result in the true

viscoelasticity parameter KKKh and DDDh. By directly comparing the

nominal human torque τττhum to the true, uncertain human torque
∼
τττ hum, we obtain

τττhum
︸︷︷︸

yyy

=
∼
τττ hum
︸ ︷︷ ︸

∼
yyy

−1τττ rbd,h − 1τττ int,e −
∼
τττ d

︸ ︷︷ ︸

1yyy

. (16)

Here, 1τττ rbd,h denotes residual torques due to differences in

the nominal human dynamics model τττ rbd,h and the unknown,

true dynamics model
∼
τττ rbd,h. Similarly, 1τττ int,e represents residual

torques due to errors in the interaction torque modeling, while
∼
τττ d

are the displacement torques due to kinematic incompatibilities.

From (16) it can be seen that the labels yyy deployed in (8) do

not agree with the true output
∼
yyy , i.e., the human torque

∼
τττ hum

under consideration of uncertainties. The difference is summarized

in (16) using 1yyy. Moreover, the measurements for the desired

input matrix XXX according to (8) are not available, since kinematic

incompatibilities result in a mismatch between the human joint

angle qqq and exoskeleton joint angle θθθ . Hence, it can be seen how the

uncertainties qualitatively influence the outcome of the regression

analysis and impact the automated assessment negatively. However,

it remains unclear exactly how sensitive the assessment is with

respect to the different sources of uncertainty, which we propose

to quantify with a sampling-based sensitivity analysis in this work.

2.2. High-fidelity human-exoskeleton
simulation

In order to perform a sampling-based sensitivity analysis, a

highly controlled environment is required. Obtaining the samples

experimentally is infeasible, due to the missing ground-truth

information and the large sample size that is required. Therefore,
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in this work we deploy a high-fidelity simulation environment of

the human-exoskeleton system to generate samples. To this end,

we develop a novel human-exoskeleton simulation which explicitly

accounts for the complex contact dynamics present during physical

interaction. Here, an optimization-based physics engine called

MuJoCo (Todorov et al., 2012) is deployed which is widely used

in the modeling of robotic and biomechanical systems in contact-

rich environments (Lowrey et al., 2016; Acosta et al., 2022). In

particular, three key features of the proposed simulation enable the

realistic emulation of the effects caused by sources of uncertainty

and thereby facilitate the sampling-based sensitivity analysis: A

musculoskeletal model to simulate the human, the consideration

of soft contact dynamics at the attachments and a realistic load

transmission via a mechanical interface. The proposed human-

exoskeleton simulation is shown in Figure 1 in the input parameter

sample block. Here, the human skeletal system is depicted in

gray, while the muscular system is visualized with red lines.

Furthermore, the two red cylindrical shapes on the forearm and

upper arm represent the simulated human soft-tissue. Also, it

can be seen that the physical interface is realized via cuffs and

straps that wrap around the human upper and forearm. The

complete human-exoskeleton simulation environment is made

publicly available.1 A brief summary of the key components is

presented below. Following this, a more detailed explanation of

each of the components of the simulation, their working principles

and the performed validations is provided.

Human musculoskeletal model: A musculoskeletal model is

implemented for the shoulder and elbow. Deploying a

musculoskeletal model of the human arm here is necessary

for two reasons. First, the simulated muscular system is used

to generate the human torque and emulate spastic behavior.

Second, the rigid skeletal system facilitates the introduction of

variability in the human kinematics and dynamics. Thereby,

it is possible to sample over two of the three sources of

uncertainty described in Section 2.1.2.

Soft-tissue simulation: In the proposed simulation, soft-tissue is

explicitly implemented by a composition of multiple micro-

elements, which together form an object with viscoelastic

material properties. The viscoelastic properties of the soft-

tissue object can be varied, thereby allowing to sample over

viscoelastic properties of the soft-tissue.

Physical human-exoskeleton interface: We simulate the

mechanical interface explicitly by implementing cuffs and

straps, which enclose the human arm and facilitate a realistic

load transmission. Thereby effects that typically arise at the

interface, such as attachment displacements, can be emulated.

2.2.1. Simulation of the human musculoskeletal
system

A musculoskeletal model is used in the proposed simulation

environment. Here, the rigid component of the human arm has

1 Open-source code of the upper-limb human-exoskeleton simulation

environment is available at: https://github.com/stesfazgi/rehyb_mujoco.

five DoFs, three on the shoulder joint and two at the elbow

joint. For the shoulder, the human simulation can rotate along

the flexion-extension, abduction-adduction and internal-external

axis. Regarding the elbow, the simulation allows movement along

the flexion-extension and pronation-supination rotations. While

a rigid wrist-hand model is also included in the simulation, in

our envisioned interaction scenario with the exoskeleton it is

not pertinent. The inertial properties of the rigid skeletal system

are designed using statistical anthropometric data (Ramachandran

et al., 2016) with a default reference person of height 1.75m

weighting 70kg. Thereby resulting in a nominal upper arm length of

36.37cm, a nominal forearm length of 34.9cm, a nominal upper arm

mass of 2.25kg and a nominal forearm mass of 1.31kg. However, it

is possible to adjust all of the parameters to account for variations

in the target population.

In addition to the multi-link rigid body dynamics, the

simulation accounts for the dynamics induced by the muscular

system. In MuJoCo, biological muscles are modeled by means

of muscle-tendon systems which induce dynamics dependent on

origin and insertion sited and the forces generated by a muscle

actuator. Here, the generated muscle force Fm follows the dynamics

Fm(l, v, a) = −F0Flv(l, v, a), (17)

where l is the scaled length of the muscle, v is the scaled velocity

and a ∈ [0, 1] denotes the muscle activation level. Additionally,

F0 describes the peak active force and Flv the force-length-velocity

function, which are both fitted according to values derived from

the experimental findings in Holzbaur et al. (2005). The origin and

insertion sites of the muscles are also implemented in accordance

with anthropometric data (Ramachandran et al., 2016), thereby

ensuring that the dynamics of the simulated musculoskeletal

system follow the real-world dynamics closely.

2.2.1.1. Validation of the human musculoskeletal model

In order to check the validity of the simulated human

musculoskeletal model, a simulation experiment is performed.

Specifically, it is examined whether the moments generated by the

muscular system lie in similar ranges as those observed in real

experiments. A common clinical procedure to assess the muscle

strength is by means of the maximal isometric torque test (Amis

et al., 1980; Garcia et al., 2016). Here, we use this procedure to

adapt and validate the simulated elbow muscle contraction, which

is a useful measure to quantify the neuromuscular properties of

spastic muscles (Wang et al., 2019). In the proposed simulation, the

dynamics of the elbow are governed by eight muscles. Specifically,

four extensor muscles are considered, namely, the long, lateral and

median triceps and the anconeus. Moreover, four flexor muscles are

regarded, including the long and short biceps, the brachialis and

the brachioradialis. The experimental procedure for the isometric

torque test in flexion direction is as follows: First, the shoulder is

flexed in the sagittal plane at 90deg and mechanically locked in

this configuration. While the shoulder is fixed in place, the elbow is

flexed in discrete steps of 1deg increments. At each of the discrete
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FIGURE 3

Results of the maximum isometric torque test. Here, the torque generated by the elbow flexors (left) and extensors (right) is shown over di�erent

elbow joint angle. Our human musculoskeletal model (blue) is shown to agree more closely with experimental data than the comparison simulation

(red).

increments a maximum contraction of the elbow flexor muscles is

applied, and the resulting torque is measured.

The results of performing the maximum isometric torque

test in the simulation are shown in Figure 3. Here, the left-

hand side shows the isometric flexion torque, while the right side

depicts the extension torque. We compare our simulation results

(blue) against related biomechanical models of the musculoskeletal

system (Holzbaur et al., 2005) (red) and two experimental data

sets (Amis et al., 1980; Buchanan et al., 1998). For the isometric

flexion torque on the left, it is possible to see that our simulation

results match the observed maximum torque of around 80Nm

closely, while the comparison simulation exhibits a higher peak at

100Nm. Analogously, our simulation obtains a similar value for

the peak extension torque as the experimental data set at −50Nm,

while the simulation in Holzbaur et al. (2005) results in a lower

absolute value at −41Nm. With respect to the curve shape both

data set 1 (Amis et al., 1980) and data set 2 (Buchanan et al., 1998)

display different behaviors. This is to be expected due to variability

in real experiments and between different subjects, however, the

simulation results indicate that our model lies within this range.

Particularly, when observing the joint angle at which the peak

extension torque is reached for instance, it is clearly visible that our

simulation agrees with the experimental data more closely.

2.2.2. Simulation of the upper-limb exoskeleton
In this work, the simulated robotic system is inspired by the

specification detailed in Trigili et al. (2020), where an upper-

limb exoskeleton with three actuated DoFs on the shoulder

level and one actuated DoF for the elbow (flexion-extension) is

presented. For the envisioned scenario, we consider all passive

and regulatory DoFs to be fixed, therefore, the simulated upper-

limb exoskeleton is a four-DoF open chain. Joint friction is

implemented via viscous dampers and the inertial properties are

designed to roughly match comparable robotic devices. While

each joint is associated with an actuator in the simulation, we

do not consider elastic actuators here. The actuating motors are

also scaled in accordance with the maximum torques the real

system can provide according to Trigili et al. (2020). Note that

while the simulated exoskeleton is inspired by Trigili et al. (2020),

this represents an exemplary device and may be replaced by a

different wearable robotic system of interest. The proposed method

for the spasticity assessment and sensitivity analysis constitute a

general methodology and are therefore not limited to this specific

hardware and could be applied to other exoskeleton designs

as well.

2.2.3. Physical interface and complex contact
dynamics

In our simulation, the physical interface is composed of

two contact areas which represent the exoskeleton attachments

on the upper and lower arm of the human. On the human

side, complexity of the contact dynamics is primarily caused by

soft-tissues and their influence on the force transmission at the

linkage between the human arm and exoskeleton. In order to

replicate the behavior of human soft-tissue in the simulation,

three-dimensional composite objects are used, where one central

element is surrounded by multiple external elements. Here, the

elements of the three-dimensional composite object are arranged

such that the resulting geometry approximates the human limb

shape and thus a simplification of the commonly used finite

element method (Maurel et al., 2002) is achieved. Figures 4A–C

depicts the composite object which takes an ellipsoid shape in

the simulation environment, where the large sphere at the center

of the ellipsoid visualizes the central element of the composite

object, while the external elements are illustrated by the smaller

spheres. The viscoelastic behavior of the resulting composite object

is determined by several soft equality constraints on the relative

distance between the different elements, which is illustrated in

Figure 4D. Each soft equality constraint generates a force that can

be approximately interpreted as a spring-damper link between two

elements. Additionally, one constraint acting on all the elements

is set to preserve the global volume of the composite object.
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FIGURE 4

(A–C) Depict a composite object with an ellipsoid shape from di�erent viewing angles. (D) A cross-section of the composite object with the central

element in light gray and external elements in dark gray. Three types of soft constraints hold the elements together: central-external constraints

(green), external neighbors constraints (orange), and a global volume constraint (blue).

FIGURE 5

Depiction of the mechanical support at the physical interface in the simulation environment. (A) An illustration of the semi-cylindrical cu� composed

of welded box primitives. (B) An illustration of the placement of the human limb within the cu�. (C) The implementation of straps using composite

objects to fix the limb to the semi-cylinder.

The parameters of all constraints are fitted to approximate the

viscoelastic behavior of real human soft-tissue.

On the exoskeleton side, forces are generally transmitted to

the human arm via the mechanical supports, e.g., cuffs and straps,

which induce movement by pushing or pulling the limb (Pons,

2008). Therefore, we follow the same design principle in the

simulation in order to render the contact dynamics in high

fidelity. First, the arm supports are implemented using a hollow

semi-cylinder shape. Since MuJoCo does not directly handle

concave bodies, the desired shape is approximately realized by

an arrangement of welded box primitives (Figure 5A). Second,

the human arm is placed inside the support (Figure 5B). Third,

the implementation of the arm straps is realized using composite

objects which are arranged in a two-dimensional grid. By welding

two opposing sides of the strap to the arm support, the human limb

is fixed to the attachment as illustrated in Figure 5C.

2.2.3.1. Validation of the human-exoskeleton contact

dynamics

In order to validate the geometric compliance of the simulated

limb, the stress-strain relationship of the composite object is

investigated in the form of a compression test. In the validation,

a uniaxial tension is applied to a solid material and the

relationship between compressing stress σ and axial strain ε is

quantified (Pelleg, 2012). This property is called Young’s modulus

E and is computed as

E =
σ

ε
=

F/A

dl/l
, (18)

where F is the applied force,A is the unit area and dl/l is the relative,

normalized displacement of the composite body. It characterizes

the compressive properties of a material, i.e., a higher Young’s

modulus E describes a stiffer material and a lower E indicates a

softer material.

During the compression test, an incrementally increasing

compressive stress is applied to the composite body via two

rigid objects to opposing sides of the body. Subsequently, at

each incremental step, the Young’s modulus was computed

from the strain, i.e., the relative deformation, of the composite

body. The results are compared with experimental data acquired

from mammal muscular tissue (Ogneva et al., 2010) to verify

the validity of the simulated soft-tissue. The results of this

comparison are shown in Figure 6. Here, the green lines visualize

the experimentally determined Young’s moduli for relaxed (solid

line) and contracted (dashed line) muscle fibers (Ogneva et al.,

2010) and the green shaded area indicate the resulting range of
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FIGURE 6

Result of the compression test. The green shaded area depicts the potential range of Young’s moduli (Ogneva et al., 2010) determined by relaxed

muscles (solid green) and active muscles (dashed green) from experimental data. The range of achievable Young’s moduli in the simulation is bound

by the soft configuration of the composite object (solid blue) and the rigid configuration (dashed blue).

potential Young’s moduli. Analogously, the blue lines bound the

range of achievable Young’s moduli via the simulated composite

object. The upper and lower bound are obtained by performing the

above-described compression test for different parameterizations

of the composite object. Given that the simulated, admissible

values enclose the experimental data for higher strains, it is

possible to approximate the elastic properties of muscle soft-

tissue partially. Note however, that the Young’s modulus provided

from the experimental data (Ogneva et al., 2010) constitutes a

linear fit and therefore does not exhibit the typical nonlinear

stress-strain relationship which is normally characterized by a

region of increasing modulus (Pons, 2008) as depicted by our

simulation in Figure 6. Thus, the slight difference for lower strain

levels can be explained due to approximation error caused by the

linear fit in Ogneva et al. (2010). Furthermore, the experimental

data only considers muscle fibers and is therefore expected to

vary from the considered soft-tissue, e.g., due to additional

fat tissue at the attachments. The additional flexibility in the

simulation environment to parameterize lower Young’s moduli

is thus favorable, since the expected variation generally leads to

softer materials.

2.3. Exoskeleton-based automated
assessment

With the nominal and uncertain dynamics model (Section 2.1)

and a human-exoskeleton simulation that includes the key sources

of uncertainty (Section 2.2) introduced, the required input samples

for the sensitivity analysis can be generated. Here, the input samples

are instantiations of the simulation with varying parameters for

the different sources of uncertainty. Since we investigate how these

uncertainties impact the results of an automated assessment, the

output samples are in the form of estimated impedance parameter.

The procedure by which these output samples are generated is

explained in this section.

In order to perform the spasticity assessment in an automated

manner, two components are necessary. First, a data generation

procedure is required during which the robotic system interacts

with the human arm to induce observations from which the

impedance parameters can be inferred. Secondly, the captured

data needs to be used to estimate the parameters. In this work,

we propose a fully automated scheme for the data generation

and estimation that leverages model knowledge to produce the

required labels yyy. The complete scheme is illustrated with a block

diagram in Figure 7. Here, the real system represents the true,

uncertain human-exoskeleton system which is reproduced in the

simulation environment. On the other hand, the nominal model

block describes the idealized dynamics model that can be computed

analytically. The reference trajectory θθθd, θ̇̇θ̇θd is depicted in the blue

block and is used to observe the joint resistance along a predefined

movement, similar to the passive mobilization that is typically

performed by a clinician. It acts as an input to the PD-controller,

which replicates the manual perturbation generated by the clinician

using the exoskeleton.

For the reference trajectory a sigmoid function is selected,

since it is known to generate a minimum jerk profile on the joint

level (Flash and Hogan, 1985), thus, leading to a natural and

comfortable motion for the patient. With the reference trajectory

being defined, the exoskeleton applies a torque on the human arm

to emulate the manual perturbation performed by the clinician.

This is achieved by using the feedback provided by the exoskeleton

measurements θθθ , θ̇̇θ̇θ and feeding the current tracking error eee, ė̇ėe into a

PD-controller to compute the required motor torque:

τττm(eee, ė̇ėe) = KpKpKpeee+KdKdKdėee, (19)

where eee=θdθdθd−θθθ andKpKpKp,KdKdKd are the feedback gains of the controller.

By applying the motor torque (19), the human-exoskeleton system

is moved and, given sufficiently high control gains, the desired

trajectory θdθdθd is tracked. For the gains of the exoskeleton PD-

controller Kp = 50 and Kd = 15 is set. In order to induce spastic

behavior in the human simulation, a constant, co-contracting

muscle activation of a = 0.4 is simulated for the muscles associated

with the examined joint. Thereby the human arm will produce a

resisting torque opposing the exoskeleton during a change in joint

position. The data that is generated during the passive mobilization

is used for the regression analysis (8).

For the data generation according to the nominal model,

perfect alignment between the human and exoskeleton kinematic

chain is assumed. Thus, the measured angles θθθ , θ̇̇θ̇θ are assumed

to match the human joint kinematics qqq, q̇̇q̇q, thereby providing

the nominal input variables XXX for the linear regression (8).

Furthermore, the output vector yyy is required, which comprises
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FIGURE 7

Block diagram of the data collection and estimation scheme for the automated assessment.

measurements of the human internal torqueτττhum. Sinceτττhum is not

directly measurable, we exploit the nominal model in Figure 7 to

overcome this problem. Specifically, using the knownmotor torque

(19) and the nominal dynamics model (6) we can compute the

nominal human torque τττhum to be

τττhum(θθθ , θ̇̇θ̇θ , eee, ė̇ėe) = MMMh(θθθ)θ̈̈θ̈θ +CCCh(θ , θ̇θ , θ̇θ , θ̇)+ gggh(θθθ)
︸ ︷︷ ︸

τττ rbd,h

+MMMe(θθθ)θ̈̈θ̈θ +CCCe(θ , θ̇θ , θ̇θ , θ̇)+GGGe(θθθ)− τττm(eee, ė̇ėe)
︸ ︷︷ ︸

τττ int,h

.(20)

Here, the parameters of the nominal human model are chosen

according to anthropometric data (Ramachandran et al., 2016)

with a nominal reference person of height 1.75m and a weight of

70kg, which results in a nominal upper arm length of 33.37cm, a

nominal forearm length of 31.9cm, a nominal upper arm mass of

2.25kg and a nominal forearm mass of 1.31kg. Thus, by measuring

the trajectory of the exoskeleton joint kinematics θθθ , θ̇̇θ̇θ over time

and computing the corresponding nominal human torques τττhum

according to (20), the regression analysis (8) can be performed for

each joint independently.









τ 1hum,i

τ 2hum,i
...

τThum,i









︸ ︷︷ ︸

yyy

=









θ1i θ̇1i
θ2i θ̇2i
...

...

θTi θ̇Ti









︸ ︷︷ ︸

X̂̂X̂X

[

kh,ii
dh,ii

]

︸ ︷︷ ︸

ωωω

, (21)

where, differently to (8), X̂̂X̂X represent the inputs when the

exoskeleton kinematic measurements θθθ , θ̇̇θ̇θ are used as a placeholder

for the human joint kinematics qqq, q̇̇q̇q. Note that deploying (20)

for the computation of the human torques implicitly allocates

torques that are unaccounted for by the nominal dynamics

model to be generated due to spasticity in the patient’s joints.

Intuitively, this is analog to the principle applied during manual

assessment, where the human limb is assumed to be passive and

any encountered resistance is allocated to spasticity. However, as

detailed in Section 2.1.2, different sources of uncertainty impact the

human-exoskeleton interaction, which result in interaction torques

that are not considered in (20). Thus, solving (21) will not result in

the true viscoelasticity parameter KKKh and DDDh, due to the impact of

uncertainties on the regression analysis.

2.4. Sensitivity analysis of uncertainties

The goal of this section is to quantify the impact of the

uncertainties on the estimated impedance parameters during the

exoskeleton-based automated assessment. To this end a sensitivity

analysis is performed to examine how variations in the output of

a numerical model or simulations can be ascribed to variations of

its inputs. We consider uncertainties in the modeling of physical

human-exoskeleton interaction as input factors to quantitatively

assess their importance. Analogously, the estimated viscoelasticity

parameters KKKh and DDDh represent the output samples of the

sensitivity analysis. Therefore, sensitivity is defined as the induced

variability in the parameter estimates KKKh and DDDh due to variability

in the uncertain inputs and is quantified by means of so-called

sensitivity indices (Saltelli et al., 2004). Intuitively, these sensitivity

indices represent importance measures which are allocated to

each input parameter of the simulation, i.e., each source of

uncertainty (Pianosi et al., 2016). In this section, the methods used

for the sampling-based sensitivity analysis procedure are presented.

First, the input sample generation is described in Section 2.4.1.

Following this, Section 2.4.2 details the deployed methods for the

computation of the sensitivity indices.

2.4.1. Sampling sources of uncertainty
For the input sample generation, we draw samples over

different parameterization of the human-exoskeleton simulation.

Here, each sampled simulation instance represents a distinct

patient with the individual variations present in the population.

Six biomechanical parameters are chosen as input factors, where
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TABLE 1 Sources of uncertainty and associated simulation parameters for

the input sample generation.

Uncertainty Simulation
parameter

Value range

Kinematic incompatibilities Length upper arm 27.28cm–37.78cm

Kinematic incompatibilities Length forearm 28.27cm–34.55cm

Inaccuracies in dynamics model Mass upper arm 0.3kg–3.41kg

Inaccuracies in dynamics model Mass forearm 0.1kg–1.82kg

Soft contact dynamics Elasticity upper
arm

100.5N/m–974.43N/m

Soft contact dynamics Elasticity forearm 100.5N/m–974.43N/m

each parameter is associated with a different source of uncertainty.

An overview of the parameters, their respective uncertainties

and the value ranges is depicted in Table 1. Here, kinematic

incompatibilities are produced by varying the length of the

human limb. In particular, changes in the upper arm length lead

to macro-misalignments and a resultant CoR offset, since the

exoskeleton link length remains unchanged. In contrast, varying

the human forearm length induces micro-misalignments. The

second source of uncertainty investigated during the sensitivity

analysis are inaccuracies in the dynamics model. By perturbing

the mass of the upper and forearm, errors in the nominal model

are evoked as the gravitational component and inertia of the

human limb are dependent on the mass. Lastly, uncertainties due

to soft-tissue contact dynamics are considered by sampling over

different elasticities of the human upper arm and forearm at the

attachments. The value ranges of the samples shown in Table 1 are

derived from statistical information provided by anthropometric

data (Ramachandran et al., 2016). Here, a fixed viscosity of

100Ns/m is chosen for the micro-elements comprising the soft-

tissue to avoid numerical instabilities.

In addition to defining the input variability space, i.e., the

value ranges shown in Table 1, further design choices regarding

the sampling strategy have to be made. In general two classes of

sampling concepts can be differentiated, One-At-a-Time (OAT)

and All-At-a-Time (AAT) methods (Pianosi et al., 2016). While

in OAT methods variations are induced by perturbing one input

parameter only and keeping all other fixed, AAT methods induce

output variations by varying all input parameters concurrently.

The main advantage of OAT in comparison to AAT sampling

is the reduced computational load due to fewer samples being

required. However, because of the concurrent sampling in AAT

methods, the joint influence of input factors due to interaction

between the parameters can be analyzed, thereby, providing more

insights (Pianosi et al., 2016). Depending on the deployed method

to estimate the importance measures, both approaches can be

beneficial. Therefore, the following section presents sensitivity

analysis methods with distinct sampling strategies for different

investigation purposes.

2.4.2. Sensitivity analysis methods
Depending on the setting and purpose of the sensitivity

analysis, different methods are appropriate. In Saltelli et al. (2008)

two main purposes are introduced. First, the goal of ranking the

most relevant input factors which is called factor prioritization.

Second, identifying input factors with negligible impact which is

called factor fixing. Beyond these two main settings, other purposes

are introduced as well. However, given that the proposed sensitivity

analysis is supposed to inform the decision making process in

clinical practice and lead to more robust spasticity assessment,

our quantitative analysis is mainly focused on factor prioritization

and factor fixing, since these information lead to a practical guide

to performing more robust automated assessment. Additional

information may also be derived by qualitative sensitivity analysis

methods, e.g., using scatter plots (Beven, 1993; Kleijnen andHelton,

1999).

Furthermore, potential interactions between the investigated

sources of uncertainty should also be considered. Since these

interactions may emerge for various parameters and it is a-

priori unknown how the interactions behave with respect to

the magnitude of the parameters, we ideally want to perform

a dense sampling over the input variability space. To this

end global sensitivity analysis methods are preferred, which

investigate variations over the complete range of admissible

inputs. Global sensitivity analysis methods have previously been

shown to facilitate tasks such as supporting efforts in uncertainty

reduction (Hamm et al., 2006) and facilitating robust decision

making (Nguyen and de Kok, 2007; Singh et al., 2014).

2.4.2.1. Elementary e�ects method

Given these requirements, there are multiple viable sensitivity

analysis methods. First, Morris method (Morris, 1991), also

referred to as elementary effects test, is an efficient and suitable

approach to perform factor prioritization and fixing. Here, a

perturbation-based design is deployed, where the whole input

space is explored by applying perturbations to each input factor

separately and computing global sensitivity measures from the

probed samples. This is done by computing so-called elementary

effects EE for each input factor xi

EEi =
f (x1, . . . , xi−1, xi + 1i, xi+1, . . . xK)− f (x1, . . . , xK)

1i
, (22)

where xxx = (x1, x2, . . . , xK) represents a set of input parameters,

f (xxx) denotes the function that maps inputs to model responses, K

is the total amount of examined input parameters and 1i is the

perturbation applied to the i-th input parameter. In order to achieve

a global measure of sensitivity, the input space is sampled with r

trajectories, each consisting of K+1 sampling points, where each

point differs in just one input factor by a fixed amount 1 (Morris,

1991). Thereby, each trajectory allows for the computation of one

EE per input factor and the sensitivity measures for each parameter

can be computed as such:

µi =
1

r

r
∑

j=1

EE
j
i (23)

=
1

r

r
∑

j=1

f (x
j
1, . . . , x

j
i + 1

j
i, . . . x

j
K)− f (x

j
1, . . . , x

j
K)

1
j
i

σ 2
i =

1

r − 1

r
∑

j=1

(EE
j
i − µi)

2, (24)
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where 1
j
i represents the perturbation of the i-th input parameter

x
j
i in trajectory j and EE

j
i denotes the computed elementary effect

associated with parameter xi along trajectory j. Here, the mean

µ and standard deviation σ of the elementary effects EE are

proposed as sensitivity measures (Saltelli et al., 2008). In particular,

µ (23) represents how much the input parameter affects the

output, while σ (24) is a measure for the induced effects due

to interaction with other inputs, i.e., how much EEi varies when

changes in the remaining i− 1 parameters occur. Specifically, a

small σi implies that the effect of parameter xi on the output,

which is shown by µi, is independent of the other parameters.

Therefore, Morris method is particularly well suited for factor

fixing, since a simultaneous consideration of both µ and σ allows

the identification of negligible input factors, which have both little

interaction with the other inputs (small σ ) and do not influence

the output strongly (small µ). Moreover, applying this approach

requires relatively few samples, which further increases its utility

for factor fixing in cases where model evaluations are expensive.

However, since it is a perturbation-based OAT method, it may lead

to erroneous results if the target system exhibits high-frequencies

in its response to variations in the input (Pianosi et al., 2016).

2.4.2.2. Variance-based sensitivity analysis

An alternative approach that facilitates the analysis of output

sensitivity with respect to each input factor over their complete

value range are variance-based sensitivity analysis methods, also

referred to as Sobol method (Sobol, 1993). Here, modeling

uncertainty is specifically considered by regarding the input

parameters as stochastic variables with a defined probability

distribution. Thereby, a conceptual link between sensitivity and

uncertainty is exploited and sensitivity is analyzed by investigating

how uncertainty in the input propagates to the output variables.

Subsequently, the relative contribution of each input is decomposed

and used as a measure of sensitivity. To this end variance is used as

a measure to quantify uncertainty. The so-called first-order effect Si,

which is a measure for the individual contributions of inputs to the

output variance, is computed as

Si =
V(z)− Exi

[

Vx−i (z | xi)
]

V(z)
, (25)

where z = f (xxx) is the output variable, E denotes the expectation

and V the variance. Here, Vx−i (z | xi) expresses the conditional

variance of the output z over x−i, i.e., all inputs except xi, given

that xi is fixed. Analogously, Exi (z | xi) denotes the conditional

expected value. Therefore, the second term in (25) expresses the

expected variance in the output given that the i-th input xi is fixed.

A small value for this expectation, and consequently a high value

for Si, implies that a significant reduction in output variance can be

achieved by fixing xi (Saltelli et al., 2008). Thus, the first-order index

Si is a measure for the direct contribution of an input to the output

variance, which in turn functions as a place-holder for sensitivity.

On the other hand, the total-order index STi indicates the

total effect of an input xi on the output variance including

interactions with other input factors (Homma and Saltelli, 1996)

and is defined as

STi =
Ex−i

[

Vxi (z | xi)
]

V(z)
. (26)

Moreover, variance-based methods allow for the computation

of further, higher-order indices, such as second-order or third-

order ones. Thereby, by computing all 2K − 1 orders, variance-

based sensitivity measures can theoretically capture the sensitivities

present in the system completely. However, since this is

computationally infeasible in practice, a good approximation can

be achieved by computing only the first-order and total-order

terms (Saltelli et al., 2004).

Thus, variance-based methods are well equipped to analyze

sensitivities in a principled manner by both quantifying the

importance of individual inputs and groups of inputs. Moreover,

an uncertainty-aware modeling paradigm is supported and, by

sampling the input space using probability distributions, the full

range of input variations can be investigated. However, due to their

sampling-intensive nature, it is impractical to deploy them directly

when model evaluations are expensive. Therefore, we propose to

use both the elementary effect test and variance-based sensitivity

analysis in conjunction. Thereby, non-influential input parameters

are detected by the efficient elementary effect method and can

be discarded prior to performing a more extensive analysis using

variance-based methods.

3. Results

In this section we present the findings of performing the

proposed two-phase sensitivity analysis scheme. First, in Section

3.1 the elementary effect test is deployed to screen parameters that

do not effect the automated assessment outcome significantly and

can therefore be fixed for subsequent investigations. Second, the

variance-based sensitivity analysis is performed on the remaining

input parameter in Section 3.2 to determine the relative importance

of the different model uncertainties. Lastly, a qualitative analysis of

the obtained samples is conducted in Section 3.3 to provide further

insights. For clarity of presentation the automated assessment

is limited to the estimation of the elbow joint stiffness. The

presented sensitivity analysis is implemented in Matlab using

the SAFE toolbox (Pianosi et al., 2015), while the simulation

model is implemented in Python using the MuJoCo physics

engine (Todorov et al., 2012).

3.1. Factor fixing using elementary e�ects

In order to identify non-influential parameters, we deploy

the elementary effect method as described in Section 2.4.2. To

this end, input parameter samples are drawn for which the

human-exoskeleton simulation is instantiated and subsequently

the automated assessment is run for each model instance to

generate the respective output samples. Here, we use a radial design

for sampling the input parameter hyperspace, since it has been

shown to achieve superior performance for computing elementary

effects (Campolongo et al., 2011). A total of r = 150 trajectories

is generated for k = 6 input parameters, which are listed in

Table 1, resulting in 1050 sampling points. For the generation of

the random sampling vectors required in the radial design, the

well-established Latin hypercube approach (McKay et al., 1979;
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FIGURE 8

Estimated mean µ vs. standard deviation σ of the elementary e�ects EE (left) and approximated 95% confidence bounds via bootstrapping (right).

Here, each input factor is represented by one marker and the confidence bounds are represented by the patterned area associated with each marker.

Helton and Davis, 2003) is used. Moreover, a uniform distribution

of the input parameter space is assumed.

The results of the elementary effect test are depicted in Figure 8.

On the left-hand side, it is clearly visible that the estimated

sensitivity measures indicate the mass of the upper arm x3 as

the least influential input parameter. The low value estimated

for both the mean and standard deviation implies that the input

factor has both little direct impact on the estimated joint stiffness

during the automated assessment procedure and moreover does

not interact strongly with the remaining parameters. This makes

sense intuitively since the mass of the upper arm is not expected to

influence the estimated torque on the elbow level. However, due to

the design of the passive mobilization experiment in Section 2.3,

it is first necessary to drive the human arm into the desired

initial configuration to start the procedure. Thereby different upper

arm mass parameterization could potentially influence the precise

starting state, which in turn can lead to slight changes in the

estimated stiffness. However, from the results of the elementary

effect test it is apparent that these disturbances do not impair

the assessment process. Differently, the length of the upper and

forearm exhibit the highest sensitivity both with respect to the

mean and standard deviations. Therefore, the elementary effect

method identifies the parameters associated with uncertainties

due to kinematic incompatibilities as the most dominant ones.

Lastly, the remaining parameters regarding the soft-tissue contact

dynamics and the mass of the forearm are estimated to have a

comparable sensitivity measure with the mass having a slightly

larger impact in both µ and σ .

Sampling-based sensitivity analysis methods inherently

approximate the true sensitivity indices given the observed

samples. Therefore, especially when working with small to

medium sample sizes, it is pertinent to validate the robustness

of the obtained results. In order to investigate this, an additional

robustness analysis can be performed (Pianosi et al., 2016) which

assesses whether similar sensitivity measures would have been

obtained with different input samples. This can be achieved

in a sample-efficient manner by approximately computing the

confidence bounds of the estimated similarity measures using

bootstrapping (Efron and Tibshirani, 1993). Note that while

bootstrapping is an efficient technique, the obtained confidence

intervals do not constitute theoretically guaranteed bounds in

general and can result in overly optimistic estimates when applied

to the Morris method (Yang, 2011; Romano and Shaikh, 2012).

However, applying the method still allows to retrieve valuable

insights regarding the estimated sensitivity indices. The results

of the robustness analysis are displayed in Figure 8 on the right.

Here, a total of 300 µ and σ values are computed for each input

factor, where each value is generated by drawing 150 samples with

replacement from the original 1050 sampling points. Notably,

the confidence bounds for the upper arm mass x3 are very small,

thereby indicating that the mass of the upper arm can confidently

be regarded as a non-influential input factor that can be fixed for

subsequent analysis. In contrast, the upper arm length x1 and

forearm length x2, which are identified as the most important ones

by the elementary effect test, are associated with large confidence

intervals. In particular the forearm length x2 features the highest

uncertainty in the estimated sensitivity measures. Therefore, the

results are not conclusive to make reliable statements beyond the

screening of the upper arm mass and the deployment of further

sensitivity analysis methods is required.

3.2. Factor prioritization using
variance-based sensitivity analysis

Following the elementary effect test in the previous evaluation,

we perform an additional variance-based sensitivity analysis to

obtain a more rigorous understanding of the uncertain sensitivity

patterns present in the human-exoskeleton system. To this end

we exploit the findings of the prior section to fix the upper

arm mass x3, as it is identified as a non-influential factor, which

leads to a reduction of the computational load of the proposed
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FIGURE 9

Visualization of the output distribution, i.e., error in the impedance

parameter estimation, due to the sampled input parameters. Here,

the empirical probability distribution function (PDF) is shown.

variance-based analysis. For the input sample generation of the

remaining parameter we use the two-phase sample procedure

proposed for the variance-based approximation of the first-

order and total-order indices (Saltelli et al., 2010). In the first

phase, a total of 2N random samples is generated, which are

referred to as base samples. Subsequently, KN additional input

samples are produced by resampling vectors of the base samples.

Thereby, this method requires N(K + 2) model evaluation for

the estimation of the first-order and total-order effects and is

computationally more efficient than a naive approach (Saltelli

et al., 2010). Here, we set N = 3, 000 and investigate K=5

input factors leading to a total of 21, 000 simulation runs.

The random base samples are again obtained using the Latin

hypercube method assuming a uniform distribution over the input

parameters.

The resulting output distributions is shown in Figure 9 with

the empirical probability distribution function (PDF), which

is approximated from the output samples. Here, the output

distribution, i.e., the estimation error in KKKh, resembles a Normal

distribution with a mean estimation error slightly larger than

0Nm/rad. Thereby, it can be seen how the sampling of uncertainties

in the input variability space induces an output distribution and

impacts the assessment results. Note that an implicit assumption in

variance-based sensitivity analysis is that variance is an appropriate

measure to capture uncertainty (Pianosi et al., 2016). Since

the empirical PDF in Figure 9 resembles a Normal distribution

and is neither multi-model nor highly-skewed, this assumption

holds true, thus strengthening the viability of deploying the

approach here.

Figure 10 depicts the resulting first-order indices Si on the

left and total-order indices STi on the right. Additionally, the

90% confidence interval are shown by the error bars, which

are computed using bootstrapping. From the first-order effects

it is clearly visible that the factors x1, x2 and x3 are the most

influential ones, with the length of the forearm x2 having the

highest impact. Moreover, the results indicate that the softness

of the upper and forearm x5 and x6 are negligible, since their

respective total-order indices are close to zero. Note that a total-

order index of value zero constitutes a necessary and sufficient

condition for an input factor to be non-influential (Pianosi et al.,

2016). The negative signs for the first-order indices of x5 and x6
can be attributed to numerical errors, which are known to occur

for input factors with negligible sensitivity indices when using

the deployed sampling method (Saltelli et al., 2008). Moreover,

the sum of the first-order effects computes to 0.78, while the

sum of the total-order effects is 1.13. Since both sums are not

equal to 1, it can be concluded that there are interaction effects

present among the input factors in the system. Additionally, it

can be seen in Figure 10 that the total-order indices of each factor

are greater than the respective first-order indices. Thus, it can

be inferred that all of the studied input parameter participate in

the interactions.

Finally, we perform a convergence analysis to affirm the

reliability of the obtained results. Since the sensitivity indices

are approximated from samples, a convergence analysis assesses

whether the evaluated sample size is sufficiently large to make

a statement regarding the importance of the input factors. This

can be done efficiently by recomputing the results from increasing

sets of sub-samples of the original data set and analyzing the

convergence of the observed indices (Nossent et al., 2011; Pianosi

et al., 2016). The results of the performed convergence analysis are

shown in Figure 11. Here it can be seen that both the first and

total-order indices converge quickly when increasing the size of

the sub-samples with few changes in the indices after sub-samples

of half the size of the original set. This indicates that a sufficiently

large input sample size is chosen in the evaluation. Since the error

bars in Figure 10 are also small when compared to the estimated

indices, the obtained results can be deemed robust. Therefore, we

can conclude that the length of the forearm is the most influential

source of uncertainty, with the upper arm length and the mass of

the forearm following as the next most important factors.

3.3. Qualitative sensitivity analysis

In previous sections, we have analyzed the impact of

uncertainties on the human-exoskeleton interaction from a

quantitative manner, which is a particularly suitable approach

when screening for influential and non-influential factors and

when ranking those. By applying the elementary effect test and

variance-based sensitivity analysis in Sections 3.1 and Section

3.2, input parameters associated with kinematic incompatibilities

and erroneous dynamics model are identified as the most

relevant uncertainties. However, little information regarding their

functional influence on the system is retrieved and, while

interaction between the inputs is indicated, their exact nature

remains unclear. Therefore, we perform an additional qualitative

sensitivity analysis to gain further insights into the most influential

sources of uncertainty.

Figure 12 visualizes the relationship between input and output

samples for x1, x2, and x4. Each black dot in the scatter plot

indicates an input-output sample pair, while the larger red dots

depict the average output values over an interval range of the

respective input. Here, equidistant intervals that split the input

value ranges into 10 bins are used, which result in a width of

0.02 for x1 and x2, and 0.17 for x4. For the evaluation, a total of

1,500 input samples are generated assuming a uniform distribution
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FIGURE 10

Estimated first-order indices Si (left) and total-order indices STi (right) with 90% confidence intervals using the variance-based sensitivity analysis. The

left figure shows the most influential factor is x2 followed by x1 and x4. The total-order e�ects on the right identify both x5 and x6 to have no impact,

since STi = 0 constitutes a necessary and su�cient condition.

FIGURE 11

Convergence plot illustrating the estimated sensitivity indices using an increasing amount of sub-samples. Both the first-order and total-order

indices converge quickly, which implies that a su�cient sample size is chosen for the variance-based sensitivity analysis.

for each parameter. Note that here the x2 sample range is slightly

larger compared to the previous evaluation, since the sampling

strategy of the qualitative sensitivity analysis is more robust to

erroneous model responses, which can occur due to simulation

failures caused by unreasonable input parameter combinations. In

Figure 12 it is clearly visible that variation in the length of the

upper arm x1 induce a nonlinear change in the output, while both

forearm length changes x2 and forearm mass changes x4 have a

linear influence. The linear relationship in x2 and x4 is consistent

with the physical intuition for the examined system, since the

gravitational component of the human arm dynamics in (1) is a

linear function in the link length and the mass. Thus, it is indicated

that the forearm length x2 has to be considered as a source of

uncertainty with respect to both kinematic incompatibilities and

modeling errors, which leads to a better understanding of the high

sensitivity ranking of x2 in the variance-based analysis. Differently,

the output exhibits a nonlinear behavior in x1 with a continuous

decrease in the slope for larger upper arm lengths. Thereby, it can

be derived that beyond a certain threshold the misalignment in the

center of rotations due to variations in x1, lead to extreme errors

in the output value and may cause catastrophic failures. Thus,

despite the relative lower prioritization in Section 3.2, the upper

arm length remains a significant uncertainty and it needs to be

ensured that the mismatch to its nominal values is below certain

runaway boundary conditions.

Finally, we visualize the interaction between the input

parameters using colored scatter plots in Figure 13, where one

input factor is depicted on the x-axis against another one on

the y-axis with the marker color indicating the output value.

Here, the emergence of patterns provides an indication for the

interaction between two factors. From Figure 13 on the far right

it can be seen that little interaction is taking place between upper

arm length x1 and forearm mass x4, since the output values do

not change significantly with concurrent changes in the input

parameters. However, it can be detected that the upper arm length

x1 is dominant for very large values, since the markers along the

maximal y-axis values are all colored in red. On the other hand,

a slight interaction between the forearm length x2 and mass x4
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FIGURE 12

Scatter plot visualizing the output samples against input samples for variations of the upper arm length x1 (left), variations of the forearm length x2
(middle) and variations of the forearm mass x4 (right). The red dots illustrate the mean output for equidistant bins along each input.

FIGURE 13

Colored scatter plot depicting samples of the i-th input parameter on the x-axis against the j-th on the y-axis, where the marker color indicates the

respective estimation error. By observing emerging pattern in the plot, conclusions regarding the interaction of two input factors can be derived.

can be inferred from the middle plot, where the estimation error

appears to grow strongly, if both input parameters are increased

jointly. Intuitively, this can be ascribed to the fact that an increase

in the forearm length also shifts the center of mass of the link,

which in turn increases the influence of the forearmmass. Lastly, in

Figure 13 on the left it can clearly be seen that for very high values

of x1 the upper arm length dominates the output, which is indicated

by the red marker coloring along maximal x-axis values.

4. Discussion

The present study performed a quantitative sensitivity analysis

of the major sources of uncertainty present in an upper-

limb human-exoskeleton system, and their impacts on the arm

impedance parameter estimation was investigated. The performed

analysis indicates kinematic incompatibilities and errors in the

nominal dynamics model as the most influential sources of

uncertainty. Specifically, variations in the assumed forearm length

belong to both classes of uncertainty and appear to be the

most significant factor according to the results in Figure 10.

However, given a wider input variability space, the influence due

to variations in the upper arm length dominates, as shown in the

qualitative analysis in Figures 12, 13. Here, the results indicate

that for slight kinematic misalignments within a 5% range of

the nominal upper arm length, the resulting estimation error

only grows approximately linearly. However, when the upper arm

misalignment increases beyond the approximately linear range, the

nonlinear functional behavior results in a blow up of the estimation

error. While qualitative sensitivity analysis approaches are more

ambiguous, this finding makes sense intuitively, as the upper arm
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length is associated with offsets in the center of rotation, which

is typically considered a significant source of uncertainty (Schiele,

2008; Jarrassé and Morel, 2012). In addition to the above-described

link lengths, the mass of the forearm is the third-most relevant

source of uncertainty according to both the elementary effect test

and the variance-based sensitivity analysis. Here, the forearm mass

has implications regarding the nominal dynamics model, since it

is relevant for both the gravitational and inertial properties of the

human arm. In contrast, the contact dynamics due to soft-tissue

at the attachment are the least relevant as the results in Figure 10

indicate them to be non-influential.

Given the results, it can be seen that uncertainty has

a significant effect on the exoskeleton-based arm impedance

estimation. In order to help reduce overconfidence in assessment

results, the estimation procedure may benefit from employing

uncertainty-aware regression techniques, e.g., Gaussian Processes,

which model uncertainty explicitly, and thus make it transparent

for the clinician (Rasmussen andWilliams, 2005). Besidesmodeling

the uncertainty, practical steps can be taken to increase the

precision of the assessment by exploiting insights provided by

our sensitivity analysis. In particular, reducing the effect of

kinematic incompatibilities should be prioritized here. More

specifically, a close alignment of the center of rotations has

to be ensured. Inclusion of passive DoFs on the shoulder as

well as the elbow level can mitigate the influence of kinematic

incompatibilities (e.g., Vitiello et al., 2013). Additionally, special

care should be taken during the donning procedure to ensure an

ideal alignment before and during the usage. Second, our sensitivity

analysis shows that errors in the nominal dynamics model, due

to inaccuracies in the modeling of gravitational and inertial

properties of the human arm, adversely affect the impedance

estimation result. Therefore, measures should be taken to reduce

these effects. This can be achieved by performing more extensive

identification procedures for the human arm model instead of

relying on standardized models derived from anthropometric data.

The benefits of deploying more personalized models has been

demonstrated recently in rehabilitation scenarios (Just et al., 2020).

While modeling inaccuracies are expected to be less prevalent for

the robotic system, they may also adversely affect the assessment.

For example in scenarios where unknown and nonlinear friction

components influence the robot joints (Chang et al., 2009),

the device dynamics may differ from the original identification.

Therefore, ensuring the accuracy of the robot model also needs to

be considered in practice when performing automated assessment.

The simulation environment proposed in the presented study

emulates realistic load transmissions between the human and

exoskeleton via a mechanical interface composed of supporting

cuffs and straps. In addition, we facilitate soft contacts by

augmenting the human musculoskeletal model by simulated soft-

tissue at the attachment areas. To the best of the authors’

knowledge, it is the first upper-limb human-exoskeleton simulation
that acknowledges the contact dynamics at the mechanical
interface between human and robot by implementing both
the interface and the human soft-tissue explicitly. Therefore
we believe that the developed high-fidelity simulation platform
lends itself well for exploitation in diverse use cases and is

particularly suitable to investigate safety and ergonomics in
control development. The consideration of ergonomics in physical

human-robot interaction is a field that has recently gained growing
attention and is considered crucial for driving advances in human-
robot collaboration (Gualtieri et al., 2021; Sunesson et al., 2023).

Having an explicit implementation of the physical interface is
particularly relevant here, in order to accurately represent loads

arising at the human limb during interaction with an exoskeleton.
Moreover, our proposed simulation platform also provides utility

in assisting simulation-based hardware development of wearable

robotics, as the consideration of safety and ergonomics is desirable
here (Agarwal et al., 2010).

While the present study quantitatively analyzed how

uncertainties in the human-exoskeleton interaction impact the

arm impedance estimation, some simplifying assumptions were

made. First, an idealized, fully known robotic system is assumed.

Despite the fact that inertial and gravitational components can

reasonably be derived for the exoskeleton, commonly, unknown

friction dynamics remain. However, we do not expect this to be

a significant issue, since a multitude of friction compensation

strategies exist (Huang et al., 2019), which can straight-forwardly

be applied in the considered scenario. Another assumption was

made with respect to the simulation of spastic behavior of the

human arm. In particular, we did not consider joint synergies

or phase-dependent descriptions of spasticity. Since in this work

the focus lied on isolating the influence of uncertainties on the

mechanical interaction and consequently on the assessment,

the consideration of a more complex spasticity model would

provide limited additional benefit to the objective of the study.

Still the presented human musculoskeletal simulation allows for

the inclusion of different spasticity behaviors in principle. Thus,

despite these limitations, the presented results enable us to derive

the most relevant sources of uncertainty that impact the physical

human-exoskeleton interaction, and thereby help increase the

precision of exoskeleton-based arm impedance estimation.

5. Conclusion

We conclude that this work presents a novel framework to

analyze the influence of sources of uncertainty in the human-

exoskeleton interaction and their impact on the exoskeleton-based

impedance estimation. Due to an increasing demand for robot-

based neurorehabilitation and assessment, we argue that the

explicit consideration and quantification of uncertainties is

paramount, as this allows for more robust and trustworthy

estimates. To this end, a human-exoskeleton simulation

environment is developed to facilitate the use of sampling-

based sensitivity analysis methods. The performed sensitivity

analysis indicates that uncertainties significantly impact the

impedance estimation, and are primarily caused due to kinematic

incompatibilities and inaccuracies in the nominal rigid body

dynamics model of the human arm. Therefore, the findings

of the study may also be used to increase the precision of

exoskeleton-based automated assessment, i.e., by extending

model calibrations of the human arm, more careful donning

procedures or by deploying uncertainty-aware regression

techniques. In the future, we plan to exploit this framework to

develop approaches for uncertainty reduction during exoskeleton-

based impedance estimation, in order to reduce the estimation
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uncertainty below pre-defined tolerances. Thus, providing

a constructive approach for improving exoskeleton-based

automated assessment.
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